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Abstract

Optimization methods play a central role in the solution of a wide array of problems
encountered in various application fields, such as signal and image processing. Especially
when the problems are highly dimensional, proximal methods have shown their efficiency
through their capability to deal with composite, possibly non smooth objective functions.
The cornerstone of these approaches is the proximity operator, which has become a quite
popular tool in optimization. In this work, we propose new dual forward-backward formu-
lations for computing the proximity operator of a sum of convex functions involving linear
operators. The proposed algorithms are accelerated thanks to the introduction of a block
coordinate strategy combined with a preconditioning technique. Numerical simulations em-
phasize the good performance of our approach for the problem of jointly deconvoluting and
deinterlacing video sequences.

Keywords : Proximity operator, Duality, Block-coordinate approach, Video processing, Deconvolu-

tion, Deinterlacing.

1 Introduction

A large number of problems in image processing can be expressed as inverse problems whose
solution is defined as the minimizer of a cost function which combines a data fidelity term, that
describes the processing leading to the observed data, with some regularization terms accounting
for prior information. In image and video restoration problems, optimal solutions are usually
reached using models that involve nonsmooth functions, for which proximity operators appear
as the most suitable tools [1]. Proximal methods indeed allow to consider the minimization
of a sum of functions, the differentiable ones being dealt with through their gradient, whereas
the nonsmooth functions are processed by evaluating their proximity operator [2]. Among the
existing proximal methods, the class of primal-dual algorithms provides appealing strategies
making it possible to split the considered objective function into simpler terms that are han-
dled separately, without requiring any linear operator inversion. This allows the computational
complexity to be reduced, especially when the processed data and linear operators are of high
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dimensions. However, some of these methods encounter several limitations due to slow conver-
gence and high memory requirements issues. These effects are especially critical when one has
to deal with huge datasets as in the case of video processing [3, 4].

This paper addresses the problem of computing the proximity operator of a sum of convex
possibly nonsmooth functions composed with arbitrary linear operators, in the context of large
scale optimization problems. This problem has attracted a large interest and has been widely
investigated in the literature via deterministic and stochastic approaches. Among deterministic
methods, one can mention the dual parallel algorithm in [5], that converges strongly to the sou-
ght proximity operator, in the case of convex proper lower-semicontinuous functions composed
with bounded linear operators. Its particular case is the Dykstra-like algorithm [6] when the
problem reduces to evaluating the proximity operator of a sum of two convex functions. It is also
worth mentioning the work in [7] which proposes a parallel splitting version of the Alternating
Direction Method of Multipliers [8].
An appealing idea in the context of optimization is to adopt a block coordinate strategy [9],
in such a way that two successive iterations deal with different blocks of variables. The block
selection rule can be either deterministic (e.g. cyclic, quasi-cyclic, greedy) [10, 11] or random
[12, 13, 14]. Based on this idea, various stochastic algorithms have been initially proposed
in machine learning area, usually known as dual ascent algorithms. One can mention the
stochastic dual coordinate ascent algorithm [15] where the functions are assumed to be Lipschitz
continuous or smooth with a Lipschitz gradient, and its variant [16] where the selection rule
of the blocks is arbitrary and the smoothness of the objective function is required. Another
stochastic algorithm is the communication efficient distributed dual coordinate ascent algorithm
[12] which has been designed in order to distribute block processing over multiple cores or remote
machines. Nevertheless, the convergence guaranties shown for these dual ascent algorithms only
concern decay properties on the dual of the objective function, the variables being assumed to be
scalar. In the deterministic case, an accelerated FISTA-like method is proposed in [17], where
the authors investigate a similar problem. They provide convergence guaranties for primal
iterates as well, when each involved function deals with a variable belonging to R

2.
The main contribution of this paper is the proposal of new primal-dual algorithms, based on
the forward-backward iterations similarly to [5, 18], and combined with a block coordinate
strategy where preconditioning matrices are introduced. The proposed algorithms can be used
for computing the proximity operator of a sum of convex functions involving linear operators.
In addition, we show that they benefit from convergence guaranties on both primal and dual
sequences for arbitrary linear operators. Finally, the effectiveness of our algorithms in dealing
with large-scale optimization problems is demonstrated for the deconvolution and deinterlacing
of video sequences.

The paper is structured as follows: Section 2 introduces some optimization tools that will
be needed throughout the paper as well as the considered optimization problem. In Section 3,
we derive new algorithms by introducing a block-coordinate strategy. Section 4 investigates the
convergence properties of our algorithms, and Section 5 addresses their application to deconvo-
lution and super-resolution of interlaced video sequences. Finally, some conclusions are drawn
in Section 6.

