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Random matrices and the Potts model on random graphs

Alice Guionnet

Abstract

These are the lecture notes for a mini-course given in St. Petersburg School in Probability
and Statistical Physics during June 18-29, 2012. The purpose of this course is to explain the
uses of random matrices to compute the partition function of the Potts model taken on (certain)
random planar maps. We start by explaining how matrix integrals can be used to enumerate
maps, that is graphs which are sorted by the genus of the surface on which they can be properly
embedded. We then see how this can be elaborated to enumerate loop models, and their relation
with the Potts model on some random planar maps. Finally we use this relation to solve the
combinatorial problem of computing generating functions of the Potts model.

Introduction

The connection between matrix integrals and the enumeration of maps goes back to the
work of ’t Hooft and Brézin-Parisi-Itzykson-Zuber in the seventies. The main observation is that
if one expands formally Gaussian matrix integrals in terms of Gaussian moments and use Feyn-
man diagrams representation of the moments, then Gaussian matrix integrals can be expressed
in terms of numbers which in fact corresponds to the enumeration of certain graphs. Moreover,
if one consider the inverse of the dimension of these matrices as a parameter, the coefficients of
the series enumerate maps, that is graphs which are sorted by the genus of the surface on which
they can be properly embedded. This is often called the “topological expansion”. Topological
expansions were since then used in diverse contexts in physics or mathematics ; after the enume-
ration of planar triangulations following Brézin, Itzykson, Parisi and Zuber (who proposed this
matrix approach to give a new proof of a combinatorial result by Tutte on the enumeration of
rooted planar triangulation and quadrangulation), it was used to study the enumeration of the
Ising model on random graph (Mehta), of meanders (Di Francesco ...), of loop configurations
and the O(n) model (Eynard, Kostov), and applied to knot theory (Zinn-Justin, Zuber)... The
full topological expansions were used in mathematics in the work of Harer and Zagier (1986)
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2 ALICE GUIONNET

in their article on the Euler characteristics of the moduli space of curves, and the famous work
of Kontsevich. It was also seen as a tool to construct invariants based on its relation with
algebraic geometry and topological string theory (the famous Dijkgraaf-Vafa conjecture states
that Gromov-Witten invariants generating functions should be matrix integrals).

In these lecture notes we discuss the uses of topological expansions to study the Potts model
on random graphs, that is some (shaded) elaboration of the so-called O(n) model. We will start
by describing the topological expansion and how they can be derived from Gaussian calculus,
that is Wick formula. To enumerate interesting graphs, that is graphs with several vertices, it
turns out that one needs to compute Laplace transforms of traces of polynomials of random
matrices. Such integrals might then diverge and their relations with maps enumeration be only
formal. We shall discuss the relation between topological expansions and matrix integrals via a
third mathematical concept, that is the so-called loop (or Schwinger-Dyson’s) equations. These
equations are simply derived from the matrix integrals via integration by parts. They correspond
to induction relation in the enumeration of maps, as first introduced by Tutte to enumerate
planar graphs. We shall describe how these equations give an alternative bridge between matrix
integrals and the enumeration of maps which in fact allows to turn formal equalities into
asymptotic equalities. Based on this point, one can define properly matrix integrals whose
asymptotics are given by generating functions for the enumeration of planar connected graphs.

Finally, we will specialize this relation to analyze the Potts model on certain random planar
graphs. This connection is based on the interpretation of the Potts model as a loop model.
Loop models naturally appear in a variety of statistical models where the loops represent the
configuration of boundaries of some random regions. Perhaps the most famous of these is the
so-called O(n) loop model which can be described as follows.

Consider the two-sphere S2, and fix r disjoint disks Dj : 1 ≤ j ≤ r inside of S2. Each disk
is given an even number of boundary points, one of which is marked. By a tangle we mean (the
isotopy class of) any possible collection of non-intersecting strings in S2 \ (D1∪· · ·∪Dr) joining
the boundary points.

•

•

•

•

•

•

•

•

•

•

•

•
∗ ∗

∗

By a vertex (also called a Temperley–Lieb diagram) we mean an (isotopy class of) arbitrary
non-intersecting collection of strings drawn inside a disk with a given even number of boundary
points (one of which is marked).

By a configuration P built on vertices D1, . . . , Dr we mean a tangle Q into which the
vertices D1, . . . , Dr have been inserted (so that Dj is inserted into Dj in a way that boundary
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points match, and marked boundary points match). In the O(n) model, the vertices are all
assumed to be copies of the same vertex D : Let D be given by the following picture :

∗

The outer boundary is represented by a thin line. The boundary contains 4 boundary points,
which are joined inside of the disk by non-intersecting strings (represented by thick lines).
One of the boundary points is marked by a ∗ to distinguish it from the others. A possible
configuration is drawn below :

Fix a number δ ( often called the weight loop, or the fugacity) and associate to a configu-

ration P its value given by δ#loops where #loops is the number of (closed) loops that can be
seen in the configuration after removing the outer boundary of each Dj . One is interested in
understanding the partition function

(1) fδ(t) =

∞∑
r=0

tr

r!

∑
P∈P (r)

δ# loops in P

where the sum is taken over the set P (r) of all configurations built on r copies of D (note here
that the vertices and boundary points are labeled, so configurations corresponding to different
matchings of the labeled boundaries of vertices and the tangle give rise to different terms in
the summation). The partition function is simply a generating function for the enumeration of
configurations with a given number of loops.

The loop model we described has been widely studied, in part because of its connection with
the critical Potts model. We shall consider a slightly more complicated model which is shaded.
We will see that the partition function for such a model can be expressed as a matrix integral
for a continuum of values of the fugacity δ, hence allowing to identify uniquely this generating
function by analyticity. We will finally show that these matrix integrals can be computed, hence
giving a way to compute the partition function for the Potts model based on estimating matrix
integrals.
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1. Random matrices and the enumeration of maps

The asymptotics of moments of random matrices are well known to be related with the
enumeration of non-crossing pair partitions since the work of Wigner. In fact, it turns out
that when the entries are Gaussian, the moments can be written as a generating function for
the enumeration of pair-partitions sorted by their “topology”, in the sense that they can be
represented by a graph with one vertex which can be properly embedded into a surface of given
genus. This fact is nicely described in the review of Zvonkin [Zvo97] . We shall summarize this
relation in this section. We first specify how we enumerate graphs and define their genus (in
particular we shall introduce the notion of maps) and then discuss the relation between their
enumeration and matrix moments.

1.1. Maps. A map is a connected graph which is properly embedded into a surface, that
is embedded in such a way that its edges do not cross and the faces (obtained by cutting the
surface along the edges of the graph) are homeomorphic to disks. The genus of a map is the
genus of such a surface. By Euler formula, we have

2− 2g = #{vertices}+ #{faces} −#{edges} .
Be careful that in the definition above the external face is counted. Here is a genus zero (or
planar) map with two vertices, 3 edges and 3 faces

and here is a genus one map with two vertices, 3 edges and one face :

1

As surfaces come with an orientation, any given cyclic order at the ends of edges of a graph
around each vertex uniquely determines the imbedding of the graph into a surface.

Hence, to enumerate maps, we shall be given vertices equipped with “half-edges” and a
cyclic order at the ends of their edges. Edges will just be created by matching the end points of
the half-edges. As we shall count labeled maps, we shall assume also that each vertex is given
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a root, that is a marked edge. Being given a collection of such vertices with labelled half-adges,
we shall count the number of different matchings (different in the sense that they have at least
one matching corresponding to different labels) of the end points of these half-edges so that the
resulting graph is a map with a given genus.

In fact, to make the connection with matrix moments, it will be convenient to associate
these vertices with words in non-commutative variables. This connection is maybe easier to
understand directly in the case of vertices with colored half-edges (which will lead to the
enumeration of colored maps). One associates (bijectively) to any word in d non-commutative
variables either ordered colored points on the real line or a “vertex with colored half-edges” in
order to make the difference between the different matrices in the word. Namely, associate to

q(X1, . . . , Xd) = Xi1Xi2 · · ·Xip

a “star of type q” given by the vertex with p colored half-edges drawn on the sphere so that
the first branch has color i1, the second of color i2 etc until the last which has color ip. For
instance, if q(X1, X2) = X2

1X
2
2X

4
1X

2
2 and 1 is associated to red whereas 2 is associated with

blue, the star of type q is a vertex with first two half-edges which are red, then two blue, four
red and finally two blue.

