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NON-COOPERATIVE FISHER–KPP SYSTEMS: TRAVELING

WAVES AND LONG-TIME BEHAVIOR

LÉO GIRARDIN

Abstract. This paper is concerned with non-cooperative parabolic reaction–diffusion
systems which share structural similarities with the scalar Fisher–KPP equa-
tion. These similarities make it possible to prove, among other results, an
extinction and persistence dichotomy and, when persistence occurs, the exis-
tence of a positive steady state, the existence of traveling waves with a half-
line of possible speeds and a positive minimal speed and the equality between
this minimal speed and the spreading speed for the Cauchy problem. Non-
cooperative KPP systems can model various phenomena where the following
three mechanisms occur: local diffusion in space, linear cooperation and su-
perlinear competition.
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1. Introduction

In this paper, we study a large class of parabolic reaction–diffusion systems whose
prototype is the so-called Lotka–Volterra mutation–competition–diffusion system:
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∂tu1 − d1∂xxu1 = r1u1 −
(

N
∑

j=1

c1,juj

)

u1 − µu1 + µu2

∂tu2 − d2∂xxu2 = r2u2 −
(

N
∑

j=1

c2,juj

)

u2 − 2µu2 + µu1 + µu3

...

∂tuN − dN∂xxuN = rNuN −
(

N
∑

j=1

cN,juj

)

uN − µuN + µuN−1

where N is an integer larger than or equal to 2 and the coefficients di, ri, ci,j (with
i, j ∈ {1, . . . , N}) and µ are positive real numbers.

This system can be understood as an ecological model, where (u1, . . . , uN) is a
metapopulation density phenotypically structured, µui−1 − µui and µui+1 − µui

are the step-wise mutations of the i-th phenotype with a mutation rate µ, di is its
dispersal rate, ri is its growth rate per capita in absence of mutation, ci,j is the rate
of the competition exerted by the j-th phenotype on the i-th phenotype, ri

ci,i
is the

carrying capacity of the i-th phenotype in absence of mutation and interphenotypic
competition.

We are especially interested in spreading properties which describe the invasion
of the population in an uninhabited environment and which are expected to involve
so-called traveling wave solutions. Such solutions were first studied, independently
and both in 1937, by Fisher [28] on one hand and by Kolmogorov, Petrovsky and
Piskunov [35] on the other hand for the equation that is now well-known as the
Fisher–KPP equation, Fisher equation or KPP equation:

∂tu− ∂xxu = u (1− u) .

While a lot of work has been accomplished about traveling waves and spreading
properties for scalar reaction–diffusion equations, the picture is much less complete
regarding coupled systems of reaction–diffusion equations. In particular, almost
nothing is known about non-cooperative systems like the system above.

Before going any further, let us introduce more precisely the problem.

1.1. Notations. Let (n, n′) ∈ (N ∩ [1,+∞))
2
. The set of the first n positive inte-

gers [1, n] ∩ N is denoted [n] (and [0] = ∅ by convention).

1.1.1. Typesetting conventions. In order to ease the reading, we reserve the italic
typeface (x, f , X) for reals, real-valued functions or subsets of R, the bold typeface
(v, A) for euclidean vectors or vector-valued functions, in lower case for column
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vectors and in upper case for other matrices1, the sans serif typeface in upper case
(B, K) for subsets of euclidean spaces2 and the calligraphic typeface in upper case
(C , L ) for functional spaces and operators.

1.1.2. Linear algebra notations.

• The canonical basis of Rn is denoted (en,i)i∈[n]. The euclidean norm of Rn

is denoted |•|n. The open euclidean ball of center v ∈ R
n and radius r > 0

and its boundary are denoted Bn (v, r) and Sn (v, r) respectively.
• The space R

n is equipped with one partial order ≥n and two strict partial
orders >n and ≫n, defined as

v ≥n v̂ if vi ≥ v̂i for all i ∈ [n] ,

v >n v̂ if v ≥n v̂ and v 6= v̂,

v ≫n v̂ if vi > v̂i for all i ∈ [n] .

The strict orders >n and ≫n coincide if and only if n = 1.
A vector v ∈ R

n is nonnegative if v ≥n 0, nonnegative nonzero if v >n 0,
positive if v ≫n 0. The sets of all nonnegative, nonnegative nonzero and
positive vectors are respectively denoted Kn, K+

n and K++
n .

• The sets K+
n ∩Sn (0, 1) and K++

n ∩Sn (0, 1) are respectively denoted S+n (0, 1)
and S++

n (0, 1).
• For any X ⊂ R, the sets of X-valued matrices of dimension n × n′ and
n × n are respectively denoted Mn,n′ (X) and Mn (X) . If X = R and if
the context is unambiguous, we simply write Mn,n′ and Mn. As usual, the
entry at the intersection of the i-th row and the j-th column of the matrix
A ∈ Mn,n′ is denoted ai,j and the i-th component of the vector v ∈ R

n

is denoted vi. For any vector v ∈ R
n, diagv denotes the diagonal matrix

whose i-th diagonal entry is vi.
• Matrices are vectors and consistently we may apply the notations ≥nn′ ,
>nn′ and ≫nn′ as well as the vocabulary nonnegative, nonnegative nonzero
and positive to matrices. We emphasize this convention because of the
possible confusion with the notion of “positive definite square matrix”.

• A matrix A ∈ Mn is essentially nonnegative, essentially nonnegative nonzero,
essentially positive if A−min

i∈[n]
(ai,i) In is nonnegative, nonnegative nonzero,

positive respectively.
• The identity of Mn and the element of Mn,n′ whose every entry is equal to
1 are respectively denoted In and 1n,n′ (1n if n = n′) .

• We recall the definition of the Hadamard product of a pair of matrices

(A,B)
2 ∈ (Mn,n′)

2
:

A ◦B = (ai,jbi,j)(i,j)∈[n]×[n′] .

The identity matrix under Hadamard multiplication is 1n,n′ .
• The spectral radius of any A ∈ Mn is denoted ρ (A). Recall from the

Perron–Frobenius theorem that if A is nonnegative and irreducible, ρ (A)
is the dominant eigenvalue of A, called the Perron–Frobenius eigenvalue

1This convention being superseded by the previous one when the dimension is specifically equal
to 1.

2Same exception.
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λPF (A), and is the unique eigenvalue associated with a positive eigen-
vector. Recall also that if A ∈ Mn is essentially nonnegative and ir-
reducible, the Perron–Frobenius theorem can still be applied. In such a
case, the unique eigenvalue of A associated with a positive eigenvector is

λPF (A) = ρ

(

A− min
i∈[n]

(ai,i) In

)

+ min
i∈[n]

(ai,i). Any eigenvector associated

with λPF (A) is referred to as a Perron–Frobenius eigenvector and the unit
one is denoted nPF (A).

1.1.3. Functional analysis notations.

• We will consider a parabolic problem of two real variables, the “time” t and
the “space” x. A (straight) parabolic cylinder in R

2 is a subset of the form

(t0, tf ) × (a, b) with (t0, tf , a, b) ∈ R
4
, t0 < tf and a < b. The parabolic

boundary ∂PQ of a bounded parabolic cylinder Q is defined classically. A
classical solution of some second-order parabolic problem of dimension n
set in a parabolic cylinder Q = (t0, tf)× (a, b) is a solution in

C
1
(

(t0, tf) ,C
2 ((a, b) ,Rn)

)

∩ C (Q ∪ ∂Q,Rn) .

Similarly, a classical solution of some second-order elliptic problem of di-
mension n set in an interval (a, b) ⊂ R is a solution in

C
2 ((a, b) ,Rn) ∩ C ((a, b) ∪ ∂ (a, b) ,Rn) .

• Consistently with R
n, the set of functions (Rn)

(

R
n′

)

is equipped with

f ≥
Rn′ ,Rn f̂ if f (v) − f̂ (v) ∈ Kn for all v ∈ R

n′

,

f >
Rn′ ,Rn f̂ if f ≥

Rn′ ,Rn f̂ and f 6= f̂ ,

f ≫
Rn′ ,Rn f̂ if f (v) − f̂ (v) ∈ K++

n for all v ∈ R
n′

.

We define consistently nonnegative, nonnegative nonzero and positive func-
tions3.

• The composition of two compatible functions f and f̂ is denoted f
[

f̂
]

, the

usual ◦ being reserved for the Hadamard product.
• If the context is unambiguous, a functional space F (X,R) is denoted F (X).

• For any smooth open bounded connected set Ω ⊂ R
n′

and any second
order linear elliptic operator L : C 2 (Ω,Rn) → C (Ω,Rn) with coeffi-
cients in Cb (Ω,R

n), the Dirichlet principal eigenvalue of L in Ω, denoted
λ1,Dir (−L ,Ω), is well-defined if L is order-preserving in Ω. Recall from
the Krein–Rutman theorem that λ1,Dir (−L ,Ω) is the unique eigenvalue
associated with a principal eigenfunction positive in Ω and null on ∂Ω.
Sufficient conditions for the order-preserving property are:

– n = 1;
– n ≥ 2 and the system is weakly coupled (the coupling occurs only in

the zeroth order term) and fully coupled (the zeroth order coefficient
is an essentially nonnegative irreducible matrix). When n ≥ 2, order-
preserving operators are also referred to as cooperative operators.

3Regarding functions, some authors use > to denote what is here denoted ≫. Thus the use of
these two functional notations will be as sparse as possible and we will prefer the less ambiguous
expressions “nonnegative nonzero” and “positive”.
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1.2. Setting of the problem. From now on, an integer N ∈ N∩ [2,+∞) is fixed.
For the sake of brevity, the subscripts depending only on 1 or N in the various
preceding notations will be omitted when the context is unambiguous.

We also fix d ∈ K++, D = diagd, L ∈ M and c ∈ C 1
(

R
N ,RN

)

.
The semilinear parabolic evolution system under scrutiny is

∂tu−D∂xxu = Lu− c [u] ◦ u, (EKPP )

the unknown being u : R
2 → R

N (although (EKPP ) might occasionally be re-
stricted to a parabolic cylinder).

The associated semilinear elliptic stationary system is

−Du′′ = Lu− c [u] ◦ u, (SKPP )

the unknown being u : R → R
N (although (SKPP ) might occasionally be restricted

to an interval).

1.2.1. Restrictive assumptions. The main restrictive assumptions are the following
ones.

(H1) L is essentially nonnegative and irreducible.
(H2) c (K) ⊂ K.
(H3) c (0) = 0.
(H4) There exist

(α, δ, c) ∈ [1,+∞)2 × K++

such that
N
∑

j=1

li,jnj ≥ 0 =⇒ αδci ≤ ci (αn)

for all

(n, α, i) ∈ S+ (0, 1)× [α,+∞)× [N ] .

A few immediate consequences of these assumptions deserve to be pointed out.

• (EKPP ) and (SKPP ) are not cooperative and do not satisfy a comparison
principle.

• The Perron–Frobenius eigenvalue λPF (L) is well-defined and the system
u′ = Lu is cooperative.

• For all v ∈ R
N , the Jacobian matrix of w 7→ c (w) ◦w at v is

diagc (v) + (v11,N ) ◦Dc (v) .

In particular, at v = 0, this Jacobian is null if and only if (H3) is satisfied.
Also, if Dc (v) ≥ 0 for all v ∈ K, then the system u′ = −c [u] ◦ u is
competitive.

• This framework contains both the Lotka–Volterra linear competition c (u) =
Cu and the Gross–Pitaevskii quadratic competition c (u) = C (u ◦ u) (with,
in both cases, C ≫ 0).

1.2.2. KPP property. The system (EKPP ) is, in some sense, a “multidimensional
KPP equation”. Let us recall the main features of scalar KPP nonlinearities:

(1) f ′ (0) > 0 (instability of the null state),
(2) f ′ (0) v ≥ f (v) for all v ≥ 0 (no Allee effect),
(3) there exists K > 0 such that f (v) < 0 if and only if v > K (saturation).
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Of course, our assumptions (H1)–(H4) aim to put forward a possible generalization
of these features. A few comments are in order.

Regarding the saturation property, the growth at least linear of c (H4) will
imply an analogous statement. Ensuring uniform L ∞ estimates is really the main
mathematical role of the competitive term.

Regarding the presence of an Allee effect, c (K) ⊂ K (H2) and c (0) = 0 (H3)
clearly yield that ∂tu − D∂xxu = Lu is the linearization at 0 of (EKPP ) and
moreover that f : v 7→ Lv − c (v) ◦ v satisfies

Df (0)v ≥ f (v) for all v ∈ K.

Regarding the instability of the null state, we stress here that the notion of
positivity of matrices is somewhat ambiguous and, consequently, finding a natural
generalization of f ′ (0) > 0 is not completely straightforward.

In order to decide which positivity sense is the right one, we offer the following
criterion. On one hand, a suitable multidimensional generalization of the KPP
equation should enable generalizations of the striking results concerning its scalar
counterpart. On the other hand, the most remarkable result about the KPP equa-
tion is that the answer to many natural questions (value of the spreading speed,
persistence in bounded domains, etc.) only depends on f ′ (0) (the importance of
f ′ (0) can already be seen in the features above). Thus, in our opinion, a KPP
system should also be linearly determinate regarding these questions.

With this criterion in mind, let us explain for instance why positivity understood
as positive definite matrices (i.e. positive spectrum) is not satisfying. In such a
case, Lotka–Volterra competition–diffusion nonlinearities, whose linearization at 0

has the form diagr with r ∈ K++, would be KPP nonlinearities. Nevertheless, it is
known that the spreading speed of a competition–diffusion system is not necessarily
linearly determinate (for instance, see Lewis–Li–Weinberger [38]).

On the contrary, the main theorems of the present paper will show unam-
biguously that irreducibility and essential nonnegativity (H1) supplemented with
λPF (L) > 0 is the right notion. This confirmation of the relevance of (H1)–(H4)
will then lead us to a general definition of multidimensional KPP nonlinearity.

1.3. Main results.

1.3.1. KPP-type theorems established under (H1)–(H4).

Theorem 1.1. [Strong positivity] For all nonnegative classical solutions u of (EKPP )
set in (0,+∞) × R, if x 7→ u (0, x) is nonnegative nonzero, then u is positive in
(0,+∞)× R.

Consequently, all nonnegative nonzero classical solutions of (SKPP ) are positive.

Theorem 1.2. [Absorbing set and upper estimates] There exists a positive function
g ∈ C ([0,+∞),K++), component-wise non-decreasing, such that all nonnegative
classical solutions u of (EKPP ) set in (0,+∞)× R satisfy

u (t, x) ≤
(

gi

(

sup
x∈R

ui (0, x)

))

i∈[N ]

for all (t, x) ∈ [0,+∞)× R

and furthermore, if x 7→ u (0, x) is bounded, then
(

lim sup
t→+∞

sup
x∈R

ui (t, x)

)

i∈[N ]

≤ g (0) .
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Consequently, all bounded nonnegative classical solutions u of (SKPP ) satisfy

u ≤ g (0) .

Theorem 1.3. [Extinction or persistence dichotomy]

i) Assume λPF (L) < 0. Then all bounded nonnegative classical solutions of
(EKPP ) set in (0,+∞)× R converge asymptotically in time, exponentially
fast, and uniformly in space to 0.

ii) Conversely, assume λPF (L) > 0. Then there exists ν > 0 such that all
bounded positive classical solutions u of (EKPP ) set in (0,+∞)×R satisfy,
for all bounded intervals I ⊂ R,

(

lim inf
t→+∞

inf
x∈I

ui (t, x)

)

i∈[N ]

≥ ν1N,1.

Consequently, all bounded nonnegative classical solutions of (SKPP ) are
valued in

N
∏

i=1

[ν, gi (0)] .

As will be explained later on, the critical case λPF (L) = 0 is more challenging
than expected and is not solved here, in spite of the following extinction conjecture.

