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NON-COOPERATIVE FISHER–KPP SYSTEMS: TRAVELING

WAVES AND LONG-TIME BEHAVIOR

LÉO GIRARDIN

Abstract. This paper is concerned with non-cooperative parabolic reaction–diffusion
systems which share structural similarities with the scalar Fisher–KPP equa-
tion. These similarities make it possible to prove, among other results, an
extinction and persistence dichotomy and, when persistence occurs, the exis-
tence of a positive steady state, the existence of traveling waves with a half-
line of possible speeds and a positive minimal speed and the equality between
this minimal speed and the spreading speed for the Cauchy problem. Non-
cooperative KPP systems can model various phenomena where the following
three mechanisms occur: local diffusion in space, linear cooperation and su-
perlinear competition.
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1. Introduction

In this paper, we study a large class of parabolic reaction–diffusion systems whose
prototype is the so-called Lotka–Volterra mutation–competition–diffusion system:























































∂tu1 − d1∂xxu1 = r1u1 −
(

N
∑

j=1

c1,juj

)

u1 − µu1 + µu2

∂tu2 − d2∂xxu2 = r2u2 −
(

N
∑

j=1

c2,juj

)

u2 − 2µu2 + µu1 + µu3

...

∂tuN − dN∂xxuN = rNuN −
(

N
∑

j=1

cN,juj

)

uN − µuN + µuN−1

where N is an integer larger than or equal to 2 and the coefficients di, ri, ci,j (with
i, j ∈ {1, . . . , N}) and µ are positive real numbers.

This system can be understood as an ecological model, where (u1, . . . , uN) is a
metapopulation density phenotypically structured, µui−1 − µui and µui+1 − µui

are the step-wise mutations of the i-th phenotype with a mutation rate µ, di is its
dispersal rate, ri is its growth rate per capita in absence of mutation, ci,j is the rate
of the competition exerted by the j-th phenotype on the i-th phenotype, ri

ci,i
is the

carrying capacity of the i-th phenotype in absence of mutation and interphenotypic
competition.

We are especially interested in spreading properties which describe the invasion
of the population in an uninhabited environment and which are expected to involve
so-called traveling wave solutions. Such solutions were first studied, independently
and both in 1937, by Fisher [27] on one hand and by Kolmogorov, Petrovsky and
Piskunov [34] on the other hand for the equation that is now well-known as the
Fisher–KPP equation, Fisher equation or KPP equation:

∂tu− ∂xxu = u (1− u) .

While a lot of work has been accomplished about traveling waves and spreading
properties for scalar reaction–diffusion equations, the picture is much less complete
regarding coupled systems of reaction–diffusion equations. In particular, almost
nothing is known about non-cooperative systems like the system above.

Before going any further, let us introduce more precisely the problem.

1.1. Notations. Let (n, n′) ∈ (N ∩ [1,+∞))
2
. The set of the first n positive inte-

gers [1, n] ∩ N is denoted [n] (and [0] = ∅ by convention).
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1.1.1. Typesetting conventions. In order to ease the reading, we reserve the italic
typeface (x, f , X) for reals, real-valued functions or subsets of R, the bold typeface
(v, A) for euclidean vectors or vector-valued functions, in lower case for column
vectors and in upper case for other matrices1, the sans serif typeface in upper case
(B, K) for subsets of euclidean spaces2 and the calligraphic typeface in upper case
(C , L ) for functional spaces.

1.1.2. Linear algebra notations.

• The canonical basis of Rn is denoted (en,i)i∈[n]. The euclidean norm of Rn

is denoted |•|n. The open euclidean ball of center v ∈ R
n and radius r > 0

and its boundary are denoted Bn (v, r) and Sn (v, r) respectively.
• The space R

n is equipped with one partial order ≥n and two strict partial
orders >n and ≫n, defined as:

v ≥n v̂ if vi ≥ v̂i for all i ∈ [n] ,

v >n v̂ if v ≥n v̂ and v 6= v̂,

v ≫n v̂ if vi > v̂i for all i ∈ [n] .

The strict orders >n and ≫n coincide if and only if n = 1.
A vector v ∈ R

n is non-negative if v ≥n 0, non-negative non-zero if v >n 0,
positive if v ≫n 0. The sets of all non-negative, non-negative non-zero and
positive vectors are respectively denoted Kn, K+

n and K++
n .

• The sets K+
n ∩Sn (0, 1) and K++

n ∩Sn (0, 1) are respectively denoted S+n (0, 1)
and S++

n (0, 1).
• For any X ⊂ R, the sets of X-valued matrices of dimension n × n′ and
n × n are respectively denoted Mn,n′ (X) and Mn (X) . If X = R and if
the context is unambiguous, we simply write Mn,n′ and Mn. As usual, the
entry at the intersection of the i-th row and the j-th column of the matrix
A ∈ Mn,n′ is denoted ai,j and the i-th component of the vector v ∈ R

n

is denoted vi. For any vector v ∈ R
n, diagv denotes the diagonal matrix

whose i-th diagonal entry is vi.
• Matrices are vectors and consistently we may apply the notations ≥nn′ ,
>nn′ and ≫nn′ as well as the vocabulary non-negative, non-negative non-
zero and positive to matrices. We emphasize this convention because of the
possible confusion with the notion of “positive definite square matrix”.

• The identity of Mn and the element of Mn,n′ whose every entry is equal to
1 are respectively denoted In and 1n,n′ (1n if n = n′) .

• We recall the definition of the Hadamard product of a pair of matrices
(A,B)2 ∈ (Mn,n′)2:

A ◦B = (ai,jbi,j)(i,j)∈[n]×[n′] .

The identity matrix under Hadamard multiplication is 1n,n′ .
• The spectral radius of any A ∈ Mn is denoted ρ (A). Recall from the

Perron–Frobenius theorem that if A is non-negative and irreducible, ρ (A)
is the dominant eigenvalue of A, called the Perron–Frobenius eigenvalue

1This convention being superseded by the previous one when the dimension is specifically equal
to 1.

2Same exception.
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λPF (A), and is the unique eigenvalue associated with a positive eigenvec-
tor. Recall also that if A ∈ Mn is such that the matrix A − min

i∈[n]
(ai,i) In

is non-negative and irreducible, A is still irreducible. In such a case, ap-
plying the Perron–Frobenius theorem to A − min

i∈[n]
(ai,i) In, it follows that

ρ

(

A− min
i∈[n]

(ai,i) In

)

+ min
i∈[n]

(ai,i) is still the unique eigenvalue of A as-

sociated with a positive eigenvector and is therefore still called the Per-
ron–Frobenius eigenvalue λPF (A).

1.1.3. Functional analysis notations.

• We will consider a parabolic problem of two real variables, the “time” t and
the “space” x. A (straight) parabolic cylinder in R

2 is a subset of the form

(t0, tf ) × (a, b) with (t0, tf , a, b) ∈ R
4
, t0 < tf and a < b. The parabolic

boundary ∂PQ of a bounded parabolic cylinder Q is defined classically. A
classical solution of some second-order parabolic problem of dimension n
set in a parabolic cylinder Q = (t0, tf)× (a, b) is a solution in:

C
1
(

(t0, tf) ,C
2 ((a, b) ,Rn)

)

∩ C (Q ∪ ∂Q,Rn) .

Similarly, a classical solution of some second-order elliptic problem of di-
mension n set in an interval (a, b) ⊂ R is a solution in:

C
2 ((a, b) ,Rn) ∩ C ((a, b) ∪ ∂ (a, b) ,Rn) .

• Consistently with R
n, the set of functions (Rn)

(

R
n′

)

is equipped with:

f ≥
Rn′ ,Rn f̂ if f (v) − f̂ (v) ∈ Kn for all v ∈ R

n′

,

f >
Rn′ ,Rn f̂ if f ≥

Rn′ ,Rn f̂ and f 6= f̂ ,

f ≫
Rn′ ,Rn f̂ if f (v) − f̂ (v) ∈ K

++
n for all v ∈ R

n′

.

We define consistently non-negative, non-negative non-zero and positive
functions3.

• If the context is unambiguous, a functional space F (X,R) is denoted
F (X). If F (X) is equipped with a topology, its duality pairing is de-
noted 〈•, •〉

F ′(X)×F(X). If F (X) is a Hilbert space, its scalar product is

denoted (•, •)
F(X).

As usual, if n ≥ 2, for any functional Hilbert space H (X,Rn) and any
functional topological space F (X,Rn), we define:

(f ,g)
H (X,Rn) =

n
∑

i=1

(fi, gi)H (X) ,

〈f ,g〉
F ′(X,Rn)×F(X,Rn) =

n
∑

i=1

〈fi, gi〉F ′(X)×F(X) .

3Regarding functions, some authors use > to denote what is here denoted ≫. Thus the use of
these two functional notations will be as sparse as possible and we will prefer the less ambiguous
expressions “non-negative non-zero” and “positive”.
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• For any smooth open bounded connected set Ω ⊂ R
n′

and any second
order linear elliptic operator L : C 2 (Ω,Rn) → C (Ω,Rn) with coeffi-
cients in Cb (Ω,R

n), the Dirichlet principal eigenvalue of L in Ω, denoted
λ1,Dir (−L ,Ω), is well-defined if L is order-preserving in Ω. Recall from
the Krein–Rutman theorem that λ1,Dir (−L ,Ω) is the unique eigenvalue
associated with a principal eigenfunction positive in Ω and null on ∂Ω.
Sufficient conditions for the order-preserving property are:

– n = 1;
– n ≥ 2 and the system is weakly coupled (the coupling occurs only in

the zeroth order term) and fully coupled (the zeroth order coefficient
is an irreducible matrix with non-negative off-diagonal entries). When
n ≥ 2, order-preserving operators are also referred to as cooperative
operators.

1.2. Setting of the problem. From now on, an integer N ∈ N∩ [2,+∞) is fixed.
For the sake of brevity, the subscripts depending only on 1 or N in the various
preceding notations will be omitted when the context is unambiguous.

The evolution parabolic system under scrutiny has the following general form:

∂tu−D∂xxu = Lu− c [u] ◦ u. (EKPP )

The unknown is:
u : R

2 → R
N

(t, x) 7→ (ui (t, x))i∈[N ]

and the fixed parameters are d ∈ K++, D = diagd, L ∈ M and c ∈ C 1
(

R
N ,RN

)

(the term c [u] denotes the composition of the functions c and u, the usual ◦ being
reserved for the Hadamard product).

The system (EKPP ) is in general set in R
2 but might be restricted to a parabolic

cylinder.
The associated stationary elliptic problem is:

−Du′′ = Lu− c [u] ◦ u (SKPP )

in general set in R but which might be restricted to an interval.

1.2.1. Restrictive assumptions. The main restrictive assumptions are the following
ones.

(H1) The following matrix:

L̂ = L− min
i∈[N ]

(li,i) I

is non-negative and irreducible.
(H2) c (K) ⊂ K.
(H3) c (0) = 0.
(H4) There exists:

(α⋆, δ, c) ∈ [1,+∞)2 × K++

such that:
N
∑

j=1

li,jnj ≥ 0 =⇒ αδci ≤ ci (αn)

for all:

(n, α, i) ∈ S
+ (0, 1)× [α⋆,+∞)× [N ] .
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A few immediate consequences of these assumptions deserve to be pointed out.

• (EKPP ) and (SKPP ) are not cooperative and do not satisfy a comparison
principle.

• The Perron–Frobenius eigenvalue λPF (L) is well-defined and the system
u′ = Lu is cooperative.

• L̂+ I ≫ 0 if and only if the off-diagonal entries of L are all positive.
• For all v ∈ R

N , the Jacobian matrix of w 7→ c (w) ◦w at v is:

diagc (v) + (v11,N ) ◦Dc (v) .

In particular, at v = 0, this Jacobian is null if and only if (H3) is satisfied.
Also, if Dc (v) ≥ 0 for all v ∈ K, then the system u′ = −c [u] ◦ u is
competitive.

• This framework contains both the Lotka–Volterra linear competition c (u) =
Cu and the Gross–Pitaevskii quadratic competition c (u) = C (u ◦ u) (with,
in both cases, C ≫ 0).

1.2.2. KPP property. The system (EKPP ) is, in some sense, a “multidimensional
KPP equation”. Let us recall the main features of scalar KPP nonlinearities:

(1) f ′ (0) > 0 (instability of the null state),
(2) f ′ (0) v ≥ f (v) for all v ≥ 0 (no Allee effect),
(3) there exists K > 0 such that f (v) < 0 if and only if v > K (saturation).

Of course, our assumptions (H1)–(H4) aim to put forward a possible generalization
of these features. A few comments are in order.

Regarding the saturation property, (H4) will imply an analogous statement. En-
suring uniform L ∞ estimates is really the main mathematical role of the compet-
itive term.

Regarding the presence of an Allee effect, (H2) and (H3) clearly yield that ∂tu−
D∂xxu = Lu is the linearization at 0 of (EKPP ) and moreover that f : v 7→
Lv − c (v) ◦ v satisfies:

Df (0)v ≥ f (v) for all v ∈ K.

Regarding the instability of the null state, we stress here that the notion of
positivity of matrices is somewhat ambiguous and, consequently, finding a natural
generalization of f ′ (0) > 0 is not completely straightforward.

In order to decide which positivity sense is the right one, we offer the following
criterion. On one hand, a suitable multidimensional generalization of the KPP
equation should enable generalizations of the striking results concerning its scalar
counterpart. On the other hand, the most remarkable result about the KPP equa-
tion is that the answer to many natural questions (value of the spreading speed,
persistence in bounded domains, etc.) only depends on f ′ (0) (the importance of
f ′ (0) can already be seen in the features above). Thus, in our opinion, a KPP
system should also be linearly determinate regarding these questions.

With this criterion in mind, let us explain for instance why positivity understood
as positive definite matrices (i.e. positive spectrum) is not satisfying. In such a
case, Lotka–Volterra competition–diffusion nonlinearities, whose linearization at 0

has the form diagr with r ∈ K++, would be KPP nonlinearities. Nevertheless, it is
known that the spreading speed of a competition–diffusion system is not necessarily
linearly determinate (for instance, see Lewis–Li–Weinberger [36]).
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On the contrary, the main results of the present paper show unambiguously
that (H1) supplemented with λPF (L) > 0, that is existence and positivity of the
Perron–Frobenius eigenvalue, is the right notion.

1.3. Statement of the results.

Theorem 1.1. [Strong positivity] For all non-negative classical solutions u of
(EKPP ) set in (0,+∞) × R, if x 7→ u (0, x) is non-negative non-zero, then u is
positive in (0,+∞)× R.

Consequently, all non-negative non-zero classical solutions of (SKPP ) are posi-
tive.

Theorem 1.2. [Absorbing set and upper estimates] There exists a positive function
g ∈ C ([0,+∞),K++), component-wise non-decreasing, such that all non-negative
classical solutions u of (EKPP ) set in (0,+∞)× R satisfy:

u (t, x) ≤
(

gi

(

sup
x∈R

ui (0, x)

))

i∈[N ]

for all (t, x) ∈ [0,+∞)× R

and furthermore, if x 7→ u (0, x) is bounded, then:
(

lim sup
t→+∞

sup
x∈R

ui (t, x)

)

i∈[N ]

≤ g (0) .

Consequently, all bounded non-negative classical solutions u of (SKPP ) satisfy:

u ≤ g (0) .

Theorem 1.3. [Extinction or persistence dichotomy]

i) Assume λPF (L) < 0. Then all bounded non-negative classical solutions of
(EKPP ) set in (0,+∞)× R converge asymptotically in time, exponentially
fast, and uniformly in space to 0.

ii) Conversely, assume λPF (L) > 0. Then, for all bounded intervals I ⊂ R,
all bounded positive classical solutions u of (EKPP ) set in (0,+∞) × R

satisfy:
(

lim inf
t→+∞

inf
x∈I

ui (t, x)

)

i∈[N ]

∈ K++.

As will be explained later on, the critical case λPF (L) = 0 is more challenging
than expected and is not solved here, in spite of the following extinction conjecture.

