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Optimal non-outage probability maximizing
the outage rate in Rayleigh channel

Vincent Savaux, Isabelle Siaud, Rodolphe Legouable

In this paper, we derive an analytic closed-form of the optimal non-
outage probability value which maximizes the outage rate ina Rayleigh
channel. Furthermore, asymptotic approximations of both the optimal
non-outage probability and the maximum outage rate can be deduced
from the proposed analysis.

Introduction: The outage capacity is defined as the maximum data rate
which is achieved for a specified outage probability [1, 2]. Thus, the
outage capacity, unlike the ergodic capacity, takes into account the
decoding errors due to the channel. From this definition of the capacity,
the outage rate is expressed as

Co = PnoB log2(1 + γmin), (1)

whereB is the bandwidth of the received signal, and

Pno = P(γ > γmin), (2)

is the non-outage probability1, i.e. the probability that the transmitted
signal is properly decoded, whereγ is the signal-to-noise ratio (SNR),
andγmin is a fixed threshold. In [2], the maximization of the outage rate
in presence of Rayleigh channel is performed through simulations results
only.

In this paper, we extend the work in [2], since we provide an analytical
expression of the non-outage probabilityPno which maximizes the
outage rate in Rayleigh channel. Furthermore, we develop anasymptotic
expansion of the obtained solution, which reveals that the optimal Pno

value is bounded by 1 and1/e. Next Section is devoted to the proposed
analysis.

Optimal Non-Outage Probability: In this paper, the SNR, which is
measured at a distancer from the transmit antenna, is defined by the
log-distance path loss model as

γ = γ0
( r

d0

)
−α

, (3)

whereγ0 is the SNR measured at distanced0 from the transmit antenna,
and obeys a given probability process according to the channel models,α
is the path-loss exponent. In Rayleigh channel,γ0 is a random variable,
the probability density function (pdf) of which is given by the exponential
distribution:

fγ0(γ0) =
1

2γ̄0
exp(−

γ0

2γ̄0
), (4)

where γ̄0 is the average SNR value. Other models as Nakagami (for
the multipath fading), log-normal (for the shadowing), anda composite
multipath/shadowing are provided in [3]. From (4) and (2), the non-
outage probabilityPno can be expressed as

Pno = P(γ0(
r

d0
)−α > γmin)

= P(γ0 > γmin(
r

d0
)α

︸ ︷︷ ︸

A

)

=

∫+∞

A

γ0

2γ̄0
exp

(
−

γ0

2γ̄0

)
dγ0

= exp
(
−

γmin(
r
d0

)α

2γ̄0

)
. (5)

If a target non-outage probability, which is denoted byPt
no, is set, then

the thresholdγmin can be written as a function ofPt
no. Thus, we have:

1 Note that, in this paper, we use the non-outage probabilityPno

instead of(1− Po) in the definition (1), wherePo is the outage
probability.

γmin =−2γ̄0(
r

d0
)−α ln

(

P
t
no

)

. (6)

The non-outage rate can be rewritten by substituting (6) into (1):

Co = P
t
noB log2

(

1− 2γ̄0(
r

d0
)−α ln

(

P
t
no

))

. (7)

It can be noted thatCo is a strictly decreasing function with the
variable r, and a concave function with the variablePt

no such that
Co(Pt

no = 0)=Co(Pt
no =1) = 0. Furthermore, it is straightforwardly

shown in Appendix that, by solving the equation∂Co

∂Pt
no

= 0, the maximum

outage rate is achieved for

P
t
no = exp

(1− exp(W (X))

X

)

, (8)

whereX =2γ̄0(
r
d0

)−α, andW is the Lambert W function, which is
defined as the solution of the equationa= xex [4]. The substitution of
(8) into (7) leads to the maximum outage rate:

Co =
B

ln(2)
W (X) exp

(1− exp(W (X))

X

)

. (9)

The asymptotic expansions ofW (X) in 0 and+∞ (corresponding
to cases where the SNRγ is weak and large, respectively) leads to the
following limits (sea Appendix for more details):

lim
X→0

P
t
no = e−1, (10)

lim
X→∞

P
t
no =1. (11)

Result in (11) reveals that a very largeγ value (similarlyX value)
leads to an optimal non-outage probability equal to 1, i.e. the signal can
be perfectly decoded when the SNR tends to infinity. On the contrary,
the asymptotic analysis in (10) reveals that the optimal non-outage
probability is not 0 bute−1 when the SNR tends to zero. This reflects the
fact that the termPt

noB is dominating compared with thelog2(.) in (7),
and therefore a non-zeroPt

no value is mandatory in order to maximize
the outage rateCo.