Conjecture. Assume λPF (L) = 0 and

span (nPF (L)) ∩ K ∩ c−1 ({0}) = {0} .
Then all bounded nonnegative classical solutions of (EKPP ) set in (0,+∞)× R

converge asymptotically in time and locally uniformly in space to 0.

Although Theorem 1.3 proves that the attractor of the induced semiflow is re-
duced to {0} in the extinction case, in the persistence case the long-time behavior is
unclear and might not be reduced to a locally uniform convergence toward a unique
stable steady state. This direct consequence of the multidimensional structure of
(EKPP ) is a major difference with the scalar KPP equation. Still, the following
theorem provides some additional information about the steady states of (EKPP )
and confirms in some sense the preceding conjecture.

Theorem 1.4. [Existence of steady states]

i) If λPF (L) < 0, there exists no positive classical solution of (SKPP ).
ii) If λPF (L) = 0 and

span (nPF (L)) ∩ K ∩ c−1 ({0}) = {0} ,
there exists no bounded positive classical solution of (SKPP ).

iii) If λPF (L) > 0, there exists a constant positive classical solution of (SKPP ).

Due to the unclear long-time behavior of (EKPP ) when λPF (L) > 0, it seems
inappropriate to consider only traveling wave solutions connecting 0 to some stable
positive steady state (as is usually done in the monostable scalar setting). Hence
we resort to the following more flexible definition.

Definition. A traveling wave solution of (EKPP ) is a pair

(p, c) ∈ C
2
(

R,RN
)

× [0,+∞)

which satisfies:
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(1) u : (t, x) 7→ p (x− ct) is a bounded positive classical solution of (EKPP );

(2)

(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

∈ K+;

(3) lim
ξ→+∞

p (ξ) = 0.

We refer to p as the profile of the traveling wave and to c as its speed. 4

Theorem 1.5. [Traveling waves] Assume λPF (L) > 0.

i) There exists c⋆ > 0 such that:
(a) there exists no traveling wave solution of (EKPP ) with speed c for all

c ∈ [0, c⋆);
(b) if, furthermore,

Dc (v) ≥ 0 for all v ∈ K,

then there exists a traveling wave solution of (EKPP ) with speed c for
all c ≥ c⋆.

ii) All profiles p satisfy
p ≤ g (0) .

iii) All profiles p satisfy
(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

≥ ν1N,1.

iv) All profiles are component-wise decreasing in a neighborhood of +∞.

When traveling waves exist for all speeds c ≥ c⋆, c⋆ is called the minimal wave
speed.

Theorem 1.6. [Spreading speed] Assume λPF (L) > 0. For all x0 ∈ R and all
bounded nonnegative nonzero v ∈ C

(

R,RN
)

, the classical solution u of (EKPP )
set in (0,+∞)× R with initial data v1(−∞,x0) satisfies
(

lim
t→+∞

sup
x∈(y,+∞)

ui (t, x+ ct)

)

i∈[N ]

= 0 for all c ∈ (c⋆,+∞) and all y ∈ R,

(

lim inf
t→+∞

inf
x∈[−R,R]

ui (t, x+ ct)

)

i∈[N ]

∈ K++ for all c ∈ [0, c⋆) and all R > 0.

Of course, by well-posedness of (EKPP ), the solution with initial data x 7→
v (−x) 1(−x0,+∞) is precisely (t, x) 7→ u (t,−x) (u being the solution with initial
data v1(−∞,x0)). This gives the expected symmetrical spreading result (the solution
with initial data x 7→ v (−x)1(−x0,+∞) spreads on the left at speed −c⋆). More-
over, since these two spreading results with front-like initial data actually cover
compactly supported v, we also get straightforwardly the spreading result for com-
pactly supported initial data (the solution spreads on the right at speed c⋆ and on
the left at speed −c⋆).

Consequently, c⋆ is also called the spreading speed associated with front-like or
compactly supported initial data. We recall that for generic KPP problems these
two spreading speeds are different as soon as the spatial domain is multidimensional.

4Let us emphasize once and for all that the vector field c is not to be confused with the real
number c. The former is named after “competition” whereas the latter is traditionally named after
“celerity”.
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In such a case, the spreading speed associated with front-like initial data generically
coincides with the minimal wave speed whereas the spreading speed associated with
compactly supported initial data is smaller.

Theorem 1.7. [Characterization and estimates for c⋆] Assume λPF (L) > 0. We
have

c⋆ = min
µ>0

λPF

(

µ2D+ L
)

µ

and this minimum is attained at a unique µc⋆ > 0.
Consequently, if we assume (without loss of generality)

d1 ≤ d2 ≤ . . . ≤ dN ,

the following estimates hold.

i) We have

2
√

d1λPF (L) ≤ c⋆ ≤ 2
√

dNλPF (L).

If d1 < dN , both inequalities are strict. If d1 = dN , both inequalities are
equalities.

ii) For all i ∈ [N ] such that li,i > 0, we have

c⋆ > 2
√

dili,i.

iii) Let r ∈ R
N and M ∈ M be given by the unique decomposition of L of the

form

L = diagr+M with MT1N,1 = 0.

Let (〈d〉 , 〈r〉) ∈ (0,+∞)× R be defined as










〈d〉 = dTnPF (µ2
c⋆D+L)

11,NnPF (µ2
c⋆

D+L)
,

〈r〉 = rTnPF (µ2
c⋆D+L)

11,NnPF (µ2
c⋆

D+L)
.

If 〈r〉 ≥ 0, then

c⋆ ≥ 2
√

〈d〉 〈r〉.
1.3.2. General definition of multidimensional KPP nonlinearity. The set of as-
sumptions (H1)–(H4) supplemented with λPF (L) > 0 can be seen as a particular
case of the following definition, which we expect to be optimal with respect to the
preceding collection of theorems.

Definition 1.8. A nonlinear function f ∈ C 1
(

R
N ,RN

)

is a KPP nonlinearity if:

(1) f (0) = 0;
(2) Df (0) is essentially nonnegative, irreducible and λPF (Df (0)) > 0;
(3) Df (0)v ≥ f (v) for all v ∈ K;
(4) the semiflow induced by ∂tu = D∂xxu+ f [u] with globally bounded, suffi-

ciently regular initial data admits an absorbing set bounded in L ∞ (R).

Let us explain more precisely how this definition differs from (H1)–(H4) supple-
mented with λPF (L) > 0. Defining

L = Df (0) ,

c : v 7→
{
(

1
vi
((Lv)i − fi (v))

)

i∈[N ]
if v 6= 0

0 if v = 0
,
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we find

f (v) = Lv − c (v) ◦ v for all v ∈ R
N .

On one hand, the irreducibility and essential nonnegativity of L (H1), the positivity
of its Perron–Frobenius eigenvalue, as well as the nonnegativity of c on K (H2) with
c (0) = 0 (H3) follow directly. On the other hand, the C 1 regularity of c at 0 and
its specific growth at infinity (H4) are not satisfied in general.

These two properties are satisfied indeed for the applications we have in mind
(which will be exposed in a moment). However it might be mathematically inter-
esting to consider the case where at least one of them fails. For instance, let us
discuss briefly (H4).

The only forthcoming result whose proof depends directly on (H4) is Lemma 3.1
(which is remarkably one of the main assumptions of a related paper by Barles,
Evans and Souganidis [6, (F3)]). It is easily seen that if c grows sublinearly, we
cannot hope in general to recover Lemma 3.1 (in other words, under some reasonable
assumptions, Barles–Evans–Souganidis’s (F3) is satisfied if and only if (H4); of
course this makes (H4) even more interesting).

Nevertheless, this lemma is not a result in itself but a tool used for the proofs
of Theorem 1.2 as well as the existence results of Theorem 1.4 and Theorem 1.5.
Hence relaxing (H4) mainly means finding new proofs of these results.

Now, without entering into too much details, we point out that if there exists
η > 0 such that the following dissipative assumption:

(Hdiss,η)







∃C1 ≥ 0 ∀v ∈ R
N (f (v) + ηv)

T
v ≤ C1

∃C2 ≥ 0 ∀v ∈ R
N Df (v) + ηI ≤ C21

∃ (C3, p) ∈ [0,+∞)2 ∀v ∈ R
N |f (v) + ηv| ≤ C3 (1 + |v|p) ,

holds, then the semiflow induced by ∂tu = D∂xxu + f [u] admits an attractor in
some locally uniform topology which is bounded in Cb

(

R,RN
)

(see Zelik [50]). If
the semiflow leaves K invariant and if we only consider nonnegative initial data,
then the quantifiers ∀v ∈ R

N above can all be replaced by ∀v ∈ K.
In particular, v 7→ Lv − c (v) ◦ v supplemented with (H1)–(H3) and

(H ′
4) lim

|v|→+∞,v∈K
|c (v)| = +∞ with at most algebraic growth

satisfies (Hdiss,η) for any η > 0. (Clearly, (H4) ∪ (H ′
4) contains every choice of c

such that lim
|v|→+∞,v∈K

|c (v)| = +∞.)

Consequently, dissipative theory provides for some slowly decaying KPP nonlin-
earities a proof of Theorem 1.2. It should also provide a proof of Proposition 3.5,
which is the key estimate to derive the existence of traveling waves, as well as a
proof of the existence result of Theorem 1.4 . With these proofs at hand, all our
results would be recovered.

1.4. Related results in the literature.

1.4.1. Cooperative or almost cooperative systems. The bibliography about weakly
and fully coupled elliptic and parabolic linear systems is of course extensive. It is
possible, for instance, to define principal eigenvalues and eigenfunctions (Sweers et
al. [13, 47]), to prove the weak maximum principle (the classical theorems of Prot-
ter–Weinberger [42] were refined in the more involved elliptic case by Figueiredo et
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al. [23, 24] and Sweers [47]) or Harnack inequalities (Chen–Zhao [20] or Arapos-
tathis–Gosh–Marcus [3] for the elliptic case5, Földes–Poláčik [29] for the parabolic
case) and to use the super- and sub-solution method to deduce existence of solutions
(Pao [45] among others). In some sense, weakly and fully coupled systems form the
“right”, or at least the most straightforward, generalization of scalar equations.

For (possibly nonlinear) cooperative systems, results analogous to Theorem 1.5
i), iii), Theorem 1.6 and Theorem 1.7 were established by Lewis, Li and Weinberger
[39, 49]. Recently, Al-Kiffai and Crooks [1] introduced a convective term into a two-
species cooperative system to study its influence on linear determinacy.

For non-cooperative systems that can still be controlled from above and from be-
low by weakly and fully coupled systems whose linearizations at 0 coincide with that
of the non-cooperative system, Wang [48] recovered the results of Lewis–Li–Weinberger
by comparison arguments. Before going any further, let us point out that we will
use extensively comparison arguments as well, nevertheless we will not need equal-
ity of the linearizations at 0. This is a crucial difference between the two sets of
assumptions. To illustrate this claim, let us present an explicit example of system
covered by our assumptions and not by Wang’s ones: take any N ≥ 3, r > 0,
µ ∈

(

0, r
2

)

and define L and c as follows:

L = rI+ µ



















−1 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −2 1
0 . . . 0 1 −1



















,

c : v 7→ 1v.

On one hand, (H1)–(H4) are easily verified, but on the other hand, the function
f : v 7→ Lv − c [v] ◦ v is such that, for all i ∈ [N ] \ {1, N} and all v ∈ K++,

∂fi
∂vj

(v) = −vi < 0 for all j ∈ [N ] \ {i− 1, i, i+ 1} .

Consequently, the application v 7→ fi (vej) is decreasing in [0,+∞). This clearly
violates Wang’s assumptions: this instance of (EKPP ) cannot be controlled from
below by a cooperative system whose linearization at 0 is ∂tu−D∂xxu = Lu.

Even if L is essentially positive and the cooperative functions f−, f+ satisfying






f− (v) ≤ Lv − c (v) ◦ v ≤ f+ (v)
f− (0) = f+ (0) = 0

Df− (0) = Df+ (0) = L

are constructible, in general it is difficult to verify that f− and f+ have each a
minimal positive zero (another requirement of Wang). Our setting needs not such
a verification.

Furthermore, even if these minimal zeros exist, several results presented here are
still new.

5They both prove the same type of results but we will refer hereafter only to the latter because
the former does not cover, as stated, the one-dimensional space case.



NON-COOPERATIVE KPP SYSTEMS 12

(1) Theorem 1.5 i) adds to [48, Theorem 2.1 iii)–v)] the existence of a critical
traveling wave (Wang obtained the existence of a bounded non-constant
nonnegative solution traveling at speed c⋆ but the limit at +∞ of its profile
was not addressed).

(2) Theorem 1.1, Theorem 1.2, Theorem 1.3 and Theorem 1.4 as well as Theo-
rem 1.5 ii), iv) rely more deeply on the KPP structure and are completely
new to the best of our knowledge.

1.4.2. KPP systems. Regarding weakly coupled systems equipped with KPP non-
linearities, as far as we know most related works assume the essential positivity of
L, some even requiring its positivity. Our results tend to show that this collection
of results should be generalizable to the whole class of irreducible and essentially
nonnegative L (H1) provided λPF (L) > 0.

Dockery, Hutson, Mischaikow and Pernarowski [25] studied in a celebrated paper
the solutions of (SKPP ) in a bounded and smooth domain with Neumann bound-
ary conditions. Their matrix L had the specific form a (x) I + µM where a is a
non-constant function of the space variable and with minimal assumptions on the
constant matrix M. They also assumed strict ordering of the components of d, ex-
plicit and symmetric Lotka–Volterra competition, vanishingly small µ. They proved
the existence of a unique positive steady state, globally attractive for the Cauchy
problem with positive initial data, and which converges as µ → 0 to a steady state
where only u1 persists.

More recently, the solutions of (SKPP ), still in a bounded and smooth domain
with Neumann boundary conditions, were studied under the assumptions of essen-
tial positivity of L and small Lipschitz constant of v 7→ c (v)◦v by Hei and Wu [34].
They established by means of super- and sub-solutions the equivalence between the

negativity of the principal eigenvalue of −D d
2

dx2 −L and the existence of a positive
steady state.

Provided the positivity of L, the vanishing viscosity limit of (EKPP ) is the object
of a work by Barles, Evans and Souganidis [6]. Although their paper and the
present one differ both in results and in techniques, they share the same ambition:
describing the spreading phenomenon for KPP systems. Therefore our feeling is
that together they give a more complete answer to the problem.

For two-component systems with explicit Lotka–Volterra competition, D = I2
and symmetric and positive L, Theorem 1.4 and Theorem 1.5 i), iii), iv) reduce to
the results of Griette and Raoul [31] (see Alfaro–Griette [2] for a partial extension
to space-periodic media). Their paper uses very different arguments (topological
degree, explicit computations involving in particular the sum of the equations, weak
mutation limit, phase plane analysis) but was our initial motivation to work on this
question: our intent is really to extend their result to a larger setting by changing
the underlying mathematical techniques. Let us emphasize that they obtained an
algebraic formula for the minimal wave speed, c⋆ = 2

√

λPF (L), that we are able to
generalize (Theorem 1.7). The case D 6= I2 has been investigated heuristically and
numerically by Elliott and Cornell [26], who considered the weak mutation limit as
well and obtained further results.

Let us point out that the problem of the spreading speed for the Cauchy prob-
lem for the two-component system with explicit Lotka–Volterra competition was
formulated but left open by Elliott and Cornell [26] as well as by Cosner [21] and
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not considered by Griette and Raoul [31]. This problem is completely solved here
(see Theorem 1.6).

Just after the submission of this paper, a paper by Moris, Börger and Crooks
[41] submitted concurrently and devoted to the analytical confirmation of Elliott
and Cornell’s numerical observations was brought to our attention. By applying’s
successfully Wang’s framework, they obtained the existence of traveling waves as
well as the spreading speed for the Cauchy problem. However, in order to apply
Wang’s framework, they had to make additional assumptions (roughly speaking,
small interphenotypic competition and small mutations) and which are in fact,
in view of our results, unnecessary. They also obtained very interesting results
regarding the dependency on the mutation rate µ of the spreading speed

λPF

(

µc⋆D+ µ−1
c⋆ (diagr+ µM)

)

and the associated distribution

nPF

(

µc⋆D+ µ−1
c⋆ (diagr+ µM)

)

.