2 Problem Statement

2.1 Optimization Background

Let us first introduce some definitions and notations that will be used throughout this paper.

Definition 1 Let ψ be a function from R
N to ] −∞,+∞]. The domain of ψ is domψ = {x ∈
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R
N : ψ(x) < +∞}. The function ψ is said proper if and only if its domain dom ψ is nonempty.

Definition 2 Let E be a subset of RN . The indicator function ιE of set E is given by

ιE(x) =

{
0 if x ∈ E,

+∞ otherwise.
(1)

Definition 3 Let Γ0(R
N ) denote the set of convex proper lower-semicontinuous functions from

R
N to ]−∞,+∞]. Let ψ ∈ Γ0(R

N ) and B ∈ R
N×N be a symmetric positive definite matrix. The

proximity operator of ψ at x̃ ∈ R
N relative to the metric induced by B is denoted by proxB,ψ(x̃)

and defined as [1]:

proxB,ψ(x̃) = argmin
x∈RN

ψ(x) +
1

2
‖x− x̃‖2B , (2)

where the weighted norm ‖·‖B = 〈 · |B · 〉1/2 is used, 〈 · | · 〉 being the usual scalar product of RN .
When B is equal to the identity matrix of RN , one retrieves the classical proximity operator.

Definition 4 Let ψ and ϕ be functions from R
N to ] −∞,+∞]. The infimal convolution of ψ

and ϕ is
ψ � ϕ : RN → [−∞,+∞] : x→ inf

y∈RN
(ψ(y) + ϕ(x− y)) . (3)

The Moreau envelope of ψ of parameter γ > 0 is

γψ = ψ �

(
1

2γ
‖ · ‖2

)
. (4)

Definition 5 The conjugate of a function ψ is denoted by ψ∗ and defined as follows:

ψ∗ : RN → [−∞,+∞] : x→ sup
ν∈RN

(〈ν|x〉 − ψ(ν)) . (5)

Definition 6 Let A ∈ R
N×N and B ∈ R

N×N be symmetric matrices. A � B (resp. A ≻ B)
if, for every x ∈ R

N \ {0},

x⊤Ax > x⊤Bx (resp. x⊤Ax > x⊤Bx). (6)

Definition 7 Let ψ ∈ Γ0(RN ). The Moreau subdifferential of ψ at x ∈ domψ is defined as

∂ψ(x) =
{
t ∈ R

N : ∀y ∈ R
N , ψ(y) − 〈y − x|t〉 > ψ(x)

}
. (7)

Definition 8 A function ψ satisfies the Kurdyka- Lojasiewicz inequality if for every ξ ∈ R and
for every bounded subset E ∈ R

N , there exist three constants κ > 0, ζ > 0 and θ ∈ [0, 1[ such
that [19] (

∀t ∈ ∂ψ(y)
)

‖t‖ > κ|ψ(y) − ξ|θ, (8)

for every y ∈ E such that |ψ(y) − ξ| 6 ζ (with the convention 00 = 0).
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2.2 Minimization problem

In this paper, similarly to the work in [5], we are interested in computing the proximity operator
of a function g at x̃ ∈ R

N , where g is defined as

(
∀x ∈ R

N
)

g(x) = f(x) + h(Ax), (9)

with f ∈ Γ0(RN ), h ∈ Γ0(RM ) and A ∈ R
M×N is a linear operator. This reads:

Find x̂ = proxg(x̃),

= argmin
x∈RN

f(x) + h(Ax) +
1

2
‖x− x̃‖2. (10)

Let us assume that

Assumption 1 ri
(
A(dom f)

)
∩ ri (domh) 6= ∅,

where ri (S) denotes the relative interior of a set S. Then, the dual problem of (10) can be
expressed as:

Find ŷ = argmin
y∈RM

ϕ(−A⊤y + x̃) + h∗(y), (11)

where ϕ = f∗� 1
2 ‖ . ‖2 is the Moreau envelope of parameter 1 of f∗ in the standard Euclidean

metric. The latter function has a nonexpansive (i.e., 1-Lipschitzian) gradient.
One can apply the preconditioned forward-backward algorithm to the dual problem (11) by
performing at each iteration n ∈ N a gradient step on the smooth function ϕ at yn and a
proximal step on the convex function h∗, as described in Algorithm 1:

Algorithm 1 Preconditioned forward-backward algorithm

Initialization:

Let y0 ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

ỹn = yn − γnB
−1∇

(
ϕ ◦ (−A⊤ · +x̃)

)
(yn)

yn+1 = proxγ−1
n B,h∗(ỹn)

end for

where B ∈ R
M×M is a symmetric positive definite matrix with B � AA⊤ and

∀n ∈ N, γn ∈ [ǫ, 2 − ǫ] with ǫ ∈]0, 1]. (12)

Note that

∇
(
ϕ ◦ (−A⊤ · +x̃)

)
= −A∇ϕ(−A⊤ · +x̃)

= −Aproxf (−A⊤ · +x̃). (13)

Then, by setting
(∀n ∈ N) xn = proxf (x̃−A⊤yn), (14)

and using the Moreau decomposition

proxB,h∗j = Id −B−1proxB−1,hj(B ·), (15)
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the gradient step of Algorithm 1 can be formulated by means of xn using (13) and (14), whereas,
the proximity operator of h∗ can be rewritten in terms of h thanks to Moreau decomposition
formula (15). This leads to the following algorithm:

Algorithm 2 Dual forward-backward algorithm

Initialization:

Let y0 ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃−A⊤yn)

ỹn = yn + γnB
−1Axn

yn+1 = ỹn − γnB
−1proxγnB−1,h(γ−1

n Bỹn)

end for

It can be shown that the sequences (xn)n∈N and (yn)n∈N generated by Algorithm 2 converge
to the solutions to the primal and dual problems x̂ and ŷ respectively [18]. Moreover the
following relation is satisfied

x̂ = proxf (x̃−A⊤ŷ). (16)

Remark 1 Let us introduce the variables

(∀n ∈ N) pn = proxγnB−1,h(γ−1
n Bỹn), (17)

qn = −A⊤yn+1 + x̃− γnB
−1A⊤pn,

= x̃−A⊤(γnB
−1Axn + yn), (18)

and let us notice that, if γn ≡ γ satisfies (12) , then the following recursive relation is fulfilled:

qn+1 = qn + γB−1A⊤(pn −Axn+1). (19)

Algorithm 2 can then be rewritten as

Algorithm 3 Dykstra-like formulation of Algorithm 2

Initialization:

Let y0 ∈ R
M , x0 = proxf (x̃−A⊤y0) and q0 = x̃−A⊤(γB−1Ax0 + y0)

For every n ∈ N, γ ∈]0,+∞[

for n = 0, 1, . . . do

pn = proxγB−1,h(γ−1Byn +Axn)

yn+1 = yn + γB−1(Axn − pn)

xn+1 = proxf (qn + γB−1A⊤pn)

qn+1 = qn + γB−1A⊤(pn −Axn+1)

end for

In particular, as pointed out in [18], if A = IN and γB−1 = IM we retrieve the same iterative
structure as the Dykstra-like algorithm which was proposed in [6] and whose convergence was
proved for another initialization strategy.
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Note that Algorithm 2 does not exploit the potential separability of the function h, thereby,
one has to deal with the full linear operator A at each iteration, which may be very costly when
the size of A is large.

3 Proposed optimization method

Now, we will derive new algorithms based on Algorithm 2 when h in (9) is a separable function:

(∀x ∈ R
N) h(Ax) =

J∑

j=1

hj(Ajx), (20)

where, for every j ∈ {1, . . . , J}, Aj is a non null matrix in R
Mj×N with

J∑
j=1

Mj = M , hj ∈

Γ0(R
Mj ), and

A =



A1
...
AJ


 . (21)

Then, problem 10 becomes:

Find x̂ = proxg(x̃),

= argmin
x∈RN

f(x) +
J∑

j=1

hj(Ajx) +
1

2
‖x− x̃‖2. (22)

According to (21), the dual problem reads:

Find ŷ = argmin
y=(yj )16j6J∈R

M

ϕ
(
x̃−

J∑

j=1

A⊤
j y

j
)

+

J∑

j=1

h∗j (y
j). (23)

Note that the dual variable y is now decomposed into J blocks of variables (yj)16j6J . The
application of the variable metric block-coordinate forward-backward algorithm in [9] to the
dual problem (23) yields the new Algorithm 4 where, at each iteration n ∈ N, a block of index
jn is activated and its associated dual variable yjnn is updated by performing a proximal step on
the function hjn , in the metric induced by a preconditioning matrix Bjn satisfying (24). Note

that the dual variable yjnn is the only one to be processed at the n-th iteration, whereas the
other dual variables of index j 6= jn are kept intact during this iteration.
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Algorithm 4 Dual block forward-backward algorithm