Conjecture. Assume λPF (L) = 0 and, for all associated positive eigenvectors v,
c (v) > 0.

Then all bounded non-negative classical solutions of (EKPP ) set in (0,+∞)×R

converge asymptotically in time and locally uniformly in space to 0.

Although Theorem 1.3 proves that the attractor of the induced semiflow is re-
duced to {0} in the extinction case, in the persistence case the attractor should be
expected to be quite complicated and likely not reduced to a globally asymptoti-
cally stable steady state. This direct consequence of the multidimensional structure
of (EKPP ) is a major difference with the scalar KPP equation. Still, the following
theorem provides some additional information about the steady states of (EKPP )
and confirms in some sense the preceding conjecture.

Theorem 1.4. [Existence of steady states]



NON-COOPERATIVE KPP SYSTEMS 8

i) If λPF (L) < 0, there exists no positive classical solution of (SKPP ).
ii) If λPF (L) = 0 and if, for all associated positive eigenvectors v, c (v) > 0,

there exists no bounded positive classical solution of (SKPP ).
iii) If λPF (L) > 0, there exists a bounded positive classical solution of (SKPP )

provided either one of the following conditions is satisfied:
(a) L̂+ I ≫ 0;
(b) for all (n, α) ∈ S+ (0, 1)× [α⋆,+∞), αδc ≤ c (αn).

iv) There exists a bounded positive classical solution of (SKPP ) if and only if
there exists a constant positive solution of (SKPP ).

The second condition above sufficient to ensure the existence of a positive steady
state is a reinforcement of (H4). It is for instance satisfied in the Lotka–Volterra
competition case, c (v) = Cv with C ≫ 0.

Having in mind the possibly complicated attractor of (EKPP ) when λPF (L) > 0,
we introduce the following definition of traveling wave, more flexible than the usual
definition of monostable traveling wave for the scalar KPP equation.

Definition. A traveling wave solution of (EKPP ) is a pair:

(p, c) ∈ C
2
(

R,RN
)

× [0,+∞)

which satisfies:

(1) u : (t, x) 7→ p (x− ct) is a bounded positive classical solution of (EKPP );

(2)

(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

∈ K+;

(3) lim
ξ→+∞

p (ξ) = 0.

We refer to p as the profile of the traveling wave and to c as its speed.

Theorem 1.5. [Traveling waves] Assume λPF (L) > 0.

i) There exists c⋆ > 0 such that:
(a) there exists no traveling wave solution of (EKPP ) with speed c for all

c ∈ [0, c⋆);
(b) if, furthermore,

Dc (v) ≥ 0 for all v ∈ K,

then there exists a traveling wave solution of (EKPP ) with speed c for
all c ≥ c⋆. In such a case, c⋆ is the minimal wave speed.

ii) All profiles p satisfy:
p ≤ g (0) .

iii) All profiles p satisfy:
(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

∈ K
++.

iv) All profiles are component-wise decreasing in a neighborhood of +∞.

Theorem 1.6. [Spreading speed] Assume λPF (L) > 0. For all x0 ∈ R and all
non-negative non-zero v ∈ Cb

(

R,RN
)

, the classical solution u of (EKPP ) set in
(0,+∞)× R with initial data v1(−∞,x0) satisfies:
(

lim
t→+∞

sup
x∈(y,+∞)

ui (t, x+ ct)

)

i∈[N ]

= 0 for all c ∈ (c⋆,+∞) and all y ∈ R,
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(

lim inf
t→+∞

inf
x∈[−R,R]

ui (t, x+ ct)

)

i∈[N ]

∈ K++ for all c ∈ [0, c⋆) and all R > 0.

Consequently, we also refer to c⋆ as the spreading speed associated with front-like
initial data.

Theorem 1.7. [Characterization and estimates for c⋆] Assume λPF (L) > 0. We
have:

c⋆ = min
µ>0

λPF

(

µ2D+ L
)

µ
and this minimum is attained at a unique µc⋆ > 0.

Consequently, if we assume (without loss of generality):

d1 ≤ d2 ≤ . . . ≤ dN ,

the following estimates hold.

i) We have:

2
√

d1λPF (L) ≤ c⋆ ≤ 2
√

dNλPF (L).

If d1 < dN , both inequalities are strict. If d1 = dN , both inequalities are
equalities.

ii) For all i ∈ [N ] such that li,i > 0, we have:

c⋆ > 2
√

dili,i.

iii) Let q be the unique positive eigenvector associated with λPF

(

µ2
c⋆D+ L

)

satisfying the normalization 11,Nq = 1. Let r ∈ R
N and M ∈ M be given

by the unique decomposition of L of the form:

L = diagr+M with MT1N,1 = 0.

Let (〈d〉 , 〈r〉) ∈ (0,+∞)× R be defined as:

(〈d〉 , 〈r〉) =
(

dTq, rTq
)

.

If 〈r〉 ≥ 0, then:

c⋆ ≥ 2
√

〈d〉 〈r〉.
It now makes sense to introduce the following definition, which we expect to be

optimal with respect to the preceding collection of theorems.

Definition 1.8. A nonlinear function f ∈ C 1
(

R
N ,RN

)

is a KPP nonlinearity if:

(1) f (0) = 0;

(2) Df (0)− min
i∈[N ]

(

∂fi
∂i (0)

)

I is non-negative, irreducible and λPF (Df (0)) > 0;

(3) Df (0)v ≥ f (v) for all v ∈ K;
(4) the semiflow induced by ∂tu = D∂xxu+f [u] with sufficiently regular initial

data admits an absorbing set bounded in L ∞ (R).

Remark. Of course, defining L = Df (0) and:

c : v 7→





1

vi





N
∑

j=1

∂fi
∂j

(0) vj − fi (v)









i∈[N ]

,

we recover the specific form Lv − c (v) ◦ v and the assumptions (H1) and (H2)
follow directly. (H3) is satisfied as soon as c is sufficiently regular at 0. Still, let
us emphasize that c ∈ C 1

(

R
N ,RN

)

and (H4) might very well not be satisfied in
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general. Although they are trivially satisfied for the main applications we have in
mind (which will be exposed in a moment), it is mathematically interesting to look
at possible relaxations. For instance, let us discuss briefly (H4).

The only forthcoming result whose proof depends directly on (H4) is Lemma 3.1
(which is remarkably one of the main assumptions of a related paper by Barles,
Evans and Souganidis [6, (F3)]). It is easily seen that if c grows sublinearly, we
cannot hope in general to recover Lemma 3.1 (in other words, under some reasonable
assumptions, Barles–Evans–Souganidis’s (F3) is satisfied if and only if (H4); of
course this makes (H4) even more interesting).

Nevertheless, this lemma is not a result in itself but a tool used for the proofs
of Theorem 1.2 as well as the existence results of Theorem 1.4 and Theorem 1.5.
Hence relaxing (H4) mainly means finding new proofs of these results.

Now, without entering into too much details, we point out that if there exists
η > 0 such that the following dissipative assumption:

(Hdiss,η)







∃C1 ≥ 0 ∀v ∈ R
N (f (v) + ηv)T v ≤ C1

∃C2 ≥ 0 ∀v ∈ R
N Df (v) + ηI ≤ C21

∃ (C3, p) ∈ [0,+∞)2 ∀v ∈ R
N |f (v) + ηv| ≤ C3 (1 + |v|p) ,

holds, then the semiflow induced by ∂tu = D∂xxu + f [u] admits an attractor in
some locally uniform topology which is bounded in Cb

(

R,RN
)

(see Zelik [47]). If
the semiflow leaves K invariant and if we only consider non-negative initial data,
then the quantifiers ∀v ∈ R

N above can all be replaced by ∀v ∈ K.
In particular, v 7→ Lv − c (v) ◦ v supplemented with (H1)–(H3) and:

(H ′
4) lim

|v|→+∞,v∈K
|c (v)| = +∞ with at most algebraic growth

satisfies (Hdiss,η) for any η > 0. (Clearly, (H4) ∪ (H ′
4) contains every choice of c

such that lim
|v|→+∞,v∈K

|c (v)| = +∞.)

Consequently, dissipative theory provides for some slowly decaying KPP nonlin-
earities a proof of Theorem 1.2. It should also provide a proof of Proposition 3.5,
which is the key estimate to derive the existence of steady states and of traveling
waves. With these proofs at hand, all of our results are recovered.

1.4. Related results in the literature.

1.4.1. Cooperative or almost cooperative systems. The bibliography about weakly
and fully coupled elliptic and parabolic linear systems is of course extensive. It is
possible, for instance, to define principal eigenvalues and eigenfunctions (Sweers et
al. [13, 44]), to prove the weak maximum principle (the classical theorems of Prot-
ter–Weinberger [39] were refined in the more involved elliptic case by Figueiredo et
al. [22, 23] and Sweers [44]) or Harnack inequalities (Chen–Zhao [20] or Arapos-
tathis–Gosh–Marcus [3] for the elliptic case4, Földes–Poláčik [28] for the parabolic
case) and to use the super- and sub-solution method to deduce existence of solutions
(Pao [42] among others). In some sense, weakly and fully coupled systems form the
“right”, or at least the most straightforward, generalization of scalar equations.

For (possibly nonlinear) cooperative systems, results analogous to Theorem 1.5
i), iii), Theorem 1.6 and Theorem 1.7 were established by Lewis, Li and Weinberger

4They both prove the same type of results but we will refer hereafter only to the latter because
the former does not cover, as stated, the one-dimensional space case.
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[37, 46]. Recently, Al-Kiffai and Crooks [1] introduced a convective term into a two-
species cooperative system to study its influence on linear determinacy.

For non-cooperative systems that can still be controlled from above and from be-
low by weakly and fully coupled systems whose linearizations at 0 coincide with that
of the non-cooperative system, Wang [45] recovered the results of Lewis–Li–Weinberger
by comparison arguments. Before going any further, let us point out that we will
use extensively comparison arguments as well, nevertheless we will not need equal-
ity of the linearizations at 0. This is a crucial difference between the two sets of
assumptions. To illustrate this claim, let us present an explicit example of system
covered by our assumptions and not by Wang’s ones: take any N ≥ 3, r > 0,
µ ∈

(

0, r
2

)

and define L and c as follows:

L = rI+ µ



















−1 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −2 1
0 . . . 0 1 −1



















,

c : v 7→ 1v.

On one hand, (H1)–(H4) are easily verified, but on the other hand, the function
f : v 7→ Lv − c [v] ◦ v is such that, for all i ∈ [N ] \ {1, N} and all v ∈ K++:

∂fi
∂vj

(v) = −vi < 0 for all j ∈ [N ] \ {i− 1, i, i+ 1} .

Consequently, the application v 7→ fi (vej) is decreasing in [0,+∞). This clearly
violates Wang’s assumptions: this instance of (EKPP ) cannot be controlled from
below by a cooperative system whose linearization at 0 is ∂tu−D∂xxu = Lu.

Even if L̂+ I ≫ 0 and the cooperative functions f−, f+ satisfying:






f− (v) ≤ Lv − c (v) ◦ v ≤ f+ (v)
f− (0) = f+ (0) = 0

Df− (0) = Df+ (0) = L

are constructible, in general it is difficult to verify that f− and f+ have each a
minimal positive zero (another requirement of Wang). Our setting needs not such
a verification.

Furthermore, even if these minimal zeros exist, several results presented here are
still new.

(1) Theorem 1.5 i) adds to [45, Theorem 2.1 iii)–v)] the existence of a critical
traveling wave (Wang obtained the existence of a bounded non-constant
non-negative solution traveling at speed c⋆ but the limit at +∞ of its profile
was not addressed).

(2) Theorem 1.1, Theorem 1.2, Theorem 1.3 and Theorem 1.4 as well as Theo-
rem 1.5 ii), iv) rely more deeply on the KPP structure and are completely
new to the best of our knowledge.

1.4.2. KPP systems. Regarding weakly coupled systems equipped with KPP non-
linearities, as far as we know most related works assume that L̂ + I ≫ 0, some
even requiring that L ≫ 0. Our results tend to show that this collection of results
should be generalizable under the weaker assumption (H1) with λPF (L) > 0.
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Dockery, Hutson, Mischaikow and Pernarowski [24] studied in a celebrated paper
the solutions of (SKPP ) in a bounded and smooth domain with Neumann bound-
ary conditions. Their matrix L had the specific form a (x) I + µM where a is a
non-constant function of the space variable and with minimal assumptions on the
constant matrix M. They also assumed strict ordering of the components of d, ex-
plicit and symmetric Lotka–Volterra competition, vanishingly small µ. They proved
the existence of a unique positive steady state, globally attractive for the Cauchy
problem with positive initial data, and which converges as µ → 0 to a steady state
where only u1 persists.

More recently, the solutions of (SKPP ), still in a bounded and smooth domain

with Neumann boundary conditions, were studied under the assumptions L̂+I ≫ 0

and small Lipschitz constant of v 7→ c (v)◦v by Hei and Wu [33]. They established
by means of super- and sub-solutions the equivalence between the negativity of the

principal eigenvalue of −D d
2

dx2 − L and the existence of a positive steady state.
Provided L ≫ 0, the vanishing viscosity limit of (EKPP ) is the object of a work

by Barles, Evans and Souganidis [6]. Although their paper and the present one
differ both in results and in techniques, they share the same ambition: describing
the spreading phenomenon for KPP systems. Therefore our feeling is that together
they give a more complete answer to the problem.

For two-component systems with explicit Lotka–Volterra competition, D = I2
and symmetric and positive L, Theorem 1.4 and Theorem 1.5 i), iii), iv) reduce to
the results of Griette and Raoul [30] (see Griette–Alfaro [2] for a partial extension
to space-periodic media). Their paper uses very different arguments (topological
degree, explicit computations involving in particular the sum of the equations, weak
mutation limit, phase plane analysis) but was our initial motivation to work on this
question: our intent is really to extend their result to a larger setting by changing
the underlying mathematical techniques. Let us emphasize that they obtained an
algebraic formula for the minimal wave speed, c⋆ = 2

√

λPF (L), that we are able to
generalize (Theorem 1.7). The two-component system with explicit Lotka–Volterra
competition has also been investigated heuristically and numerically by Elliott and
Cornell [25], who considered the weak mutation limit as well and obtained further
results.

Let us point out that the problem of the spreading speed for the Cauchy problem
with front-like initial data for the two-component system with explicit Lotka–Volterra
competition was formulated but left open by Elliott–Cornell [25] and not considered
by Griette–Raoul [30]. This problem is completely solved here (see Theorem 1.6).

1.5. From systems to non-local equations. It is well-known that systems can
be seen as discretizations of continuous models. In this subsection, we present
briefly some equations structured not only in time and space but also with a third
variable and whose natural discretizations are particular instances of our system
(EKPP ) satisfying the criterion λPF (L) > 0. Our results bring therefore indirect
insight into the spreading properties of these equations.

Notice that these examples provide also examples of biomathematical applica-
tions of our results and prove that, although most of the literature about KPP
systems is only concerned with Lotka–Volterra mutation–competition–diffusion set-
tings, other interesting applications exist.
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1.5.1. The cane toads equation with non-local competition. We define the matrix
MLap,N as:

MLap,N =



















−1 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −2 1
0 . . . 0 1 −1



















if N ≥ 3,

MLap,2 =

(

−1 1
1 −1

)

if N = 2.

With this notation, the Lotka–Volterra mutation–competition–diffusion system
exhibited earlier can be written in vector form as follows:

∂tu−D∂xxu = diag (r)u+ µMLapu− (Cu) ◦ u.
An especially interesting instance of it is the system where:

• for all i ∈ [N ], dN,i = θ + (i− 1) θN with θN = θ−θ
N−1 and with some fixed

θ > θ > 0;
• rN = r1N,1 with some fixed r > 0;
• µN = α

θ2
N

with some fixed α > 0;

• CN = θN1N .

Since λPF (MLap,N) = 0 (because MLap,N1N,1 = 0), the Perron–Frobenius eigen-
value of L is positive indeed:

λPF

(

rIN +
α

θ2N
MLap,N

)

= r + λPF

(

α

θ2N
MLap,N

)

= r > 0.