We will denote for k = (k1, · · · , kn) and monomials q1, . . . , qn,

Mg((qi, ki), 1 ≤ i ≤ n) = #{ maps with genus g

and ki stars of type qi, 1 ≤ i ≤ n}.
the number of maps with genus g build on ki stars of type qi, 1 ≤ i ≤ n, by matching the half-
edges of the stars which have the same color. The enumeration is done up to homeomorphisms.
By convention, we will denote M0(1) = 1.

Note that stars can also be seen by duality as polygons with colored sides and one mark
side, where each end point of the half-edge is replaced by a perpendicular segment of the same
color. Maps are then “polygonizations” of a surface with given genus by polygons of prescribed
nature. For instance, for the matrix model with q(X) = X4, the stars are vertices with valence
four, which in the dual picture are just square. We are thus counting quadrangulations of a
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surface with given genus and a given number of squares. The counting is done with labeled
sides.

1.2. Random matrices and the enumeration of partitions. Let XN be a matrix
following the Gaussian Unitary Ensemble, that is a N×N Hermitian matrix with i.i.d centered
Gaussian entries with covariance N−1 :

XN (k`) = X̄N (`k) =
1√
2

(xk` + iyk`), 1 ≤ k ≤ ` ≤ N ,

XN (kk) = xkk , 1 ≤ k ≤ N ,

with

dPN (XN ) =
1

ZN
exp{−N

2

∑
k≤`

(x2
k` + y2

k`)}
∏

dxk`dyk`

=
1

ZN
exp{−N

2
Tr((XN )2)}dXN

The main result of this section is the following

Theorem 1. For any integer number p ≥ 0

(2) E[
1

N
Tr((XN )p)] =

∑
g≥0

1

N2g
Mg(p)

where Mg(p) = Mg(x
p) is the number of maps with genus g build on one vertex of degree p.

In the definition above, the vertex is given the structure of a star of type xp, that is, is
rooted and with labelled half-edges.

One of the corollary of this theorem, which is valid under much more general assumptions
on the entries of XN , is Wigner theorem [Wig55].

Corollary 2 (Wigner). For any p ≥ 0,

lim
N→∞

E[
1

N
Tr((XN )p)] = Cp/2 =

∫
xpdσ(x) ,

with dσ(x) = 1
2π

√
4− x21|x|≤2dx the semi-circle distribution and Cp/2 = 0 if p is odd and

otherwise equals the Catalan number, that is the number of non-crossing pair partitions of p
points.

The proof of this result relies on Wick calculus which in fact provides not only the asymp-
totic of traces of words in random matrices but also the whole N expansion. Indeed, Wick
formula shows that if (G1, . . . , G2p) is a centered Gaussian vector, then

E[G1 · · ·G2p] =
∑
π

∏
(s,r) block of π

E[GsGr] ,
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where we sum over all pair partitions π. To prove the theorem, one simply expands the trace
in terms of the matrix entries

E[
1

N
Tr((XN )p)] =

1

N

N∑
i(1),...,i(p)=1

E[XN
i(1)i(2)X

N
i(2)i(3) · · ·X

N
i(p)i(1)] .

Using Wick formula with E[XN
ijX

N
k`] = N−11ij=`k, one gets

E[XN
i(1)i(2) · · ·X

N
i(p)i(1)] =

1

Np/2

∑
pair partition π

∏
(k,`) block of π

1i(k)i(k+1)=i(`+1)i(`)

The later matchings can be conveniently represented by seeing the Gaussian entries as the end
points of half-edges of a vertex with valence p with one marked vertex (that is a star of type
xp)

i(1)

i(1)         i(2)

i(2)

i(3)

i(3)

i(4)

i(4)i(5)

i(5)

i(6)

i(6)

A face is obtained by cutting the graph along the edges. As E[XN
ijX

N
k`] = N−11ij=`k, only

matchings so that indices are constant along the boundary of the faces contribute to the sum.
Since indices are constant along the boundaries of the faces and take any value between 1 and
N , we conclude that

(3) E[
1

N
Tr((XN )p)] =

∑
graph 1 vertex

degree p

N#faces−p/2−1

But, by Euler formula, any connected graph satisfies that its genus is given by

2− 2g = #{vertices}#{faces} −#{edges} = 1 + #{faces} − p/2

so that

#faces− p/2− 1 = −2g ≤ 0

with equality only if the graph is planar. This proves the theorem and then taking the limit N
going to infinity yields

lim
N→∞

E[
1

N
Tr((XN )p)] = #{planar graph with 1 vertex with degree p}
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Theorem 1 can be easily generalized to several matrices provided one considers colored
maps.

Theorem 3. For any monomial q, in d non-commutative letters, we have

E[
1

N
Tr(q(XN

1 , X
N
2 , · · · , XN

d ))] =
∑
g≥0

1

N2g
Mg(q)

where M(g, q) is the number of matching of the edges of the star of type q with the same color
so that the resulting graph is properly embedded into a surface of genus g.

Indeed, the very same argument holds as in the one matrix (one color) case, except that
since the covariance between entries of two different matrices vanishes, pairing between half-
edges of different colors do not contribute to the sum.

As a corollary we can obtain Voiculescu’s theorem :

Corollary 4. For any monomial q,

σd(q) = lim
N→∞

E[
1

N
Tr(q(XN

1 , X
N
2 , · · · , XN

d ))]

is the number of planar maps build on one star of type q by matching only branches of the same
color.
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In fact, Voiculescu’s theorem asserts that the limit σd is the “non-commutative law of d free
semi-circular variables”. This means that if we restrict it to polynomials in one variable, it is
given by the semi-circle distribution, whereas more general moments can be computed from the
following property which defines freeness :

σd(q1(Xi1)q2(Xi2) · · · q`(Xi`)) = 0

for any monomials qi so that σd(qk(Xi)) =
∫
qk(x)dσ(x) vanishes and any indices ij ∈ {1, . . . , d}

so that ik 6= ik+1. It is not hard to verify that this relation is satisfied by the the limit given
in the corollary from the property of planar maps as it amounts to show that any planar
map build on a star of type q must leave at least one subset of connected one-color half-edges
(corresponding to each of the monomials qi) to have only self-matchings. This can be checked
by induction over the degree of q.

1.3. Topological expansions. Topological expansions build upon the formula for mo-
ments of Gaussian (GUE) matrices which are given by (2). This formula was proved in (3) based
on Wick calculus. Brézin-Itzykson-Parisi-Zuber [BIPZ78], after the work of ’t Hooft [Hoo74],
had the idea in the seventies to develop further this remarkable identity between matrix mo-
ments and the enumeration of graphs to enumerate maps with several vertices. It turns out that
such topological expansions are closely related with the so-called loop (or Schwinger-Dyson)
equations which are satisfied by matrix models but also can be seen as topological recursion
relations. The loop equations describe inductions between matrix moments, which in fact are
the same as those satisfied by maps. At the first order, these equations are just given by a
kind of non-commutative integration by parts formula. The next orders equations appear as
derivatives of the first loop equation taken at finite dimension, and allow to describe the full
topological expansion. Hence, as put forward by B. Eynard, the loop equations can be used as
the key to construct topological expansions and therefore interesting geometric quantities and
invariants.

In this lecture we describe more precisely the relation between matrix integrals, topological
expansions and loop equations. Based on this relation, we show that topological expansions can
be derived in much greater generality than those related with matrices with Gaussian entries and
Feynmann diagrams, namely in models for which loop equations given by a non-commutative
derivative are valid. We detail the case of β ensembles and integrals over the unitary group.

1.3.1. Topological expansions and Wick formula. The first natural idea to count maps with
several vertices is to consider the expectation of a product of traces of words as follows. Let
q1, · · · , qn be monomials in d non-commutative variables. Then, applying Gaussian calculus
(that is Wick formula), we find that if PN is the law of the GUE (see section 1)∫ n∏

i=1

(NTr(qi(X1, · · · , Xm)))dPN (X1) · · · dPN (Xm)

=
∑
g∈N

∑
c≥1

1

N2g−2c
#{Gg,c((qi, 1), 1 ≤ i ≤ n)}
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Here #{Gg,c((qi, 1), 1 ≤ i ≤ n} is the number of graphs (up to homeomorphism) that can be
build on stars of type qi, 1 ≤ i ≤ n with exactly c connected components so that the sum of
their genera is equal to g.

