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Abstract: In this paper, we produce nanoholes on a silicon surface by laser ablation. Those 

nanoholes lead to a yield enhancement of light-matter interaction. Performing Raman 

spectroscopy on silicon, an enhancement of its main Raman mode is observed: it is twice 

higher with the nanoholes compared to a flat surface. Such a feature appears whatever the 

excitation wavelength (488, 514.5 and 632.8 nm) and the laser power, revealing a broad band 

light-matter interaction enhancement. In addition, no change in the position and shape of the 

main Raman mode of silicon is observed, suggesting that no structural damages are induced 

by laser ablation. These results clearly demonstrate the potentiality of such nanostructures for 

the further development of silicon photonics. 

1. Introduction  

 

Trapping light using nanostructures is a powerful approach to improve light-matter 

interaction. This could lead to many applications, particularly in the field of photovoltaics [1-

3]. Nowadays the huge development of optical nano-antennas [4] is an intensive field of 

research. However the exact interaction between those nanostructures and light is not totally 

clearly understood due to the multiple mechanisms interfering. In many cases light scattering 

can be enhanced. This feature has led to the development of surface enhanced spectroscopy, 

such as surface enhanced Raman spectroscopy (SERS [5]), surface enhanced fluorescence 

(SEF [6]) or surface enhanced infra-red absorption (SEIRA [7]). For all these techniques, the 

enhanced optical property of a nanostructured sample is used to detect a signal in conditions 

where this would normally not be possible due to a weak scattering cross section and a low 

amount of interacting molecules. For the above-mentioned techniques, the final signal 

intensity is an experimental sign of the enhanced scattering properties of the nanostructured 

sample.  An enhancement factor (EF) can thus be calculated, even if it is absolutely necessary 

to be very cautious about its quantitative estimation and its real scientific meaning [5]. These 

techniques are extremely powerful and a single molecule detection has been reported [8-10]. 

They are usually all based on the giant electromagnetic resonance in the near field of metallic 

nanostructures due to plasmonic resonance. This is the case for instance with silver, gold or 
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copper nanostructures. Depending on the plasmonic resonance, the intensity of the enhanced 

signal can thus strongly depends on the wavelength of the excitation and the scattered light. 

Even if this mechanism leads to a very high enhancement, its plasmonic origin induces a 

severe limitation: enhancement occurs only if the incoming light wavelength is included in a 

plasmon absorption band of the nanostructured sample. For broadband optical applications, it 

is therefore necessary to build plasmonic nanostructures with a broad absorption band, which 

can require sophisticated protocols (fractal nanostructures, use of a mix of different metals 

etc…).  

Such mechanism is not the only one for the achievement of surface enhanced light scattering 

and several studies have already reported comparable enhancements without plasmonics.  The 

use of silica microspheres enables also to obtain similar enhancements [11]. The precise 

mechanism is not fully explained but it appears that an optical resonance based on 

whispering-gallery mode plays a key role [12]. A lens effect can also occur [13]. In the case of 

nanostructured silicon (nanoparticles or microcavity) enhancements are also reported [14-16]. 

A good experimental proof of this effect is the evolution of the main silicon Raman mode. 

Due to its mechanism, Raman scattering can be considered as an experimental signature of 

light-matter interaction and is extensively used to study the optical near field enhancement. As 

a consequence, the light trapping in nanostructured samples induces an increase of Raman 

modes compared to a flat classical substrate. For silicon, the final intensity of its main Raman 

mode can therefore be considered as an experimental and quantitative proof of light trapping 

efficiency. Such specificity is of considerable interest for the development of silicon 

nanophotonics, in particular for photovoltaics.  