As N → +∞, this system converges (at least formally) to the now classical
non-local cane toads equation with bounded phenotypes [7, 14, 15, 16]:

{

∂tn− θ∂xxn− α∂θθn = n (t, x, θ)
(

r −
∫ θ

θ n (t, x, θ′)dθ′
)

∂θn (t, x, θ) = ∂θn
(

t, x, θ
)

= 0 for all (t, x) ∈ R
2

where n is a function of (t, x, θ), θ ∈
[

θ, θ
]

is the motility trait, α is the mutation

rate and
∫ θ

θ n (t, x, θ′)dθ′ is the total population present at (t, x). The mutation

operator α∂θθ is local in θ.

1.5.2. The doubly non-local cane toads equation. It seems that, historically, the cane
toads equation comes from a doubly non-local model due to Prévost et al. [4, 43] (see
also the earlier individual-based model by Champagnat and Méléard [19]). Since
the non-local mutation operator was too difficult to handle mathematically, the cane
toads equation with local mutations was favored as a simplified first approach. But
it remains unsatisfying from the modeling point of view for various reasons and
non-local kernels are the real aim.

Defining as above θN = θ−θ
N−1 and (θi)i∈[N ] = (θ + (i− 1) θN )ı̈∈[N ], the natural

discretization of the following doubly non-local cane toads equation:

∂tn− d (θ) ∂xxn = rn+ α (K ⋆θ n− n)− n

∫ θ

θ

n (t, x, θ′)dθ′
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with d ∈ C
([

θ, θ
]

, (0,+∞)
)

and K ∈ C (R, [0,+∞)) is the following system:

∂tu−DN∂xxu = LNu− (θN1Nu) ◦ u,
with:

dN = (d (θi))i∈[N ] ,

LN = rIN + α
(

θN (K (θi − θj))(i,j)∈[N ]2 − IN

)

= (r − α) IN + αθN (K ((i − j) θN ))(i,j)∈[N ]2 .

(H2)–(H4) are obviously satisfied and, as soon as, say, K is positive, (H1) is
satisfied as well. Subsequently, λPF (LN ) ≥ r − α, whence r > α is a sufficient
condition to ensure λPF (LN ) > 0 for all N ∈ N.

More generally, the system corresponding to the following equation (see Prévost
et al. [4, 43]):

∂tn− d (θ) ∂xxn = r (θ)n (t, x, θ) +

∫ θ

θ

n (t, x, θ′)K (θ, θ′)dθ′

− n (t, x, θ)

∫ θ

θ

n (t, x, θ′)C (θ, θ′)dθ′

with d ∈ C
([

θ, θ
]

, (0,+∞)
)

, r ∈ C
([

θ, θ
]

, [0,+∞)
)

, K,C ∈ C

(

[

θ, θ
]2

, [0,+∞)
)

is:
∂tu−DN∂xxu = LNu− (CNu) ◦ u,

with:
dN = (d (θi))i∈[N ] ,

LN = diag (r (θi))i∈[N ] + θN (K (θi, θj))(i,j)∈[N ]2 ,

CN = θN (C (θi, θj))(i,j)∈[N ]2 .

Again, (H3) and (H4) are clearly satisfied, (H2) is satisfied if C is non-negative
and both (H1) and λPF (LN ) > 0 are satisfied if, say, K is positive.

In both cases, of course, the positivity of K is a far from necessary condition
and might be relaxed.

1.5.3. The Gurtin–MacCamy equation with diffusion and overcrowding effect. Con-
sider the following age-structured equation with diffusion [31, 32]:











∂tn+ ∂an− d (a) ∂xxn = −n (t, x, a)
(

r (a) +
∫ A

0 n (t, x, a′)C (a, a′)da′
)

n (t, x, 0) =
∫ A

am
n (t, x, a′)K (a′)da′ for all (t, x) ∈ R

2

n (t, x, A) = 0 for all (t, x) ∈ R
2

where n is a function of (t, x, a), a ∈ [0, A] is the age variable, am ≥ 0 is the
maturation age, A > am is the maximal age, d ∈ C ([0, A] , (0,+∞)) is the diffusion

rate, r ∈ C ([0, A] , (0,+∞)) is the mortality rate, C ∈ C

(

[0, A]
2
, [0,+∞)

)

is the

competition kernel and K ∈ C ([0, A] , [0,+∞)) is the birth rate.
Defining:

aN+1 =
A

N
,

(ai)i∈[N ] = ((i− 1)aN+1)i∈[N ] ,

jm,N = min {j ∈ [N ] | aj ≥ am} ,
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u (t, x) = (n (t, x, ai))i∈[N ] ,

dN = (d (ai))i∈[N ] ,

Lmortality,N = −diag
(

r (ai)i∈[N ]

)

,

Lbirth,N = aN+1











0 . . . 0 K
(

ajm,N

)

. . . K (aN )
0 . . . 0
...

...
0 . . . 0











,

Laging,N =
1

aN+1



















0 0 . . . . . . 0

1 −1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 −1



















,

LN = Lmortality,N + Lbirth,N + Laging,N ,

CN = aN+1 (C (ai, aj))(i,j)∈[N ]2 ,

it follows again that:

∂tu−DN∂xxu = LNu− (CNu) ◦ u
is the natural discretization with (H3) and (H4) automatically satisfied. K non-
negative non-zero and C non-negative are sufficient conditions to enforce (H1) and
(H2).

Since we have:

λPF (LN ) ≥ λPF (Lbirth,N + Laging,N )−max
[0,A]

r

and since λPF (Lbirth,N + Laging,N ) is bounded from below by a positive constant
independent on N (the proof of this claim being deliberately not detailed here for
the sake of brevity), if max

[0,A]
r is small enough, then λPF (LN ) > 0 for all N ∈ N.

2. Strong positivity

Theorem 1.1 is mainly straightforward. It follows from the following local result.

Proposition 2.1. Let Q ⊂ R
2 be a bounded parabolic cylinder and u be a classical

solution of (EKPP ) set in Q.
If u is non-negative on ∂PQ, then it is either null or positive in Q.

Proof. Let K = max
Q

|u| and observe that, for all i ∈ [N ] and all (t, x) ∈ Q:

|li,i − ci (u (t, x))| ≤ |li,i|+ max
v∈B(0,K)

|ci (v)| .

Then, defining:

C : (t, x) 7→ L− diag (c (u (t, x))) ,

u is a solution of the following linear weakly and fully coupled equation with
bounded coefficients:

∂tu−D∂xxu−Cu = 0.
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In virtue of Protter–Weinberger’s strong maximum principle [39, Chapter 3,
Theorem 13], u is indeed either null or positive in Q. �

Before going any further, let us state the analogous strong positivity for the
elliptic problem. Actually, noticing that the previous proof holds without any
modification if we add to (EKPP ) a constant drift term c∂xu (with c ∈ R, but in
fact, it holds for any diagonal drift b◦∂xu with b ∈ R

N as well), we state it directly
in a slightly more general form that will be quite useful later on. Of course, since
solutions of the elliptic problem are nothing but time-independent solutions of the
parabolic one, the following result is a direct corollary of the preceding one. It can
also be deduced from Arapostathis–Gosh–Marcus’s Harnack inequality [3] applied

to the operator D d
2

dx2 +C.

Proposition 2.2. Let a, b, c ∈ R such that a < b. Let u be a non-negative classical
solution of:

−Du′′ − cu′ = Lu− c [u] ◦ u in (a, b) .

Then u is either null or positive in (a, b).

Remark. This statement does not establish the non-negativity of all solutions of
−Du′′ − cu′ = Lu − c [u] ◦ u; it only enforces the interior positivity of the non-
negative non-zero solutions. Regarding the weak maximum principle, we refer
among others to Figueiredo [22], Figueiredo–Mitidieri [23], Sweers [44]. In view
of what is known about the simpler scalar case, it is to be expected that, for some
small values of c and a large enough interval (a, b), sign-changing solutions exist.

3. Absorbing set and upper estimates

On the contrary, Theorem 1.2 requires some work.

3.1. Saturation of the reaction term. For all i ∈ [N ], let Hi ⊂ R
N be the closed

half-space defined as:

Hi =
{

v ∈ R
N | (Lv)i ≥ 0

}

.

Lemma 3.1. There exists k ∈ K++ such that, for all i ∈ [N ] and for all v ∈ K\e⊥i :

(L (v + kiei)− c (v + kiei) ◦ (v + kiei))i < 0.

Proof. Let i ∈ [N ] and let:

Fi =
(

S+ (0, 1) ∩ Hi

)

\e⊥i .
Let:

fi : (0,+∞)× S (0, 1) → R

(α,n) 7→
N
∑

j=1

li,jnj − ci (αn)ni.

Notice that for all n ∈ S+ (0, 1) \Fi, either
N
∑

j=1

li,jnj < 0 and then fi (α,n) < 0

for all α > 0 or ni = 0 and then fi (α,n) =
N
∑

j=1

li,jnj ≥ 0 does not depend on α.

Let n ∈ Fi. In virtue of (H4) and since n /∈ e⊥i :

lim
α→+∞

fi (α,n) = −∞.
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Therefore the following quantity is finite and non-negative:

αi,n = inf {α ≥ 0 | ∀α′ ∈ (α,+∞) fi (α
′,n) < 0} .

Now, the set:

{αi,nni | n ∈ Fi} = {αi,nni | n ∈ Fi, αi,n > α⋆} ∪ {αi,nni | n ∈ Fi, αi,n ≤ α⋆}

is bounded if and only if the set {αi,nni | n ∈ Fi, αi,n > α⋆} is bounded. Recall
that α⋆ ≥ 1 and δ ≥ 1. For all n ∈ Fi such that αi,n > α⋆, thanks to (H4), we have
in virtue of the discrete Cauchy–Schwarz inequality:

|αi,nni| = αi,nni

≤ αδ
i,nni

≤
∑N

j=1 li,jnj

ci

≤

∣

∣

∣(li,j)j∈[N ]

∣

∣

∣

ci
,

whence the finiteness of:

ki = sup {αi,nni | n ∈ Fi}

is established. Its positivity follows from (H3) which implies that for all n ∈ intFi,
αi,n > 0.

The result about v + kiei with v ∈ K\e⊥i is a direct consequence. �

Assuming in addition strict monotonicity of α 7→ ci (αn) (which is for instance
satisfied if c (v) = Cv with C ≫ 0, that is in the Lotka–Volterra competition case),
we can obtain the following more precise geometric description of the reaction term.
The proof is quite straightforward and is not detailed here.

Lemma 3.2. Assume in addition that α 7→ ci (αn) is increasing for all n ∈ Hi.
Then there exists a collection of connected C 1-hypersurfaces:

(Zi)i∈[N ] ⊂
N
∏

i=1

((

K
+ ∩ Hi

)

\e⊥i
)

such that, for any i ∈ [N ] and any v ∈ (K+ ∩ Hi) \e⊥i :

(Lv − c (v) ◦ v)i = 0 if and only if v ∈ Zi.

For all i ∈ [N ], Zi satisfies the following properties.

(1) For all n ∈ (S+ (0, 1) ∩ Hi) \e⊥i , Zi ∩ Rn is a singleton.
(2) The function zi which associates with any n ∈ (S+ (0, 1) ∩ Hi) \e⊥i the

unique element of Zi ∩ Rn is continuous and is a C 1-diffeomorphism of
(S++ (0, 1) ∩ intHi) \e⊥i onto intZi.

(3) For any v ∈ K+\e⊥i , (Lv − c (v) ◦ v)i > 0 if and only if:

v ∈ Hi and |v| <
∣

∣

∣

∣

zi

(

v

|v|

)∣

∣

∣

∣

.
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3.2. Absorbing set and upper estimates. Define for all i ∈ [N ]:

gi : [0,+∞) → (0,+∞)
µ 7→ max (µ, ki) .

The function gi is non-decreasing and piecewise affine (whence Lipschitz-continuous).
The following local in space L ∞ estimate for the parabolic problem is due to

Barles–Evans–Souganidis [6]. We repeat its proof for the sake of completeness.

Proposition 3.3. Let Q ⊂ R
2 be a parabolic cylinder bounded in space and bounded

from below in time.
Let u be a non-negative classical solution of (EKPP ) set in Q such that:

u|∂PQ ∈ L
∞
(

∂PQ,R
N
)

.

Then we have:
(

sup
Q

ui

)

i∈[N ]

≤
(

gi

(

sup
∂PQ

ui

))

i∈[N ]

.

Proof. Let t0 ∈ R, T ∈ (0,+∞] and (a, b) ∈ R
2 such that Q = (t0, t0 + T )× (a, b).

Let i ∈ [N ].
Define a smooth convex function η : R → R which satisfies:







η (u) = 0 if u ∈ (−∞, gi

(

sup
∂PQ

ui

)

]

η (u) > 0 otherwise.

For all t ∈ (t0, t0 + T ), let:

Ξi (t) =

{

x ∈ (a, b) | ui (t, x) > gi

(

sup
∂PQ

ui

)}

.

This set is measurable and, by integration by parts, for all t ∈ (t0, t0 + T ):

∂t

(

∫ b

a

η (ui (t, x))dx

)

=

∫ b

a

η′ (ui (t, x)) ∂tui (t, x) dx

= −di

∫ b

a

η′′ (ui (t, x)) (∂xui (t, x))
2
dx

+

∫ b

a

η′ (ui (t, x))





N
∑

j=1

li,juj (t, x)− ci (u (t, x))ui (t, x)



 dx

= −di

∫

Ξi(t)

η′′ (ui (t, x)) (∂xui (t, x))
2
dx

+

∫

Ξi(t)

η′ (ui (t, x))





N
∑

j=1

li,juj (t, x)− ci (u (t, x))ui (t, x)



 dx

≤ 0

Since
∫ b

a η (ui (t0, x))dx = 0, we deduce:

ui ≤ gi

(

sup
∂PQ

ui

)

in Q,
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whence:

sup
Q

ui ≤ gi

(

sup
∂PQ

ui

)

.

�

As a corollary of this local estimate, we get Theorem 1.2.

Corollary 3.4. Let u0 ∈ Cb (R,K). Then the unique classical solution u of (EKPP )
set in (0,+∞)× R with initial data u0 satisfies:

(

sup
(0,+∞)×R

ui

)

i∈[N ]

≤
(

gi

(

sup
R

u0,i

))

i∈[N ]

and furthermore:
(

lim sup
t→+∞

sup
x∈R

ui (t, x)

)

i∈[N ]

≤ g (0) .

Consequently, all bounded non-negative classical solutions of (SKPP ) are valued
in:

N
∏

i=1

[0, gi (0)] .

Proof. To get the global in space L ∞ estimate, apply the local one to the family
(uR)R>0, where uR is the solution of (EKPP ) set in (0,+∞)× (−R,R) with:

{

uR (0, x) = u0 (x) for all x ∈ [−R,R] ,
uR (t,±R) = u0 (±R) for all t ≥ 0,

and recall that, by classical parabolic estimates (Lieberman [38]) and a diagonal ex-
traction process, (uR)R>0 converges up to extraction in C 1

loc

(

(0,+∞) ,C 2
loc

(

R,RN
))

to the solution of (EKPP ) set in (0,+∞)× R with initial data u0.
Next, let us prove that the invariant set:

N
∏

i=1

[0, gi (0)] =

N
∏

i=1

[0, ki]

is in fact an absorbing set.
Assume by contradiction that there exists a bounded non-negative classical so-

lution u of (EKPP ) set in (0,+∞)× R such that there exists i ∈ [N ] such that:

lim sup
t→+∞

sup
x∈R

ui (t, x) > gi (0) .

Since [0, gi (0)] is invariant, it implies directly:

sup
x∈R

ui (t, x) > gi (0) for all t ≥ 0.