Hence, such expectations are related with the enumeration of graphs with several vertices
but unfortunately do not sort the connected graphs. We next show how this can be done.

1.3.2. Matrix models and topological expansions. To enumerate connected graphs, and more
precisely maps, the idea of Brézin, Itzykson, Parisi and Zuber [BIPZ78] is to consider partition
functions instead of moments, that is logarithm of Laplace transforms of traces of monomials.

Consider q1, · · · , qn monomials. Then, [BIPZ78] shows that

logZ
∑
tiqi

N := log

(∫
e
∑n
i=1 tiNTr(qi(X1,··· ,Xm))dPN (X1) · · · dPN (Xm)

)

(4) =
∑
g≥0

1

N2g−2

∑
k1,··· ,kn∈N

n∏
i=1

(ti)
ki

ki!
Mg((qi, ki), 1 ≤ i ≤ n)

where the equality means that derivatives of all orders at ti = 0, 1 ≤ i ≤ n, match. The proof
of this formula is simply done by developing the exponential and recalling that the logarithmic
function will yield cumulants, and therefore connected graphs. Adding in the potential a term
tq, taking a formal derivative in t at the origin shows that if V =

∑
tiqi(X1, . . . , Xm) then for

any monomial q ∫
1

N
Tr(q(XN

1 , . . . , X
N
d ))dPVN (XN

1 , . . . , X
N
d )

(5) =
∑
g≥0

1

N2g−2

∑
k1,··· ,kn∈N

n∏
i=1

(ti)
ki

ki!
Mg((q, 1); (qi, ki), 1 ≤ i ≤ n)

whereMg((q, 1); (qi, ki), 1 ≤ i ≤ n) is the number of maps of genus g build on one star of type
q and ki stars of type ki, 1 ≤ i ≤ n, and

dPVN (XN
1 , . . . , X

N
d ) =

1

ZVN
exp{NTr(V (XN

1 , . . . , X
N
d ))}dPN (X1) · · · dPN (Xm) .

At this point the equality is formal but it can in fact be made asymptotic as soon as
reasonable assumptions are made to ensure that the integral converges and that the parameters
ti are small enough to guarantee the convergence of the series. Equality (5) given asymptotically
up to any order of correctionN−k is called an asymptotic topological expansion. We next discuss
how to obtain such asymptotic expansions, and how the loop equations can play a key role in
deriving the topological expansions.

1.3.3. Loop equations and asymptotic expansions. Let us first describe loop equations for
independent GUE matrices and in fact more generally for the distribution

dPVN (XN
1 , . . . , X

N
d ) =

1

ZVN
exp{NTr(V (XN

1 , . . . , X
N
d ))}dPN (XN

1 ) · · · dPN (XN
d ) .
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Hereafter, PVN (XN
1 , . . . , X

N
d ) shall be a well defined probability measure on the space of Her-

mitian matrices so that we will assume that the function φV which associates to the entries of
the self-adjoint matrices XN

1 , . . . , X
N
d the real number

(6) φV (XN
1 , . . . , X

N
d ) :=

1

2
Tr(
∑

(XN
i )2)− Tr(V (XN

1 , . . . , X
N
d ))

is strictly convex, with Hessian bounded below by cI for some c > 0, and this for any integer
dimension N . For potentials which could hardly satisfy such an hypothesis (for instance V (x) =
tx3) we might add a cutoff on the spectral radius of the matrices and assumed the ti’s are small
enough so that the probability dPVN (XN

1 , . . . , X
N
d ) keeps a strictly log-concave distribution. We

shall not discuss this point here and refer the interested reader to [GMS06].

The first loop equation under the law PNV can be written as follows. It simply says that for
all polynomial function P

(7)

∫
1

N
Tr(P (Xi −DiV ))dPNV (XN

1 , . . . , X
N
d )

=

∫
1

N
Tr⊗ 1

N
Tr(∂iP )dPNV (XN

1 , . . . , X
N
d ) .

Here, Di and ∂i are derivatives on the space C〈X1, . . . , Xd〉 of polynomials in d non-commutative
variables defined as follows. Define the cyclic gradient as the linear derivative on the set of
polynomial whose restriction to monomials is given by

Di(Xi1 · · ·Xip) =
∑
i`=i

Xi`+1
· · ·XipXi1 · · ·Xi`−1

and observe that for any (sr) ∈ {1, . . . , N}2, since in the complex setting ∂Xi(sr)Xj(s
′r′) =

1i=j1sr=r′s′ ,

∂Xi(sr)Tr(P (X1, . . . , Xd)) = (DiP )(X1, . . . , Xd)(sr) .

Moreover, the non-commutative derivative ∂i is given by

∂i(Xi1 · · ·Xip) =
∑
i`=i

Xi1 · · ·Xi`−1
⊗Xi`+1

· · ·Xip

and observe similarly that

∂Xi(sr)(P (X1, . . . , Xd))(s
′r′) = (∂iP )(X1, . . . , Xd)(s

′r, sr′) .

Therefore the classical integration by parts yields, at least when no cutoff is present, the follo-
wing formula for any polynomial function P and any sr, s′r′

N

∫
P (s′r′)(Xi −DiV )(sr)dPNV =

∫
P (s′r′)∂Xi(sr)NTr(

1

2

∑
X2
i − V )dPNV (XN

1 , . . . , X
N
d )

=

∫
∂Xi(sr)P (s′r′)dPNV (XN

1 , . . . , X
N
d )

=

∫
(∂iP )(s′r, sr′)dPNV (XN

1 , . . . , X
N
d )(8)
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Taking r′ = s and s′ = r and summing over the indices yields the Schwinger-Dyson (or loop)
equation (7).

Let us show how to deduce the first order asymptotics of the measure PVN from the first
loop equation (7). In the case where V is strictly convex (in the sense described in equation 6),
we can argue by standard concentration of measure theory and Brascamp Lieb inequality (see
[AGZ10] and [Gu09]) that there exists a finite constant C(which only depends on c) so that

for any monomial q of degree less than
√
N

(9)

∫
| 1

N
Tr(q(XN

1 , . . . , X
N
d ))|dPVN (XN

1 , . . . , X
N
d ) ≤ Cdeg q ,

and

(10)

∫ ∣∣∣∣ 1

N
Tr(q)−

∫
1

N
Tr(q)dPNV

∣∣∣∣2 dPNV ≤ Cdeg(q)

N2
.

As a consequence of (9), the family {
∫

1
NTr(q(XN

1 , . . . , X
N
d ))dPVN (XN

1 , . . . , X
N
d ), q} indexed

by monomials in non-commutative variables is tight. Any limit point {τ(q), q} can be extended
by linearity to polynomials and then satisfies the Schwinger-Dyson equation

(11) τV (P (Xi −DiV )) = τV ⊗ τV (∂iP )

with τV (I) = 1. Moreover, for any monomial q, we deduce from (9) that

(12) |τV (q)| ≤ Cdeg(q) .

When V =
∑
tiqi with the ti small enough, there exists a unique solution to (11). Indeed, when

ti = 0, the moments are just defined inductively by (11). When the ti are small enough, the
equation still has a unique solution. Indeed, taking two solutions τ, τ̃ and denoting

∆k := sup
q:deg(q)=k

|τ(q)− τ̃(q)|

where the supremum is taken on monomials of degree smaller or equal to k, we have

∆k+1 = max
i

sup
q:deg q=k

|τ(Xiq)− τ̃(Xiq)|

whereas by using (11), (12) and ∆0 = 0, if D + 1 = max deg(qi) we get

|τ(Xiq)− τ̃(Xiq)| ≤ |τ ⊗ τ(∂iq)− τ̃ ⊗ τ̃(∂iq)|+D
∑
|tj |

D∑
`=1

∆k+`

≤
k∑
l=1

∆lC
k−l +D

∑
j

|tj |
D∑
`=1

∆k+`

Hence,

∆k+1 ≤
k∑
l=1

∆lC
k−l +D

∑
tj

D∑
`=1

∆k+`, ∆k ≤ 2Ck
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so that for γ < C−1 ∧ 1, we deduce that

(13) ∆γ =
∑
k≥1

γk∆k ≤
γ

1− Cγ
∆γ +

D
∑
|tj |

γD
∆γ

which entails ∆γ = 0 for γ < C−1 ∧ 1 so that

γ

1− Cγ
+
D2
∑
|tj |

γD
< 1 .