1.5. From systems to non-local equations, from mathematics to applica-

tions. It is well-known that systems can be seen as discretizations of continuous
models. In this subsection, we present briefly some equations structured not only
in time and space but also with a third variable and whose natural discretizations
are particular instances of our system (EKPP ) satisfying the criterion λPF (L) > 0.
Our results bring therefore indirect insight into the spreading properties of these
equations.

Since these examples provide also examples of biomathematical applications of
our results, this subsection gives us the opportunity to present more precisely these
applications, to explain how non-cooperative KPP systems arise in modeling sit-
uations and finally to comment our results from this application point of view.
Several fields of biology are concerned: evolutionary invasion analysis (also known
as adaptive dynamics), population dynamics, epidemiology. Applications in other
sciences might also exist.

1.5.1. The cane toads equation with non-local competition. Recall the definition of
the discrete laplacian in a finite domain of cardinal N ,

MLap,N =



















−1 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −2 1
0 . . . 0 1 −1



















if N ≥ 3,

MLap,2 =

(

−1 1
1 −1

)

if N = 2.

With this notation, the Lotka–Volterra mutation–competition–diffusion system
exhibited earlier reads

∂tu−D∂xxu = diag (r)u+ µMLapu− (Cu) ◦ u.
An especially interesting instance of it is the system where:
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• for all i ∈ [N ], dN,i = θ + (i− 1) θN with θN = θ−θ
N−1 and with some fixed

θ > θ > 0;
• rN = r1N,1 with some fixed r > 0;
• µN = α

θ2
N

with some fixed α > 0;

• CN = θN1N .

Since λPF (MLap,N) = 0 (because MLap,N1N,1 = 0), the Perron–Frobenius eigen-
value of L is positive indeed:

λPF

(

rIN +
α

θ2N
MLap,N

)

= r + λPF

(

α

θ2N
MLap,N

)

= r > 0.

As N → +∞, this system converges (at least formally) to the cane toads equation
with non-local competition and bounded phenotypes:

{

∂tn− θ∂xxn− α∂θθn = n (t, x, θ)
(

r −
∫ θ

θ n (t, x, θ′)dθ′
)

∂θn (t, x, θ) = ∂θn
(

t, x, θ
)

= 0 for all (t, x) ∈ R
2

where n is a function of (t, x, θ), θ ∈
[

θ, θ
]

is the motility trait, α is the mutation

rate and
∫ θ

θ
n (t, x, θ′)dθ′ is the total population present at (t, x).

This equation is named after an invasive species currently invading Australia.
A startling ecologic fact is that this invasion is accelerating whereas biological in-
vasions usually occur at a constant speed (as predicted by the KPP equation).
However this issue is solved when the phenotypical structure is taken into account
and the following spatial sorting phenomenon is understood: the fastest toads lead
the invasion, reproduce at the edge of the front, give birth to a new generation of
toads among which faster and slower toads can be found (as a result of mutations),
and the new fastest toads take the lead of the invasion.

The introduction of a motility trait θ with a local mutation term α∂θθn into
the scalar KPP equation is then a way of verifying this theory: does it lead to
accelerating invasions? The answer is positive (transitory acceleration up to a
constant asymptotic speed if θ < +∞, constant acceleration if θ = +∞) and
this is why the cane toads equation achieved some fame (we refer for instance to
[7, 14, 15, 16], where more detailed modeling explanations can also be found).

The overcrowding effect, which is nowadays standardly taken into account in

population biology modeling, is modeled by the term −n (t, x, θ)
∫ θ

θ
n (t, x, θ′)dθ′

which basically considers that one given toad competes with all other toads sur-
rounding it, independently of their phenotype, and does not compete with distant
toads. Mathematically, this term is the only responsible for the nonlinearity, non-
locality and non-cooperativity of the model: it could be tempting to neglect it.
However, linear growth models (which go back to Malthus) generically lead to ex-
ponential blow-up. The basic idea of the literature about the cane toads equation
is then exactly the same as the one we are going to use in the forthcoming proofs:
point out and use the KPP nature of the problem.

The results of the present paper are consistent with the ones for the cane toads
equation with bounded phenotypes. Therefore it might be possible, in a future
sequel providing new estimates uniform with respect to N , to rigorously derive the
cane toads equation as the continuous limit of a family of KPP systems. Since the
discrete version is easier to study, new results might be unfolded by this approach.
However, let us stress that the problem of finding these new uniform estimates
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is not to be underestimated and is expected to be a very difficult one. At least
regarding biologists, whose field measurements somehow always produce discrete
classes of phenotypes instead of a continuum of phenotypes, our results bring forth
an interesting new lead to address the general problem of adaptive dynamics.

Let us point out that if, instead of phenotypes of cane toads, the components of
u model different strains of virus, then we obtain an epidemiological model repre-
senting the invasion of a population of sane individuals by a structured population
of infected individuals (Griette–Raoul [31]).

Notice that this cane toads equation is only the first step of a larger research
program: a more realistic model should replace clonal reproduction by sexual re-
production and should take into account the possibility of non-constant coefficients
α and r as well as that of a more general competition term (logistic with a non-
constant weight or even non-logistic). It is also interesting to consider non-local
spatial or phenotypical dispersion.

1.5.2. The cane toads equation with non-local mutations and competition. Actually,
historically, the cane toads equation comes from a doubly non-local model due to
Prévost et al. [4, 46] (see also the earlier individual-based model by Champagnat
and Méléard [19]). Since the non-local mutation operator is too difficult to handle
mathematically, the cane toads equation with local mutations was favored as a
simplified first approach. However it remains unsatisfying from the modeling point
of view and non-local kernels, which could take into account large mutations, are
the real aim.

Defining as above θN = θ−θ
N−1 and (θi)i∈[N ] = (θ + (i− 1) θN )ı̈∈[N ], the natural

discretization of the doubly non-local cane toads equation,

∂tn− d (θ) ∂xxn = rn+ α (K ⋆θ n− n)− n

∫ θ

θ

n (t, x, θ′)dθ′

with d ∈ C
([

θ, θ
]

, (0,+∞)
)

and K ∈ C (R, [0,+∞)), is

∂tu−DN∂xxu = LNu− (θN1Nu) ◦ u,
with

dN = (d (θi))i∈[N ] ,

LN = rIN + α
(

θN (K (θi − θj))(i,j)∈[N ]2 − IN

)

= (r − α) IN + αθN (K ((i − j) θN ))(i,j)∈[N ]2 .

The assumptions on c (H2)–(H4) are obviously satisfied and, as soon as, say, K
is positive, the assumption on L(H1) is satisfied as well. Subsequently, λPF (LN ) ≥
r−α, whence r > α is a sufficient condition to ensure λPF (LN ) > 0 for all N ∈ N.

More generally, the system corresponding to the following equation (see Prévost
et al. [4, 46]):

∂tn− d (θ) ∂xxn = r (θ)n (t, x, θ) +

∫ θ

θ

n (t, x, θ′)K (θ, θ′)dθ′

− n (t, x, θ)

∫ θ

θ

n (t, x, θ′)C (θ, θ′)dθ′
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with d ∈ C
([

θ, θ
]

, (0,+∞)
)

, r ∈ C
([

θ, θ
]

, [0,+∞)
)

, K,C ∈ C

(

[

θ, θ
]2

, [0,+∞)
)

is

∂tu−DN∂xxu = LNu− (CNu) ◦ u,
with

dN = (d (θi))i∈[N ] ,

LN = diag (r (θi))i∈[N ] + θN (K (θi, θj))(i,j)∈[N ]2 ,

CN = θN (C (θi, θj))(i,j)∈[N ]2 .

Again, (H3) and (H4) are clearly satisfied, (H2) is satisfied if C is nonnegative
and both (H1) and λPF (LN ) > 0 are satisfied if, say, K is positive.

In both cases, of course, the positivity of K is a far from necessary condition
and might be relaxed.

To the best of our knowledge, these doubly non-local equations have been the
object of no study apart from [4, 46] and are therefore still very poorly understood.
In particular, the traveling wave problem as well as the spreading problem are
completely open. Consequently, our results are highly valuable when applied to this
system. For mathematicians, they motivate the future work on the limit N → +∞.
For biologists, they provide new insight into these modeling problems and show
for instance how two different mutation strategies can be compared and how the
spreading speed can be evaluated.

1.5.3. The Gurtin–MacCamy equation with diffusion and overcrowding effect. In
view of the preceding two examples, it is natural to investigate the existence of
completely different applications, that is applications not concerned at all with
evolutionary biology. Such applications exist indeed, as shown by this third exam-
ple.

Consider the following age-structured equation with diffusion:










∂tn+ ∂an− d (a) ∂xxn = −n (t, x, a)
(

r (a) +
∫ A

0
n (t, x, a′)C (a, a′)da′

)

n (t, x, 0) =
∫ A

am
n (t, x, a′)K (a′)da′ for all (t, x) ∈ R

2

n (t, x, A) = 0 for all (t, x) ∈ R
2

where n is a function of (t, x, a), a ∈ [0, A] is the age variable, am ≥ 0 is the
maturation age, A > am is the maximal age, d ∈ C ([0, A] , (0,+∞)) is the diffusion

rate, r ∈ C ([0, A] , (0,+∞)) is the mortality rate, C ∈ C

(

[0, A]
2
, [0,+∞)

)

is the

competition kernel and K ∈ C ([0, A] , [0,+∞)) is the birth rate. This equation is
well-known, at least if C = 0, and detailed modeling explanations can be found in
the classical Gurtin–MacCamy references [32, 33].

Defining

aN+1 =
A

N
,

(ai)i∈[N ] = ((i− 1)aN+1)i∈[N ] ,

jm,N = min {j ∈ [N ] | aj ≥ am} ,
u (t, x) = (n (t, x, ai))i∈[N ] ,

dN = (d (ai))i∈[N ] ,

Lmortality,N = −diag
(

r (ai)i∈[N ]

)

,
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Lbirth,N = aN+1











0 . . . 0 K
(

ajm,N

)

. . . K (aN )
0 . . . 0
...

...
0 . . . 0











,

Laging,N =
1

aN+1



















0 0 . . . . . . 0

1 −1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 −1



















,

LN = Lmortality,N + Lbirth,N + Laging,N ,

CN = aN+1 (C (ai, aj))(i,j)∈[N ]2 ,

it follows again that

∂tu−DN∂xxu = LNu− (CNu) ◦ u
is the natural discretization with (H3) and (H4) automatically satisfied. K non-
negative nonzero and C nonnegative are sufficient conditions to enforce (H1) and
(H2).

Since we have

λPF (LN ) ≥ λPF (Lbirth,N + Laging,N )−max
[0,A]

r

and since λPF (Lbirth,N + Laging,N ) is bounded from below by a positive constant
independent of N (the proof of this claim being deliberately not detailed here for
the sake of brevity), if max

[0,A]
r is small enough, then λPF (LN ) > 0 for all N ∈ N.

We point out that this KPP system differs noticeably from the Lotka–Volterra
mutation–competition–diffusion system presented up to now as the main instance
of KPP system: here, the matrix L is highly non-symmetric. This should have
important qualitative consequences, numerically observable. It might even be un-
expected that these two systems share important properties and this makes our
theorems even more interesting.

As far as we know, the traveling wave problem and the spreading problem for
the continuous age-structured problem are completely open. Therefore the earlier
remarks concerning the impact of our results on the doubly non-local cane toads
equation apply here as well.

2. Strong positivity

Theorem 1.1 is mainly straightforward and follows from the following local result.

Proposition 2.1. Let Q ⊂ R
2 be a bounded parabolic cylinder and u be a classical

solution of (EKPP ) set in Q.
If u is nonnegative on ∂PQ, then it is either null or positive in Q.

Proof. Let K = max
Q

|u| and observe that, for all i ∈ [N ] and all (t, x) ∈ Q,

|li,i − ci (u (t, x))| ≤ |li,i|+ max
v∈B(0,K)

|ci (v)| .
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Then, define

A : (t, x) 7→ L− diag (c (u (t, x))) .

By the irreducibility and the essential nonnegativity of L (H1), A (t, x) has these
two properties as well for all (t, x) ∈ Q. By the boundedness of u in Q, A is bounded
in Q as well.

Therefore u is a solution of the following linear weakly and fully coupled system
with bounded coefficients:

∂tu−D∂xxu−Au = 0.

By virtue of Protter–Weinberger’s strong maximum principle [42, Chapter 3,
Theorem 13], u is indeed either null or positive in Q. �

Actually, noticing that the previous proof remains true without any modification
if we add to (EKPP ) a diagonal drift term b◦∂xu with b ∈ R

N , we state right now
a corollary that will be quite useful later on.

Corollary 2.2. Let (a, b, c) ∈ R
3 such that a < b. Let u be a nonnegative classical

solution of

−Du′′ − cu′ = Lu− c [u] ◦ u in (a, b) .

Then u is either null or positive in (a, b).

Remark. This statement does not establish the non-negativity of all solutions of
−Du′′−cu′ = Lu−c [u]◦u; it only enforces the interior positivity of the nonnegative
nonzero solutions. Regarding the weak maximum principle, we refer among others
to Figueiredo [23], Figueiredo–Mitidieri [24], Sweers [47]. In view of what is known
in the simpler scalar case, it is to be expected that, for small |c| and large enough
intervals (a, b), sign-changing solutions exist.

3. Absorbing set and upper estimates

On the contrary, Theorem 1.2 requires some work.

3.1. Saturation of the reaction term. For all i ∈ [N ], let Hi ⊂ R
N be the closed

half-space defined as

Hi =
{

v ∈ R
N | (Lv)i ≥ 0

}

.

Lemma 3.1. There exists k ∈ K++ such that, for all i ∈ [N ] and for all v ∈ K\e⊥i ,

(L (v + kiei)− c (v + kiei) ◦ (v + kiei))i < 0.

Proof. Let i ∈ [N ] and let

Fi =
(

S+ (0, 1) ∩ Hi

)

\e⊥i .
Let

fi : (0,+∞)× S (0, 1) → R

(α,n) 7→
N
∑

j=1

li,jnj − ci (αn)ni.

Notice that for all n ∈ S+ (0, 1) \Fi, either
N
∑

j=1

li,jnj < 0 and then fi (α,n) < 0

for all α > 0 or ni = 0 and then fi (α,n) =
N
∑

j=1

li,jnj ≥ 0 does not depend on α.
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Let n ∈ Fi. By virtue of the behavior of c as α → +∞ (H4) and since n /∈ e⊥i ,

lim
α→+∞

fi (α,n) = −∞.

Therefore the following quantity is finite and nonnegative:

αi,n = inf {α ≥ 0 | ∀α′ ∈ (α,+∞) fi (α
′,n) < 0} .

Now, the set

{αi,nni | n ∈ Fi} = {αi,nni | n ∈ Fi, αi,n > α} ∪ {αi,nni | n ∈ Fi, αi,n ≤ α}
is bounded if and only if the set {αi,nni | n ∈ Fi, αi,n > α} is bounded. Recall the
definition of α ≥ 1 and δ ≥ 1 (H4). For all n ∈ Fi such that αi,n > α, thanks to
(H4), we have by virtue of the discrete Cauchy–Schwarz inequality

|αi,nni| = αi,nni

≤ αδ
i,nni

≤
∑N

j=1 li,jnj

ci

≤

∣

∣

∣(li,j)j∈[N ]

∣

∣

∣

ci
,

whence the finiteness of

ki = sup {αi,nni | n ∈ Fi}
is established. Its positivity follows from the fact that c vanishes at 0 (H3) which
implies that for all n ∈ intFi, αi,n > 0.