Using the classical second order condition at any local maximum, it is easily
seen that at any local maximum in space of ui, the time derivative is negative. At
any t > 0 such that there is no local maximum in space, by C 1 regularity of ui,
x 7→ ui (t, x) is either strictly monotonic or piecewise strictly monotonic with one
unique local minimum and consequently it converges to some constant as x → ±∞.
At least one of these constants is sup

x∈R

ui (t, x). For instance, assume it is the limit

at +∞. By classical parabolic estimates and a diagonal extraction process, there
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exists (xn)n∈N
∈ R

N such that xn → +∞ and such that the following sequence

converges in C 1
loc

(

(0,+∞) ,C 2
loc (R)

)

:

((t′, x) 7→ ui (t+ t′, x+ xn))n∈N
.

Let v be its limit; by construction,

v (0, x) = sup
x∈R

ui (t, x) for all x ∈ R,

so that:

∂xxv (0, x) = 0 for all x ∈ R.

Using the equation satisfied by ui, we obtain:

∂tv (0, x) < 0 for all x ∈ R.

Since this argument does not depend on the choice of the sequence (xn)n∈N
, we

deduce:

lim sup
x→+∞

∂tui (t, x) < 0.

In all cases,

t 7→ ‖x 7→ ui (t, x) ‖L ∞(R)

is a decreasing function, and using the global L ∞ estimate derived earlier, we
deduce that:

t 7→ ‖ui‖L ∞((t,+∞)×R)

is a decreasing function as well. Therefore:

lim sup
t→+∞

sup
x∈R

ui (t, x) = lim inf
t→+∞

sup
x∈R

ui (t, x) = lim
t→+∞

sup
x∈R

ui (t, x) > gi (0) .

Now, the following sequence:

((t, x) 7→ ui (t+ n, x))n∈N

being uniformly bounded in L ∞ ((0,+∞)× R), by classical parabolic estimates
in C 1

loc

(

(0,+∞) ,C 2
loc (R)

)

and a diagonal extraction process, it converges up to

extraction to some limit u∞,i ∈ C 1
(

(0,+∞) ,C 2 (R)
)

.
On one hand, by construction, the following function:

t 7→ ‖x 7→ u∞,i (t, x) ‖L ∞(R)

is constant and larger than gi (0). But on the other hand, passing also to the limit
the other components of (t, x) 7→ u (t+ n, x) and then repeating the argument used
earlier to prove the strict monotonicity of:

t 7→ ‖x 7→ ui (t, x) ‖L∞(R),

we deduce the strict monotonicity of:

t 7→ ‖x 7→ u∞,i (t, x) ‖L∞(R),

which is an obvious contradiction.
�

Quite similarly, we can establish an L ∞ estimate for (SKPP ), set in a strip, and
with an additional drift.
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Proposition 3.5. Let (a, b, c) ∈ R
3 such that a < b and u be a non-negative

classical solution of:

−Du′′ − cu′ = Lu− c [u] ◦ u in (a, b) .

Then:
(

max
[a,b]

ui

)

i∈[N ]

≤
(

gi

(

max
{a,b}

ui

))

i∈[N ]

.

Proof. Assume by contradiction that there exists i ∈ [N ] such that:

max
[a,b]

ui > gi

(

max
{a,b}

ui

)

.

Then there exists x0 ∈ (a, b) such that:

max
[a,b]

ui = ui (x0) > ki.

There exists (x1, x2) ∈ (a, b)2 such that x1 < x0 < x2 and:

{

ui (x) > ki for all x ∈ (x1, x2)
ui (x) =

1
2 (ki + ui (x0)) for all x ∈ {x1, x2} .

But then the elliptic strong maximum principle applied to:

−di∂xxui ≪ 0 in (x1, x2)

contradicts the existence of an interior maximum in (x1, x2) at x0. �

4. Extinction and persistence

This section is devoted to the proof of Theorem 1.3. The extinction case is mainly
straightforward but, because of the lack of comparison principle, the persistence
case is more involved.

4.1. Extinction.

Proposition 4.1. Assume λPF (L) < 0.
Then all bounded non-negative classical solutions of (EKPP ) set in (0,+∞)×R

converge asymptotically in time, exponentially fast, and uniformly in space to 0.

Proof. It suffices to notice that if u is a non-negative bounded solution of (EKPP )
and if n ∈ S++ (0, 1) is the unit eigenvector solution of Ln = λPF (L)n, then
v : (t, x) 7→ eλPF (L)tn satisfies in virtue of (H2):

∂t (v − u)−D∂xx (v − u)− L (v − u) = c [u] ◦ u ≥ 0.

Hence, up to a multiplication of v by a large constant, the comparison principle
applied to the linear weakly and fully coupled operator ∂t−D∂xx−L in (0,+∞)×R

implies that 0 ≤ u ≤ v. The limit easily follows. �
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4.1.1. Regarding the critical case. The proof for the case λPF (L) < 0 clearly cannot
be adapted if λPF (L) = 0.

For the scalar equation ∂tu − ∂xxu = −u2, the comparison principle ensures

extinction (by comparison with a solution of u′ (t) = −u (t)
2

with large enough
initial data). Since the comparison principle is not satisfied by (EKPP ), we cannot
hope to generalize this proof and need to find another method.

For the non-diffusive system u′ = Lu− c [u] ◦u, the classical Lyapunov function

V : u 7→ 1
2 |u|

2
ensures extinction provided the positive eigenvectors of L associated

with the eigenvalue 0 are not zeros of c. But, for the diffusive system, it is clear that
all methods involving integrations by parts of uTD∂xxu will have to deal with the
unboundedness of the space domain R. More precisely, assuming that the positive
eigenvectors of L associated with the eigenvalue 0 are not zeros of c, it is for instance
possible to prove extinction of space-periodic solutions or of solutions in:

L
∞
(

(0,+∞) ,H 1
(

R,RN
))

∩ L
∞
(

(0,+∞)× R,RN
)

vanishing as x → ±∞. But, for merely bounded classical solutions, the natural

idea to be tried in such a setting (that is to multiply (EKPP ) by e−ε|x|u (t, x)
T

instead of u (t, x)T so that sufficient integrability is recovered) brings forth a new
problematic term (see for instance Zelik [47] where this computation is carried on
and only leads to the existence of an absorbing set).

In view of these facts, extinction in the critical case is both a very natural
conjecture and a surprisingly challenging problem (which would be way beyond the
scope of this article).

4.2. Persistence. The first step toward the persistence result is giving some rig-
orous meaning to the statement “if λPF (L) > 0, then 0 is unstable”.

4.2.1. Slight digression: generalized principal eigenvalues and eigenfunctions for
weakly and fully coupled elliptic systems.

Theorem 4.2. Let (n, n′) ∈ N ∩ [1,+∞)× N ∩ [2,+∞) and L : C 2
(

R
n,Rn′

)

→
C

(

R
n,Rn′

)

be a second-order elliptic operator, weakly and fully coupled, with con-

tinuous and bounded coefficients.
Let:

λ1 (−L ) = sup
{

λ ∈ R | ∃v ∈ C
2
(

R
n,K++

n′

)

− L v ≥ λv
}

∈ R.

Then:
lim

R→+∞
λ1,Dir (−L ,Bn (0, R)) = λ1 (−L ) .

Furthermore, λ1 (−L ) is in fact a finite maximum and there exists a generalized
principal eigenfunction, that is a positive solution of:

−L v = λ1 (−L )v.

Remark. The convergence of the Dirichlet principal eigenvalue to the aforemen-
tioned generalized principal eigenvalue as R → +∞ as well as the existence of a
generalized principal eigenfunction are well-known for scalar elliptic equations (see
Berestycki–Rossi [12]), but as far as we know these results do not explicitly appear in
the literature regarding elliptic systems. Still, the proof of Berestycki–Rossi [12] uses
arguments developed in the celebrated article by Berestycki–Nirenberg–Varadhan
[11] and which have been generalized to weakly and fully coupled elliptic systems
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already in order to prove the existence of a Dirichlet principal eigenvalue in non-
necessarily smooth but bounded domains by Birindelli–Mitidieri–Sweers [13]. Hence
we only briefly outline here the proof so that it can be checked that the generaliza-
tion to unbounded domains is straightforward.

It begins with the standard verification of the equality between the general-
ized principal eigenvalue as defined above and the Dirichlet principal eigenvalue for
bounded smooth domains (whose existence was proved for instance by Sweers [44]).
Then, since the generalized principal eigenvalue is, by definition, non-increasing
with respect to the inclusion of the domains, we get that the limit of the Dirichlet
principal eigenvalues as R → +∞ exists and is larger than or equal to the general-
ized principal eigenvalue. It remains to prove that it is also smaller than or equal to
it. This is done thanks to the family of Dirichlet eigenfunctions (vR)R>0 associated
with the family of Dirichlet principal eigenvalues normalized by:

min
i∈[n′]

vi,R (0) = 1.

Thanks to Arapostathis–Gosh–Marcus’s Harnack inequality [3], we obtain a locally
uniform L ∞ estimate, whence, in virtue of classical elliptic estimates (Gilbarg–Trudinger
[29]) and a diagonal extraction process, the existence of a limit, up to extraction,
for the family (vR)R>0 as R → +∞. This limit v∞ is non-negative non-zero and
satisfies:

−L v∞ =

[

lim
R→+∞

λ1,Dir (−L ,Bn (0, R))

]

v∞.

Thanks again to Arapostathis–Gosh–Marcus’s Harnack inequality, v∞ is in fact
positive in R

n. Thus, by definition of the generalized principal eigenvalue, the limit
as R → +∞ is indeed smaller than or equal to it, and in the end the equality is
proved as well as the existence of a generalized principal eigenfunction v∞.

4.2.2. Local instability and persistence. Noticing:

λ1

(

−D
d2

dx2
− (L− γλPF (L) I)

)

= − (1− γ)λPF (L) for all γ ∈ [0, 1]

and using either Dancer [21] or Lam–Lou [35], we get the following lemma.

Lemma 4.3. Assume λPF (L > 0). Then there exists
(

R0, R1/2

)

∈ (0,+∞)
2

such
that:

λ1,Dir

(

−D
d2

dx2
− L, (−R0, R0)

)

< 0,

λ1,Dir

(

−D
d2

dx2
−
(

L− λPF (L)

2
I

)

,
(

−R1/2, R1/2

)

)

< 0.

Remark. In fact, much more precisely, it can be shown that, for all γ ∈ [0, 1],

R 7→ λ1,Dir

(

−D
d2

dx2
− (L− γλPF (L) I) , (−R,R)

)

is a decreasing homeomorphism from (0,+∞) onto (− (1− γ)λPF (L) ,+∞).

By continuity of c and (H3), the following quantity:

α1/2 = max

{

α > 0 | ∀v ∈ [0, α]
N

c (v) ≤ λPF (L)

2
1N,1

}
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is well-defined in R and is positive. The pair
(

R1/2, α1/2

)

will be used repeatedly up
to the end of this section.

Lemma 4.4. Assume λPF (L) > 0. For all µ ∈
(

0, α1/2

)

, let:

Tµ =
lnα1/2 − lnµ

−λ1,Dir

(

−D d2

dx2 −
(

L− λPF (L)
2 I

)

,
(

−R1/2, R1/2

)

) > 0.

For all (t0, T, a, b) ∈ R × (0,+∞) × R
2 such that b−a

2 = R1/2 and for all
non-negative classical solutions u of (EKPP ) set in the bounded parabolic cylin-
der (t0, t0 + T )× (a, b), if:

min
i∈[N ]

min
x∈[a,b]

ui (t0, x) = µ,

max
i∈[N ]

max
[t0,t0+T ]×[a,b]

ui ≤ α1/2,

then T < Tµ.

Proof. Let:

Λ = λ1,Dir

(

−D
d2

dx2
−
(

L− λPF (L)

2
I

)

,
(

−R1/2, R1/2

)

)

< 0.

Let n be the principal eigenfunction associated with the preceding Dirichlet
principal eigenvalue normalized so that:

max
i∈[N ]

max
[−R1/2,R1/2]

ni = 1.

The following inequality is satisfied in
(

−R1/2, R1/2

)

by definition:

−
(

−Dn′′ −
(

L− λPF (L)

2
I

)

n

)

= −Λn ≫ 0.

By definition of α1/2 and (H2), for all v ∈
[

0, α1/2

]N
:

c (v) ◦ v ≤ λPF (L)

2
v,

whence:

− (Lv − c (v) ◦ v) ≤ −
(

L− λPF (L)

2
I

)

v.

Now, fix (t0, T, a, b) ∈ R × (0,+∞) × R
2 such that b−a

2 = R1/2 and T ≥ Tµ.
Assume by contradiction that there exists a non-negative solution u : (t0, t0 + T )×
(a, b) → K of (EKPP ) such that the following properties hold:

µ = min
i∈[N ]

min
x∈[a,b]

ui (t0, x) > 0,

max
i∈[N ]

max
[t0,t0+T ]×[a,b]

ui ≤ α1/2.

In particular, since µ > 0, u is non-negative non-zero.
To simplify the notations, hereafter we assume that t0 = 0 and a+b

2 = 0. The
general case is only a matter of straightforward translations.

Define the function:
v : (t, x) 7→ µe−Λtn (x) .

Clearly:
v (0, x) ≤ u (0, x) for all x ∈ [a, b] .
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It is easily verified as well that v satisfies in (0, Tµ)×
(

−R1/2, R1/2

)

:

−
(

∂tv −D∂xxv −
(

L− λPF (L)

2
I

)

v

)

≥ 0,

whence, by construction of α1/2, w = u− v satisfies:

∂tw −D∂xxw −
(

L− λPF (L)

2
I

)

w ≥ ∂tu−D∂xxu− Lu+ c [u] ◦ u = 0.

Most importantly, since by construction:

Tµ = max

{

t > 0 | max
i∈[N ]

max
x∈[−R1/2,R1/2]

vi (t, x) ≤ α1/2

}

,

there exists t⋆ ≤ Tµ ≤ T and x⋆ ∈
(

−R1/2, R1/2

)

such that w ≫ 0 in [0, t⋆) ×
(

−R1/2, R1/2

)

and w (t⋆, x⋆) ∈ ∂K.
The strong maximum principle applied to the weakly and fully coupled linear

operator ∂t−D∂xx−
(

L− λPF (L)
2 I

)

proves then that w = 0 in [0, t⋆)×
(

−R1/2, R1/2

)

,

which contradicts w
(

0,±R1/2

)

≫ 0. �

The persistence result follows.

Proposition 4.5. Assume λPF (L) > 0.
Let k ∈ (0,+∞). Then there exists νk > 0 such that, for all non-negative non-

zero classical solutions u of (EKPP ) set in (0,+∞)× R satisfying:

u ≤ k1N,1 in (0,+∞)× R,

we have for all bounded intervals I ⊂ R:
(

lim inf
t→+∞

inf
x∈I

ui (t, x)

)

i∈[N ]

≥ νk1N,1.

Proof. Let u and I be defined as in the statement. Fix temporarily x ∈ I and
define Ix =

(

x−R1/2, x+R1/2

)

.

A first application of Lemma 4.4 establishes that there exists t̂x ∈ [0,+∞) such
that:

max
i∈[N ]

max
y∈Ix

ui

(

t̂x, y
)

= α1/2

and that there exists τ > 0 such that:

max
i∈[N ]

max
y∈Ix

ui (t, y) > α1/2 for all t ∈
(

t̂x, t̂x + τ
)

.

Hence the following quantity is well-defined in
[

t̂x + τ,+∞
]

:

t1 = inf

{

t ≥ t̂x + τ | max
i∈[N ]

max
y∈Ix

ui (t, y) < α1/2

}

.

Assume first t1 < +∞. Then by continuity,

max
i∈[N ]

max
y∈Ix

ui (t1, y) = α1/2.

For all functions w ∈ Cb

(

(0,+∞)× R, [0, k]N
)

, the function:

Aw : x 7→ L− diagc (w (t, x))
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satisfies:

‖Aw‖L∞((t̂x,+∞)×Ix,RN) ≤ max
(i,j)∈[N ]2

|li,j |+ max
i∈[N ]

ci (k1N,1) .