Such a γ > 0 exists for small enough tj ’s, which implies τ = τ̃ .

We shall see that indeed this solution coincides with a generating function for the enume-
ration of maps.

Theorem 5. For ti small enough, there exists C <∞ so that

Mt(q) =
∑
k∈Nn

n∏
i=1

(ti)
ki

ki!
M0((q, 1); (qi, ki), 1 ≤ i ≤ n)

is solution of equation (11) and (12) and therefore

τV (q) =Mt(q)

Let us remark that by definition of τV as a limit of trace of polynomials in matrices, for all
polynomials P,Q,

τV (PP ∗) ≥ 0 τV (PQ) = τV (QP )

where (zXi1 · · ·Xin)∗ = z̄Xin · · ·Xi1 . As a consequence, Mt also satisfy these equations : for
all P,Q

Mt(PP
∗) ≥ 0 Mt(PQ) =Mt(QP ) Mt(1) = 1.

This means that Mt is a tracial state. The traciality property can easily be derived by sym-
metry properties of the maps. However, the positivity property Mt(PP

∗) ≥ 0 is not easy to
prove combinatorially, and hence matrix models are an easy way to derive it. This property is
sometimes useful to actually solve the combinatorial problem (i.e. find an explicit formula for
Mt).

Proof of Theorem 5. Let us denote in short, for k = (k1, . . . , kn) and a monomial q,Mk(q) =
M0((q, 1); (qi, ki), 1 ≤ i ≤ n) the number of planar maps with ki stars of type qi and one of
type q. We generalize this definition to polynomials P by linearity. We let

Mt(q) :=
∑
k∈Nn

n∏
i=1

(−ti)ki
ki!

Mk(q)

This series is a priori formal but we shall see below that in fact there exists a finite constant C
so that for any monomials qi

(14) Mk(q) ≤
∏

ki!C
∑
kideg(qi)
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converges absolutely for |ti| < 1/C. Mt then satisfies (11) if and only if for every k and
monomial P

(15) Mk(XiP ) =
∑

0≤pj≤kj
1≤j≤n

n∏
j=1

C
pj
kj
Mp ⊗Mk−p(∂iP ) +

∑
1≤j≤n

kjMk−1j ([Diqj ]P )

where 1j(i) = 1i=j and Mk(1) = 1k=0.

– We first check (15) for k = 0 = (0, · · · , 0). By convention, M0(1) = 1. We now check
that for any monomial P

M0(XiP ) =M0 ⊗M0(∂iP ) =
∑

P=p1Xip2

M0(p1)M0(p2)

But in any planar map with only one star of type XiP , the half-edge corresponding
to Xi has to be glued with another half-edge of P . If Xi is glued with the half-edge Xi

coming from the decomposition P = p1Xip2, the map is then split into two (independent)
planar maps with stars p1 and p2 respectively (note here that p1 and p2 inherite the
structure of stars since they inherite the orientation from P as well as a marked half-
edge corresponding to the first neighbour of the glued Xi.) Hence the relation is satisfied.
Moreover, we prove (14) by showing by induction that for any monomial P , M0(P ) is
bounded above by the Catalan number Cdeg P based on the fact that

|M(X1P )| = |
∑

P=p1Xip2

M0(p1)M0(p2)| ≤
deg(P )−1∑

k=0

CkCdeg(P )−1−k = Cdeg(P )

– We now proceed by induction over k and the degree of P ; we assume that (15) is true
for
∑
ki ≤ M and all monomials, and for

∑
ki = M + 1 when deg(P ) ≤ L. Note that

Mk(1) = 0 for |k| ≥ 1 since we can not glue a vertex with no half-edges with any star.
Hence, this induction can be started with L = 0. Now, consider R = XiP with P of
degree less than L and the set of planar maps with a star of type XiP and kj stars of
type qj , 1 ≤ j ≤ n, with |k| =

∑
ki = M + 1. Then,

� either the half-edge corresponding to Xi is glued with an half-edge of P , say to
the half-edge corresponding to the decomposition P = p1Xip2 ; we then can use the
argument as above ; the map M is cut into two disjoint planar maps M1 (containing the
star p1) and M2 (resp. p2), the stars of type qi being distributed either in one or the
other of these two planar maps ; there will be ri ≤ ki stars of type qi in M1, the rest in
M2. Since all stars all labelled, there will be

∏
Criki ways to assign these stars in M1 and

M2.
Hence, the total number of planar maps with a star of type XiP and ki stars of type

qi, such that the marked half-edge of XiP is glued with an half-edge of P is
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(16)
∑

P=p1Xip2

∑
0≤ri≤ki
1≤i≤n

n∏
i=1

CrikiMr(p1)Mk−r(p2)

� Or the half-edge corresponding to Xi is glued with an half-edge of another star,
say qj ; let’s say with the edge coming from the decomposition of qj into qj = q1

jXiq
2
j .

Then, once we are giving this gluing of the two edges, we can replace the two stars XiP
and q1

jXiq
2
j glued by their Xi by the star q2

j q
1
jP .

We have kj ways to choose the star of type qj and the total number of such maps is

∑
qj=q1jXiq

2
j

kjMk−1j (q
2
j q

1
jP )

Summing over j, we obtain by linearity of Mk

(17)

n∑
j=1

kjMk−1j ([Diqj ]P )

(16) and (17) give (15). Moreover, it is clear that (15) defines uniquelyMk(P ) by induc-
tion. In addition, we see that the solution to (15) satisfy (14) : Indeed we have seen that it
is true for k = 0 and otherwise we show by induction that |Mk(P )| ≤

∏
(ki!Cki)Cdeg(P )

as we did in the case k = 0.
as free semi-circle variables are bounded by 2 and then follows for large k by induction

over
∑
ki.

It turns out that this strategy can be followed for each genera up to consider a family of loop
equations which are obtained by differentiating the first one with respect to small additional
potentials. The first point is to derive the second order Schwinger Dyson equation by varying
V into V + εW and differentiating at ε = 0 the first order loop equation (7), hence getting
equations for the cumulants. We refer the interested reader to [GMS07, Ma06] for full details,
but outline the approach below. The first point is to prove an a priori rough estimate by showing
that there exists a finite constant C > 0 so that for all ti’s small enough, all monomials q of
degree less than N1/2−ε for ε > 0, we have

|E[τXN [q]]− τV (q)| ≤ Cdeg(q)

N2
.

The proof elaborates on the ideas developed around (13) to prove uniqueness of the solution to
Schwinger-Dyson equation and the concentration inequalities (10) which give a fine control on
the error term in the loop equation satisfied by E[τXN ] with respect to the Schwinger-Dyson
equation. In fact, putting

∆N
k = sup

deg(q)=k

|E[τXN (q)]− τV (q)|
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the Schwinger-Dyson equation and (10), (14) imply that for k ≤ N 1
2−ε

∆N
k ≤

k−1∑
`=0

Ck−1−`∆N
` +D

∑
|ti|

D∑
`=1

∆N
k+` +

Ck

N2
+ (∆N

k )2 .

But we have seen that ∆N
k goes to zero so that we conclude that for

∑
|ti| small enough, we

can find γ > 0, a positive constant c and a finite constant c′ so that

c

N1/2−ε∑
k=1

γk∆N
k ≤

1

N2

N1/2−ε∑
k=1

γkCk +

k=N1/2−ε+D∑
k=N1/2−ε

γkCk ≤ c′

N2

where the last estimate is based on γC < 1. The desired estimate follows.

We next turn to the precise estimate of the asymptotics of δ̄N (P ) = E[Tr(P )] −NτV (P ).
To this end, we shall introduce the following cumulants :

WV
2 (P,Q) = E[(TrP − ETrP )(TrQ− E[TrQ])]

= ∂εPV−εN
−1Q(TrP )|ε=0

WV
3 (P,Q,R) = ∂εW

V−εN−1R
2 (P,Q)

Note that equation (7) can be written as

(18) E[Tr(ΞiP )] =
1

N
W2(∂iP ) +

1

N
δ̄N ⊗ δ̄N (∂iP ) ,

where
ΞiP = ∂iV#P − (τV ⊗ I + I ⊗ τV )∂iP .