The result about v + kiei with v ∈ K\e⊥i is a direct consequence. �

Assuming in addition strict monotonicity of α 7→ ci (αn) (which is for instance
satisfied if c (v) = Cv with C ≫ 0, that is in the Lotka–Volterra competition case),
we can obtain the following more precise geometric description of the reaction term.
The proof is quite straightforward and is not detailed here.

Lemma 3.2. Assume in addition that α 7→ ci (αn) is increasing for all n ∈ Hi.
Then there exists a collection of connected C 1-hypersurfaces

(Zi)i∈[N ] ⊂
N
∏

i=1

((

K+ ∩ Hi

)

\e⊥i
)

such that, for any i ∈ [N ] and any v ∈ (K+ ∩ Hi) \e⊥i ,

(Lv − c (v) ◦ v)i = 0 if and only if v ∈ Zi.

For all i ∈ [N ], Zi satisfies the following properties.

(1) For all n ∈ (S+ (0, 1) ∩ Hi) \e⊥i , Zi ∩ Rn is a singleton.
(2) The function zi which associates with any n ∈ (S+ (0, 1) ∩ Hi) \e⊥i the

unique element of Zi ∩ Rn is continuous and is a C 1-diffeomorphism of
(S++ (0, 1) ∩ intHi) \e⊥i onto intZi.

(3) For any v ∈ K+\e⊥i , (Lv − c (v) ◦ v)i > 0 if and only if

v ∈ Hi and |v| <
∣

∣

∣

∣

zi

(

v

|v|

)∣

∣

∣

∣

.
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3.2. Absorbing set and upper estimates. Define for all i ∈ [N ]

gi : [0,+∞) → (0,+∞)
µ 7→ max (µ, ki) .

The function gi is non-decreasing and piecewise affine (whence Lipschitz-continuous).
The following local in space L ∞ estimate for the parabolic problem is due to

Barles–Evans–Souganidis [6]. We repeat its proof for the sake of completeness.

Lemma 3.3. Let Q ⊂ R
2 be a parabolic cylinder bounded in space and bounded

from below in time.
Let u be a nonnegative classical solution of (EKPP ) set in Q such that

u|∂PQ ∈ L
∞
(

∂PQ,R
N
)

.

Then we have
(

sup
Q

ui

)

i∈[N ]

≤
(

gi

(

sup
∂PQ

ui

))

i∈[N ]

.

Proof. Let t0 ∈ R, T ∈ (0,+∞] and (a, b) ∈ R
2 such that Q = (t0, t0 + T )× (a, b).

Let i ∈ [N ].
Define a smooth convex function η : R → R which satisfies







η (u) = 0 if u ∈ (−∞, gi

(

sup
∂PQ

ui

)

]

η (u) > 0 otherwise.

For all t ∈ (t0, t0 + T ), let

Ξi (t) =

{

x ∈ (a, b) | ui (t, x) > gi

(

sup
∂PQ

ui

)}

.

This set is measurable and, by integration by parts, for all t ∈ (t0, t0 + T ),

∂t

(

∫ b

a

η (ui (t, x))dx

)

=

∫ b

a

η′ (ui (t, x)) ∂tui (t, x) dx

= −di

∫ b

a

η′′ (ui (t, x)) (∂xui (t, x))
2
dx

+

∫ b

a

η′ (ui (t, x))





N
∑

j=1

li,juj (t, x)− ci (u (t, x))ui (t, x)



 dx

= −di

∫

Ξi(t)

η′′ (ui (t, x)) (∂xui (t, x))
2
dx

+

∫

Ξi(t)

η′ (ui (t, x))





N
∑

j=1

li,juj (t, x)− ci (u (t, x))ui (t, x)



 dx

≤ 0

Since
∫ b

a η (ui (t0, x))dx = 0, we deduce

ui ≤ gi

(

sup
∂PQ

ui

)

in Q,
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whence

sup
Q

ui ≤ gi

(

sup
∂PQ

ui

)

.

�

As a corollary of this local estimate, we get Theorem 1.2.

Proposition 3.4. Let u0 ∈ Cb (R,K). Then the unique classical solution u of
(EKPP ) set in (0,+∞)× R with initial data u0 satisfies

(

sup
(0,+∞)×R

ui

)

i∈[N ]

≤
(

gi

(

sup
R

u0,i

))

i∈[N ]

and furthermore
(

lim sup
t→+∞

sup
x∈R

ui (t, x)

)

i∈[N ]

≤ g (0) .

Consequently, all bounded nonnegative classical solutions of (SKPP ) are valued
in

N
∏

i=1

[0, gi (0)] .

Proof. To get the global in space L ∞ estimate, apply the local one to the family
(uR)R>0, where uR is the solution of (EKPP ) set in (0,+∞)× (−R,R) with

{

uR (0, x) = u0 (x) for all x ∈ [−R,R] ,
uR (t,±R) = u0 (±R) for all t ≥ 0,

and recall that, by classical parabolic estimates (Lieberman [40]) and a diagonal ex-
traction process, (uR)R>0 converges up to extraction in C 1

loc

(

(0,+∞) ,C 2
loc

(

R,RN
))

to the solution of (EKPP ) set in (0,+∞)× R with initial data u0.
Next, let us prove that the invariant set

N
∏

i=1

[0, gi (0)] =

N
∏

i=1

[0, ki]

is in fact an absorbing set.
Assume by contradiction that there exists a bounded nonnegative classical solu-

tion u of (EKPP ) set in (0,+∞)× R such that there exists i ∈ [N ] such that

lim sup
t→+∞

sup
x∈R

ui (t, x) > gi (0) .

Since [0, gi (0)] is invariant, it implies directly

sup
x∈R

ui (t, x) > gi (0) for all t ≥ 0.

Using the classical second order condition at any local maximum, it is easily
seen that at any local maximum in space of ui, the time derivative is negative. At
any t > 0 such that there is no local maximum in space, by C 1 regularity of ui,
x 7→ ui (t, x) is either strictly monotonic or piecewise strictly monotonic with one
unique local minimum and consequently it converges to some constant as x → ±∞.
At least one of these constants is sup

x∈R

ui (t, x). For instance, assume it is the limit

at +∞. By classical parabolic estimates and a diagonal extraction process, there
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exists (xn)n∈N
∈ R

N such that xn → +∞ and such that the following sequence

converges in C 1
loc

(

(0,+∞) ,C 2
loc (R)

)

:

((t′, x) 7→ ui (t+ t′, x+ xn))n∈N
.

Let v be its limit; by construction,

v (0, x) = sup
x∈R

ui (t, x) for all x ∈ R,

so that

∂xxv (0, x) = 0 for all x ∈ R.

Using the equation satisfied by ui, we obtain

∂tv (0, x) < 0 for all x ∈ R.

Since this argument does not depend on the choice of the sequence (xn)n∈N
, we

deduce

lim sup
x→+∞

∂tui (t, x) < 0.

In all cases,

t 7→ ‖x 7→ ui (t, x) ‖L ∞(R)

is a decreasing function, and using the global L ∞ estimate derived earlier, we
deduce that

t 7→ ‖ui‖L ∞((t,+∞)×R)

is a decreasing function as well. Therefore

lim sup
t→+∞

sup
x∈R

ui (t, x) = lim inf
t→+∞

sup
x∈R

ui (t, x) = lim
t→+∞

sup
x∈R

ui (t, x) > gi (0) .

Now, the sequence

((t, x) 7→ ui (t+ n, x))n∈N

being uniformly bounded in L ∞ ((0,+∞)× R), by classical parabolic estimates
and a diagonal extraction process, it converges up to extraction in C 1

loc

(

(0,+∞) ,C 2
loc (R)

)

to some limit u∞,i ∈ C 1
(

(0,+∞) ,C 2 (R)
)

.
On one hand, by construction, the function

t 7→ ‖x 7→ u∞,i (t, x) ‖L ∞(R)

is constant and larger than gi (0). But on the other hand, passing also to the limit
the other components of (t, x) 7→ u (t+ n, x) and then repeating the argument used
earlier to prove the strict monotonicity of

t 7→ ‖x 7→ ui (t, x) ‖L∞(R),

we deduce the strict monotonicity of

t 7→ ‖x 7→ u∞,i (t, x) ‖L∞(R),

which is an obvious contradiction.
�

Quite similarly, we can establish an L ∞ estimate for (SKPP ), set in a strip, and
with an additional drift.
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Proposition 3.5. Let (a, b, c) ∈ R
3 such that a < b and u be a nonnegative classical

solution of

−Du′′ − cu′ = Lu− c [u] ◦ u in (a, b) .

Then
(

max
[a,b]

ui

)

i∈[N ]

≤
(

gi

(

max
{a,b}

ui

))

i∈[N ]

.

Proof. Assume by contradiction that there exists i ∈ [N ] such that

max
[a,b]

ui > gi

(

max
{a,b}

ui

)

.

Then there exists x0 ∈ (a, b) such that

max
[a,b]

ui = ui (x0) > ki.

There exists (x1, x2) ∈ (a, b)
2

such that x1 < x0 < x2 and

{

ui (x) > ki for all x ∈ (x1, x2)
ui (x) =

1
2 (ki + ui (x0)) for all x ∈ {x1, x2} .

But then we find the inequality

−diu
′′
i − cu′

i ≪ 0 in (x1, x2)

which contradicts the existence of an interior maximum at x0 ∈ (x1, x2). �

4. Extinction and persistence

This section is devoted to the proof of Theorem 1.3. The extinction case is mainly
straightforward but, because of the lack of comparison principle, the persistence
case is more involved.

4.1. Extinction.

Proposition 4.1. Assume λPF (L) < 0.
Then all bounded nonnegative classical solutions of (EKPP ) set in (0,+∞)× R

converge asymptotically in time, exponentially fast, and uniformly in space to 0.

Proof. It suffices to notice that if u is a nonnegative bounded solution of (EKPP ),
then v : (t, x) 7→ eλPF (L)tnPF (L) satisfies by virtue of the nonnegativity of c on K

(H2)

∂t (v − u)−D∂xx (v − u)− L (v − u) = c [u] ◦ u ≥ 0.

Hence, up to a multiplication of v by a large constant, the comparison principle
(Protter–Weinberger [42, Chapter 3, Theorem 13]) applied to the linear weakly and
fully coupled operator ∂t −D∂xx − L in (0,+∞)×R implies that 0 ≤ u ≤ v. The
limit easily follows. �
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4.1.1. Regarding the critical case. The proof for the case λPF (L) < 0 clearly cannot
be adapted if λPF (L) = 0. In this subsubsection, we briefly explain why the present
paper only conjectures the result in this case.

Let us recall that for the scalar equation ∂tu − ∂xxu = −u2, the comparison

principle ensures extinction (by comparison with a solution of u′ (t) = −u (t)
2

with large enough initial data). Since the comparison principle is not satisfied by
(EKPP ), we cannot hope to generalize this proof and need to find another method.
Still, in view of this scalar result, it is natural to aim for a proof of extinction.

As a preliminary observation, if some Perron–Frobenius eigenvectors of L are
zeros of c, then extinction will not occur in general. Therefore, in order to solve
the critical case, it is necessary to rule out this somehow degenerated case. This is
of course consistent with the critical case for Theorem 1.4.

For the non-degenerated non-diffusive system u′ = Lu− c [u] ◦ u, we know how
to handle two particular cases:

• if L is symmetric, then the classical Lyapunov function V : u 7→ 1
2 |u|

2

ensures extinction;
• if there exists a ∈ K++ such that c (v) =

(

aTv
)

1N,1, the change of un-
known

z : t 7→ exp

(∫ t

0

(

aTu (τ)
)

dτ

)

u (t)

(exploited for instance by Leman–Méléard–Mirrahimi [37, Theorem 1.4])
ensures extinction.

But even in these special cases, the diffusive system cannot be handled (as far as
we know).

The first idea of proof (which would be in the parabolic setting an entropy
proof) would involve an integration by parts of uTD∂xxu and therefore would have
to deal with the unboundedness of the space domain R. In such a situation, the

classical trick (multiplication of (EKPP ) by e−ε|x|u (t, x)
T

instead of u (t, x)
T

so
that sufficient integrability is recovered) brings forth a new problematic term (see
for instance Zelik [50] where this computation is carried on and only leads to the
existence of an absorbing set). Hence, apart from some particular cases (space-
periodic solutions or solutions vanishing as x → ±∞) where we do not have to
resort to this trick, the entropy method does not establish the extinction.

As for the second idea of proof, it is completely ruined by the space variable: the
exponential term now depends also on x and, again, new problematic terms arise
in the equation satisfied by z.

In view of these facts, extinction in the critical case is both a very natural
conjecture and a surprisingly challenging problem (which would be way beyond the
scope of this article).

4.2. Persistence. The first step toward the persistence result is giving some rig-
orous meaning to the statement “if λPF (L) > 0, then 0 is unstable”.

4.2.1. Slight digression: generalized principal eigenvalues and eigenfunctions for
weakly and fully coupled elliptic systems.

Theorem 4.2. Let (n, n′) ∈ N ∩ [1,+∞)× N ∩ [2,+∞) and L : C 2
(

R
n,Rn′

)

→
C

(

R
n,Rn′

)

be a second-order elliptic operator, weakly and fully coupled, with con-

tinuous and bounded coefficients.
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Let

λ1 (−L ) = sup
{

λ ∈ R | ∃v ∈ C
2
(

R
n,K++

n′

)

− L v ≥ λv
}

∈ R.

Then

lim
R→+∞

λ1,Dir (−L ,Bn (0, R)) = λ1 (−L ) .

Furthermore, λ1 (−L ) is in fact a finite maximum and there exists a generalized
principal eigenfunction, that is a positive solution of

−L v = λ1 (−L )v.

Remark. The convergence of the Dirichlet principal eigenvalue to the aforemen-
tioned generalized principal eigenvalue as R → +∞ as well as the existence of a
generalized principal eigenfunction are well-known for scalar elliptic equations (see
Berestycki–Rossi [12]), but as far as we know these results do not explicitly appear in
the literature regarding elliptic systems. Still, the proof of Berestycki–Rossi [12] uses
arguments developed in the celebrated article by Berestycki–Nirenberg–Varadhan
[11] and which have been generalized to weakly and fully coupled elliptic systems
already in order to prove the existence of a Dirichlet principal eigenvalue in non-
necessarily smooth but bounded domains by Birindelli–Mitidieri–Sweers [13]. Hence
we only briefly outline here the proof so that it can be checked that the generaliza-
tion to unbounded domains is straightforward.

It begins with the standard verification of the equality between the general-
ized principal eigenvalue as defined above and the Dirichlet principal eigenvalue for
bounded smooth domains (whose existence was proved for instance by Sweers [47]).
Then, since the generalized principal eigenvalue is, by definition, non-increasing
with respect to the inclusion of the domains, we get that the limit of the Dirichlet
principal eigenvalues as R → +∞ exists and is larger than or equal to the general-
ized principal eigenvalue. It remains to prove that it is also smaller than or equal to
it. This is done thanks to the family of Dirichlet eigenfunctions (vR)R>0 associated
with the family of Dirichlet principal eigenvalues normalized by

min
i∈[n′]

vi,R (0) = 1.

Thanks to Arapostathis–Gosh–Marcus’s Harnack inequality [3] applied to the op-
erator L , we obtain a locally uniform L ∞ estimate, whence, by virtue of classical
elliptic estimates (Gilbarg–Trudinger [30]) and a diagonal extraction process, the
existence of a limit, up to extraction, for the family (vR)R>0 as R → +∞. This
limit v∞ is nonnegative nonzero and satisfies

−L v∞ =

[

lim
R→+∞

λ1,Dir (−L ,Bn (0, R))

]

v∞.

Thanks again to Arapostathis–Gosh–Marcus’s Harnack inequality, v∞ is in fact
positive in R

n. Thus, by definition of the generalized principal eigenvalue, the limit
as R → +∞ is indeed smaller than or equal to it, and in the end the equality is
proved as well as the existence of a generalized principal eigenfunction v∞.