Numerical Results: In all the presented simulations results, the following
parameters have been chosen:B = 20 MHz, d0 = 5 m, γ̄0 =30 dB, and
α=2. Fig. 1 depicts the outage rate as a function ofPt

no, considering a
Rayleigh channel, and forr= 40 m andr=100 m. It can be seen that,
as expected, the outage rate is a concave function, which reaches 0 at
Pt
no =0 andPt

no = 1. In the latter case when the non-outage probability
tends to 1, only low rate signals (robust) can be transmittedin order to
be properly decoded. Furthermore, one can observe that the lowest the
distancer (namely the higherX), the largest the optimalPt

no value.
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Fig. 1 Outage rate versus the non-outage probability Pno, in Rayleigh
channels.
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(a) Maximum outage rate versusX.
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(b) OptimalPno value versusX.

Fig. 2 Maximum outage rate and optimal Pno value versus X , in Rayleigh
channels.

Fig. 2-(a) shows the maximum outage rate (9) and Fig. 2-(b) the
optimalPt

no value (8) versusX. The lowestX values correspond to cases
whereγ̄0 is weak orr is large, whereas the largestX values correspond to
the opposite cases. From the asymptotic expansion given in Appendix, we

can deduce thatPt
no ≈ exp

(

1−X/ ln(X)
X

)

andC0 ≈
B

ln(2)
ln(X) when

X tends to infinity. Furthermore, once again, it can be noticedthat the
optimalPt

no is lower-bounded by1/e.

Conclusion: In this letter, we have proposed an analysis of the maximum
achievable outage rate. To this end, we have derived the closed-
form expression of the corresponding optimal non-outage probability.
Asymptotic expansions allow us to approximate these expressions in
limit cases. The provided theoretical results have been illustrated through
simulations.

Appendix:

Derivation of C0

The derivative ofC0 with respect toPt
no can be written as:

∂C0

∂Pt
no

=B ln(1 −X ln(Pt
no))−

BX

1−X ln(Pt
no)

, (12)

whereX = 2γ̄0(
r
d0

)−α. By settingY = 1−X ln(Pt
no), we deduce that

the equality ∂C0

∂Pt
no

= 0 leads to the following equation:

ln(Y )Y =X. (13)

Therefore, the solution of (13) maximizes the outage rate, since C0

is a concave function. The above equation (13) can be rewritten as
ln(Y )eln(Y ) =X, and one can recognize the Lambert’s transcendental
equation, which is solved by:Y = exp(W (X)). SincePt

no = exp( 1−Y
X

),
this proves the expression ofPt

no given in (8).

Asymptotic expansion of Pno

The series expansion of W Lambert function in 0 and+∞ are,
respectively:

W (x) =

+∞∑

n=1

(−n)n−1

n!
xn, (14)

and
W (x) = ln(x)− ln(ln(x)) + o(ln(ln(x))). (15)

The substitution of (14) into the exponential function, andthe series
expansion of the exponential lead to:
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)
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(
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+∞∑

k=1

(−n)k(n−1)

n!k
Xnk

)

= 1 +X +Rn,k , (16)

with Rn,k is the rest containing all the terms inXp, where p > 1.
Therefore, the limit ofPno in zero can be expressed as

lim
X→0

Pno = lim
X→0

exp

(
1− (1 +X + Rn,k)

X

)

= e−1. (17)

The limit of Pno in +∞ can be expressed by using (15) as

lim
X→+∞

Pno = lim
X→+∞

exp

(
1− exp

(
ln(X) − ln(ln(X))

)

X

)

= lim
X→+∞

exp

(
1−X/ ln(X)

X

)

= 1, (18)

which concludes the proof of (11).
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