 Among all nanostructure architectures giving rise to an enhancement of light-matter 

interaction, the nanoholes appear as extremely promising [17]. In this paper we report Raman 

signal enhancement from silicon nanoholes. The silicon nanoholes are realized through laser 

ablation using silica nanospheres preliminary laid on the silicon substrate by means of the 

Langmuir-Blodgett technique. Those spheres act as lenses to focus the laser light. A network 

of nano-holes (typical diameter: 450 nm) is thus created on the silicon surface. Such a sample 

is studied by Raman spectroscopy using excitation wavelengths at 488 nm, 514.5 nm and 

632.8 nm. For each wavelength, measurements are performed with various laser powers. A 

clear enhancement of the silicon Raman mode is observed, whatever the excitation 

wavelength and the laser power are. Our results confirm the possibility offered by such 

nanostructured sample to highly increase light-silicon interaction. 

2. Experimental 

 

Oriented (100) silicon wafers (from Siltronix) are used in the experiments. The wafers are 

polished on a single side and cut into ≈2×2 cm² area samples. They are sonicated in  water and 

ethanol for 30 minutes, and further treated with a plasma torch (Acxys technologies) in order 

to remove any residual contamination and to increase the wettability of the surface. 

Afterwards, silica spheres with radii of 500 nm and low size dispersion (polydispersity index 

PDI < 0.2) are mixed with ethanol (40 mg/mL). A Langmuir-Blodgett (LB) film deposition 

machine (KSV-Nima, model Mini) equipped with a surface tension balance is employed to 

grow a close-packed sphere monolayer on the Si substrates. We choose to work with C18 

functionalized commercial spheres (from Micromod) as they are strongly hydrophobic, 

enabling the self-assembly of spheres at the Air/Water Interface without the use of chemicals 

[18, 19] that would modify the spheres or the LB subphase. The microsphere solution is 

carefully spread by small droplets (µL) at the surface of water which is then compressed until 

the surface pressure reaches 15 mN/m. The monolayer is then transferred to the silicon surface 

at a dipping speed of 5 mm/minute while the surface pressure is maintained at a constant level 

by progressive automated compression. 



The microsphere 2D-arrays obtained on silicon are irradiated by laser pulses provided by an 

ArF (λlaser = 193 nm) laser source (from Lambda Physik, LPX220i). The laser pulse duration is 

15 ns, and the experiments are performed at normal incidence. The spheres act as near-field 

focusing elements producing a periodic assembly of sub-diffraction limit light spots (also 

called photonic nanojets) hitting the silicon surface [20]. When modest laser fluences are 

used, the substrate is ablated only locally at the tip of the photonic nanojets leaving behind an 

array of nanocraters in a simple, dry and fast single laser processing step [21].   

Obviously the quality of the periodic structuring depends on the quality of the arrangement 

resulting from the sphere assembly, the level of monodispersity of the spheres and also on the 

laser dose impinging the substrate [22]. The laser-pulse energy was varied with the aid of a 

manually operated beam attenuator (from Optec, AT4030). 

In previous works [23], parallel and long range (>> mm²) structuring at the mesoscopic scale 

(100 nm – 1 µm) has been demonstrated on silicon samples showing the interest of this 

approach. We also studied the degree of control in surface structuring while varying the laser 

fluence and number of shots. The results relied on statistical analyses of the created features 

(in the range 100-1000 nm) observed by optical and scanning electron microscopy (SEM, 

JEOL JSM-6390) [23]. In the present case, the templates are prepared with 10 laser shots at a 

laser fluence maintained at 0.55 J/cm2. This sequence is found to provide high quality 

structures for experiments performed at ambient air. The structures rely on the local ablations 

induced by the first pulse which ejects the microsphere and leaves a small hole behind it.  

Cleaning as well as local ablation of the resulting products around the holes is realized with 

the following laser pulses. Similar results could be likely obtained with a single laser pulse if 

the interaction were performed in a low pressure environment to avoid redeposition. 

The morphology of the silicon templates used for the optical experiments is analyzed using 

tapping-mode atomic force microscopy (AFM, PSIA XE-100). An AFM image of the laser-

impacted silicon sample can be seen in figure 1. A hexagonal network of holes is formed after 

laser ablation. The pitch is 1 µm imposed by the sphere radius. The holes have a typical 

diameter of 440 nm and a deepness of 230 nm. 