This upper bound does not depend on w itself.
In virtue of Földes–Poláčik’s Harnack inequality [28], there exists κ > 0, depen-

dent only on N , R1/2, min
i∈[N ]

di, max
i∈[N ]

di, max
(i,j)∈[N ]2

|li,j |+max
i∈[N ]

ci (k1N,1) such that, for

all w ∈ Cb

(

(0,+∞)× R, [0, k]N
)

and all non-negative classical solutions v of:

∂tv −D∂xxv −Awv = 0 in Ix,

we have::

min
i∈[N ]

min
y∈Ix

vi (t1 + 1, y) ≥ κmax
i∈[N ]

max
y∈Ix

vi (t1, y) .

We stress that κ does not depend on w. In particular, taking w = v = u, we
deduce:

min
i∈[N ]

min
y∈Ix

ui (t1 + 1, y) ≥ κα1/2.

Of course, up to a shrink of κ, we can assume κ ∈ (0, 1). Then let:

T =
− lnκ

−λ1,Dir

(

−D d2

dx2 −
(

L− λPF (L)
2 I

)

, Ix

) > 0.

T does not depend on the choice of u.
A second application of Lemma 4.4 establishes:

max
i∈[N ]

max
y∈Ix

ui (t1 + 1 + T ) > α1/2.

Hence, defining the sequence:

tn+1 = inf

{

t ≥ tn + 1 + T | max
i∈[N ]

max
y∈Ix

ui (t, y) < α1/2

}

and repeating by induction the process, we deduce that any connected component
of:

{

t ∈
(

t̂x,+∞
)

| max
i∈[N ]

max
y∈Ix

ui (t, y) < α1/2

}

is an interval of length smaller than 1 + T .
A second application of Földes–Poláčik’s Harnack inequality shows that there

exists σ > 0, dependent only on N , R1/2, T , min
i∈[N ]

di, max
i∈[N ]

di, max
(i,j)∈[N ]2

|li,j | +

max
i∈[N ]

ci (k1N,1) such that, for all t ∈
(

t̂x,+∞
)

:

min
i∈[N ]

min
y∈Ix

ui (t+ T + 2, y) ≥ σ max
i∈[N ]

max
(t′,y)∈[t,t+T+1]×Ix

ui (t
′, y) ,

whence:

min
i∈[N ]

min
y∈Ix

ui (t, y) ≥ σα1/2 for all t ∈
(

t̂
x
+ T + 2,+∞

)

.

Assume next t1 = +∞. Then:

max
i∈[N ]

max
y∈Ix

ui (t, y) ≥ α1/2 for all t ∈
(

t̂x ,+∞
)

,
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and consequently:

min
i∈[N ]

min
y∈Ix

ui (t, y) ≥ σα1/2 for all t ∈
(

t̂
x
+ T + 2,+∞

)

.

Eventually, since I is bounded and x 7→ t̂x can be assumed continuous in R

without loss of generality, it follows:

min
i∈[N ]

inf
y∈I

ui (t, y) ≥ σα1/2 for all t ∈
(

max
x∈I

(

t̂
x

)

+ T + 2,+∞
)

,

whence:

lim inf
t→+∞

min
i∈[N ]

inf
y∈I

ui (t, y) ≥ σα1/2

with σα1/2 dependent only on k. �

Remark. We point out that max
x∈I

t̂
x

is finite because I is bounded. Of course, in

I = R, this problem becomes a spreading problem (see Proposition 7.1).

4.2.3. Persistence for the stationary problem. The ideas behind the proof of Propo-
sition 4.5 (instability of 0 and Harnack inequalities) can be adapted to derive a
uniform estimate from below for the elliptic problem (without drift since a large
enough drift can change 0 into a stable steady state, as will be seen later on in
Lemma 6.4). Of course it requires again λPF (L) > 0.

The elliptic counterpart of Lemma 4.4 follows. Its proof is completely similar
to that of its parabolic counterpart (it is even simpler since it suffices to use x 7→
µnR (x) as a sub-solution) and is therefore not detailed.

Lemma 4.6. Assume λPF (L) > 0.
Then, for all intervals I ⊂ R and all non-negative non-zero classical solutions u

of (SKPP ) set in I, any nonempty connected component of the following closed set:

u−1
(

[

0, α1/2

]N
)

⊂ I

is a closed interval of length smaller than 2R1/2.

Recall from Corollary 3.4 the L ∞ estimate for all non-negative classical solutions
of (SKPP ).

Proposition 4.7. Assume λPF (L) > 0.
Then there exists νS > 0 such that, for all bounded non-negative non-zero clas-

sical solution u of (SKPP ), we have:

u ≥ νS1N,1 in R.

Remark. Contrarily to the parabolic statement, here the lower estimate is really
global.

Proof. Define:

k = max
i∈[N ]

gi (0)

so that all non-negative classical solutions u of (SKPP ) satisfy u ≤ k1N,1.
Let x ∈ R and Ix =

(

x−R1/2, x+R1/2

)

.

For all functions w ∈ Cb

(

R, [0, k]
N
)

, the function:

Aw : x 7→ L− diagc (w (x))
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satisfies:

‖Aw‖L∞(Ix,RN ) ≤ max
(i,j)∈[N ]2

|li,j |+ max
i∈[N ]

ci (k1N,1) .

This upper bound does not depend on w itself.
Following Arapostathis–Gosh–Marcus’s Harnack inequality [3], there exists a

constant κ̃ > 0, dependent only on N , R1/2, min
i∈[N ]

di, max
i∈[N ]

di, max
(i,j)∈[N ]2

|li,j | +

max
i∈[N ]

ci (k1N,1) such that, for all w ∈ Cb

(

R, [0, k]
N
)

and all non-negative classi-

cal solutions v of:

−Dv′′ −Awv = 0 in Ix,

we have:

κ̃max
i∈[N ]

max
y∈Ix

vi (y) ≤ min
i∈[N ]

min
y∈Ix

vi (y) .

We stress that κ̃ does not depend on w and does not depend on x as well. In
particular, taking w = v = u for any u defined as in the statement, we deduce:

κ̃max
i∈[N ]

max
y∈Ix

ui (y) ≤ min
i∈[N ]

min
y∈Ix

ui (y) .

In virtue of Lemma 4.6, since u is non-negative non-zero it satisfies necessarily:

max
i∈[N ]

max
y∈Ix

ui (y) > α1/2.

Therefore:

min
i∈[N ]

min
Ix

ui ≥ κ̃α1/2,

which exactly means the following:

u ≥ κ̃α1/21N,1 in Ix.

Since κ̃α1/2 does not depend on x, we can slide x in R and deduce by continuity
of u:

u ≥ κ̃α1/21N,1 in R.

�

5. Existence of positive steady states

This section is devoted to the proof of Theorem 1.4 .

5.1. Nonexistence.

Proposition 5.1. If λPF (L) < 0, there exists no positive classical solution of
(SKPP ).

Proof. Recall that the Dirichlet principal eigenvalue is non-increasing with respect
to the zeroth order coefficient.

On one hand, in virtue of (H2), we have for all R > 0 and all v ∈ Cb (R,K
++):

λ1,Dir

(

−D
d2

dx2
− (L− diagc [v]) , (−R,R)

)

≥ λ1,Dir

(

−D
d2

dx2
− L, (−R,R)

)

,

whence as R → +∞:

λ1

(

−D
d2

dx2
− (L− diagc [v])

)

≥ −λPF (L) > 0.
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On the other hand, any positive steady state v is also a generalized principal
eigenfunction for the generalized principal eigenvalue:

λ1

(

−D
d2

dx2
− (L− diagc [v])

)

= 0.

�

Proposition 5.2. If λPF (L) = 0 and if, for all associated positive eigenvectors v,
c (v) > 0, there exists no bounded positive classical solution of (SKPP ).

Proof. We use the unit eigenvector of L multiplied by a large positive constant as a
super-solution and conclude with a contradiction using Arapostathis–Gosh–Marcus’s

Harnack inequality [3] applied to the linear elliptic operator −D d
2

dx2 − L and the
fact that this unit eigenvector is not a solution of (SKPP ). �

5.2. Existence of bounded positive steady states. The following proof by
means of super- and sub-solutions is well-known in the scalar case but the situa-
tion is much more involved in the multidimensional case because of the lack of a
comparison principle.

The recent successful generalization of the scalar proof is due to Hei–Wu [33] and
uses the so-called generalized coupled super- and sub-solutions introduced by Pao
[42, Chapter 8, Definition 10.2] for non-necessarily cooperative elliptic systems and
the associated existence result [42, Chapter 8, Theorem 10.5]. Hei–Wu required

L̂+ I ≫ 0 and a small Lipschitz constant for v 7→ c (v) ◦ v.
This problem is related to the continuous one considered by Arnold–Desvillettes–Prévost

[4]. They obtained the existence of a steady state provided an assumption whose
counterpart in the discrete setting would be L > 0 possibly reducible but satisfying

nevertheless min
j∈[N ]

N
∑

i=1

li,j > 0.

On one hand, c ∈ C 1
(

R
N ,RN

)

is sufficient to get rid of the Lipschitz control
on v 7→ c (v) ◦ v required by Hei–Wu. But on the other hand, dealing with the
case where some off-diagonal entries of L are null is difficult. We first consider the
simple case and then will present a workaround using a reinforcement of (H4), a
regularization procedure and Proposition 4.7.

Proposition 5.3. If λPF (L) > 0 and if L̂+ I ≫ 0, there exists a bounded positive
classical solution of (SKPP ).

Proof. As a first step, we prove the existence of a positive solution of (SKPP ) set
in (−R0, R0).

Recall from Lemma 3.1 the definition of k ∈ K++ and let u = k+ 1N,1.

Then recall the existence of R0 > 0 such that λ1,Dir

(

−D d
2

dx2 − L, (−R0, R0)
)

<

0 and let u be the associated normalized principal eigenfunction. Thanks to (H3),
up to a multiplication of u by a small constant ν > 0, we assume in addition:

λ1,Dir

(

−D
d2

dx2
− L, (−R0, R0)

)

1N,1 ≤ −c [u] .

Now, we verify that (u,u) is indeed a pair of generalized coupled super- and
sub-solutions for the following elliptic system:

{

−Du′′ = Lu− c [u] ◦ u in (−R0, R0) in (−R0, R0)
u (±R) = u.
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In order to do so, we introduce the closed convex set of functions:

F =
{

v ∈ C
(

[−R0, R0] ,R
N
)

| u ≤ v ≤ u
}

.

The inequalities we have to verify are, according to Pao [42, Chapter 8, Definition
10.2],







−diu
′′
i ≥ (L (v) − c [v] ◦ v)i for all v ∈ F such that vi = ui,

−diu
′′
i ≤ (L (v) − c [v] ◦ v)i for all v ∈ F such that vi = ui,

ui (±R0) ≥ ui (±R0) ,

for each i ∈ [N ].
Let i ∈ [N ].
On one hand, let v ∈ F such that vi = ui = ki + 1. Since:

v − kiei ∈ C
(

[−R0, R0] ,K\e⊥i
)

,

we deduce from Lemma 3.1:

−diu
′′
i = 0

> (Lv − c (v) ◦ v)i .
On the other hand, let w ∈ F such that wi = ui. We have:

−diu
′′
i =

N
∑

j=1

li,juj + λ1,Dir

(

−D
d2

dx2
− L, (−R0, R0)

)

ui

≤
N
∑

j=1

li,jwj −
N
∑

j=1

li,j
(

wj − uj

)

− ci [u]ui

≤
N
∑

j=1

li,jwj − ci [w]wi −





N
∑

j=1

li,j
(

wj − uj

)

− (ci [w]− ci [u])ui



 .

Let h = w− u ∈ K ∩ e⊥i . It remains to prove:

N
∑

j=1

li,jhj ≥ (ci [u+ h]− ci [u])ui,

which is of course a consequence of:

N
∑

j=1

li,jhj ≥ |ci [u+ h]− ci [u]|ui.

For all x ∈ [−R0, R0], either h (x) = 0 and this inequality is obvious or h (x) 6= 0

and it is equivalent to:

N
∑

j=1

li,j
hj (x)

|h (x)| ≥
∣

∣

∣

∣

ci (u (x) + h (x))− ci (u (x))

|h (x)|

∣

∣

∣

∣

ui (x) ≥ 0.

Now we consider the following supremum:

Ci = sup

{∣

∣

∣

∣

ci (p+ q)− ci (p)

|q|

∣

∣

∣

∣

| 0 ≤ p ≤ u and 0 < q ≤ u

}

.
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If Ci = 0, then:

N
∑

j=1

li,j
hj (x)

|h (x)| ≥
∣

∣

∣

∣

ci (u (x) + h (x))− ci (u (x))

|h (x)|

∣

∣

∣

∣

ui (x) ≥ 0

is obvious; otherwise, Ci > 0. In such a case, since we have L̂ + I ≫ 0, it suffices
to reduce again, if necessary, the amplitude ν > 0 of u so that:

max
[−R0,R0]

ui ≤ C−1
i inf

{

(li,j)
T
j∈[N ]m | m ∈ S

+ (0, 1) ∩ e⊥i

}

.

Repeating this process for each i ∈ [N ], we deduce from Pao’s theorem [42, Chapter
8, Theorem 10.5] the existence of a positive solution of:

{

−Du′′ = Lu− c [u] ◦ u in (−R0, R0)
u (±R) = u.

This ends the first step.
The second step consists only in noticing that for all R ≥ R0, the inequality:

λ1,Dir

(

−D
d2

dx2
− L, (−R,R)

)

< 0

still holds. Thus we can repeat the preceding step and obtain a family (uR)R∈[R0,+∞).

The third step is the construction of a positive solution of (SKPP ) thanks to a
compactness argument. Notice that k and uR0

(that is, the normalized principal

eigenfunction associated with λ1,Dir

(

−D d
2

dx2 − L, (−R0, R0)
)

) are uniform upper

and lower estimates for the family (uR)R∈[R0,+∞). Thanks to classical elliptic

estimates (Gilbarg–Trudinger [29]) and a diagonal extraction process, as R → +∞,
uR converges up to extraction in C 2

loc to a bounded non-negative non-zero classical
solution of (SKPP ), that is to a bounded positive classical solution of (SKPP ) by
Theorem 1.1. �

Proposition 5.4. If λPF (L) > 0 and if, for all (n, α) ∈ S+ (0, 1) × [α⋆,+∞),
αδc ≤ c (αn), there exists a bounded positive classical solution of (SKPP ).

Proof. For all ε ∈ (0, 1), L + ε1 satisfies both (H1) and
(

L̂+ ε1− εI
)

+ I ≫ 0.

Thanks to the reinforced (H4), we can define as we did for L with Lemma 3.1 a
vector kε (simply applying the proof of Lemma 3.1 with L+ ε1 instead of L) such
that, for all i ∈ [N ] and for all v ∈ K\e⊥i :

((L+ εI) (v + kε,iei)− c (v + kε,iei) ◦ (v + kε,iei))i < 0.

Proposition 5.3 shows then the existence of a positive solution uε of:

−Du′′
ε = (L+ ε1)uε − c [uε] ◦ uε in R.

Now we have to pass to the limit ε → 0. On one hand, according to Proposi-
tion 3.5 and by continuity on [0, 1] of ε 7→ kε, a suitable upper estimate is:

(

max
ε∈[0,1]

kε,i + 1

)

i∈[N ]

.

On the other hand, as a lower estimate, we cannot use uR0,ε which vanishes as
ε → 0. Instead, we use Proposition 4.7: for all ε > 0, there exists νS,ε > 0 such
that:

uε ≥ νS,ε1N,1 in R.
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The quantity νS,ε being also continuous with respect to ε, with min
ε∈[0,1]

νS,ε > 0, a

suitable lower estimate is:
min

ε∈[0,1]
(νS,ε)1N,1.

By classical elliptic estimates (Gilbarg–Trudinger [29]) and a diagonal extraction
process, as ε → 0, uε converges up to extraction in C 2

loc to a bounded positive
classical solution u of (SKPP ). �

5.3. Existence of constant positive steady states. The final result of Theo-
rem 1.4 follows.

Proposition 5.5. There exists a solution n ∈ K++ of:

Ln = c (n) ◦ n
if and only if there exists a bounded positive classical solution u of (SKPP ).