4.2.2. Local instability and persistence. Let γ ∈ [0, 1]. On one hand, as a direct
result of Dancer [22] or Lam–Lou [36],

lim
ε→0

λ1,Dir

(

−ε2D
d2

dx2
− (L− γλPF (L) I) ,B (0, 1)

)

= − (1− γ)λPF (L) .
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On the other hand, by a standard change of variable,

lim
ε→0

λ1,Dir

(

−ε2D
d2

dx2
− (L− γλPF (L) I) ,B (0, 1)

)

= lim
R→+∞

λ1,Dir

(

−D
d2

dx2
− (L− γλPF (L) I) ,B (0, R)

)

.

Therefore, in view of Theorem 4.2,

λ1

(

−D
d2

dx2
− (L− γλPF (L) I)

)

= − (1− γ)λPF (L) .

This equality deserves some attention: the generalized principal eigenvalue of

D d
2

dx2 + (L− γλPF (L) I) does not depend on D. Of course, this is reminiscent of
the scalar case, where the equality

λ1

(

−d
d2

dx2
− r

)

= −r

is well-known (and follows for instance from a direct computation of λ1,Dir

(

−d d
2

dx2 − r, (−R,R)
)

or from the equality with the periodic principal eigenvalue λ1,per

(

−d d
2

dx2 − r
)

).

As a corollary, we get the following lemma.

Lemma 4.3. Assume λPF (L) > 0. Then there exists
(

R0, R1/2

)

∈ (0,+∞)
2

such
that

λ1,Dir

(

−D
d2

dx2
− L, (−R0, R0)

)

< 0,

λ1,Dir

(

−D
d2

dx2
−
(

L− λPF (L)

2
I

)

,
(

−R1/2, R1/2

)

)

< 0.

Remark. In fact, much more precisely, it can be shown that, for all γ ∈ [0, 1],

R 7→ λ1,Dir

(

−D
d2

dx2
− (L− γλPF (L) I) , (−R,R)

)

is a decreasing homeomorphism from (0,+∞) onto (− (1− γ)λPF (L) ,+∞).

By continuity of c and the fact that it vanishes at 0 (H3), as soon as λPF (L) > 0,
the quantity

α1/2 = max

{

α > 0 | ∀v ∈ [0, α]N c (v) ≤ λPF (L)

2
1N,1

}

is well-defined in R and is positive. The pair
(

R1/2, α1/2

)

will be used repeatedly up
to the end of this section.

Lemma 4.4. Assume λPF (L) > 0. For all µ ∈
(

0, α1/2

)

, let

Tµ =
lnα1/2 − lnµ

−λ1,Dir

(

−D d2

dx2 −
(

L− λPF (L)
2 I

)

,
(

−R1/2, R1/2

)

) > 0.

For all (t0, T, a, b) ∈ R × (0,+∞) × R
2 such that b−a

2 = R1/2 and for all
nonnegative classical solutions u of (EKPP ) set in the bounded parabolic cylinder
(t0, t0 + T )× (a, b), if

min
i∈[N ]

min
x∈[a,b]

ui (t0, x) = µ,

max
i∈[N ]

max
[t0,t0+T ]×[a,b]

ui ≤ α1/2,

then T < Tµ.
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Proof. Let

Λ = λ1,Dir

(

−D
d2

dx2
−
(

L− λPF (L)

2
I

)

,
(

−R1/2, R1/2

)

)

< 0.

Let n be the principal eigenfunction associated with the preceding Dirichlet
principal eigenvalue normalized so that

max
i∈[N ]

max
[−R1/2,R1/2]

ni = 1.

By definition, we have in
(

−R1/2, R1/2

)

−
(

−Dn′′ −
(

L− λPF (L)

2
I

)

n

)

= −Λn ≫ 0.

By definition of α1/2 and by the nonnegativity of c on K (H2), for all v ∈
[

0, α1/2

]N
,

c (v) ◦ v ≤ λPF (L)

2
v,

whence

− (Lv − c (v) ◦ v) ≤ −
(

L− λPF (L)

2
I

)

v.

Now, fix (t0, T, a, b) ∈ R × (0,+∞) × R
2 such that b−a

2 = R1/2 and T ≥ Tµ.
Assume by contradiction that there exists a nonnegative solution u : (t0, t0 + T )×
(a, b) → K of (EKPP ) such that the following properties hold

µ = min
i∈[N ]

min
x∈[a,b]

ui (t0, x) > 0,

max
i∈[N ]

max
[t0,t0+T ]×[a,b]

ui ≤ α1/2.

In particular, since µ > 0, u is nonnegative nonzero.
To simplify the notations, hereafter we assume that t0 = 0 and a+b

2 = 0. The
general case is only a matter of straightforward translations.

Define the function

v : (t, x) 7→ µe−Λtn (x) .

Clearly

v (0, x) ≤ u (0, x) for all x ∈ [a, b] .

It is easily verified as well that v satisfies in (0, Tµ)×
(

−R1/2, R1/2

)

−
(

∂tv −D∂xxv −
(

L− λPF (L)

2
I

)

v

)

≥ 0,

whence, by construction of α1/2, w = u− v satisfies

∂tw −D∂xxw −
(

L− λPF (L)

2
I

)

w ≥ ∂tu−D∂xxu− Lu+ c [u] ◦ u = 0.

Most importantly, since by construction

Tµ = max

{

t > 0 | max
i∈[N ]

max
x∈[−R1/2,R1/2]

vi (t, x) ≤ α1/2

}

,

there exists t⋆ ≤ Tµ ≤ T and x⋆ ∈
(

−R1/2, R1/2

)

such that w ≫ 0 in [0, t⋆) ×
(

−R1/2, R1/2

)

and w (t⋆, x⋆) ∈ ∂K.
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The strong maximum principle applied to the weakly and fully coupled linear

operator ∂t−D∂xx−
(

L− λPF (L)
2 I

)

proves then that w = 0 in [0, t⋆)×
(

−R1/2, R1/2

)

,

which contradicts w
(

0,±R1/2

)

≫ 0. �

The persistence result follows.

Proposition 4.5. Assume λPF (L) > 0.
There exists ν > 0 such that all bounded nonnegative nonzero classical solutions

u of (EKPP ) set in (0,+∞)× R satisfy, for all bounded intervals I ⊂ R,
(

lim inf
t→+∞

inf
x∈I

ui (t, x)

)

i∈[N ]

≥ ν1N,1.

Consequently, all bounded nonnegative classical solutions of (SKPP ) are valued
in

N
∏

i=1

[ν, gi (0)] .

Proof. Let u be a bounded nonnegative nonzero classical solution of (EKPP ) set
in (0,+∞)× R. In view of Proposition 3.4, for all ε > 0 there exists tε ∈ (0,+∞)
such that

u ≤
(

max
i∈[N ]

(gi (0)) + ε

)

1N,1 in (tε,+∞)× R.

Let I ⊂ R be a bounded interval. Fix temporarily ε > 0 and x ∈ I and define
Ix =

(

x−R1/2, x+R1/2

)

.

A first application of Lemma 4.4 establishes that there exists t̂x ∈ [tε,+∞) such
that

max
i∈[N ]

max
y∈Ix

ui

(

t̂x, y
)

= α1/2

and that there exists τ > 0 such that

max
i∈[N ]

max
y∈Ix

ui (t, y) > α1/2 for all t ∈
(

t̂x, t̂x + τ
)

.

Hence the following quantity is well-defined in
[

t̂x + τ,+∞
]

:

t1 = inf

{

t ≥ t̂x + τ | max
i∈[N ]

max
y∈Ix

ui (t, y) < α1/2

}

.

Assume first t1 < +∞. Then by continuity,

max
i∈[N ]

max
y∈Ix

ui (t1, y) = α1/2.

Let

AL,c,ε = max
(i,j)∈[N ]2

|li,j |+ max
i∈[N ]

max

w∈

[

0,max
i∈[N ]

(gi(0))+ε

]N
ci (w) .

By virtue of Földes–Poláčik’s Harnack inequality [29], there exists κ > 0, dependent
only on N , R1/2, min

i∈[N ]
di, max

i∈[N ]
di and AL,c,ε such that, for all

w ∈ Cb

(

(0,+∞)× R,

[

0,max
i∈[N ]

(gi (0)) + ε

]N
)

,
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all nonnegative classical solutions v of the linear weakly and fully coupled system
with bounded coefficients

∂tv −D∂xxv − (L− diag (c [w]))v = 0 in Ix

satisfy

min
i∈[N ]

min
y∈Ix

vi (t1 + 1, y) ≥ κmax
i∈[N ]

max
y∈Ix

vi (t1, y) .

We stress that κ does not depend on w. In particular, taking w = v = u, we
deduce

min
i∈[N ]

min
y∈Ix

ui (t1 + 1, y) ≥ κα1/2.

Of course, up to a shrink of κ, we can assume without loss of generality κ ∈ (0, 1).
Then let

T =
− lnκ

−λ1,Dir

(

−D d2

dx2 −
(

L− λPF (L)
2 I

)

, Ix

) > 0.

T does not depend on the choice of u.
A second application of Lemma 4.4 establishes

max
i∈[N ]

max
y∈Ix

ui (t1 + 1 + T, y) > α1/2.

Hence, defining the sequence (tn)n∈N
by the recurrence relation

tn+1 = inf

{

t ≥ tn + 1 + T | max
i∈[N ]

max
y∈Ix

ui (t, y) < α1/2

}

and repeating by induction the process, we deduce that any connected component
of

{

t ∈
(

t̂x,+∞
)

| max
i∈[N ]

max
y∈Ix

ui (t, y) < α1/2

}

is an interval of length smaller than 1 + T .
A second application of Földes–Poláčik’s Harnack inequality shows that there

exists σε > 0, dependent only on N , R1/2, T , min
i∈[N ]

di, max
i∈[N ]

di and AL,c,ε such that,

for all t ∈
(

t̂x,+∞
)

,

min
i∈[N ]

min
y∈Ix

ui (t+ T + 2, y) ≥ σε max
i∈[N ]

max
(t′,y)∈[t,t+T+1]×Ix

ui (t
′, y) ,

whence

min
i∈[N ]

min
y∈Ix

ui (t, y) ≥ σεα1/2 for all t ∈
(

t̂
x
+ T + 2,+∞

)

.

Assume next t1 = +∞. Then

max
i∈[N ]

max
y∈Ix

ui (t, y) ≥ α1/2 for all t ∈
(

t̂x ,+∞
)

,

and consequently

min
i∈[N ]

min
y∈Ix

ui (t, y) ≥ σεα1/2 for all t ∈
(

t̂
x
+ T + 2,+∞

)

.

Since I is bounded and x 7→ t̂x can be assumed continuous in R without loss of
generality, it follows

min
i∈[N ]

inf
y∈I

ui (t, y) ≥ σεα1/2 for all t ∈
(

max
x∈I

(

t̂
x

)

+ T + 2,+∞
)

,
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whence
lim inf
t→+∞

min
i∈[N ]

inf
y∈I

ui (t, y) ≥ σεα1/2

with σεα1/2 dependent only on ε. The conclusion follows of course by setting

ν = sup
ε>0

(σε)α1/2.

�

Remark. We point out that max
x∈I

t̂
x

is finite because I is bounded. Of course, in

I = R, this problem becomes a spreading problem (see Proposition 7.1).

5. Existence of positive steady states

This section is devoted to the proof of Theorem 1.4 .

Proposition 5.1. Assume λPF (L) < 0. Then there exists no positive classical
solution of (SKPP ).

Proof. Recall that the Dirichlet principal eigenvalue is non-increasing with respect
to the zeroth order coefficient.

On one hand, by virtue of the nonnegativity of c on K (H2), we have for all
R > 0 and all v ∈ Cb (R,K

++),

λ1,Dir

(

−D
d2

dx2
− (L− diagc [v]) , (−R,R)

)

≥ λ1,Dir

(

−D
d2

dx2
− L, (−R,R)

)

,

whence, as R → +∞,

λ1

(

−D
d2

dx2
− (L− diagc [v])

)

≥ −λPF (L) > 0.

On the other hand, any positive steady state v is also a generalized principal
eigenfunction for the generalized principal eigenvalue

λ1

(

−D
d2

dx2
− (L− diagc [v])

)

= 0.

�

Proposition 5.2. Assume λPF (L) = 0 and

span (nPF (L)) ∩ K ∩ c−1 ({0}) = {0} .
Then there exists no bounded positive classical solution of (SKPP ).

Remark. The forthcoming argument is quite standard in the scalar setting. We
detail it for the sake of completeness.

Proof. Assume by contradiction that there exists a bounded positive classical solu-
tion v of (SKPP ).

By boundedness of v, there exists κ ∈ (0,+∞) such that κnPF (L) − v ≥ 0 in
R. Let

κ⋆ = inf {κ ∈ (0,+∞) | κnPF (L)− v ≥ 0 in R} .
By positivity of v, κ⋆ > 0. Let (κn)n∈N

∈ (0, κ⋆)
N

which converges from below to
κ⋆. For all n ∈ N, there exists xn ∈ R such that

κnnPF (L)− v (xn) < 0.
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Let
vn : x 7→ v (x+ xn) for all n ∈ N.

By virtue of the global boundedness of v, Arapostathis–Gosh–Marcus’s Harnack
inequality [3] applied to the linear weakly and fully coupled operator with bounded
coefficients

D
d2

dξ2
+ c

d

dξ
+ (L− diag (c [vn]))

and classical elliptic estimates (Gilbarg–Trudinger [30]), (vn)n∈N
converges up to

a diagonal extraction in C 2
loc as n → +∞ to a nonnegative solution v⋆ of (SKPP ).

Moreover, v⋆ satisfies
v⋆ ≤ κ⋆nPF (L) in R,

κ⋆nPF (L)− v⋆ (0) ∈ ∂K,

−
(

D
d2

dx2
+ L

)

(κ⋆nPF (L)− v⋆) = c [v⋆] ◦ v⋆ ≥ 0 in R.

Applying Arapostathis–Gosh–Marcus’s Harnack inequality [3] to D d
2

dx2 + L, we
deduce

κ⋆nPF (L) = v⋆ in R

and subsequently

c (κ⋆nPF (L)) ◦ κ⋆nPF (L) = −
(

D
d2

dx2
+ L

)

0 = 0,

whence c (κ⋆nPF (L)) = 0, which contradicts directly κ⋆ > 0. �

Finally, recall that if λPF (L) > 0, then the following quantity is well-defined
and positive:

α1/2 = max

{

α > 0 | ∀v ∈ [0, α]
N

c (v) ≤ λPF (L)

2
1N,1

}

.

Proposition 5.3. Assume λPF (L) > 0. Then there exists a solution v ∈ K++ of

Lv = c (v) ◦ v.
Proof. By virtue of the Perron–Frobenius theorem, nPF

(

LT
)

∈ K++.

There exists η > 0 such that, for all v ∈ K, if nPF

(

LT
)T

v = η, then v ∈
[

0, α1/2

]N
. Defining

A =
{

v ∈ K | nPF

(

LT
)T

v = η
}

,

it follows that for all v ∈ A,

nPF

(

LT
)T

(c (v) ◦ v) ≤ λPF (L)

2
η,

whence

nPF

(

LT
)T

(Lv − c (v) ◦ v) = λPF

(

LT
)

η − nPF

(

LT
)T

(c (v) ◦ v)

≥ λPF (L)

2
η,

which is positive if λPF (L) > 0 is assumed indeed.
Then, defining the convex compact set

C =
{

v ∈ K | nPF

(

LT
)T

v ≥ η and v ≤ k+ 1N,1

}

,
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it can easily be verified that, for all v ∈ ∂C,

nT
v (Lv − c (v) ◦ v) < 0

where nv is the outward pointing normal. In particular, there is no solution of
Lv = c (v) ◦ v in ∂C. Also, by convexity, for all v ∈ ∂C, there exists a unique
δv > 0 such that

v + δv (Lv − c (v) ◦ v) ∈ ∂C.