Raman measurements are performed using a Horiba Labram HR800 spectrometer. Three 

different laser excitations wavelengths are used: 632.8 nm (from a HeNe laser), 514.5 nm and 

488 nm (from an Ar laser). The laser beam is focused on the sample through a x100 objective 

(Numerical Aperture of 0.9). The laser spot size is similar to the typical diameter of the 

nanoholes. As a consequence, the signal relies on an individual nanohole for each Raman 

measurement. The use of different laser excitation wavelengths insures a rather broadband 

study of the optical response of the sample. The laser power varies between 1 μW and 3.6 

mW.  



3. Results and discussion 

 

 

Fig. 1. AFM image of a laser-impacted silicon sample. a) General 3D view and b) typical line profile of the nanoholes 
array. 

 

For the different laser excitation wavelengths, two kinds of Raman measurements were 

performed: one with the laser focused on a hole and the other one on a flat part of the sample 

between the holes. Despite the high power laser irradiation, the Raman signal coming from 

the flat part of the laser-impacted silicon sample is identical to the one from a standard flat 

silicon sample (position of the peak, full half-width maximum and intensity).  The recorded 

Raman spectra of the laser-impacted silicon samples can be seen in figure 2. The single mode 

observed at 520.7 cm-1 arises from the first-order Raman scattering of the longitudinal optical 

(LO) and the transverse optical (TO) phonon modes which are degenerated at the -point 

(phonon wavevector q ≈ 0 near the center of the Brillouin zone). 

 



 
Fig. 2. Raman spectra of laser-impacted silicon samples for the three laser excitations wavelengths: 488 nm, 514.5 nm 

and 632.8 nm. Two spectra are reported for each wavelength: one with the laser focused on a hole (black curve) and 

the other one on a flat part of the same sample (red curve).  

 

Surprisingly the position of the peak and its profile are not changed after laser structuring of 

the sample surface. Such a feature suggests that the laser irradiation of the silicon surface 

induces little strain on the silicon lattice. Indeed it was reported that any significative strain 

should induce a shift and a broadening of the mode [24]. This is not observed here whatever 

the laser excitation wavelength is. It cannot be excluded that such stress could appear at the 

top surface, but that was not observed here due to the light penetration in silicon. If such stress 

occurs, it would happen at the top surface of silicon and would not be detected by classical 

Raman spectroscopy. Similar Raman measurements were performed on silicon samples 

ablated with much higher laser fluences for structuring compared to that used in the current 

study. The Raman mode of these high power impacted-laser silicon samples was shifted and 

strongly broadened, confirming the high sensitivity of our own measurement process to these 

issues. Such experimental feature has already been reported in previous studies [25, 26]. Our 

structuring method is remarkable to prove that, despite the surface structuring is carried out in 

the ablation laser regime, no significant change in the silicon structure in nanoholes is 

detected by Raman spectroscopy. 

 Even if the position of the Raman peak and its profile are not affected by laser structuring, it 

appears clearly that its intensity strongly depends on the structuring of the silicon surface: for 

any wavelengths the intensity is approximately twice as much for the nanostructured area 

compared to a flat zone. Depending on the experimental conditions (laser wavelength, laser 

power, light focalization, irradiated area) the intensity enhancement varies from 1.3 to 2.5 

with a typical value around 2. 

 



 
Fig. 3. Evolution of Raman intensity ratio Inanohole/I flat silicon with Raman laser power. For each excitation laser 

wavelength two series of measurements are reported.   

 

 

 In figure 3 the intensity ratio Inanohole/Iflat silicon for the three excitation laser wavelengths and 

different Raman laser powers can be seen. Except for low power laser illumination (for which 

the Raman signal is weak and the evaluation of Raman intensity is rather imprecise), this 

enhancement factor is almost independent of the laser power. In addition it does not vary 

significantly with the excitation wavelength value. The independence of the enhancement 

with laser excitation wavelength and laser power is remarkable. To our knowledge this is the 

first time that such behavior is reported. This result is an extremely important aspect to 

promote the use of nanoholes in the improvement of broadband silicon photonics.   