Proof. One implication is obvious. As for the converse one, it suffices to introduce
for all R > 0 the function:

uR : x 7→ u (Rx) ,

to verify that it satisfies:

− 1

R2
Du′′

R = LuR − c [uR] ◦ uR in R,

and then to consider the (viscosity) limit of (uR)R>0 as R → +∞, remembering
the uniform lower estimate of Proposition 4.7. �

Remark. Uniqueness of the positive constant steady state occurs in some cases.
For instance, if there exists a ∈ K++ such that c has the form u 7→ diag (a)Lu,
then

(

a−1
i,i

)

i∈[N ]
is the unique positive solution of Ln = c (n)◦n. Nevertheless, this

remark has only a limited interest: as far as we know, neither the uniqueness of
the positive solution of (SKPP ) nor the fact that the attractor only contains steady
states can be deduced from such a property.

6. Traveling waves

In this section, we assume λPF (L) > 0 and prove Theorem 1.5.
Notice as a preliminary that, for any (p, c) ∈ C 2

(

R,RN
)

× [0,+∞),

u : (t, x) 7→ p (x− ct)

is a classical solution of (EKPP ) if and only if p is a classical solution of:

−Dp′′ − cp′ = Lp− c [p] ◦ p in R. (TW [c]) .

6.1. The linearized equation. As usual in KPP-type problems, the linearized
equation near 0:

−Dp′′ − cp′ = Lp in R (TW0 [c])

will bring forth the main informations we need in order to construct and study the
traveling wave solutions. Hence we devote this first subsection to its detailed study.

Lemma 6.1. Let (c, λ) ∈ R
2. We consider the equation:

−Dp′′ − cp′ − (L+ λI)p = 0 in R. (TW0 [c, λ])

If there exists a classical positive solution p of (TW0 [c, λ]), then there exists
(µ,n) ∈ R× K++ such that q : ξ 7→ e−µξn is a classical solution of (TW0 [c, λ]).
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Remark. This is of course to be related with the notions of generalized principal
eigenvalue and generalized principal eigenfunction (see Theorem 4.2). The mere
existence of p enforces:

λ1

(

−D
d2

dξ
− c

d

dξ
− (L+ λI)

)

≥ 0.

The following proof is inspired by Berestycki–Hamel–Roques [9, Lemma 3.1].

Proof. Let p be a classical positive solution of (TW0 [c, λ]).

Let v =
(

p′

i

pi

)

i∈[N ]
. In virtue of Arapostathis–Gosh–Marcus’s Harnack inequality

[3], classical elliptic estimates (Gilbarg–Trudinger [29]) and invariance by transla-
tion of (TW0 [c, λ]), v is globally bounded. Define for all i ∈ [N ]:

Λi = lim sup
ξ→+∞

vi (ξ) .

Let Λ = max
i∈[N ]

Λi, so that:

(

lim sup
ξ→+∞

vi (ξ)

)

i∈[N ]

≤ Λ1N,1.

Let (ξn)n∈N
∈ R

N such that ξn → +∞ and such that there exists i ∈ [N ] such
that:

vi (ξn) → Λ.

On one hand, let:

p̂n : ξ 7→ p (ξ + ξn)

pi (ξn)
for all n ∈ N.

Once more in virtue of Arapostathis–Gosh–Marcus’s Harnack inequality, the se-
quence (p̂n)n∈N

is locally uniformly bounded. Since all p̂n solve (TW0 [c, λ]), by
classical elliptic estimates and a diagonal extraction process, (p̂n)n∈N

converges up

to extraction as n → +∞ in C 2
loc. Let p̂∞ be its limit. Notice by linearity of

(TW0 [c, λ]) that p̂∞ is in fact smooth and all its derivatives satisfy (TW0 [c, λ]) as
well.

On the other hand, let:

wn = Λp̂n − p̂′
n for all n ∈ N ∪ {+∞} .

Notice the following equality:

wn (ξ) = p̂n (ξ) ◦
(

Λ1N,1 − v (ξ + ξn)
)

for all n ∈ N and ξ ∈ R.

Fix ξ ∈ R. Recalling the obvious fact:

(

lim sup
n→+∞

vi (ξ + ξn)

)

i∈[N ]

≤
(

lim sup
ζ→+∞

vi (ζ)

)

i∈[N ]

≤ Λ1N,1,

it follows that for all ε > 0 there exists nξ,ε ∈ N such that for all n ≥ nξ,ε,
(

Λ + ε
)

1N,1 ≥ v (ξ + ξn) ,
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whence for all n ≥ nξ,ε:

wn (ξ) ≥ −ε

(

sup
m≥nξ,ε

p̂m,i (ξ)

)

i∈[N ]

≥ −ε

(

sup
m∈N

p̂m,i (ξ)

)

i∈[N ]

,

and consequently, passing to the limit n → +∞ and then ε → 0, we obtain the
non-negativity of w∞ (ξ).

Hence w∞ is a non-negative solution of (TW0 [c, λ]) satisfying in addition:

w∞,i (0) = p̂∞,i (0)

(

Λ− lim
n→+∞

vi (ξn)

)

= 0,

whence, again by Arapostathis–Gosh–Marcus’s Harnack inequality, w∞ is in fact
the null function.

Consequently, Λp̂∞ = p̂′
∞, that is p̂∞ has exactly the form:

ξ 7→ eΛξn with n ∈ R
N .

Since p̂∞ is non-negative with p̂∞,i (0) = 1 by construction, n ∈ K+, and since

any non-negative non-zero solution of (TW0 [c, λ]) is positive (Proposition 2.2),
n ∈ K++. The proof is ended with µ = −Λ. �

For all µ ∈ R, the matrix µ2D+ L is irreducible with non-negative off-diagonal
entries. Define κµ = −λPF

(

µ2D+ L
)

and n [µ] ∈ S++ (0, 1) as the unit eigenvector
satisfying:

−µ2Dn [µ]− Ln [µ] = κµn [µ] .

Of course, the interest of the pair (κµ,n [µ]) lies in the preceding lemma: for all
(µ,n) ∈ R× K++, ξ 7→ e−µξn is a solution of (TW0 [c]) if and only if:

−µ2Dn+ µcn− Ln = 0,

that is, thanks to the Perron–Frobenius theorem, if and only if µc = −κµ and
n
|n| = n [µ]. This most important observation leads naturally to the following study

of the equation c = −κµ

µ .

Lemma 6.2. The quantity:

c⋆ = min
µ>0

(

−κµ

µ

)

is well-defined and positive.
Let c ∈ [0,+∞). In (−∞, 0), the equation −κµ

µ = c admits no solution. In

(0,+∞), it admits exactly:

(1) no solution if c < c⋆;
(2) one solution µc⋆ > 0 if c = c⋆;
(3) two solutions (µ1,c, µ2,c) if c > c⋆, which satisfy moreover:

0 < µ1,c < µc⋆ < µ2,c.

Remark. c⋆ does not depend on c and is entirely determined by D and L. It will
be the minimal speed of traveling waves and this kind of dependency is strongly
reminiscent of the scalar Fisher–KPP case, where c⋆ = 2

√
rd. In fact the following

proof is mostly a generalization of scalar arguments.
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Proof. Of course, µ 7→ −κµ

µ is odd in R\ {0}. It is also positive in (0,+∞):

−κµ

µ
=

1

µ
λPF

(

µ2D+ L
)

>
1

µ
λPF (L) > 0.

Therefore it is negative in (−∞, 0) and in particular there is no solution of −κµ

µ =

c ≥ 0 in (−∞, 0).
We recall Nussbaum’s theorem [41] which proves the convexity of the function

µ 7→ ρ (Aµ) provided:

• the matrix Aµ is irreducible,
• its diagonal entries are convex functions of µ,
• its off-diagonal entries are non-negative log-convex functions of µ.

These conditions are easily verified for µ2D + L and µD + 1
µL (actually, for all

µ−γ
(

µ2D+ L
)

provided γ ∈ [0, 2]). Their spectral radii being respectively −κµ

and −κµ

µ , these are therefore convex functions of µ. Moreover, Nussbaum’s result

also proves that these convexities are actually strict. Therefore µ 7→ −κµ and
µ 7→ −κµ

µ are strictly convex functions in (0,+∞).

Now, we investigate the behavior of −κµ

µ as µ → 0 and µ → +∞.

By continuity,
κµ → κ0 as µ → 0,

whence −κµ

µ → +∞ as µ → 0.

Since µ 7→ −κµ

µ is convex and positive, either it is bounded in a neighborhood of

+∞ and then it converges to some non-negative constant, either it is unbounded
in a neighborhood of +∞ and then it converges to +∞. Assume that it converges
to a finite constant. Notice:

lim
µ→+∞

1

µ2

(

µ2D+ L
)

= D.

There exists a family of positive eigenvectors of µD+ 1
µL, (m [µ])µ>0, normalized

so that max
i∈[N ]

m [µ]i = 1 for all µ > 0. Thanks to classical compactness arguments

in R and R
N , we can extract a sequence (µn)n∈N

such that µn → +∞, −κµn

µ2
n

converges to 0 and m [µn] converges to some m ∈ K+. We point out that we do not
know if m ∈ K++, but from the normalizations, we do know that m ∈ K+. Since
m satisfies Dm = 0 and since D is invertible, we get a contradiction. Thus:

lim
µ→+∞

−κµ

µ
= +∞.

Hence µ 7→ −κµ

µ is a strictly convex positive function which goes to +∞ as

µ → 0 or µ → +∞: it admits necessarily a unique global minimum in (0,+∞).
The quantity c⋆ is well-defined.

Define µc⋆ > 0 such that:

c⋆ = −κµc⋆

µc⋆
.

The quantity µc⋆ is uniquely defined by strict convexity. The function µ 7→ −κµ

µ is

bijective from (0, µc⋆) to (c⋆,+∞) and from (µc⋆ ,+∞) to (c⋆,+∞) as well. This
ends the proof. �

Putting together Lemma 6.1 and Lemma 6.2, we get the following important
result.
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Corollary 6.3. For all c ∈ [0,+∞), the set of non-negative non-zero classical
solutions of (TW0 [c]) is empty if and only if c ∈ [0, c⋆).

We can also get the exact values of c for which 0 is an unstable steady state of
(TW0 [c]), in the sense of Lemma 4.3.

Lemma 6.4. Let c ∈ [0,+∞). Then:

λ1

(

−D
d2

dx2
− c

d

dx
− L

)

= sup
µ∈R

(κµ + µc) .

Furthermore:

(1) sup
µ∈R

(κµ + µc) = max
µ≥0

(κµ + µc);

(2) max
µ≥0

(κµ + µc) < 0 if and only if c < c⋆.

Remark. Just as in the case c = 0, it can be shown that, for all c ∈ [0,+∞),

R 7→ λ1,Dir

(

−D
d2

dξ2
− c

d

dξ
− L, (−R,R)

)

is a decreasing homeomorphism from (0,+∞) onto
(

λ1

(

−D d
2

dx2 − c d

dx − L
)

,+∞
)

.

Proof. The fact that sup
µ∈R

(κµ + µc) is finite and actually a maximum attained in

[0,+∞) is a direct consequence of:

• the evenness of µ 7→ κµ (whence, for all µ > 0, κ−µ + (−µ) c < κµ + µc);
• κ0 < 0;
• κµ

µ + c → −∞ as µ → +∞ (see the proof of Lemma 6.2).

In addition, the sign of this maximum depending on the sign c − c⋆ is given by
Lemma 6.2.

Hence it only remains to prove the equality:

λ1

(

−D
d2

dx2
− c

d

dx
− L

)

= max
µ≥0

(κµ + µc) .

To do so, we use and adapt a well-known strategy of proof (see for instance Nadin
[40]).

We recall from Theorem 4.2 the definition of the generalized principal eigenvalue:

λ1

(

−D
d2

dx2
− c

d

dx
− L

)

= sup
{

λ ∈ R | ∃n ∈ C
2
(

R,K++
)

−Dn′′ − cn′ − Ln ≥ λn
}

.

Also, there exists a generalized principal eigenfunction. We recall from Lemma 6.1
that if there exists a generalized principal eigenfunction, then there exists a gener-
alized principal eigenfunction of the form ξ 7→ e−µ⋆ξm with some constant µ⋆ ≥ 0
and m ∈ K++.

Now, (µ⋆,m) ∈ [0,+∞)× K++ satisfies:

− (µ⋆)2 Dm+ cµ⋆m− Lm = λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

m,

that is:

−
(

(µ⋆)
2
D+ L

)

m =

(

λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

− cµ⋆

)

m,
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or in other words:

λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

= κµ⋆ + cµ⋆ and
m

|m| = n [µ⋆] .

Eventually, the suitable test function to verify:

λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

≥ κµ + µc for all µ ≥ 0

is of course vµ : ξ 7→ e−µξn [µ] itself, which satisfies precisely:

−Dv′′
µ − cv′

µ − Lvµ = (κµ + µc)vµ.

�

Corollary 6.5. The quantity c⋆ is characterized by:

c⋆ = sup

{

c ≥ 0 | λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

< 0

}

= inf

{

c ≥ 0 | λ1

(

−D
d2

dξ2
− c

d

dξ
− L

)

> 0

}

.

6.2. Qualitative properties of the traveling solutions. Thanks to Lemma 6.1
and Corollary 6.3, we are now in position to establish a few interesting properties
that have direct consequences but will also be used at the end of the construction
of the traveling waves.

Lemma 6.6. Let c ∈ R and p be a bounded non-negative non-zero classical solution
of (TW [c]).

(1) If

(

lim inf
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ ∂K, then c ≥ c⋆.

(2) If

(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

∈ ∂K, then c ≤ −c⋆.

Remark. The following proof is analogous to that of Berestycki–Nadin–Perthame–Ryzhik
[10, Lemma 3.8] for the non-local KPP equation.

Proof. Obviously, the second statement is deduced from the first one by symmetry.
Hence we only prove the first one.

Let (ζn)n∈N
∈ R

N such that, as n → +∞, ζn → +∞ and at least one component
of (p (ζn))n∈N

converges to 0. Define:

pn : ξ 7→ p (ξ + ζn)

and observe that pn satisfies (TW [c]) as well. Thanks to Arapostathis–Gosh–Marcus’s
Harnack inequality [3], classical elliptic estimates (Gilbarg–Trudinger [29]) and a
diagonal extraction process, (pn)n∈N

converges in C 2
loc to 0. This proves that there

is no limit point of p at +∞ in ∂K\ {0}.
Next, we define:

p̃n : ξ 7→ p (ξ + ζn)

|p (ζn)|
and notice, again by Arapostathis–Gosh–Marcus’s Harnack inequality, that (p̃n)n∈N

is locally uniformly bounded. Since, for all n ∈ N, p̃n solves the following elliptic
system:

−Dp̃′′
n − cp̃′

n = Lp̃n − c [pn] ◦ p̃n,
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with, thanks to (H3), c [pn] → 0 locally uniformly, up to extraction (p̃n)n∈N
con-

verges in C 2
loc to a non-negative solution p̃ of (TW0 [c]). Since p̃n (0) ∈ S++ (0, 1)

for all n ∈ N, p̃ is non-negative non-zero, whence positive (Proposition 2.2).
Now, from Corollary 6.3, we deduce indeed that c ≥ c⋆. �

This result implies the nonexistence half of Theorem 1.5 i).

Corollary 6.7. For all c ∈ [0, c⋆), there is no traveling wave solution of (EKPP )
with speed c.

Now, with Corollary 3.4, c ≥ c⋆ > 0 and the fact that (t, x) 7→ p (x− ct) solves
(EKPP ), we can straightforwardly derive the uniform upper bound Theorem 1.5
ii).

Corollary 6.8. All profiles p satisfy:

p ≤ g (0) in R.