By our a priori estimate on δ̄N the last term in the right hand side of (18) is at most of order
N−3. Hence, to estimate the first order correction, we would like to estimate the asymptotics of
W2 as well as “invert” Ξi. It turns out that even though Ξi is hardly invertible, a combination
of the Ξi’s is. Namely, we let Ξ be the operator on A0 = {P ∈ C〈X1, . . . , Xd〉 : τV (P ) = 0}
given by

ΞP =
∑
i

ΞiDiP .

Then the image of Ξ lies in A0 by symmetry of Ξ in L2(τV ). Indeed, Ξ can be seen as a small
perturbation of the infinitesimal generator of the free Brownian motion, see [GMS07].

To estimate W2, we obtain the second loop equation by changing V→V + εN−1W in (18)
and identifying the linear terms in ε ; we find

W2(ΞiP,W ) = E[
1

N
Tr(PDiW )]

+N−1W3(∂iP,W ) + (W2 ⊗ δ̄N + δ̄N ⊗W2)(∂iP,W ) .

It turns out that the terms in W3 and W2 are bounded by concentration inequalities (10)
whereas δ̄N is of order N−1 by our previous rough estimate. Hence we conclude that

lim
N→∞

W2(ΞiP,W ) = τV (PDiW )
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for all i and P . Applying this convergence to P = DiQ and summing we conclude that

lim
N→∞

W2(P,W ) = τV (
∑
i

DiΞ−1P ×DiW ) =: w2(P,W )

and therefore plugging this back into (18) we deduce the first order correction

E[
1

N
Tr(P )] = τV (P ) +

1

N2
w2[
∑
i

∂iDi(Ξ−1P )] + o(N−2) .

The next orders of the asymptotic expansion can be derived similarly.

It turns out that loop equations can be established for many other models which are not
directly related with Gaussian random matrices. It seems that a large family of loop equations
give rise to topological expansions. We describe below the case of the β-ensembles and the
integration over the unitary group.

1.4. Other topological expansions.

1.4.1. Topological expansion for β-matrix models. The law of the eigenvalues of the GUE
follows the distribution on RN

dPN (λ) =
1

ZN

∏
i<j

|λi − λj |2e−N
∑
λ2
i

∏
dλi

as can be checked by doing the change of variables associating to X its ordered eigenvalues
and a parametrization of its eigenvectors. β-ensembles are the following generalization of this
distribution :

dPVN,β(λ) =
1

ZVN,β

∏
i<j

|λi − λj |βe−N
∑
V (λi)

∏
dλi

It is related with invariant matrix ensembles only in the cases β = 1, 2, 4 and a priori has no
relations with Gaussian entries otherwise. However, it was proved in [BG12], see [CE06] for
a formal proof, that β-ensembles have a topological expansion. More precisely, assume that V
is analytic in a neighborhood of the real line and such that the unique probability measure µV
which minimizes

(19) I(µ) =

∫
V (x)dµ(x)− β

2

∫ ∫
log |x− y|dµ(x)dµ(y)

has a connected support, and V is off critical in the sense that V ′(x)−β
∫

(x−y)−1dµV (x) does
not vanish in an open neighborhood of the support of µV , then for any z ∈ C\R, and K ≥ 0

(20)

∫
1

N

N∑
i=1

1

z − λi
dPVN (λ) =

K∑
k=0

N−kWV,k(z) + o(N−K)

where o(N−K) is uniform on compacts. Moreover, we have

WV,k(z) =

bk/2c∑
g=0

(
β

2

)−g (
1− 2

β

)k−2g+1

WV ;(g;k−2g+1)
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and if V is a small perturbation of the quadratic potential, WV ;(g;k−2g+1) expands as a gene-
rating function of maps of genus g when ribbons can be “twisted”.

Note that the hypothesis that the support is connected is important since otherwise the
result is not true in general. The proof of such expansion relies as well on the loop equations

(21)

∫
β

N2

∑
i 6=j

f(λi)− f(λj)

λi − λj
dPVN,β(λ) =

∫
[

1

N

∑
f(λi)V

′(λi)]dP
V
N,β(λ)

which can be proved by integration by parts. As a consequence, one sees that the equilibrium
measure µV satisfies the limiting equation

(22) β

∫ ∫
f(x)− f(y)

x− y
dµV (x)dµV (y) =

∫
f(x)V ′(x)dµV (x) .

If V is a small perturbation of the quadratic potential one can develop arguments similar to
those of the previous section to check that moments under µV are generating functions for
planar maps.

In fact, the limiting equation (22) does not always have a unique solution as it is a weak
characterization of the minimizers of (19), but it does as soon as V is strictly convex for instance.
In any case, µV governs the first order of the expansion. To get the higher order terms in the
expansion the idea is, as in the previous section, to write equations for all the cumulants

WV
n (x1, . . . , xn) = ∂ε1 · · · ∂εn

(
lnZ

V− 2
βN

∑
i

εi
xi−•

N,β

)∣∣∣
εi=0

by differentiating the loop equation (21) with respect to the potential.

1.4.2. Loop equations for the unitary group. In this section we shall consider the Haar
measure dU on the unitary group, that is the unique measure on U(N) which is invariant
under left multiplication by unitary matrices and with mass one. We consider matrix integrals
given by

IN (V,Ai) =

∫
eNTr(V (Ai,Ui,U

∗
i ,1≤i≤m))dU1 · · · dUm .

A well-known example is the Harich-Chandra-Itzykson-Zuber integral

HCIZ(A1, A2) =

∫
eNTr(A1UA2U

∗)dU

where (Ai, 1 ≤ i ≤ m) are N × N deterministic uniformly bounded matrices, and V is a
polynomial function in the non-commutative variables (Ui, U

∗
i , Ai, 1 ≤ i ≤ m). We assume that

the joint distribution of the (Ai, 1 ≤ i ≤ m) converges ; namely for all polynomial function P
in m non-commutative indeterminates

lim
N→∞

1

N
Tr(P (Ai, 1 ≤ i ≤ m)) = τ(P )

for some linear functional τ on the set of polynomials. For technical reasons, we assume that
the polynomial V satisfies Tr(V (Ui, U

∗
i , Ai, 1 ≤ i ≤ m)) ∈ R for all Ui ∈ U(N) and all Her-

mitian matrices Ai, 1 ≤ i ≤ m and N ∈ N. Under those very general assumptions, the formal
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convergence of the integrals could already be deduced from [C03]. The following theorem is a
precise description of the results from [CGMS09] which gives an asymptotic convergence :

Theorem 6. Under the above hypotheses and if we further assume that the spectral radius
of the matrices (Ai, 1 ≤ i ≤ m,N × N) is uniformly bounded (by say M), there exists ε =
ε(M,V ) > 0 so that for z ∈ [−ε, ε], the limit

FV,τ (z) = lim
N→∞

1

N2
log IN (zV,Ai)

exists. Moreover, FV,τ (z) is an analytic function of z ∈ {z ∈ C : |z| ≤ ε}. Furthermore, if we
let

PN (dU1, . . . , dUm) =
1

IN (V,Ai)
eNTr(V (Ui,U

∗
i ,Ai,1≤i≤m))dU1 · · · dUm

for all polynomial P in (Ui, U
∗
i , Ai)1≤i≤m we have the convergence

τV,τ (P ) = lim
N→∞

∫
1

N
Tr(P ((Ui, U

∗
i , Ai)1≤i≤m))dPN

The strategy of the proof of Theorem 6 is again to find and study the Schwinger-Dyson
(or loop) equations under the associated Gibbs measure PN . This equation is based on the
invariance of the Haar measure, which somehow generalizes the Gaussian case where the loop
equation was based on integration by parts, which can be seen as a consequence of the invariance
by translation of Lebesgue measure.

To define this equation let us first define derivatives on polynomials in these matrices by
the linear form such that for all i, j ∈ {1, . . . ,m}

∂jAi = 0 ∂jUi = 1i=jUj ⊗ 1 ∂jU
∗
i = −1i=j1⊗ U∗j

and satisfying the Leibnitz rule, namely, for monomials P, Q,

(23) ∂j(PQ) = ∂jP × (1⊗Q) + (P ⊗ 1)× ∂jQ.