The origin of this enhancement needs to be explained. As silicon nanostructures do not 

involve any plasmonic resonance for such wavelengths, this enhancement obeys a non-

plasmonic mechanism. This is confirmed by the independence of the enhancement versus 

wavelength: for plasmonic nanostructures with spectral narrow-band resonance, enhancement 

is strongly dependant with the excitation wavelength [27].   

In Raman spectroscopy (and generally for any light-matter interaction process), it is necessary 

to take into account the amount of probed matter when comparing two different samples. The 

surface ratio between a flat round and a curved round probed surface is 2, which is noticeable 

close to the enhancement factors reported in figures 2 and 3. This ratio can also vary 

depending on the exact shape of the hole. According to AFM images, the shape of our holes is 

not so far from a spherical hole. In addition to the surface increase, the whole volume where 

light-matter interaction occurs has to be considered to discuss the origin of the enhancement. 

Optical absorption length in silicon strongly depends on the wavelength used for Raman 

measurements: it is typically 495 nm at 488 nm, 680 nm at 514 nm and 2700 nm at 632 nm 

[28]. But we demonstrated that the intensity ratio between the flat and the nanostructured 

sample is independent of the wavelength (see figures 2 and 3). This suggests that the increase 

of surface or volume interaction is not the only mechanism responsible for the enhancement 

of Raman scattering.  

Liu et al. [15] studied electrochemically roughened silicon substrates. They attributed the 

Raman scattering enhancement to two contributions: one due to an electromagnetic cavity 

resonance and the other to a resonance arising from silicon nanoparticles. In our Raman 



experiments, no significant shift and broadening of the silicon mode are observed suggesting 

that no silicon nanoparticles are formed during the ablation laser process. Finally the 

enhancement observed herein very probably arises from the cavity resonance only. It must be 

noticed that such electromagnetic cavity resonance which induces a high Raman enhancement 

was also reported for silicon nanowires [29] and nanocones [30]. And this resonance 

mechanism occurring with silicon nanoholes should have broad-band properties as no 

significant difference in the final enhancement is observed among our three excitation 

wavelengths.  

Another feature should also be taken into account: a light trapping effect. Multiple light 

reflections and light scattering could happen in the nanoholes, giving rise to multiple Raman 

scattering and an increase of the final intensity of the Raman mode. Such multiple reflections 

were already reported with inverted pyramidal nanostructures [1] which are considered as 

extremely promising anti-reflective treatment for silicon. Korsunska et al. [31] explained also 

the Raman enhancement observed with macro- and nanoporous silicon by multiple absorption 

of the probe light beam scattered and reflected inside pores. This light trapping effect plays 

certainly a role in the final enhancement observed herein. 

 

4. Conclusion 

 

We demonstrated through Raman spectroscopy that the use of nanoholes can enhance light-

silicon interactions. Moreover this enhancement occurs without any clear sign of structural 

damages induced by laser irradiation during nanoholes fabrication. Microsphere mediated 

laser ablation can be an efficient method to prepare dense arrays of appropriate nanoholes. 

The enhancement of the Raman signal intensity coming from the structured area of a silicon 

substrate compared to the flat part is reported between 488 and 632.8 nm. This amplified 

intensity ratio is independent of the excitation wavelength and power of the Raman laser 

probe. Such an enhancement is induced by the combination of several mechanisms: a broad-

band optical resonance, an increase of the interaction surface and multiple scattering in 

cavities. The relative contribution of each phenomenon remains unclear and will require 

further study. The global enhancement of optical properties of nanostructured silicon with 

nanoholes is extremely promising for the future development of silicon Nanophotonics. This 

material engineering could also be applied to other optically active materials. It is confirmed 

that Raman spectroscopy is an efficient tool to study light-matter interaction in nanostructures.  
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