Assume by contradiction that there is no solution of Lv = c (v) ◦ v in intC.
Consequently and by convexity again, for all v ∈ intC, there exists a unique δv > 0
such that

v + δv (Lv − c (v) ◦ v) ∈ ∂C.

The function
C → (0,+∞)
v 7→ δv

is continuous and so is the function

C → ∂C
v 7→ v + δv (Lv − c (v) ◦ v) .

According to the Brouwer fixed point theorem, this function has a fixed point, which
of course contradicts the assumption.

Hence there exists indeed a solution in intC ⊂ K++ of

Lv = c (v) ◦ v.
�

6. Traveling waves

In this section, we assume λPF (L) > 0 and prove Theorem 1.5.
Notice as a preliminary that, for any (p, c) ∈ C 2

(

R,RN
)

× [0,+∞),

u : (t, x) 7→ p (x− ct)

is a classical solution of (EKPP ) if and only if p is a classical solution of

−Dp′′ − cp′ = Lp− c [p] ◦ p in R. (TW [c])

6.1. The linearized equation. As usual in KPP-type problems, the linearized
equation near 0:

−Dp′′ − cp′ = Lp in R (TW0 [c])

will bring forth the main informations we need in order to construct and study the
traveling wave solutions. Hence we devote this first subsection to its detailed study.

Lemma 6.1. Let (c, λ) ∈ R
2.

If there exists a classical positive solution p of

−Dp′′ − cp′ − (L+ λI)p = 0 in R, (TW0 [c, λ])

then there exists (µ,n) ∈ R × K++ such that q : ξ 7→ e−µξn is a classical solution
of (TW0 [c, λ]).
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Remark. This is of course to be related with the notions of generalized principal
eigenvalue and generalized principal eigenfunction (see Theorem 4.2). The mere
existence of p enforces

λ1

(

−D
d2

dξ2
− c

d

dξ
− (L+ λI)

)

≥ 0.

The following proof is inspired by Berestycki–Hamel–Roques [9, Lemma 3.1].

Proof. Let p be a classical positive solution of (TW0 [c, λ]).

Let v =
(

p′

i

pi

)

i∈[N ]
. By virtue of Arapostathis–Gosh–Marcus’s Harnack inequal-

ity [3] applied to the operator D d
2

dξ2 + c d

dξ + (L+ λI), classical elliptic estimates

(Gilbarg–Trudinger [30]) and invariance by translation of (TW0 [c, λ]), v is globally
bounded. Let

Λi = lim sup
ξ→+∞

vi (ξ) for all i ∈ [N ] ,

Λ = max
i∈[N ]

Λi,

so that
(

lim sup
ξ→+∞

vi (ξ)

)

i∈[N ]

≤ Λ1N,1.

Let (ξn)n∈N
∈ R

N such that ξn → +∞ and such that there exists i ∈ [N ] such
that

vi (ξn) → Λ.

On one hand, let

p̂n : ξ 7→ p (ξ + ξn)

pi (ξn)
for all n ∈ N.

Once more by virtue of Arapostathis–Gosh–Marcus’s Harnack inequality, the se-
quence (p̂n)n∈N

is locally uniformly bounded. Since all p̂n solve (TW0 [c, λ]),
by classical elliptic estimates, (p̂n)n∈N

converges up to a diagonal extraction as

n → +∞ in C 2
loc. Let p̂∞ be its limit. Notice by linearity of (TW0 [c, λ]) that p̂∞

is in fact smooth and all its derivatives satisfy (TW0 [c, λ]) as well.
On the other hand, let

wn = Λp̂n − p̂′
n for all n ∈ N ∪ {+∞} .

Notice the following equality:

wn (ξ) = p̂n (ξ) ◦
(

Λ1N,1 − v (ξ + ξn)
)

for all n ∈ N and ξ ∈ R.

Fix ξ ∈ R. Recalling

(

lim sup
n→+∞

vi (ξ + ξn)

)

i∈[N ]

≤
(

lim sup
ζ→+∞

vi (ζ)

)

i∈[N ]

≤ Λ1N,1,

it follows that for all ε > 0 there exists nξ,ε ∈ N such that for all n ≥ nξ,ε,
(

Λ + ε
)

1N,1 ≥ v (ξ + ξn) ,
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whence, for all n ≥ nξ,ε,

wn (ξ) ≥ −ε

(

sup
m≥nξ,ε

p̂m,i (ξ)

)

i∈[N ]

≥ −ε

(

sup
m∈N

p̂m,i (ξ)

)

i∈[N ]

,

and consequently, passing to the limit n → +∞ and then ε → 0, we obtain the
non-negativity of w∞ (ξ).

Hence w∞ is a nonnegative solution of (TW0 [c, λ]) satisfying in addition

w∞,i (0) = p̂∞,i (0)

(

Λ− lim
n→+∞

vi (ξn)

)

= 0,

whence, again by Arapostathis–Gosh–Marcus’s Harnack inequality, w∞ is in fact
the null function.

Consequently, Λp̂∞ = p̂′
∞, that is p̂∞ has exactly the form

ξ 7→ eΛξn with n ∈ R
N .

Since p̂∞ is nonnegative with p̂∞,i (0) = 1 by construction, n ∈ K+, and since any

nonnegative nonzero solution of (TW0 [c, λ]) is positive (Corollary 2.2), n ∈ K++.
The proof is ended with µ = −Λ. �

For all µ ∈ R, the matrix µ2D+ L is essentially nonnegative irreducible. Define
κµ = −λPF

(

µ2D+ L
)

and nµ = nPF

(

µ2D+ L
)

.
Of course, the interest of the pair (κµ,nµ) lies in the preceding lemma: for all

(µ,n) ∈ R× K++, ξ 7→ e−µξn is a solution of (TW0 [c]) if and only if

−µ2Dn+ µcn− Ln = 0,

that is, thanks to the Perron–Frobenius theorem, if and only if µc = −κµ and
n
|n| = nµ. This most important observation leads naturally to the following study

of the equation c = −κµ

µ .

Lemma 6.2. The quantity

c⋆ = min
µ>0

(

−κµ

µ

)

is well-defined and positive.
Let c ∈ [0,+∞). In (−∞, 0), the equation −κµ

µ = c admits no solution. In

(0,+∞), it admits exactly:

(1) no solution if c < c⋆;
(2) one solution µc⋆ > 0 if c = c⋆;
(3) two solutions (µ1,c, µ2,c) if c > c⋆, which satisfy moreover

0 < µ1,c < µc⋆ < µ2,c.

Remark. c⋆ does not depend on c and is entirely determined by D and L. It will
be the minimal speed of traveling waves and this kind of dependency is strongly
reminiscent of the scalar Fisher–KPP case, where c⋆ = 2

√
rd. In fact the following

proof is mostly a generalization of scalar arguments.



NON-COOPERATIVE KPP SYSTEMS 35

Proof. Of course, µ 7→ −κµ

µ is odd in R\ {0}. It is also positive in (0,+∞):

−κµ

µ
=

1

µ
λPF

(

µ2D+ L
)

>
1

µ
λPF (L) > 0.

Therefore it is negative in (−∞, 0) and in particular there is no solution of −κµ

µ =

c ≥ 0 in (−∞, 0).
We recall Nussbaum’s theorem [44] which proves the convexity of the function

µ 7→ ρ (Aµ) provided:

• the matrix Aµ is irreducible,
• its diagonal entries are convex functions of µ,
• its off-diagonal entries are nonnegative log-convex functions of µ.

These conditions are easily verified for µ2D + L and µD + 1
µL (actually, for all

µ−γ
(

µ2D+ L
)

provided γ ∈ [0, 2]). Their spectral radii being respectively −κµ

and −κµ

µ , these are therefore convex functions of µ. Moreover, Nussbaum’s result

also proves that these convexities are actually strict. Therefore µ 7→ −κµ and
µ 7→ −κµ

µ are strictly convex functions in (0,+∞).

Now, we investigate the behavior of −κµ

µ as µ → 0 and µ → +∞.

By continuity,
κµ → κ0 as µ → 0,

whence −κµ

µ → +∞ as µ → 0.

Since µ 7→ −κµ

µ is convex and positive, either it is bounded in a neighborhood

of +∞ and then it converges to some nonnegative constant, either it is unbounded
in a neighborhood of +∞ and then it converges to +∞. Assume that it converges
to a finite constant. Notice

lim
µ→+∞

1

µ2

(

µ2D+ L
)

= D.

There exists a family of Perron–Frobenius eigenvectors of µD + 1
µL, (mµ)µ>0,

normalized so that max
i∈[N ]

mµ,i = 1 for all µ > 0. Thanks to classical compactness

arguments in R and R
N , we can extract a sequence (µn)n∈N

such that µn → +∞,

−κµn

µ2
n

converges to 0 and mµn converges to some m ∈ K+. We point out that we

do not know if m ∈ K++, but from the normalizations, we do know that m ∈ K+.
Since m satisfies Dm = 0 and since D is invertible, we get a contradiction. Thus

lim
µ→+∞

−κµ

µ
= +∞.

Hence µ 7→ −κµ

µ is a strictly convex positive function which goes to +∞ as

µ → 0 or µ → +∞: it admits necessarily a unique global minimum in (0,+∞).
The quantity c⋆ is well-defined.

Define µc⋆ > 0 such that

c⋆ = −κµc⋆

µc⋆
.

The quantity µc⋆ is uniquely defined by strict convexity. The function µ 7→ −κµ

µ is

bijective from (0, µc⋆) to (c⋆,+∞) and from (µc⋆ ,+∞) to (c⋆,+∞) as well. This
ends the proof. �

Putting together Lemma 6.1 and Lemma 6.2, we get the following important
result.
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Corollary 6.3. For all c ∈ [0,+∞), the set of nonnegative nonzero classical solu-
tions of (TW0 [c]) is empty if and only if c ∈ [0, c⋆).

We can also get the exact values of c for which 0 is an unstable steady state of
(TW0 [c]), in the sense of Lemma 4.3.

Lemma 6.4. Let c ∈ [0,+∞). Then

λ1

(

−D
d2

dx2
− c

d

dx
− L

)

= sup
µ∈R

(κµ + µc) .

Furthermore:

(1) sup
µ∈R

(κµ + µc) = max
µ≥0

(κµ + µc);

(2) max
µ≥0

(κµ + µc) < 0 if and only if c < c⋆.

Remark. Just as in the case c = 0, it can be shown that, for all c ∈ [0,+∞),

R 7→ λ1,Dir

(

−D
d2

dξ2
− c

d

dξ
− L, (−R,R)

)

is a decreasing homeomorphism from (0,+∞) onto
(

λ1

(

−D d
2

dx2 − c d

dx − L
)

,+∞
)

.

Proof. The fact that sup
µ∈R

(κµ + µc) is finite and actually a maximum attained in

[0,+∞) is a direct consequence of:

• the evenness of µ 7→ κµ (whence, for all µ > 0, κ−µ + (−µ) c < κµ + µc);
• κ0 < 0;
• κµ

µ + c → −∞ as µ → +∞ (see the proof of Lemma 6.2).

In addition, the sign of this maximum depending on the sign c − c⋆ is given by
Lemma 6.2.

Hence it only remains to prove

λ1

(

−D
d2

dx2
− c

d

dx
− L

)

= max
µ≥0

(κµ + µc) .

To do so, we use and adapt a well-known strategy of proof (see for instance Nadin
[43]).

We recall from Theorem 4.2 the definition of the generalized principal eigenvalue:

λ1

(

−D
d2

dx2
− c

d

dx
− L

)

= sup
{

λ ∈ R | ∃n ∈ C
2
(

R,K++
)

−Dn′′ − cn′ − Ln ≥ λn
}

.

Also, there exists a generalized principal eigenfunction. We recall from Lemma 6.1
that if there exists a generalized principal eigenfunction, then there exists a gener-
alized principal eigenfunction of the form ξ 7→ e−µ⋆ξm with some constant µ⋆ ≥ 0
and m ∈ K++.

Now, (µ⋆,m) ∈ [0,+∞)× K++ satisfies

− (µ⋆)2 Dm+ cµ⋆m− Lm = λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

m,

that is

−
(

(µ⋆)
2
D+ L

)

m =

(

λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

− cµ⋆

)

m,
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or in other words

λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

= κµ⋆ + cµ⋆ and
m

|m| = nµ⋆ .

Finally, the suitable test function to verify

λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

≥ κµ + µc for all µ ≥ 0

is of course vµ : ξ 7→ e−µξnµ itself, which satisfies precisely

−Dv′′
µ − cv′

µ − Lvµ = (κµ + µc)vµ.

�

Corollary 6.5. The quantity c⋆ is characterized by

c⋆ = sup

{

c ≥ 0 | λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

< 0

}

= inf

{

c ≥ 0 | λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

> 0

}

.

6.2. Qualitative properties of the traveling solutions. Thanks to Lemma 6.1
and Corollary 6.3, we are now in position to establish a few interesting properties
that have direct consequences but will also be used at the end of the construction
of the traveling waves.

Lemma 6.6. Let c ∈ [0,+∞) and p be a bounded nonnegative nonzero classical
solution of (TW [c]).

If

(

lim inf
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ ∂K, then c ≥ c⋆.

Remark. The following proof is analogous to that of Berestycki–Nadin–Perthame–Ryzhik
[10, Lemma 3.8] for the non-local KPP equation.

Proof. Let (ζn)n∈N
∈ R

N such that, as n → +∞, ζn → +∞ and at least one
component of (p (ζn))n∈N

converges to 0. Define

pn : ξ 7→ p (ξ + ζn)

and observe that pn satisfies (TW [c]) as well. By virtue of Arapostathis–Gosh–Marcus’s
Harnack inequality [3] applied to the linear operator

D
d2

dξ2
+ c

d

dξ
+ (L− diag (c [pn])) ,

classical elliptic estimates (Gilbarg–Trudinger [30]), (pn)n∈N
converges up to a di-

agonal extraction in C 2
loc to 0. This proves that there is no limit point of p at +∞

in ∂K\ {0}.
Next, define

p̃n : ξ 7→ p (ξ + ζn)

|p (ζn)|
and notice, again by Arapostathis–Gosh–Marcus’s Harnack inequality, that (p̃n)n∈N

is locally uniformly bounded. Since, for all n ∈ N, p̃n solves

−Dp̃′′
n − cp̃′

n = Lp̃n − c [pn] ◦ p̃n,
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with, thanks to the fact that c vanishes at 0 (H3), c [pn] → 0 locally uniformly, up
to extraction (p̃n)n∈N

converges in C 2
loc to a nonnegative solution p̃ of (TW0 [c]).

Since p̃n (0) ∈ S++ (0, 1) for all n ∈ N, p̃ is nonnegative nonzero, whence positive
(Corollary 2.2).

Now, from Corollary 6.3, we deduce indeed that c ≥ c⋆. �

This result implies the nonexistence half of Theorem 1.5 i).

Corollary 6.7. For all c ∈ [0, c⋆), there is no traveling wave solution of (EKPP )
with speed c.

Now, with Proposition 3.4, c ≥ c⋆ > 0 and the fact that (t, x) 7→ p (x− ct) solves
(EKPP ), we can straightforwardly derive the uniform upper bound Theorem 1.5
ii), which is interestingly independent of c.

Corollary 6.8. All profiles p satisfy

p ≤ g (0) in R.

Subsequently, using Proposition 4.5 and again c ≥ c⋆ > 0 and the fact that
(t, x) 7→ p (x− ct) solves (EKPP ), we get Theorem 1.5 iii), independent of c as
well.

Corollary 6.9. All profiles p satisfy
(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

≥ ν1N,1.

Now, we establish Theorem 1.5 iv). Its proof is actually mostly a repetition of
that of Lemma 6.1.