Initialization:

Let (yj0)16j6J ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃−A⊤yn)

jn ∈ {1, . . . , J}

ỹjnn = yjnn + γnB
−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB
−1
jn

proxγnB−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}

end for

where γn fulfils (12), and

(∀j ∈ {1, . . . , J}) Bj ≻ OMj
with Bj � AjA

⊤
j . (24)

The simplest (non-preconditioned) version of Algorithm 4 is obtained by choosing

(∀j ∈ {1, . . . , J}) Bj = βjIMj
, (25)

where βj is the squared norm of the associated linear operator Aj, i.e., βj = ‖Aj‖
2.

Remark 2

1. The pair
(
x̂, (ŷj)16j6J

)
is a solution to the primal and dual problems if and only if





−

J∑

j=1

A⊤
j ŷ

j ∈ ∂f(x̂) + x̂− x̃

⇔ x̂ = proxf

(
x̃−

J∑

j=1

A⊤
j ŷ

j
)
,

(∀j ∈ {1, . . . , J}) ŷj ∈ ∂hj(Aj x̂).

(26)

(27)

When the functions (hj)16j6J are differentiable, the second optimality condition can be
used to define a dual residue, which is exploited for the blocks selection rule in some recent
dual coordinate ascent strategies [20].

2. If relation (25) is satisfied, f = θ‖ · ‖1 with θ ∈ ]0,+∞[, and (∀j ∈ {1, . . . , J}) hj = ι{bj}
with bj ∈ R

Mj , we recover an algorithm similar to the one studied in [21].

3.1 Simplified form of preconditioned dual block forward-backward

In Algorithm 4, the update of the primal variable xn involves all the dual variables (yjnn )16j6J
and the whole matrix A⊤, whereas only one block jn is being processed. To overcome this
limitation, we introduce a new variable (zn)n∈N that takes into account only the updated dual
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variable.
To do so, let us define (zn)n∈N such that

zn = −A⊤yn = −
J∑

i=1

A⊤
i y

i
n. (28)

Then we have

zn+1 = −

J∑

i=1

A⊤
i y

i
n+1 = −

J∑

i=1
i 6=jn

A⊤
i y

i
n+1 −A⊤

jny
jn
n+1,

= −
J∑

i=1

A⊤
i y

i
n −A⊤

jny
jn
n+1 +A⊤

jny
jn
n ,

= zn −A⊤
jn(yjnn+1 − yjnn ). (29)

Hence, Algorithm 4 becomes:

Algorithm 5 Simplified dual block forward-backward algorithm

Initialization:

Let (yj0)16j6J ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃+ zn)

jn ∈ {1, . . . , J}

ỹjnn = yjnn + γnB
−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB
−1
jn

proxγnB−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}

zn+1 = zn −A⊤
jn

(yjnn+1 − yjnn )

end for

with the initialization

z0 = −
J∑

j=1

A⊤
j y

j
0. (30)

This simplified form of Algorithm 4 is more efficient in the sense that the updating step in-
volves only the selected block jn, thereby, this version reduces the complexity and memory
requirements.

3.2 Particular case when f = 0

A special interesting case is obtained when f is the null function. Then, the update of the
primal variable in Algorithm 5 reduces to

xn = x̃+ zn. (31)

Thus, by changing the initialization (30) to x0 = x̃−
J∑
j=1

A⊤
j y

j
0 and after some simplifications,

Algorithm 5 becomes:
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Algorithm 6 Dual block forward-backward algorithm when f = 0

Initialization:

Let (yj0)16j6J ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

jn ∈ {1, . . . , J}

ỹjnn = yjnn + γnB
−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB
−1
jn

proxγnB−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}

xn+1 = xn −A⊤
jn

(yjnn+1 − yjnn )

end for

3.3 Parallel dual block forward-backward

Algorithm 5 can be compared with its parallel variant proposed in [22, Example 5.6] given by:

Algorithm 7 Parallel dual block forward-backward algorithm [22]

Initialization:

Let (yj0)16j6J ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃+ zn)

for j = 1, . . . , J do

ỹjn = yjn + γnB
−1
j Ajxn

yjn+1 = ỹjn − γnB
−1
j proxγnB−1

j ,hj

(
γ−1
n Bj ỹ

j
n

)

end for

zn+1 = zn −
∑J

j=1A
⊤
j (yjn+1 − yjn)

end for

where z0 is defined according to (30) and the preconditioning matrices (Bj)16j6J are such
that

∀j ∈ {1, . . . , J} Bj � βIMj
, (32)

with β =
J∑
j=1

‖Aj‖
2.