Here × denotes the product P1 ⊗ Q1 × P2 ⊗ Q2 = P1P2 ⊗ Q1Q2. We also let Di be the
corresponding cyclic derivatives such that if m(A ⊗ B) = BA, then Dj = m ◦ ∂j . If q is a
monomial, we more specifically have

∂jq =
∑

q=q1Ujq2

q1Ui ⊗ q2 −
∑

q=q1U∗j q2

q1 ⊗ U∗j q2(24)

Djq =
∑

q=q1Ujq2

q2q1Uj −
∑

q=q1U∗j q2

U∗j q2q1(25)

Using the invariance by multiplication of the Haar measure one can prove the Schwinger-Dyson
equation :

PN

(
1

N
Tr⊗ 1

N
Tr(∂jP )

)
+ PN

(
1

N
Tr(PDjV )

)
= 0
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This is proved by noticing that if we set Uj(t) = Uje
itB and leave the other Uk(t) = Uk

unchanged for a Hermitian matrix B then for all k, l ∈ {1, . . . , N}

∂t

∫
P (Up(t), 1 ≤ p ≤ m,Ai)(k, l)eNTr(V (Up(t),Up(t)∗,Ai)dU1 · · · dUm = 0

Taking B = 1kl + 1lk and B = i1kl − i1lk shows that we can choose by linearity B = 1kl even
though this is not self-adjoint. This yields the result after summation over k and l. By using
concentration of measure, we know that for all polynomial P , N−1Tr(P (Ui, U

∗
i , Ai)) is not far

from its expectation and therefore we deduce that the limit points of these (bounded) quantities
τ(P ) satisfy the Schwinger-Dyson equation

τ ⊗ τ(∂jP ) + τ(DjV P ) = 0

Uniqueness of the solution to such an equation in the perturbative regime is done as in the
Gaussian case ; when V = 0 it is clear as it defines all moments recursively from the knowledge of
τ restricted to the Ai and a perturbation argument shows this is still true for small parameters.
The uniqueness provides the convergence whereas the study of this solution shows that it
expands as a generating series in the enumeration of some planar maps.

2. Loop models

In this last lecture we show how matrix integrals can also be used to enumerate loop models,
which are in some cases equivalent to the famous Potts model (on random planar maps). We
first discuss the relation with the Potts model and then show how to construct a matrix model
to solve the related enumeration question.

2.1. The Potts model on random maps. The partition function of the Potts model
on a graph G = (V,E) is given by

ZG =
∑

σ:V→{1,...,Q}

exp(K
∑
{i,j}∈E

δσi,σj )

=
∑

σ:V→{1,...,Q}

∏
{i,j}∈E

(1 + vδσi,σj )

=
∑
E′⊂E

v# bonds Q# clusters

where v = eK − 1, bonds are the edges in E′, a subset of E, the clusters are the connected
components of the subgraph (V,E′). For instance the following graph where the edges in E′

are bold whereas those in E\E′ are dashed,

has weight v4Q3.
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We shall consider the Potts model on random planar maps. Recall (see section 1.1) that a
map is a connected graph which is embedded into a surface in such a way that edges do not
cross and faces (obtained by cutting the surface along the edges) are homeomorphic to a disk.

The genus of the map is the minimal genus of a surface in which it can be properly
embedded. By Euler formula :

2− 2g = # vertices + # faces −# edges.

We shall consider the Potts model on random planar maps. We assume these graphs are
rooted, that is are given a distinguished oriented edge. It is given by the partition function

Z =
∑

G=(V,E)

x#Ey#V ZG

=
∑

G=(V,E)

x#Ey#V
∑

σ:V→{1,...,Q}

exp(K
∑
{i,j}∈E

δσi,σj )(26)

=
∑

G=(V,E)

x#Ey#V
∑
E′⊂E

v# bonds Q# clusters

If G is a planar map, there is a dual (green) and a medial (blue) planar graph Gm. We
shall express the partition function Z as a generating function for (loop) configurations on the
medial graph. The vertices of the dual graph are given by a point in each of the faces of the
original graph and each of the edges of the dual graph intersect one (and only one) edge of the
original graph. The vertices of the medial graph are the intersection of the edges of the dual
graph and the original graph. The medial graph has an edge in each face of the graph obtained
by taking both edges and vertices of the original and dual graph. The edges of the medial graph
do not cut the edges of the original or the medial graph except at their intersections. Hence,
the medial graph is four-valent.

By construction, the original graph and the dual graph are in bijection. Note that in each
face of the medial graph there is either a vertex from the dual or from the original graph and
that this choice is given by a checkerboard coloring of the medial graph corresponding to fixing
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which type of vertex is inside a face. Hence, knowing the medial graph and the nature of the
vertex in one of its face allows to reconstruct both the original and the dual graph.

We next describe the bijection between the configurations on the original, dual and medial
graph. A configuration on the original graph just consists in coloring some edges and dashing
the others. The configuration on the dual graph is obtained by dashing (resp. bolding) its edges
that cut a bold (resp. dashed) edge of the original graph. The configuration on the medial graph
is given by splitting the vertex so that it does not intersect a bold edge. Hence, there are two
sorts of vertices according to the nature of the colored edge it does not intersect. The two sorts
of vertices on the medial graph are described as follows :

Configurations are therefore described bijectively by the collection of loops of the medial
graph as well as as a checkerboard coloring.

If G is a planar map, there is a bijection between the configuration on G and the set of
loops and shaded vertices on the medial graph.

Moreover, writing Euler formula in each cluster gives the relation

#loops = 2#clusters + #bonds−#V

The equivalence to the loop model allows to state that if we take y = Q−
1
2 in (26)

Z =
∑

G=(V,E)

x#EQ−
1
2 #V

∑
E′⊂E

v# bonds Q# clusters

=
∑

Γ

δ# loopsα
#

β
#

where the summation is restricted to 4-valent rooted planar maps, and

δ =
√
Q

α

β
=

v√
Q

β = x

δ is called the fugacity.
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Hence, when y = Q−1/2, the partition function Z of the Potts model on planar maps is a
generating function for the number of possible matchings of the end points of n copies of the
vertex

and m copies of the vertex

so that the resulting graph is planar, connected, has p loops, and is checkerboard shaded.

We shall consider generalizations of such enumeration questions in the following.

2.2. Loop models and Random matrices. We have already seen in the previous lecture
that random matrices could be used to enumerate planar graphs. In this section we show how
this point can be specified to enumerate loop models.

In the following we shall consider loop models with vertices given by Temperley-Lieb ele-
ments.

The Temperley-Lieb elements are boxes with boundary points connected by non-intersecting
strings, equipped with a shading and a marked boundary point.

*

The easier loop models are those with only one vertex and the question one may ask is,
being given a Temperley-Lieb element, to count the number of planar matching of the end
points of the Temperley-Lieb element so that there are exactly n loops. The picture below
shows the case of 2 loops :
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*

This question has been connected with random matrices for a long time in the physics

literature, see e.g. [EB99, EK95, KS92]. For a Temperley-Lieb element B, we denote p
B∼ `

if a string joins the pth boundary point with the `th boundary point in B, then we associate
to B with k strings the polynomial

qB(X) =
∑

ij=ip if jB∼p
1≤ij≤n

Xi1 · · ·Xi2k .

For instance, if B is given by we have

qB(X) =

n∑
i,j,k=1

XiXjXjXiXkXk .

Theorem 7. If νM denotes the law of n independent M ×M GUE matrices,

lim
M→∞

∫
1

M
Tr (qB(X)) νM (dX) =

∑
n#loops

where we sum over all planar maps that can be built on B.

Proof By Voiculescu’s theorem, if B = ,

lim
M→∞

∫
1

M
Tr (qB(X)) νM (dX)

=

n∑
i,j,k=1

lim
M→∞

∫
1

M
Tr (XiXjXjXiXkXk) νM (dX)

=
∑ n∑

i,j,k=1

ki j j k

=
∑

n#loops
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because the indices have to be constant along loops (since they have to correspond to the same
matrix to give a non vanishing contribution).

The problem with the previous theorem is that moments of random matrices can only be
used so far as generating function for the enumeration of loop configurations taken at integer
values of the fugacity. This is enough to characterize polynomials but not the series we shall
consider later.

In [J98], V. Jones proposed a construction of a planar algebra associated with a bipartite
graph. It was used in [GJS10] to overcome this point. The idea is to take random matrices
which are indexed by the edges of a bipartite graph instead of integer numbers and to modify
the polynomial qB in such a way that the fugacity is the Perron-Frobenius eigenvalue of the
adjacency matrix of the graph.