Proposition 6.10. Let (p, c) be a traveling wave solution of (EKPP ).
Then there exists ξ ∈ R such that p is component-wise decreasing in [ξ,+∞).

Proof. Let v =
(

p′

i

pi

)

i∈[N ]
. By virtue of Arapostathis–Gosh–Marcus’s Harnack

inequality [3], classical elliptic estimates (Gilbarg–Trudinger [30]) and invariance
by translation of (TW [c]), v is globally bounded. Define for all i ∈ [N ]

Λi = lim sup
ξ→+∞

vi (ξ) .

Let Λ = max
i∈[N ]

Λi, so that

(

lim sup
ξ→+∞

vi (ξ)

)

i∈[N ]

≤ Λ1N,1.

Let (ξn)n∈N
∈ R

N such that ξn → +∞ and such that there exists i ∈ [N ] such
that

vi (ξn) → Λ as n → +∞.

Let

p̂n : ξ 7→ p (ξ + ξn)

pi (ξn)
for all n ∈ N.

and notice, again by Arapostathis–Gosh–Marcus’s Harnack inequality, that (p̂n)n∈N

is locally uniformly bounded. Since, for all n ∈ N, p̂n solves

−Dp̂′′
n − cp̂′

n = Lp̂n − c [pi (ξn) p̂n] ◦ p̂n,
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and, thanks to the fact that c vanishes at 0 (H3) and the asymptotic behavior
of p at +∞, c [pi (ξn) p̂n] converges locally uniformly to 0 as n → +∞, up to a
diagonal extraction process, (p̂n)n∈N

converges in C 2
loc to a nonnegative solution

p̂∞ of (TW0 [c]).
Now we repeat the second part of the proof of Lemma 6.1 and we deduce in the

end from Lemma 6.2 that p̂∞ has exactly the form

ξ 7→ Ae−µcξnµc ,

with µc ∈ {µ1,c, µ2,c} if c > c⋆, µc = µc⋆ if c = c⋆, A > 0 and, most importantly,

with µc = −Λ.
Thus Λ < 0. This implies that there exists ξ ∈ R such that, for all ξ ≥ ξ,

v (ξ) ≤ −
∣

∣Λ
∣

∣

2
1N,1,

whence, by positivity of p,

p′ (ξ) ≤ −
∣

∣Λ
∣

∣

2
p (ξ) .

The right-hand side being negative, p is component-wise decreasing indeed. �

Lemma 6.11. Let c ∈ [0,+∞) and p be a bounded nonnegative nonzero classical
solution of (TW [c]).

If

(

lim inf
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ ∂K, then lim
ξ→+∞

p (ξ) = 0.

Proof. Let (ζn)n∈N
∈ R

N such that, as n → +∞, ζn → +∞ and at least one
component of (p (ζn))n∈N

converges to 0. The proof of Lemma 6.6 shows that

(pn)n∈N
, defined by pn : ξ 7→ p (ξ + ζn), converges up to extraction in C 2

loc to 0.
Now, defining

vn : ξ 7→
(

p′n,i (ξ)

pn,i (ξ)

)

i∈[N ]

,

Λi = lim sup
n→+∞

max
[−1,1]

vn,i,

Λ = max
i∈[N ]

Λi,

i ∈ [N ] such that Λi = Λ,

and (nm)m∈N
∈ N

N an increasing sequence such that vnm,i (0) → Λ as m → +∞,
we can repeat once more the argument of the proof of Lemma 6.1 and obtain

Λp̂∞ = p̂′
∞ in (−1, 1)

(notice that, contrarily to the proof of Lemma 6.1 where this equality was proved
in R, here it only holds locally). This brings forth Λ = −µc < 0, as in the proof of
Proposition 6.10, whence pn is component-wise decreasing in [−1, 1] provided n is
large enough.

Now, assuming by contradiction
(

lim sup
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ K+,



NON-COOPERATIVE KPP SYSTEMS 40

that is
(

lim sup
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ K++,

we deduce from the C 1 regularity of p that, for any i ∈ [N ], there exists a sequence
(ζ′n)n∈N

∈ R
N such that:

• ζ′n → +∞ as n → +∞,
• pi (ζ

′
n) is a local minimum of pi,

• pi (ζ
′
n) → 0 as n → +∞.

Since this directly contradicts the preceding argument, we get indeed
(

lim sup
ξ→+∞

pi (ξ)

)

i∈[N ]

= 0 =

(

lim inf
ξ→+∞

pi (ξ)

)

i∈[N ]

.

�

Lemma 6.12. Let c ∈ [0,+∞). There exists ηc > 0 such that, for all bounded
nonnegative classical solutions p of (TW [c]), exactly one of the following properties
holds:

(1) lim
ξ→+∞

p (ξ) = 0;

(2)

(

inf
(0,+∞)

pi

)

i∈[N ]

≥ ηc1N,1.

Remark. The following proof is again analogous to that of Berestycki–Nadin–Perthame–Ryzhik
[10, Lemma 3.4] for the non-local KPP equation.

Proof. Recall from Corollary 2.2 and Lemma 6.11 that

(

inf
(0,+∞)

pi

)

i∈[N ]

∈ ∂K if and

only if lim
ξ→+∞

p (ξ) = 0. Hence, defining Σ as the set of all bounded nonnegative

classical solutions p of (TW [c]) such that

min
i∈[N ]

inf
(0,+∞)

pi > 0,

this set containing at least one positive constant vector by virtue of Theorem 1.4,
it only remains to show the positivity of

ηc = inf

{

min
i∈[N ]

inf
(0,+∞)

pi | p ∈ Σ

}

.

We assume by contradiction the existence of a sequence (pn)n∈N
∈ ΣN such that

lim
n→+∞

min
i∈[N ]

inf
(0,+∞)

pn,i = 0.

For all n ∈ N, define
βn = min

i∈[N ]
inf

(0,+∞)
pn,i > 0,

fix ξn ∈ (0,+∞) such that

min
i∈[N ]

pn,i (ξn) ∈
[

βn, βn +
1

n

]

,

and define finally

vn : ξ 7→ 1

βn
pn (ξ + ξn) .
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By virtue of Arapostathis–Gosh–Marcus’s Harnack inequality [3], classical ellip-
tic estimates (Gilbarg–Trudinger [30]) and invariance by translation of (TW [c]),
(vn)n∈N

is locally uniformly bounded and, up to a diagonal extraction process,

converges in C 2
loc to some bounded limit v∞. As in the proof of Lemma 6.1, it is

easily verified that v∞ is a bounded positive classical solution of (TW0 [c]). Fur-
thermore, by definition of (vn)n∈N

,

v∞ ≥ 1N,1 in (0,+∞) .

Repeating once more the argument of the proof of Lemma 6.1, we deduce that
v∞ is component-wise decreasing in a neighborhood of +∞. Thus its limit at +∞,
say m ≥ 1N,1, is well-defined. By classical elliptic estimates, m satisfies Lm = 0,
which obviously contradicts λPF (L) > 0. �

6.3. Existence of traveling waves. This whole subsection is devoted to the adap-
tation of a proof of existence due to Berestycki, Nadin, Perthame and Ryzhik [10]
and originally applied to the non-local KPP equation.

Remark. There is a couple of slight mistakes in the aforementioned proof.

(1) Using the notations of [10], the sub-solution is defined as rc = max (0, rc),
with rc chosen so that

−cr′c ≤ r′′c + µrc − µqc (φ ⋆ qc)

and it is claimed that rc satisfies as well this inequality, in the distributional
sense. This is false: in an interval where rc = 0, we have

−cr′c − r′′c − µrc = 0 > −µqc (φ ⋆ qc) .

As we will show, the correct sub-solution is rc = max (0, rc) with rc chosen
so that

−cr′c ≤ r′′c + µrc − µrc (φ ⋆ qc) .

Fortunately, the function rc constructed by the authors satisfies this in-
equality as well.

(2) Later on, Φa is defined as the mapping which maps u0 to the solution of

−cu′ = u′′ + µu0 (1− φ ⋆ u0) .

This mapping does not leave invariant the set of functions Ra defined with
the correct sub-solution. It is necessary to change Φa and to define it as
the mapping which maps u0 to the solution of

−cu′ = u′′ + µu (1− φ ⋆ u0) .

Consequently, in order to establish that the set of functions Ra is invariant
by Φa, the elliptic maximum principle is applied not to u 7→ −cu′ − u′′ but
to

u 7→ −u′′ − cu′ − µu

on one hand and to

u 7→ −u′′ − cu′ − µ (1− φ ⋆ qc)u

on the other hand.

During the first three subsubsections, we fix c > c⋆.

6.3.1. Super-solution. We will use p : ξ 7→ e−µ1,cξnµ1,c as a super-solution (recall
from Lemma 6.2 that it is a solution of (TW0 [c])).
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6.3.2. Sub-solution.

Proposition 6.13. There exist ε > 0 such that, for any ε ∈ (0, ε), there exists
Aε ∈ (0,+∞) such that the function

p : ξ 7→
(

max
(

e−µ1,cξnµ1,c,i −Aεe
−(µ1,c+ε)ξnµ1,c+ε,i, 0

))

i∈[N ]
,

satisfies
−Dp′′ − cp′ − Lp ≤ −c [p] ◦ p in H

−1
(

R,RN
)

.

Remark. Notice that, in the right-hand side of the inequality above, we find c [p]
and not c

[

p
]

. This is of course related to the lack of comparison principle for

(EKPP ).
During the forthcoming quite technical proof, in order to ease the reading, we

denote 〈•, •〉1 and 〈•, •〉N the duality pairings of H 1 (R,R) and H 1
(

R,RN
)

re-
spectively, the latter being of course defined by:

〈f ,g〉
H −1(R,RN )×H 1(R,RN ) =

N
∑

i=1

〈fi, gi〉H −1(R)×H 1(R) .

The speed c being fixed, we also omit the subscript c in the notations µ1,c and µ2,c.

Proof. For the moment, let A, ε > 0 (they will be made precise during the course
of the proof) and define

v : ξ 7→ e−µ1ξnµ1 −Ae−(µ1+ε)ξnµ1+ε,

p : ξ 7→
(

max
(

e−µ1ξnµ1,i −Aεe
−(µ1+ε)ξnµ1+ε,i, 0

))

i∈[N ]
,

Ξ+ = p−1
(

K++
)

,

Ξ0 = p−1 (0) ,

Ξ# = R\ (Ξ+ ∪ Ξ0) .

Notice that Ξ# is a connected compact set.
Fix a positive test function ϕ ∈ H 1 (R,K++). We have to verify that

〈

−Dp′′ − cp′ − Lp, ϕ
〉

N
≤
〈

−c [p] ◦ p, ϕ
〉

N
.

To this end, we distinguish three cases: suppϕ ⊂ Ξ+, suppϕ ⊂ Ξ0 and suppϕ ∩
Ξ# 6= ∅. The case suppϕ ⊂ Ξ0 is trivial, with the inequality above satisfied in the
classical sense.

Regarding the case suppϕ ⊂ Ξ+, we only have to verify the inequality in the
classical sense in Ξ+ for the regular function v.

Fix temporarily ξ ∈ Ξ+. We have

−Dv′′ (ξ)− cv′ (ξ)− Lv (ξ) = Ae−(µ1+ε)ξ
(

(µ1 + ε)2 D− c (µ1 + ε) I+ L
)

nµ1+ε,

(−c [p] ◦ v) (ξ) = −e−µ1ξc
(

e−µ1ξnµ1

)

◦
(

nµ1 −Ae−εξnµ1+ε

)

.

From
(

(µ1 + ε)
2
D+ L

)

nµ1+ε = −κµ1+εnµ1+ε,

−c (µ1 + ε)nµ1+ε =
κµ1

µ1
(µ1 + ε)nµ1+ε,

and the following direct consequence of the nonnegativity of c on K (H2),

−c
(

e−µ1ξnµ1

)

◦
(

nµ1 −Ae−εξnµ1+ε

)

≥ −c
(

e−µ1ξnµ1

)

◦ nµ1 ,
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it follows that it suffices to find A and ε such that

Ae−εξ (µ1 + ε)

(

− κµ1+ε

µ1 + ε
+

κµ1

µ1

)

nµ1+ε ≤ −c
(

e−µ1ξnµ1

)

◦ nµ1 .

The right-hand side above being nonnegative (µ 7→ κµ

µ is positive and convex

in (0,+∞), as detailed in the proof of Lemma 6.2), it follows clearly that such an
inequality is never satisfied if µ1+ε > µ2, whence a first necessary condition on ε is
ε ≤ µ2 − µ1 (notice that if ε = µ2 − µ1, then the inequality above holds if and only
if c

(

e−µ1ξnµ1

)

= 0, which is in general not true). Thus from now on we assume

ε < µ2 − µ1. This ensures that
κµ1+ε

µ1+ε − κµ1

µ1
> 0, whence we now search for A and

ε such that

Anµ1+ε >
eεξ

(µ1 + ε)
(

κµ1+ε

µ1+ε − κµ1

µ1

)c
(

e−µ1ξnµ1

)

◦ nµ1 .

Define ξ = minΞ#, so that any ξ ∈ Ξ+ satisfies necessarily ξ > ξ. Remark that
there exists i ∈ [N ] such that

ξ =
1

ε

(

lnA+ ln

(

nµ1+ε,i

nµ1,i

))

.

Now, defining α : ξ 7→ e−µ1ξ, if

A ≥ max
i∈[N ]

(

nµ1+ε,i

nµ1,i

)

,

then ξ ≥ 0 and α (ξ) ≤ 1 in
(

ξ,+∞
)

. Moreover, we have

eεξ = (α (ξ))
− ε

µ1 ,

whence, for all i ∈ [N ],

eεξci
(

e−µ1ξnµ1

)

=
ci (α (ξ)nµ1)

(α (ξ))
ε
µ1

,

and from the C 1 regularity of c as well as the fact that it vanishes at 0 (H3),
the above function of ξ is globally bounded in

(

ξ,+∞
)

, provided ε
µ1

≤ 1, by the

positive constant

Mi = sup
ξ∈(ξ,+∞)

ci (α (ξ)nµ1)

α (ξ)

= sup
α∈(0,1)

ci (αnµ1)

α
.

Subsequently, if A and ε satisfy also

ε ≤ µ1,

A ≥ max
i∈[N ]





Minµ1,i

(µ1 + ε)
(

κµ1+ε

µ1+ε − κµ1

µ1

)

nµ1+ε,i



 ,

then the inequality is established indeed in Ξ+. Hence we define

ε = min (µ2 − µ1, µ1)
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and, for any ε ∈ (0, ε),

Aε = max
i∈[N ]

max





nµ1+ε,i

nµ1,i
,

Minµ1,i

(µ1 + ε)
(

κµ1+ε

µ1+ε − κµ1

µ1

)

nµ1+ε,i





and we assume from now on ε ∈ (0, ε) and A = Aε.

Let us point out here a fact which is crucial for the next step: choosing ξ =
minΞ# instead of ξ = maxΞ# (which might seem more natural at first view)
implies that the differential inequality

−Dv′′ − cv′ − Lv ≤ −c [p] ◦ v

holds classically in Ξ# ∪ Ξ+.
To conclude, let us verify the case suppϕ∩Ξ# 6= ∅. In order to ease the following

computations, we actually assume ϕ ∈ D
(

R,RN
)

(the result with ϕ ∈ H 1
(

R,RN
)

can be recovered as usual by density). By definition,

〈

−Dp′′ − cp′ − Lp+ c [p] ◦ p, ϕ
〉

N
=

N
∑

i=1

〈

−dip
′′
i
− cp′

i
−

N
∑

j=1

li,jpj + ci [p] pi, ϕi

〉

1

.

Fix i ∈ [N ] and define ξ0,i as the unique element of v−1
i ({0}) and

Ψi =

〈

−dip
′′
i
− cp′

i
−

N
∑

j=1

li,jpj + ci [p] pi, ϕi

〉

1

.

