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Optimal non-outage probability maximizing the outage rate in Rayleigh channel

In this paper, we derive an analytic closed-form of the optimal nonoutage probability value which maximizes the outage rate in a Rayleigh channel. Furthermore, asymptotic approximations of both the optimal non-outage probability and the maximum outage rate can be deduced from the proposed analysis.

Introduction:

The outage capacity is defined as the maximum data rate which is achieved for a specified outage probability [START_REF] Goldsmith | Wireless Communications[END_REF][START_REF] Choudhury | Ergodic capacity, outage capacity, and information transmission over Rayleigh fading channels[END_REF]. Thus, the outage capacity, unlike the ergodic capacity, takes into account the decoding errors due to the channel. From this definition of the capacity, the outage rate is expressed as

Co = PnoB log 2 (1 + γ min ), ( 1 
)
where B is the bandwidth of the received signal, and

Pno = P(γ > γ min ), (2) 
is the non-outage probability 1 , i.e. the probability that the transmitted signal is properly decoded, where γ is the signal-to-noise ratio (SNR), and γ min is a fixed threshold. In [START_REF] Choudhury | Ergodic capacity, outage capacity, and information transmission over Rayleigh fading channels[END_REF], the maximization of the outage rate in presence of Rayleigh channel is performed through simulations results only.

In this paper, we extend the work in [START_REF] Choudhury | Ergodic capacity, outage capacity, and information transmission over Rayleigh fading channels[END_REF], since we provide an analytical expression of the non-outage probability Pno which maximizes the outage rate in Rayleigh channel. Furthermore, we develop an asymptotic expansion of the obtained solution, which reveals that the optimal Pno value is bounded by 1 and 1/e. Next Section is devoted to the proposed analysis.

Optimal Non-Outage Probability: In this paper, the SNR, which is measured at a distance r from the transmit antenna, is defined by the log-distance path loss model as

γ = γ 0 r d 0 -α , (3) 
where γ 0 is the SNR measured at distance d 0 from the transmit antenna, and obeys a given probability process according to the channel models, α is the path-loss exponent. In Rayleigh channel, γ 0 is a random variable, the probability density function (pdf) of which is given by the exponential distribution:

fγ 0 (γ 0 ) = 1 2γ 0 exp(- γ 0 2γ 0 ), (4) 
where γ0 is the average SNR value. Other models as Nakagami (for the multipath fading), log-normal (for the shadowing), and a composite multipath/shadowing are provided in [START_REF] Simon | Digital Communication over Fading Channels[END_REF]. From (4) and ( 2), the nonoutage probability Pno can be expressed as

Pno = P(γ 0 ( r d 0 ) -α > γ min ) = P(γ 0 > γ min ( r d 0 ) α A ) = +∞ A γ 0 2γ 0 exp - γ 0 2γ 0 dγ 0 = exp - γ min ( r d 0 ) α 2γ 0 .
(5)

If a target non-outage probability, which is denoted by P t no , is set, then the threshold γ min can be written as a function of P t no . Thus, we have:

γ min = -2γ 0 ( r d 0 ) -α ln P t no . (6) 
The non-outage rate can be rewritten by substituting (6) into (1):

Co = P t no B log 2 1 -2γ 0 ( r d 0 ) -α ln P t no . (7) 
It can be noted that Co is a strictly decreasing function with the variable r, and a concave function with the variable P t no such that Co(P t no = 0) = Co(P t no = 1) = 0. Furthermore, it is straightforwardly shown in Appendix that, by solving the equation ∂Co ∂P t no = 0, the maximum outage rate is achieved for

P t no = exp 1 -exp(W (X)) X , (8) 
where X = 2γ 0 ( r d 0

) -α , and W is the Lambert W function, which is defined as the solution of the equation a = xe x [START_REF] Corless | On the Lambert W Function[END_REF]. The substitution of (8) into (7) leads to the maximum outage rate:

Co = B ln(2) W (X) exp 1 -exp(W (X)) X . (9) 
The asymptotic expansions of W (X) in 0 and +∞ (corresponding to cases where the SNR γ is weak and large, respectively) leads to the following limits (sea Appendix for more details):

lim X→0 P t no = e -1 , (10) 
lim X→∞ P t no = 1. (11)
Result in (11) reveals that a very large γ value (similarly X value) leads to an optimal non-outage probability equal to 1, i.e. the signal can be perfectly decoded when the SNR tends to infinity. On the contrary, the asymptotic analysis in (10) reveals that the optimal non-outage probability is not 0 but e -1 when the SNR tends to zero. This reflects the fact that the term P t no B is dominating compared with the log 2 (.) in ( 7), and therefore a non-zero P t no value is mandatory in order to maximize the outage rate Co.

Numerical Results: In all the presented simulations results, the following parameters have been chosen: B = 20 MHz, d 0 = 5 m, γ0 = 30 dB, and α = 2. Fig. 1 depicts the outage rate as a function of P t no , considering a Rayleigh channel, and for r = 40 m and r = 100 m. It can be seen that, as expected, the outage rate is a concave function, which reaches 0 at P t no = 0 and P t no = 1. In the latter case when the non-outage probability tends to 1, only low rate signals (robust) can be transmitted in order to be properly decoded. Furthermore, one can observe that the lowest the distance r (namely the higher X), the largest the optimal P t no value. Fig. 2-(a) shows the maximum outage rate (9) and Fig. 2-(b) the optimal P t no value (8) versus X. The lowest X values correspond to cases where γ0 is weak or r is large, whereas the largest X values correspond to the opposite cases. From the asymptotic expansion given in Appendix, we can deduce that P t no ≈ exp 1-X/ ln(X) X and C 0 ≈ B ln(2) ln(X) when X tends to infinity. Furthermore, once again, it can be noticed that the optimal P t no is lower-bounded by 1/e.

Conclusion:

In this letter, we have proposed an analysis of the maximum achievable outage rate. To this end, we have derived the closedform expression of the corresponding optimal non-outage probability. Asymptotic expansions allow us to approximate these expressions in limit cases. The provided theoretical results have been illustrated through simulations.

Appendix:

Derivation of C 0

The derivative of C 0 with respect to P t no can be written as:

∂C 0 ∂P t no = B ln(1 -X ln(P t no )) - BX 1 -X ln(P t no ) , (12) 
where X = 2γ 0 ( r d 0

) -α . By setting Y = 1 -X ln(P t no ), we deduce that the equality ∂C 0 ∂P t no = 0 leads to the following equation:

ln(Y )Y = X.
(13) Therefore, the solution of (13) maximizes the outage rate, since C 0 is a concave function. The above equation (13) can be rewritten as ln(Y )e ln(Y ) = X, and one can recognize the Lambert's transcendental equation, which is solved by: Y = exp(W (X)). Since P

t no = exp( 1-Y X ),
this proves the expression of P t no given in (8).

Asymptotic expansion of Pno

The series expansion of W Lambert function in 0 and +∞ are, respectively:

W (x) = +∞ n=1 (-n) n-1 n! x n , (14) 
and

W (x) = ln(x) -ln(ln(x)) + o(ln(ln(x))). (15) 
The substitution of ( 14) into the exponential function, and the series expansion of the exponential lead to:

exp +∞ n=1 (-n) n-1 n! X n = +∞ n=1 exp (-n) n-1 n! X n = +∞ n=1 +∞ k=0 (-n) k(n-1) n! k X nk = +∞ n=1 1 + +∞ k=1 (-n) k(n-1) n! k X nk = 1 + X + R n,k , (16) 
with R n,k is the rest containing all the terms in X p , where p > 1.

Therefore, the limit of Pno in zero can be expressed as 

which concludes the proof of (11).
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 11 (1 + X + R n,k ) X = e -1 . (17)The limit of Pno in +∞ can be expressed by using (15) as lim exp ln(X) -ln(ln(X))

Note that, in this paper, we use the non-outage probability Pno instead of (1 -Po) in the definition[START_REF] Goldsmith | Wireless Communications[END_REF], where Po is the outage probability.