To be more precise, let Γ = (V = V+ ∪ V−, E) be a bipartite graph with oriented edges
so that if e ∈ E, its opposite eo is also in E. Assume that the adjacency matrix of Γ has
Perron-Frobenius eigenvalue δ. Note that this restricts the possible values of δ to {2 cos(πn ), n ≥
3} ∪ [2,+∞[ which is however a set which contains limit points.

Now, let us define for a Temperley-Lieb element B the polynomial

qvB(X) =
∑

ej=eop if jB∼p

σB(w)Xe1 · · ·Xe2k

where we recall that j
B∼ p if a string joins the pth boundary point with the jth boundary

point in the TL element B. The sum runs over loops w = e1 · · · e2k in Γ which starts at v ∈ V .
v ∈ V+ iff ∗ is in a white (i.e unshaded) region. σB is defined as follows. Denote (µv)v∈V with

µv ≥ 0 the eigenvector of Γ for the Perron-Frobenius eigenvalue δ and set, if σ(e) :=
√

µt(e)
µs(e)

,

e = (s(e), t(e)),

σB(e1 · · · e2p) =
∏
i
B∼j
i<j

σ(ei)

to be the products of σ(e) so that each string of B brings σ(e) with e the edge which labels the
start of the string.

For e ∈ E, e = (s(e), t(e)), let XM
e be independent (except for the symmetry constraint

XM
eo = (XM

e )∗) [Mµs(e)]× [Mµt(e)] matrices with i.i.d centered Gaussian entries with variance
1/(M

√
µs(e)µt(e)). We denote νM their joint law.

Theorem 8 (G-Jones-Shlyakhtenko [GJS10]). Let Γ be a bipartite graph whose adjacency
matrix has δ as Perron-Frobenius eigenvalue. Let B be a Temperley-Lieb element so that ∗ is
in an unshaded region. Then, for all v ∈ V +

τδ(B) := lim
M→∞

∫
1

Mµv
Tr(qvB(X))dνM (X) =

∑
δ#loops

where the sum runs on all planar maps built on B.



26 ALICE GUIONNET

Maybe the most illuminating “proof” is by trying examples.

If B = , for all v ∈ V +

E[
1

Mµv
Tr(

∑
e:s(e)=v

σ(e)XeXe0))] =
1

Mµv

∑
e:s(e)=v

[Mµv]∑
i=1

[Mµt(e)]∑
j=1

√
µt(e)

µv

1

M
√
µt(e)µs(e)

=
1

Mµv

∑
e:s(e)=v

√
µt(e)

µv

MµvMµt(e)

M
√
µt(e)µs(e)

=
1

µv

∑
e:s(e)=v

µt(e) = δ

If B =

*

, for all v ∈ V +

lim
M→∞

E[
1

Mµv
Tr(

∑
e:s(e)=v
s(f)=v

σ(e)σ(f)XeXe0XfXf0)]

= δ2 +
1

µv

∑
e=f

µt(e)

µv

µ2
vµt(e)

µt(e)µv
= δ2 + δ

More generally, the edges are constant along the loops and bring the contribution µt(e)/µv
hence leading after summation to δ.

As in the previous section we can make these enumeration questions more interesting by
adding a potential, and in turn enumerating loop models with several Temperley-Lieb vertices.
Let Bi be Temperley Lieb elements with ∗ with shading σi = + (resp. = −) in the unshaded
(resp. shaded) region, 1 ≤ i ≤ p. Let Γ be a bipartite graph whose adjacency matrix has
eigenvalue δ as before. Let νM be the law of the previous independent rectangular Gaussian
matrices and set νM(Bi)i(X) to be the law

dνM(Bi,βi)i(X) =

∏
e∈E 1‖Xe‖∞≤L

ZM(Bi,βi)i
e
MTr(

∑p
i=1 βi

∑
v∈Vσi

µvq
v
Bi

(X))
dνM (X).

Note at this point that Γ may need to be infinite for δ > 2 and then νM,β
(Bi,βi)i

may seem to be ill

defined. However, at least for δ ∈ {2 cos(π/n), n ≥ 3}, we can choose Γ to be finite whereas we
show in [GJSZ12] that we can take Γ = A∞ and then that the correlation between matrices
decays very fast with the distance of the edges on the graph, hence allowing a construction of
the measure on infinitely many matrices using Gibbs measures techniques. We shall not discuss
this point hereafter.
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Theorem 9 (G-Jones-Shlyakhtenko-Zinn Justin [GJSZ12]). For any L > 2, for βi small
enough real numbers, for any Temperley-Lieb element B with color σ, any v ∈ Vσ,

τ δ(Bi,βi)i(B) := lim
M→∞

∫
1

Mµv
Tr(qvB(X))dνM(Bi,βi)i(X) =

∑
ni≥0

∑
δ#loops

p∏
i=1

βnii
ni!

where we sum over the planar maps build on ni TL elements Bi and one B.

The proof is based, as in the previous section, on Schwinger-Dyson’s equation and concen-
tration of measure. Note that the above theorem also provides the convergence of the partition
function, at list in the case where

∑
µ2
v <∞ since we have

1

M2
log

ZM(Bi,βi)

ZM(Bi,0)

=

∫ 1

0

p∑
i=1

βi
∑
v∈Vσi

µ2
v

∫
1

Mµv
Tr(qvBi(X))dνM(Bi,αβi)i(X)dα

where the right hand side converges by the theorem, and remains bounded so that dominated
convergence theorem applies. Taking the limit and performing the integral over α yields

lim
M→∞

1

M2
∑
µ2
v

log
ZM(Bi,βi)

ZM(Bi,0)

=
∑

∑
ni≥1

∑
δ#loops

p∏
i=1

βnii
ni!

where we sum over the planar maps build on ni TL elements Bi.

2.3. Loop models and subfactors. Another point of view on the previous section is sub-
factor theory. In fact, Temperley-Lieb algebra can be viewed as a special case of planar algebras
and τδ,β are tracial states on this planar algebra if they are equipped with the multiplication

and the involution which is given by taking the symmetric picture of the element. In other words,
τδ,β satisfies the following properties for any elements S, T of the Temperley-Lieb algebra :

τδ,β(SS∗) ≥ 0 , τδ,β(TS) = τδ,β(ST ), τδ,β(1) = 1

where 1 represent the element with no string. To a tracial state on a Banach algebra we can
associate a von Neumann algebra by the so-called GNS construction.

Theorem 10 (G-Jones-Shlyakhtenko [GJS10]). Take δ ∈ {2 cos(π/n), n ≥ 3} ∪ [2,+∞[.
Then

– τδ,0 is a tracial state on the Temperley Lieb algebra.
– The von Neumann algebra associated by the GNS construction to τδ,0 is a factor, namely

its center is trivial. A tower of subfactors with index δ2 can be built.

The tower is build by changing the multiplication so that the nearest boundary points of
both Temperley-Lieb elements are capped. The construction presented here can be generalized
to any planar algebra. Hence, it shows that there is a canonical way to construct a tower of
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subfactors from any subfactor planar algebra. It is still unknown whether the von Neumann
algebras associated to τδ,β are factors for β 6= 0.

2.4. Matrix model for the Potts model. Let δ ∈ {2 cos(πn )}n≥3 ∪ [2,∞[ and Γ =
(V+∪V−, E) be a bipartite graph with eigenvalue δ and Perron-Frobenius eigenvector µ. Assume
that Γ is finite to simplify. This includes δ = 2 cos(π/n), n ≥ 3, and therefore a set with an
accumulation point. We set

νMβ±(dXe) =
1‖Xe‖∞≤L

ZMβ±
e
MTr

(∑
v∈V µv

∑
σ=± βσ1v∈Vσ (

∑
e:s(e)=v σ(e)XeX

∗
e )

2
)

∏
e

e−
M
2 (µs(e)µt(e))

1
2 Tr(XeX

∗
e )dXedX

∗
e

Theorem 11 (G-Jones-Shlyakhtenko-Zinn Justin [GJSZ12] ). Take δ ∈ {2 cos(π/n), n ≥
3} ∪ [2,+∞[. Then, for L large enough, β± small enough, for all Temperley-Lieb element B,
v ∈ VσB ,

lim
M→∞

1

Mµv

∫
Tr(qvB(X))νMβ±(dX)

=
∑

n+,n−≥0

∑ β
n+

+

n+!