Classical integrations by parts yield

∫

R

p′′
i
ϕi =

∫ +∞

ξ0,i

v′′i ϕi + v′i (ξ0,i)ϕi (ξ0,i) ≥
∫ +∞

ξ0,i

v′′i ϕi,

∫

R

p′
i
ϕi =

∫ +∞

ξ0,i

v′iϕi,

whence

Ψi ≤
∫ +∞

ξ0,i

(−div
′′
i − cv′i + ci [p] vi)ϕi −

N
∑

j=1

li,j

∫ +∞

ξ0,j

vjϕi.

As was pointed out previously, from the construction of ε and A, we know that

−Dv′′ − cv′ + c [p] ◦ v ≤ Lv in Ξ#,

whence, with Ji = {j ∈ [N ] | ξ0,j < ξ0,i},

Ψi ≤ −
∑

j∈Ji

∫ ξ0,i

ξ0,j

li,jvjϕi +
∑

j∈[N ]\Ji

∫ ξ0,j

ξ0,i

li,jvjϕi.

Finally, recalling that vj (ξ) > 0 if ξ > ξ0,j and vj (ξ) < 0 if ξ < ξ0,j , the
inequality above yields Ψi ≤ 0, which ends the proof. �
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6.3.3. The finite domain problem. Let R > 0 and define the following truncated
problem:

{

−Dp′′ − cp′ = Lp− c [p] ◦ p in (−R,R) ,
p (±R) = p (±R) .

(TW [R, c])

Lemma 6.14. Assume
Dc (v) ≥ 0 for all v ∈ K.

Then there exists a nonnegative nonzero classical solution pR of (TW [R, c]).

Remark. The new assumption made here ensures that the vector field c is non-
decreasing in K, in the following natural sense: if 0 ≤ v ≤ w, then 0 ≤ c (v) ≤
c (w).

Proof. Fix arbitrarily ε ∈ (0, ε), define consequently p and then define the following
convex set of functions:

F =
{

v ∈ C
(

[−R,R] ,RN
)

| p ≤ v ≤ p
}

.

Recall that Figueiredo–Mitidieri [24] establishes that the elliptic weak maximum
principle holds for a weakly and fully coupled elliptic operator with null Dirichlet
boundary conditions if this operator admits a positive strict super-solution. Since,
for all v ∈ C

(

[−R,R] ,RN
)

such that 0 ≤ v ≤ p, we have by the nonnegativity of
c on K (H2)

−Dp′′ − cp′ − Lp+ c [v] ◦ p ≥ −Dp′′ − cp′ − Lp ≥ 0,

p (±R) ≫ 0,

it follows that every operator of the family
(

D
d2

dξ2
+ c

d

dξ
+ (L− diagc [v])

)

0≤v≤p

supplemented with null Dirichlet boundary conditions at ±R satisfies the weak
maximum principle in (−R,R).

Define the map f which associates with some v ∈ F the unique classical solution
f [v] of:

{

−Dp′′ − cp′ = Lp− c [v] ◦ p in (−R,R)
p (±R) = p (±R) .

The map f is compact by classical elliptic estimates (Gilbarg–Trudinger [30]).
Let v ∈ F . By monotonicity of c, the function w = f [v] − p satisfies

−Dw′′ − cw′ − Lw ≥ −c [v] ◦ f [v] + c [p] ◦ p
≥ −c [v] ◦ f [v] + c [v] ◦ p
≥ −c [v] ◦w

with null Dirichlet boundary conditions at ±R. Therefore, by virtue of the weak

maximum principle applied to D d
2

dξ2 + c d

dξ + (L− diagc [v]), f [v] ≥ p in (−R,R).

Next, since it is now established that f [v] ≥ 0, we also have by (H2)

−Dp′′ − cp′ − Lp = 0

≥ −c [v] ◦ f [v]
= −Df [v]

′′ − cf [v]
′ − Lf [v] ,

p (±R) ≥ p (±R) = f [v] (±R) ,
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whence p ≥ f [v] follows from the weak maximum principle applied this time to

D d
2

dξ2 + c d

dξ + L.

Thus p ≤ f [v] ≤ p and consequently f (F ) ⊂ F .
Finally, by virtue of the Schauder fixed point theorem, f admits a fixed point

pR ∈ F , which is indeed a classical solution of (TW [R, c]) by elliptic regularity. �

6.3.4. The infinite domain limit and the minimal wave speed. The speed c is not
fixed anymore.

The following uniform upper estimate is a direct consequence of Proposition 3.5.

Corollary 6.15. There exists R⋆ > 0 such that, for any c > c⋆, any R ≥ R⋆ and
any nonnegative classical solution p of (TW [R, c]),

(

max
[−R,R]

pi

)

i∈[N ]

≤ g (0) .

We are now in position to prove the second half of Theorem 1.5 i).

Proposition 6.16. Assume

Dc (v) ≥ 0 for all v ∈ K.

Then for all c ≥ c⋆, there exists a traveling wave solution of (EKPP ) with speed
c.

Remark. Of course, it would be interesting to exhibit other additional assumptions
on c sufficient to ensure existence of traveling waves for all c ≥ c⋆. In view of known
results about scalar multistable reaction–diffusion equations (we refer for instance
to Fife–McLeod [27]), some additional assumption should in any case be necessary.

Proof. Hereafter, for all c > c⋆ and all R > 0, the triplet
(

p,p,pR

)

constructed in

the preceding subsections is denoted
(

pc,pc
,pR,c

)

.

For all c > c⋆, thanks to Corollary 6.15, the family (pR,c)R>0 is uniformly
globally bounded. By classical elliptic estimates (Gilbarg–Trudinger [30]) and a
diagonal extraction process, we can extract a sequence (Rn,pRn,c)n∈N

such that,

as n → +∞, Rn → +∞ and pRn,c converges to some limit pc in C 2
loc. As expected,

pc is a bounded nonnegative classical solution of (TW [c]). The fact that its limit as
ξ → +∞ is 0, as well as the fact that pc is nonzero whence positive (Corollary 2.2),
are obvious thanks to the inequality p

c
≤ pc ≤ pc. At the other end of the real

line, Corollary 6.7 clearly enforces
(

lim inf
ξ→−∞

pc,i (ξ)

)

i∈[N ]

∈ K++ ⊂ K+.

Thus (pc, c) is a traveling wave solution.
In order to construct a critical traveling wave (pc⋆ , c

⋆), we consider a decreasing

sequence (cn)n∈N
∈ (c⋆,+∞)

N
such that cn → c⋆ as n → +∞ and intend to apply

a compactness argument to a normalized version of the sequence (pcn)n∈N
.

By Corollary 6.9,

lim inf
ξ→−∞

min
i∈[N ]

pcn,i (ξ) ≥ ν for all n ∈ N.
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Recall from Lemma 6.12 the definition of ηc > 0. For all n ∈ N the following
quantity is well-defined and finite:

ξn = inf

{

ξ ∈ R | min
i∈[N ]

pcn,i (ξ) < min
(ν

2
,
ηc⋆

2

)

}

.

We define then the sequence of normalized profiles

p̃cn : ξ 7→ pcn (ξ + ξn) for all n ∈ N.

A translation of a profile of traveling wave being again a profile of traveling wave,
(p̃cn , cn)n∈N

is again a sequence of traveling wave solutions. Notice the following
two immediate consequences of the normalization:

min
i∈[N ]

p̃cn,i (0) = min
(ν

2
,
ηc⋆

2

)

for all n ∈ N,

inf
ξ∈(−∞,0)

min
i∈[N ]

p̃cn,i (ξ) ≥ min
(ν

2
,
ηc⋆

2

)

for all n ∈ N.

We are now in position to pass to the limit n → +∞. The sequence (p̃cn)n∈N

being globally uniformly bounded, it admits, up to a diagonal extraction process, a
bounded nonnegative limit pc⋆ in C 2

loc. Since cn → c⋆, pc⋆ satisfies (TW [c⋆]). The
normalization yields

min
i∈[N ]

pc⋆,i (0) = min
(ν

2
,
ηc⋆

2

)

,

inf
ξ∈(−∞,0)

min
i∈[N ]

pc⋆,i (ξ) ≥ min
(ν

2
,
ηc⋆

2

)

.

Consequently,
(

lim inf
ξ→−∞

pc⋆,i (ξ)

)

i∈[N ]

∈ K
++

and, according to Lemma 6.12,

lim
ξ→+∞

pc⋆ (ξ) = 0.

The pair (pc⋆ , c
⋆) is a traveling wave solution indeed and this ends the proof. �

7. Spreading speed

In this section, we assume λPF (L) > 0 and prove Theorem 1.6. In order to
do so, we fix u0 ∈ Cb

(

R,RN
)

of the form u0 = v1(−∞,x0) with x0 ∈ R and v

nonnegative nonzero and we define u as the unique classical solution of (EKPP ) set
in (0,+∞)× R with initial data u0.

Remark. This type of spreading result, as well as its proof by means of super- and
sub-solutions, is quite classical (we refer to Aronson–Weinberger [5] and Beresty-
cki–Hamel–Nadin [8] among others). Still, we provide it to make clear that the lack
of comparison principle for (EKPP ) is not really an issue.

Of course, for the scalar KPP equation, much more precise spreading results
exist (for instance the celebrated articles by Bramson [18, 17] using probabilistic
methods). Here, our aim is not to give a complete description of the spreading
properties of (EKPP ) but rather to illustrate that it is, once more, very similar to
the scalar situation and that further generalizations should be possible.
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7.1. Upper estimate.

Proposition 7.1. Let c > c⋆ and y ∈ R. We have
(

lim
t→+∞

sup
x∈(y,+∞)

ui (t, x+ ct)

)

i∈[N ]

= 0.

Proof. By definition of u0, there exists ξ1 ∈ R such that

p : ξ 7→ e−µc⋆ (ξ−ξ1)nµc⋆

(which is a positive solution of (TW0 [c
⋆]) by Lemma 6.2) satisfies p ≥ u0. Then,

defining u : (t, x) 7→ p (x− c⋆t), we obtain by the nonnegativity of c on K (H2)

∂tu−D∂xxu− Lu = 0

≥ −c [u] ◦ u
= ∂tu−D∂xxu− Lu

and then, applying the parabolic strong maximum principle to the operator ∂t −
D∂xx − L, we deduce that u− u is nonnegative in [0,+∞)× R. Consequently, for
all x ∈ R, t > 0 and c > c⋆,

0 ≤ u (t, x+ ct) ≤ p (x+ (c− c⋆) t) ,

and by component-wise monotonicity of p, for all y ∈ R and all x ≥ y,

0 ≤ u (t, x+ ct) ≤ p (y + (c− c⋆) t) ,

which gives the result. �

7.2. Lower estimate.

Proposition 7.2. Let c ∈ [0, c⋆) and I ⊂ R be a bounded interval. We have
(

lim inf
t→+∞

inf
x∈I

ui (t, x+ ct)

)

i∈[N ]

∈ K++.

Proof. Recall Lemma 6.4 and define

λc = −max
µ≥0

(κµ + µc) > 0

(−λc being the generalized principal eigenvalue of −D d
2

dx2 − c d

dx − L) and, using
the fact that c vanishes at 0 (H3),

αc = max

{

α > 0 | ∀v ∈ [0, α]N c (v) ≤ λc

2
1N,1

}

.

Let Rc be a sufficiently large radius satisfying

λ1,Dir

(

−D
d2

dξ2
− c

d

dξ
−
(

L− λc

2
I

)

, (−Rc, Rc)

)

< 0.

Let uc : (t, y) 7→ u (t, y + ct). It is a solution of

∂tuc −D∂yyuc − c∂yuc = Luc − c [uc] ◦ uc in (0,+∞)× R

with initial data u0. Just as in the proof of Proposition 4.5, we can use Rc, αc

and Földes–Poláčik’s Harnack inequality [29] to deduce the existence of νc > 0 such
that

(

lim inf
t→+∞

inf
x∈I

ui (t, x+ ct)

)

i∈[N ]

≥ νc1N,1.
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This ends the proof. �

Remark. We point out that Rc → +∞ as c → c⋆. Hence the proof above cannot
be used directly to obtain a lower bound uniform with respect to c. Although we
expect indeed the existence of such a bound, we do not know how to obtain it.

8. Estimates for the minimal wave speed

In this section, we assume λPF (L) > 0,

d1 ≤ d2 ≤ . . . ≤ dN ,

and prove the estimates provided by Theorem 1.7. Recall the equality

c⋆ = min
µ>0

(

−κµ

µ

)

.

Recall as a preliminary that for all r > 0 and d > 0, the following equality holds:

2
√
rd = min

µ>0

(

µd+
r

µ

)

.

Proposition 8.1. We have

2
√

d1λPF (L) ≤ c⋆ ≤ 2
√

dNλPF (L).

If d1 < dN , both inequalities are strict. If d1 = dN , both inequalities are equali-
ties.

Proof. Since d11N,1 ≤ d ≤ dN1N,1, we have, for all µ > 0,

µd1 +
1

µ
λPF (L) ≤ λPF

(

µD+
1

µ
L

)

≤ µdN +
1

µ
λPF (L) ,

whence we deduce

2
√

d1λPF (L) ≤ c⋆ ≤ 2
√

dNλPF (L).

On one hand, it is well-known that if d1 < dN , then the above inequalities are
strict. On the other hand, if d1 = dN , we have

λPF

(

µD+
1

µ
L

)

= µd1 +
1

µ
λPF (L) ,

whence the equality. �

Recall from Lemma 6.2 that nµc⋆
= nPF

(

µ2
c⋆D+ L

)

.

Proposition 8.2. For all i ∈ [N ] such that li,i > 0, we have

c⋆ > 2
√

dili,i.

Proof. Let i ∈ [N ]. The characterization of c⋆ (see Lemma 6.2) yields

µc⋆di +
li,i
µc⋆

= c⋆ − 1

µc⋆

∑

j∈[N ]\{i}

li,j
nµc⋆ ,j

nµc⋆ ,i
,

whence, if li,i > 0,

c⋆ ≥ 2
√

dili,i +
1

µc⋆

∑

j∈[N ]\{i}

li,j
nµc⋆ ,j

nµc⋆ ,i
.

From the irreducibility and essential nonnegativity of L (H1), there exists j ∈
[N ] \ {i} such that li,j > 0, whence c⋆ > 2

√

dili,i. �
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Recall the existence of a unique decomposition of L of the form

L = diagr+M with r ∈ R
N and MT1N,1 = 0.

Remark. Regarding the Lotka–Volterra mutation–competition–diffusion ecological
model, the decomposition L = diagr +M is ecological meaningful: r is the vector
of the growth rates of the phenotypes whereas M describes the mutations between
the phenotypes.

Proposition 8.3. Let (〈d〉 , 〈r〉) ∈ (0,+∞)× R be defined as










〈d〉 = d
T
nPF (µ2

c⋆D+L)
11,NnPF (µ2

c⋆
D+L)

,

〈r〉 = r
T
nPF (µ2

c⋆D+L)
11,NnPF (µ2

c⋆
D+L)

.

If 〈r〉 ≥ 0, then

c⋆ ≥ 2
√

〈d〉 〈r〉.
Proof. Using (r,M), the characterization of c⋆ (see Lemma 6.2) is rewritten as

(

µ2
c⋆D+ diagr

)

nµc⋆
+Mnµc⋆

= µc⋆c
⋆nµc⋆

.

Summing the lines of this system, dividing by
N
∑

i=1

nµc⋆ ,i and defining 〈d〉 and 〈r〉 as

in the statement, we find

µ2
c⋆ 〈d〉+ 〈r〉 = µc⋆c

⋆.

The equation 〈d〉µ2 − c⋆µ+ 〈r〉 = 0 admits a real positive solution µ if and only if

(c⋆)
2 − 4 〈d〉 〈r〉 ≥ 0. �
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