Subsequently, using Proposition 4.5 and again c ≥ c⋆ > 0 and the fact that
(t, x) 7→ p (x− ct) solves (EKPP ), we get Theorem 1.5 iii) with in fact a uniform
lower bound.

Corollary 6.9. There exists νTW > 0 such that all profiles p satisfy:
(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

≥ νTW1N,1.

Now, we establish Theorem 1.5 iv). Its proof is actually mostly a repetition of
that of Lemma 6.1.

Proposition 6.10. Let (p, c) be a traveling wave solution of (EKPP ).
Then there exists ξ ∈ R such that p is component-wise decreasing in [ξ,+∞).

Proof. Let v =
(

p′

i

pi

)

i∈[N ]
. In virtue of Arapostathis–Gosh–Marcus’s Harnack in-

equality [3], classical elliptic estimates (Gilbarg–Trudinger [29]) and invariance by
translation of (TW [c]), v is globally bounded. Define for all i ∈ [N ]:

Λi = lim sup
ξ→+∞

vi (ξ) .

Let Λ = max
i∈[N ]

Λi, so that:

(

lim sup
ξ→+∞

vi (ξ)

)

i∈[N ]

≤ Λ1N,1.

Let (ξn)n∈N
∈ R

N such that ξn → +∞ and such that there exists i ∈ [N ] such
that:

vi (ξn) → Λ as n → +∞.

Let:

p̂n : ξ 7→ p (ξ + ξn)

pi (ξn)
for all n ∈ N.

and notice, again by Arapostathis–Gosh–Marcus’s Harnack inequality, that (p̂n)n∈N

is locally uniformly bounded. Since, for all n ∈ N, p̂n solves the following elliptic
system:

−Dp̂′′
n − cp̂′

n = Lp̂n − c [pi (ξn) p̂n] ◦ p̂n,
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and, thanks to (H3), c [pi (ξn) p̂n] converges locally uniformly to 0 as n → +∞,
up to a diagonal extraction process, (p̂n)n∈N

converges in C 2
loc to a non-negative

solution p̂∞ of (TW0 [c]).
Now we repeat the second part of the proof of Lemma 6.1 and we deduce in the

end from Lemma 6.2 that p̂∞ has exactly the form:

ξ 7→ Ae−µcξn [µc] ,

with µc ∈ {µ1,c, µ2,c} if c > c⋆, µc = µc⋆ if c = c⋆, A > 0 and, most importantly,

with µc = −Λ.
Thus Λ < 0. This implies that there exists ξ ∈ R such that, for all ξ ≥ ξ,

v (ξ) ≤ −
∣

∣Λ
∣

∣

2
1N,1,

whence, by positivity of p:

p′ (ξ) ≤ −
∣

∣Λ
∣

∣

2
p (ξ) .

The right-hand side being negative, p is component-wise decreasing indeed. �

Lemma 6.11. Let c ∈ R and p be a bounded non-negative non-zero classical solu-
tion of (TW [c]).

(1) If

(

lim inf
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ ∂K, then lim
ξ→+∞

p (ξ) = 0.

(2) If

(

lim inf
ξ→−∞

pi (ξ)

)

i∈[N ]

∈ ∂K, then lim
ξ→−∞

p (ξ) = 0.

Proof. Again, the second statement being deduced from the first one by symmetry,
we only prove the first one.

Let (ζn)n∈N
∈ R

N such that, as n → +∞, ζn → +∞ and at least one component
of (p (ζn))n∈N

converges to 0. The proof of Lemma 6.6 shows that (pn)n∈N
, defined

by pn : ξ 7→ p (ξ + ζn), converges up to extraction in C 2
loc to 0.

Now, defining:

vn : ξ 7→
(

p′n,i (ξ)

pn,i (ξ)

)

i∈[N ]

,

Λi = lim sup
n→+∞

max
[−1,1]

vn,i,

Λ = max
i∈[N ]

Λi,

i ∈ [N ] such that Λi = Λ,

and (nm)m∈N
∈ N

N an increasing sequence such that vnm,i (0) → Λ as m → +∞,
we can repeat once more the argument of the proof of Lemma 6.1 and obtain:

Λp̂∞ = p̂′
∞ in (−1, 1)

(notice that, contrarily to the proof of Lemma 6.1 where this equality was proved
in R, here it only holds locally). This brings forth Λ = −µc < 0, as in the proof of
Proposition 6.10, whence pn is component-wise decreasing in [−1, 1] provided n is
large enough.

Now, assuming by contradiction:
(

lim sup
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ K+,
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that is:
(

lim sup
ξ→+∞

pi (ξ)

)

i∈[N ]

∈ K++,

we deduce from the C 1 regularity of p that, for any i ∈ [N ], there exists a sequence
(ζ′n)n∈N

∈ R
N such that:

• ζ′n → +∞ as n → +∞,
• pi (ζ

′
n) is a local minimum of pi,

• pi (ζ
′
n) → 0 as n → +∞.

Since this directly contradicts the preceding argument, we get indeed:
(

lim sup
ξ→+∞

pi (ξ)

)

i∈[N ]

= 0 =

(

lim inf
ξ→+∞

pi (ξ)

)

i∈[N ]

.

�

Lemma 6.12. Let c ∈ R. There exists ηc > 0 such that, for all bounded non-
negative classical solutions p of (TW [c]), exactly one of the following properties
holds:

(1) lim
ξ→+∞

p (ξ) = 0 or lim
ξ→−∞

p (ξ) = 0;

(2)
(

inf
R

pi

)

i∈[N ]
≥ ηc1N,1.

Remark. The following proof is again analogous to that of Berestycki–Nadin–Perthame–Ryzhik
[10, Lemma 3.4] for the non-local KPP equation.

Proof. Recall from Proposition 2.2 and Lemma 6.11 that
(

inf
R

pi

)

i∈[N ]
∈ ∂K if and

only if lim
ξ→+∞

p (ξ) = 0 or lim
ξ→−∞

p (ξ) = 0. Hence, defining Σ as the set of all

bounded non-negative classical solutions p of (TW [c]) such that:

min
i∈[N ]

inf
R

pi > 0,

this set being nonempty in virtue of Theorem 1.4, we only have to show the posi-
tivity of:

ηc = inf

{

min
i∈[N ]

inf
R

pi | p ∈ Σ

}

.

We assume by contradiction the existence of a sequence (pn)n∈N
∈ ΣN such that:

lim
n→+∞

min
i∈[N ]

inf
R

pn,i = 0.

For all n ∈ N, define:
βn = min

i∈[N ]
inf
R

pn,i > 0,

fix ξn ∈ R such that:

min
i∈[N ]

pn,i (ξn) ∈
[

βn, βn +
1

n

]

,

and define eventually:

vn : ξ 7→ 1

βn
pn (ξ + ξn) .

In virtue of Arapostathis–Gosh–Marcus’s Harnack inequality [3], classical elliptic es-
timates (Gilbarg–Trudinger [29]) and invariance by translation of (TW [c]), (vn)n∈N
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is globally bounded and, up to a diagonal extraction process, converges in C 2
loc to

some bounded limit v∞. As in the proof of Lemma 6.1, it is easily verified that v∞

is a bounded positive classical solution of (TW0 [c]). Furthermore, by definition of
(vn)n∈N

,

v∞ ≥ 1N,1 in R.

Repeating once more the argument of the proof of Lemma 6.1, we deduce that
v∞ is component-wise decreasing in a neighborhood of +∞. Thus its limit at +∞,
say m ≥ 1N,1, is well-defined. By classical elliptic estimates, m satisfies Lm = 0,
which obviously contradicts λPF (L) > 0. �

6.3. Existence of traveling waves. This whole subsection is devoted to the adap-
tation of a proof of existence due to Berestycki, Nadin, Perthame and Ryzhik [10]
and originally applied to the non-local KPP equation.

Remark. There is a couple of slight mistakes in the aforementioned proof.

(1) Using the notations of [10], the sub-solution is defined as rc = max (0, rc),
with rc chosen so that:

−cr′c ≤ r′′c + µrc − µqc (φ ⋆ qc)

and it is claimed that rc satisfies as well this inequality, in the distributional
sense. This is false: in an interval where rc = 0, we have:

−cr′c − r′′c − µrc = 0 > −µqc (φ ⋆ qc) .

As we will show, the correct sub-solution is rc = max (0, rc) with rc chosen
so that:

−cr′c ≤ r′′c + µrc − µrc (φ ⋆ qc) .

Fortunately, the function rc constructed by the authors satisfies this in-
equality as well.

(2) Later on, Φa is defined as the mapping which maps u0 to the solution of:

−cu′ = u′′ + µu0 (1− φ ⋆ u0) .

This mapping does not leave invariant the set of functions Ra defined with
the correct sub-solution. It is necessary to change Φa and to define it as
the mapping which maps u0 to the solution of:

−cu′ = u′′ + µu (1− φ ⋆ u0) .

Consequently, in order to establish that the set of functions Ra is invariant
by Φa, the elliptic maximum principle is applied not to u 7→ −cu′ − u′′ but
to:

u 7→ −u′′ − cu′ − µu

on one hand and to:

u 7→ −u′′ − cu′ − µ (1− φ ⋆ qc)u

on the other hand.

During the first three subsubsections, we fix c > c⋆.

6.3.1. Super-solution. We will use p : ξ 7→ e−µ1,cξn [µ1,c] as a super-solution (recall
from Lemma 6.2 that it is a solution of (TW0 [c])).
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6.3.2. Sub-solution.

Proposition 6.13. There exist ε > 0 such that, for any ε ∈ (0, ε), there exists
Aε ∈ (0,+∞) such that the function:

p : ξ 7→
(

max
(

e−µ1,cξn [µ1,c]i −Aεe
−(µ1,c+ε)ξn [µ1,c + ε]i , 0

))

i∈[N ]
,

satisfies:
−Dp′′ − cp′ − Lp ≤ −c [p] ◦ p in H

−1
(

R,RN
)

.

Remark. During this quite technical proof, in order to ease the reading, we denote
〈•, •〉N and 〈•, •〉1 the duality pairings of H 1

(

R,RN
)

and H 1 (R,R) respectively.
The speed c being fixed, we also omit the subscript c in the notations µ1,c and µ2,c.

Proof. For the moment, let A, ε > 0 (they will be made precise during the course
of the proof) and define:

v : ξ 7→ e−µ1ξn [µ1]−Ae−(µ1+ε)ξn [µ1 + ε] ,

p : ξ 7→
(

max
(

e−µ1ξn [µ1]i −Aεe
−(µ1+ε)ξn [µ1 + ε]i , 0

))

i∈[N ]
,

Ξ+ = p−1
(

K++
)

,

Ξ0 = p−1 (0) ,

Ξ# = R\ (Ξ+ ∪ Ξ0) .

Notice that Ξ# is a connected compact set.
Fix a positive test function ϕ ∈ H 1 (R,K++). We have to verify the following

inequality:
〈

−Dp′′ − cp′ − Lp, ϕ
〉

N
≤
〈

−c [p] ◦ p, ϕ
〉

N
.

To this end, we distinguish three cases: suppϕ ⊂ Ξ+, suppϕ ⊂ Ξ0 and suppϕ ∩
Ξ# 6= ∅. The case suppϕ ⊂ Ξ0 is trivial, with the inequality above satisfied in the
classical sense.

Regarding the case suppϕ ⊂ Ξ+, we only have to verify the inequality in the
classical sense in Ξ+ for the regular function v.

Fix temporarily ξ ∈ Ξ+. We have:

−Dv′′ (ξ)−cv′ (ξ)−Lv (ξ) = Ae−(µ1+ε)ξ
(

(µ1 + ε)2 D− c (µ1 + ε) I+ L
)

n [µ1 + ε] ,

(−c [p] ◦ v) (ξ) = −e−µ1ξc
(

e−µ1ξn [µ1]
)

◦
(

n [µ1]−Ae−εξn [µ1 + ε]
)

.

From the following equalities:
(

(µ1 + ε)
2
D+ L

)

n [µ1 + ε] = −κµ1+εn [µ1 + ε] ,

−c (µ1 + ε)n [µ1 + ε] =
κµ1

µ1
(µ1 + ε)n [µ1 + ε] ,

and from the following inequality, which is a direct consequence of (H2):

−c
(

e−µ1ξn [µc]
)

◦
(

n [µ1]−Ae−εξn [µ1 + ε]
)

≥ −c
(

e−µ1ξn [µ1]
)

◦ n [µ1] ,

it follows that it suffices to find A and ε such that:

Ae−εξ (µ1 + ε)

(

− κµ1+ε

µ1 + ε
+

κµ1

µ1

)

n [µ1 + ε] ≤ −c
(

e−µ1ξn [µ1]
)

◦ n [µ1] .

The right-hand side above being non-negative, from the properties of µ 7→ κµ

µ

exhibited during the proof of Lemma 6.2, it follows clearly that such an inequality
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is never satisfied if µ1 + ε > µ2, whence a first necessary condition on ε is ε ≤
µ2 − µ1 (notice that if ε = µ2 − µ1, then the inequality above holds if and only if
c
(

e−µ1ξn [µ1]
)

= 0, which is in general not true). Thus from now on we assume

µ < µ2 − µ1. This ensures that
κµ1+ε

µ1+ε − κµ1

µ1
> 0, whence we now search for A and

ε such that:

An [µ1 + ε] >
eεξ

(µ1 + ε)
(

κµ1+ε

µ1+ε − κµ1

µ1

)c
(

e−µ1ξn [µ1]
)

◦ n [µ1] .

Define ξ = minΞ#, so that any ξ ∈ Ξ+ satisfies necessarily ξ > ξ. Remark that
there exists i ∈ [N ] such that:

ξ =
1

ε

(

lnA+ ln

(

n [µ1 + ε]i
n [µ1]i

))

.

Now, defining α : ξ 7→ e−µ1ξ, if:

A ≥ max
i∈[N ]

(

n [µ1 + ε]i
n [µ1]i

)

,

then ξ ≥ 0 and α (ξ) ≤ 1 in
(

ξ,+∞
)

. Moreover, we have:

eεξ = (α (ξ))−
ε
µ1 ,

whence, for all i ∈ [N ]:

eεξci
(

e−µ1ξn [µ1]
)

=
ci (α (ξ)n [µ1])

(α (ξ))
ε
µ1

,

and from the C 1 regularity of c as well as (H3), the above function of ξ is globally
bounded in

(

ξ,+∞
)

, provided ε
µ1

≤ 1, by the following positive constant:

Mi = sup
ξ∈(ξ,+∞)

ci (α (ξ)n [µ1])

α (ξ)

= sup
α∈(0,1)

ci (αn [µ1])

α
.

Subsequently, if A and ε satisfy also:

ε ≤ µ1,

A ≥ max
i∈[N ]





Min [µ1]i

(µ1 + ε)
(

κµ1+ε

µ1+ε − κµ1

µ1

)

n [µ1 + ε]i



 ,

then the inequality is established indeed in Ξ+. Hence we define:

ε = min (µ2 − µ1, µ1)

and, for any ε ∈ (0, ε):

Aε = max
i∈[N ]

max





n [µ1 + ε]i
n [µ1]i

,
Min [µ1]i

(µ1 + ε)
(

κµ1+ε

µ1+ε − κµ1

µ1

)

n [µ1 + ε]i





and we assume from now on ε ∈ (0, ε) and A = Aε.
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Let us point out here a fact which is crucial for the next step: choosing ξ =
minΞ# instead of ξ = maxΞ# (which might seem more natural at first view)
implies that the differential inequality:

−Dv′′ − cv′ − Lv ≤ −c [p] ◦ v
holds classically in Ξ# ∪ Ξ+.

To conclude, let us verify the case suppϕ∩Ξ# 6= ∅. In order to ease the following
computations, we actually assume ϕ ∈ D

(

R,RN
)

(the result with ϕ ∈ H 1
(

R,RN
)

can be recovered as usual by density). By definition:

〈

−Dp′′ − cp′ − Lp+ c [p] ◦ p, ϕ
〉

N
=

N
∑

i=1

〈

−dip
′′
i
− cp′

i
−

N
∑

j=1

li,jpj + ci [p] pi, ϕi

〉

1

.