β
n−
−
n−!

δ#loops =: Trβ±,δ(B)

where we sum over all planar maps build by matching the end points of n− (resp. n+) vertices
of type

resp.

and one of type B. If B is given by

we count the number of matchings of the following type :
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2.5. Solving the Potts matrix model. By the previous construction, at least for δ ∈
{2 cos(π/n), n ≥ 3}, we have equality between

(27)
∑

Γ

δ# loopsβ
#

− β
#

+

and

lim
M→∞

1

M2
∑
µ(v)2

logZMβ±

where, for L large enough, ZMβ± equals to∫
‖Xe‖≤L

e
MTr

(∑
v∈V µv(β+1v∈V++β−1v∈V− )(

∑
e:s(e)=v

√
µvµt(e)XeX

∗
e )

2
)
νM (dX)

if νM is the law of Xe, [Mµs(e)] × [Mµt(e)] matrices with iid centered Gaussian entries with

covariance (M2µs(e)µt(e))
− 1

2

We can compute the matrix model and therefore solve the original combinatorial problem
by using Hubbard-Stratonovich transformation. Namely, let Gv [Mµv]×[Mµv] independent ma-

trices from the GUE and Xe be [Mµs(e)]× [Mµt(e)] matrices with covariance (M2µs(e)µt(e))
− 1

2

under νM , with α± =
√

2β±, ∆(λ) =
∏
i 6=j(λi − λj), we can write

ZMβ± =

∫
‖Xe‖≤L

e
MTr

(∑
v∈V µv(β+1v∈V++β−1v∈V− )(

∑
e:s(e)=v σ(e)XeX

∗
e )

2
)
νM (dX)

=

∫
‖Xe‖≤L

eMTr(
∑
σ=±

∑
v∈Vσ ασGv(

∑
e:s(e)=v

√
µvµt(e)XeX

∗
e ))νM (dX, dG)

'
∫
‖Gv‖≤L′

∏
e∈E+

e−Tr⊗Tr(log(I+α+I⊗Gs(e)+α−Gt(e)⊗I))νM (dG)

= ZM
∫
|λei |≤L′

∏
e∈E+

e−
∑[Mµs(e)]

i=1

∑[Mµt(e)]

j=1 log(1+α+λ
e
i+α−η

e
j )

∆(ηe)∆(λe)e−
[Mµs(e)]

2

∑[Mµs(e)]

i=1 (λei )
2−

[Mµt(e)]

2

∑[Mµt(e)]

j=1 (ηej )2dλedηe.

where in the second line we used Hubbard-Stratonovich transformation and in the third took
the expectation over the Xe (note here that the bound on the ‖Xe‖ ensured that the log-density
of the joint law in X,G was strictly concave ; it thus keeps the Gv bounded with overwhelming
probability by Brascamp-Lieb inequality which is the reason why the bound on ‖Xe‖ transferred
into a bound on ‖G‖v in the third line). Finally in the last line we have diagonalized the matrices
Gv and observed that the jacobian is given by the Vandermonde determinant ∆.
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Hence, Hubbard-Stratonovich led us to define an auxiliary probability measure PM,L
α on

RM |V | given by

1|λv|≤L

ZM,L
α

∏
e∈E+

∏
1≤i≤[Mµs(e)]

1≤j≤[Mµt(e)]

1

1 + α+λ
s(e)
i + α−λ

t(e)
j

∏
v∈V

∆(λv)e−
Mµv

2

∑
(λvi )2

∏
dλvi

By large deviation analysis, see [BaG97, AGZ10], the asymptotics of this model can easily
be studied and one finds that the law of {µ̂Mv := 1

Mµv

∑
δλvi , v ∈ V } under PM,L

α satisfies a

large deviation principle for the weak topology with speed M2 and rate function given, up to
a constant, by

I(νv, v ∈ V ) =
∑
v

µ2
v

2
(

∫
x2dνv(x)− 2Σ(νv))

+
∑
e∈E+

µvµt(e)

∫
log |1 + α+x+ α−y|dνv(x)dνt(e)(y) .

if Σ(ν) =
∫

log |x− y|dν(x)dν(y). Such result is easily guessed by seeing that approximately

dPM,L
α ∼ 1

ZM,L
e−M

2I(µ̂Mv )
∏

dλvi

so that Laplace method yields the desired estimate. The only point is to deal with the logarith-
mic singularity to transform these heuristics in [BaG97] theorem.

Moreover, we then have

(28) lim
M→∞

M−2 logZM,L
α = − inf I

where the infimum is taken over the set of probability measures µv, v ∈ V .

The minimizers of the rate function I can be studied and we get

Theorem 12 ([GJSZ12]). • I achieves its minimal value at a unique set of probability
measures νv, v ∈ V .

• ∃ ν+, ν− ∈ P (R), so that νv = ν± if v ∈ V±. (ν+, ν−) are the unique minimizers of

Iδ,α+,α−(µ+, µ−) =
∑
ε=±

(
1

2

∫
x2dµε(x)−

∫
log |x− y|dµε(x)dµε(y)

)

+δ

∫
log |1 + α+x+ α−y|dµ+(x)dµ−(y).

• For all L > 2 not too large, α+, α− small enough

lim
M→∞

E[
1

Mµv

[Mµv ]∑
i=1

(λvi )
p] =

∫
xpdνv(x) ∀ p ∈ N, v ∈ V.



RANDOM MATRICES AND THE POTTS MODEL ON RANDOM GRAPHS 31

We describe more precisely the measures ν+, ν− below. This already gives a formula for
(27) according to (28). In fact, this gives us a slightly more precise information. Indeed, we
can relate the asymptotic measures ν+, ν− with the original combinatorial problem we wished
to solve, that is the enumeration for the loop model. Let M(z) =

∫ ∑
n≥0 z

nxndν+(x). On the
other hand, consider the generating function we are interested in, namely

C(z, α+, α−) =
∑
n≥0

zn
∑

δ`
α
n+

+

n+!

α
n−
−
n−!

where we sum over the planar maps build over n+ (resp. n−) vertices with two strings and two
black (resp. white) regions and one vertex with n strings with black inside so that there are
exactly ` loops. Then, put

γ(z) = α+z/(1− z2M(z)) .

We claim that for small z, we have

C(z, α+, α−) =
α+

z
[1− α+γ

−1(z)

z
].

In fact this can be seen by giving a combinatorial interpretation to the matrix model PM,L
α ; we

refer the interested reader to [GJSZ12]. Hence, we see that the original combinatorial question
encapsulated in C(z, α+, α−) can be reduced to a variational problem, namely minimizing
Iδ,α+,α− . It turns out that this minimizing problem can be solved explicitly as follows. Let p+

(resp. p−) be the law of 1 + α+x and −α−y under ν+ (resp. ν−).

• For α± small enough, p± has a connected support [a±, b±] around 1 (resp. 0) and a− <
b− < a+ < b+.

• Set G±(z) =
∫

(z − x)−1dp±(x). Then

G±(z + i0) +G±(z − i0) = P±(z) + δG∓(z) z ∈ [a±, b±]

with P−(z) = z/α−, P+(z) = (1− z)/α+.

Introduce

u(z) =
i

2

√
(b1 − a1)(b2 − a2)

∫ z

b2

dz′√
(z′ − a1)(z′ − a2)(z′ − b1)(z′ − b2)

,

with inverse z(u). Set

ω+(u) =

∫
1

z(u) +
√

8β+x
dν+(x)

Then, if q is such that δ = q + q−1, q = eiπν , we have

ω+(u) =
1

q − q−1
[(φ+(u)− φ+(−u)) +R(z(u))]

where, if Θ denotes the theta-function

Θ(u) = 2

∞∑
k=0

eiπ
ω2
ω1

(k+1/2)2 sin(2k + 1)
πu

ω1
,
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we have

φ+(u) = c+
Θ(u− u∞ − 2νK)

Θ(u− u∞)
+ c−

Θ(u+ u∞ − 2νK)

Θ(u+ u∞)

and

R(z) =
2q

1− q2

z√
8t1

+
q2 + 1

1− q2

(z − 1)√
8t2

.

All the parameters can be computed as solutions of fixed point equations. This derivation is
done in details in [GJSZ12].
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