Fix i ∈ [N ] and define ξ0,i as the unique element of v−1
i ({0}) and:

Ψi =

〈

−dip
′′
i
− cp′

i
−

N
∑

j=1

li,jpj + ci [p] pi, ϕi

〉

1

.

Classical integrations by parts yield:
∫

R

p′′
i
ϕi =

∫ +∞

ξ0,i

v′′i ϕi + v′i (ξ0,i)ϕi (ξ0,i) ≥
∫ +∞

ξ0,i

v′′i ϕi,

∫

R

p′
i
ϕi =

∫ +∞

ξ0,i

v′iϕi,

whence:

Ψi ≤
∫ +∞

ξ0,i

(−div
′′
i − cv′i + ci [p] vi)ϕi −

N
∑

j=1

li,j

∫ +∞

ξ0,j

vjϕi.

As was pointed out previously, from the construction of ε and A, we know that:

−Dv′′ − cv′ + c [p] ◦ v ≤ Lv in Ξ#,

whence, with Ji = {j ∈ [N ] | ξ0,j < ξ0,i}:

Ψi ≤ −
∑

j∈Ji

∫ ξ0,i

ξ0,j

li,jvjϕi +
∑

j∈[N ]\Ji

∫ ξ0,j

ξ0,i

li,jvjϕi.

Eventually, recalling that vj (ξ) > 0 if ξ > ξ0,j and vj (ξ) < 0 if ξ < ξ0,j , the
inequality above yields Ψi ≤ 0, which ends the proof. �

6.3.3. The finite domain problem. Let R > 0 and define the following truncated
problem:

{

−Dp′′ − cp′ = Lp− c [p] ◦ p in (−R,R) ,
p (±R) = p (±R) .

(TW [R, c])

Lemma 6.14. Assume:

Dc (v) ≥ 0 for all v ∈ K.

Then there exists a non-negative non-zero classical solution pR of (TW [R, c]).

Remark. The new assumption made here ensures that the vector field c is non-
decreasing in K, in the following natural sense: if 0 ≤ v ≤ w, then 0 ≤ c (v) ≤
c (w).
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Proof. Fix arbitrarily ε ∈ (0, ε), define consequently p and then define the following
convex set of functions:

F =
{

v ∈ C
(

[−R,R] ,RN
)

| p ≤ v ≤ p
}

.

Recall that Figueiredo–Mitidieri [23] establishes that the elliptic weak maximum
principle holds for a weakly and fully coupled elliptic operator with null Dirichlet
boundary conditions if this operator admits a positive strict super-solution. Since,
for all v ∈ C

(

[−R,R] ,RN
)

such that 0 ≤ v ≤ p, we have by (H2):

−Dp′′ − cp′ − Lp+ c [v] ◦ p ≥ −Dp′′ − cp′ − Lp ≥ 0,

p (±R) ≫ 0,

it follows that every operator of the following family:
(

D
d2

dξ2
+ c

d

dξ
+ (L− diagc [v])

)

0≤v≤p

supplemented with null Dirichlet boundary conditions at ±R satisfies the weak
maximum principle in (−R,R).

Define the map f which associates with some v ∈ F the unique classical solution
f [v] of:

{

−Dp′′ − cp′ = Lp− c [v] ◦ p in (−R,R)
p (±R) = p (±R) .

The map f is compact by classical elliptic estimates (Gilbarg–Trudinger [29]).
Let v ∈ F . By monotonicity of c, the function w = f [v] − p satisfies:

−Dw′′ − cw′ − Lw ≥ −c [v] ◦ f [v] + c [p] ◦ p
≥ −c [v] ◦ f [v] + c [v] ◦ p
≥ −c [v] ◦w

with null Dirichlet boundary conditions at ±R. Therefore, in virtue of the weak

maximum principle applied to D d
2

dξ2 + c d

dξ + (L− diagc [v]), f [v] ≥ p in (−R,R).

Next, since it is now established that f [v] ≥ 0, we also have by (H2):

−Dp′′ − cp′ − Lp = 0

≥ −c [v] ◦ f [v]
= −Df [v]′′ − cf [v]′ − Lf [v] ,

p (±R) ≥ p (±R) = f [v] (±R) ,

whence p ≥ f [v] follows from the weak maximum principle applied this time to

D d
2

dξ2 + c d

dξ + L.

Thus p ≤ f [v] ≤ p and consequently f (F ) ⊂ F .
Eventually, in virtue of the Schauder fixed point theorem, f admits a fixed point

pR ∈ F , which is indeed a classical solution of (TW [R, c]) by elliptic regularity. �

Remark. Using the exact same set F and the exact same pair of super- and sub-
solutions, Lemma 6.14 can be proved with Pao’s existence result [42, Chapter 8,
Theorem 10.5] (see the proof of Proposition 5.3). These two proofs are not different
since Pao’s proof uses the Schauder fixed point theorem as well. Our choice to give
the proof in this form instead of using Pao’s result is made in order to be as
reminiscent as possible of Berestycki–Nadin–Perthame–Ryzhik [10].
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6.3.4. The infinite domain limit and the minimal wave speed. The speed c is not
fixed anymore.

The following uniform upper estimate is a direct consequence of Proposition 3.5.

Corollary 6.15. There exists R⋆ > 0 such that, for any c > c⋆, any R ≥ R⋆ and
any non-negative classical solution p of (TW [R, c]):

(

max
[−R,R]

pi

)

i∈[N ]

≤ g (0) .

We are now in position to prove the second half of Theorem 1.5 i).

Proposition 6.16. Assume:

Dc (v) ≥ 0 for all v ∈ K.

Then for all c ≥ c⋆, there exists a traveling wave solution of (EKPP ) with speed
c.

Remark. Of course, it would be interesting to exhibit other additional assumptions
on c sufficient to ensure existence of traveling waves for all c ≥ c⋆. In view of known
results about scalar multistable reaction–diffusion equations (we refer for instance
to Fife–McLeod [26]), some additional assumption should in any case be necessary.

Proof. Hereafter, for all c > c⋆ and all R > 0, the triplet
(

p,p,pR

)

constructed in

the preceding subsections is denoted
(

pc,pc
,pR,c

)

.

For all c > c⋆, thanks to Corollary 6.15, the family (pR,c)R>0 is uniformly
globally bounded. By classical elliptic estimates (Gilbarg–Trudinger [29]) and a
diagonal extraction process, we can extract a sequence (Rn,pRn,c)n∈N

such that,

as n → +∞, Rn → +∞ and pRn,c converges to some limit pc in C 2
loc. As expected,

pc is a bounded non-negative classical solution of (TW [c]). The fact that its
limit as ξ → +∞ is 0, as well as the fact that pc is non-zero whence positive
(Proposition 2.2), are obvious thanks to the inequality p

c
≤ pc ≤ pc. At the other

end of the real line, Corollary 6.7 clearly enforces:
(

lim inf
ξ→−∞

pc,i (ξ)

)

i∈[N ]

∈ K
++ ⊂ K

+.

Thus (pc, c) is a traveling wave solution.
In order to construct a critical traveling wave (pc⋆ , c

⋆), we consider a decreasing

sequence (cn)n∈N
∈ (c⋆,+∞)

N
such that cn → c⋆ as n → +∞ and intend to apply

a compactness argument to a normalized version of the sequence (pcn)n∈N
.

From Corollary 6.9 and Corollary 6.15, we deduce the existence of a constant
ν > 0, independent on n, such that:

lim inf
ξ→−∞

min
i∈[N ]

pcn,i (ξ) ≥ ν.

Recall from Lemma 6.12 the definition of ηc > 0. For all n ∈ N the following
quantity is well-defined and finite:

ξn = inf

{

ξ ∈ R | min
i∈[N ]

pcn,i (ξ) < min
(ν

2
,
ηc⋆

2

)

}

.

We define the normalized sequence of profiles by:

p̃cn : ξ 7→ pcn (ξ + ξn) for all n ∈ N.
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A translation of a profile of traveling wave being again a profile of traveling wave,
(p̃cn , cn)n∈N

is again a sequence of traveling wave solutions. Notice the following
two immediate consequences of the normalization:

min
i∈[N ]

p̃cn,i (0) = min
(ν

2
,
ηc⋆

2

)

for all n ∈ N,

inf
ξ∈(−∞,0)

min
i∈[N ]

p̃cn,i (ξ) ≥ min
(ν

2
,
ηc⋆

2

)

for all n ∈ N.

We are now in position to pass to the limit n → +∞. The sequence (p̃cn)n∈N

being uniformly bounded, it admits, up to a diagonal extraction process, a bounded
non-negative limit pc⋆ in C 2

loc. Since cn → c⋆, pc⋆ satisfies (TW [c⋆]). The normal-
ization yields:

min
i∈[N ]

pc⋆,i (0) = min
(ν

2
,
ηc⋆

2

)

,

inf
ξ∈(−∞,0)

min
i∈[N ]

pc⋆,i (ξ) ≥ min
(ν

2
,
ηc⋆

2

)

.

Consequently,
(

lim inf
ξ→−∞

pc⋆,i (ξ)

)

i∈[N ]

∈ K++

and, according to Lemma 6.12,

lim
ξ→+∞

pc⋆ (ξ) = 0.

The pair (pc⋆ , c
⋆) is a traveling wave solution indeed and this ends the proof. �

7. Spreading speed

In this section, we assume λPF (L) > 0, fix x0 ∈ R and a non-negative non-zero
v ∈ Cb

(

R,RN
)

and define u0 = v1(−∞,x0) and the unique classical solution u of
(EKPP ) set in (0,+∞)× R with initial data u0, in order to prove Theorem 1.6.

Remark. This type of spreading result, as well as its proof by means of super- and
sub-solutions, is quite classical (we refer to Aronson–Weinberger [5] and Beresty-
cki–Hamel–Nadin [8] among others). Still, we provide it to make clear that the lack
of comparison principle for (EKPP ) is not really an issue.

Of course, for the scalar KPP equation, much more precise spreading results
exist (for instance the celebrated articles by Bramson [18, 17] using probabilistic
methods). Here, our aim is not to give a complete description of the spreading
properties of (EKPP ) but rather to illustrate that it is, once more, very similar to
the scalar situation and that further generalizations should be possible.

7.1. Upper estimate.

Proposition 7.1. Let c > c⋆ and y ∈ R. We have:
(

lim
t→+∞

sup
x∈(y,+∞)

ui (t, x+ ct)

)

i∈[N ]

= 0.

Proof. By definition of u0, there exists ξ1 ∈ R such that the following positive
solution of (TW0 [c

⋆]):

p : ξ 7→ e−µc⋆ (ξ−ξ1)n [µc⋆ ]
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(see Lemma 6.2) is additionally such that p − u0 is positive. Then, defining u :
(t, x) 7→ p (x− c⋆t), we obtain by (H2):

∂tu−D∂xxu− Lu = 0

≥ −c [u] ◦ u
= ∂tu−D∂xxu− Lu

and then, applying the parabolic strong maximum principle to the operator ∂t −
D∂xx −L, we deduce that u−u is non-negative in [0,+∞)×R. Consequently, for
all x ∈ R, t > 0 and c > c⋆:

0 ≤ u (t, x+ ct) ≤ p (x+ (c− c⋆) t) ,

and by component-wise monotonicity of p, for all y ∈ R and all x ≥ y,

u (t, x+ ct) ≤ p (y + (c− c⋆) t) ,

which gives the result. �

7.2. Lower estimate.

Proposition 7.2. Let c ∈ [0, c⋆) and I ⊂ R be a bounded interval. We have:

(

lim inf
t→+∞

inf
x∈I

ui (t, x+ ct)

)

i∈[N ]

∈ K
++.

Proof. Recall Lemma 6.4 and define:

λc = −max
µ≥0

(κµ + µc) > 0

and, using (H3):

αc = max

{

α > 0 | ∀n ∈ [0, α]
N

max
i∈[N ]

ci (αn) ≤
λc

2

}

.

Let Rc be a sufficiently large radius satisfying:

λ1,Dir

(

−D
d2

dξ2
− c

d

dξ
−
(

L− λc

2
I

)

, (−Rc, Rc)

)

< 0.

Let uc : (t, y) 7→ u (t, y + ct). It is a solution of:

∂tuc −D∂yyuc − c∂yuc = Luc − c [uc] ◦ uc in (0,+∞)× R

with initial data u0. Just as in the proof of Proposition 4.5, we can use Rc, αc and
Földes–Poláčik’s Harnack inequality [28] to deduce:

(

lim inf
t→+∞

inf
x∈I

ui (t, x+ ct)

)

i∈[N ]

∈ K++.

This ends the proof. �
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8. Estimates for the minimal wave speed

In this section, we assume λPF (L) > 0,

d1 ≤ d2 ≤ . . . ≤ dN ,

and prove the estimates provided by Theorem 1.7.
Recall as a preliminary that for all r > 0 and d > 0, the following equality holds:

2
√
rd = min

µ>0

(

µd+
r

µ

)

.

Proposition 8.1. We have:

2
√

d1λPF (L) ≤ c⋆ ≤ 2
√

dNλPF (L).

If d1 < dN , both inequalities are strict. If d1 = dN , both inequalities are equali-
ties.

Proof. Since d11N,1 ≤ d ≤ dN1N,1, we have for all µ > 0:

µd1 +
1

µ
λPF (L) ≤ λPF

(

µD+
1

µ
L

)

≤ µdN +
1

µ
λPF (L) ,

whence we deduce:

2
√

d1λPF (L) ≤ c⋆ ≤ 2
√

dNλPF (L).

On one hand, it is well-known that if d1 < dN , then the above inequalities are
strict. On the other hand, if d1 = dN , we have of course:

λPF

(

µD+
1

µ
L

)

= µd1 +
1

µ
λPF (L) ,

whence the equality. �

Recall from Lemma 6.2 that n [µc⋆ ] is the unit positive eigenvector associated
with λPF

(

µ2
c⋆D+ L

)

.

Proposition 8.2. For all i ∈ [N ] such that li,i > 0, we have:

c⋆ > 2
√

dili,i.

Proof. The characterization of c⋆ (see Lemma 6.2) yields:

µc⋆di +
li,i
µc⋆

= c⋆ − 1

µc⋆

N
∑

j 6=i,j=1

li,j
n [µc⋆ ]j
n [µc⋆ ]i

for all i ∈ [N ] ,

whence, if li,i > 0:

c⋆ ≥ 2
√

dili,i +
1

µc⋆

N
∑

j 6=i,j=1

li,j
n [µc⋆ ]j
n [µc⋆ ]i

> 2
√

dili,i.

�

Recall the existence of a unique decomposition of L of the form:

L = diagr+M with r ∈ R
N and MT1N,1 = 0.

Remark. Regarding the Lotka–Volterra mutation–competition–diffusion ecological
model, the decomposition L = diagr +M is ecological meaningful: r is the vector
of the growth rates of the phenotypes whereas M describes the mutations between
the phenotypes.
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Proposition 8.3. Let q =

(

N
∑

i=1

n [µc⋆ ]i

)−1

n [µc⋆ ] such that qT1N,1 = 1. Let:

(〈d〉 , 〈r〉) =
(

dTq, rTq
)

∈ (0,+∞)× R.

If 〈r〉 ≥ 0, then:

c⋆ ≥ 2
√

〈d〉 〈r〉.
Proof. Using (r,M), the characterization of c⋆ (see Lemma 6.2) is rewritten as:

(

µ2
c⋆D+ diagr

)

n [µc⋆ ] +Mn [µc⋆ ] = µc⋆c
⋆n [µc⋆ ] .

Summing the lines of this system, dividing by
N
∑

i=1

n [µc⋆ ]i and defining 〈d〉 and 〈r〉
as in the statement yields:

µ2
c⋆ 〈d〉+ 〈r〉 = µc⋆c

⋆.

The equation 〈d〉µ2 − c⋆µ+ 〈r〉 = 0 admits a real positive solution µ if and only if

(c⋆)
2 − 4 〈d〉 〈r〉 ≥ 0. �
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