Some similarities existing between Algorithms 5 and 7 can be observed. However, in Al-
gorithm 7, the dual variables (yjn)16j6J are updated in parallel and the update of xn has to
be performed from all these dual variables. Conversely, in Algorithm 5, the dual variables are
updated sequentially, and after any update of each of them, the primal variable is also updated.
When no parallel implementation is used, this second solution can be expected to be more
efficient.
In addition, conditions (32) imposed on the matrices (Bj)16j6J in Algorithm 7 appear to be
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more restrictive than those imposed in Algorithm 5 (see conditions (24)). Since the precon-
ditioning matrices (Bj)16j6J usually play an important role in the convergence speed, more
freedom in their choice should also be beneficial to the algorithm performance.

A variant of the above parallel algorithm dealing with the case when f = 0 can be derived
from the parallel block forward-backward algorithm proposed in [5] which, in the absence of
error terms and relaxation factor, reads:

Algorithm 8 Parallel dual block forward-backward algorithm when f = 0 [5]

Initialization:

Let (yj0)16j6J ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

for j = 1, . . . , J do

ỹjn = yjn + γnB
−1
j Ajxn

yjn+1 = ỹjn − γnB
−1
j proxγnB−1

j ,hj

(
γ−1
n Bj ỹ

j
n

)

end for

xn+1 = xn −
J∑
j=1

A⊤
j (yjn+1 − yjn)

end for

where

∀j ∈ {1, . . . , J} Bj = βω−1
j IMj

, with β = max
j∈{1,...,J}

‖Aj‖
2,

and (ωj)16j6J ∈]0, 1]J are such that

J∑

j=1

ωj = 1.

Algorithms 6 and 8 exhibit several similarities, however, as mentioned hereabove, the main
difference lies in the update rule of the dual variables. Another advantage of Algorithm 6 is
that it leads to less restrictive conditions on the matrices (Bj)16j6J . Indeed, for Algorithm 8,
we have

(∀j ∈ {1, . . . , J}) Bj � ωjBj = βIMj
� ‖Aj‖

2IMj
� AjA

⊤
j .

3.4 Proximity operator in a general metric

In practice, one may be interested in more general problems of the form [23]:

Find x̂ = argmin
x∈RN

f(x) +

J∑

j=1

hj(Ajx) +
1

2
‖x− x̃‖2C . (33)

where C ∈ R
N×N is a symmetric strictly positive definite matrix. Algorithms can be de-

duced from Algorithms 5 and 6 by simply replacing the Euclidean metric of R
N by the met-

ric induced by C (while keeping the standard Euclidean metric for the spaces R
Mj with j ∈

{1, . . . , J}). By noticing that in the new metric, the adjoints of operators (Aj)16j6J are replaced
by (C−1A⊤

j )16j6J , Algorithm 5 yields:
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Algorithm 9 Dual block forward-backward algorithm in a general metric

Initialization:

Let (yj0)16j6J ∈ R
M

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxC,f (x̃ + zn)

jn ∈ {1, . . . , J}

ỹjnn = yjnn + γnB
−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB
−1
jn

proxγnB−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}

zn+1 = zn − C−1A⊤
jn(yjnn+1 − yjnn )

end for

where

z0 = −C−1
J∑

j=1

A⊤
j y

j
0 and ∀j ∈ {1, . . . , J} Bj � AjC

−1A⊤
j .

Similarly, a new algorithm can be derived from Algorithm 6 for computing the sought proximity
operator in the metric induced by the matrix C when f = 0. This is achieved by simply
substituting the adjoints operators of (Aj)16j6J with (C−1A⊤

j )16j6J .

4 Convergence analysis

We will need some additional assumptions in order to establish the convergence of the precon-
ditioned dual block forward-backward algorithm 5:

Assumption 2

1. For every j ∈ {1, . . . , J}, the restriction of h∗j on its domain is continuous.

2. The sequence (jn)n∈N follows a quasi-cyclic rule, i.e., there exists K > J such that, for
every n ∈ N, {1, . . . , J} ⊂ {jn, . . . , jn+K−1}.

3. The functions f and (hj)16j6J are semi-algebraic.

The following result can then be established:

Proposition 1 Suppose that Assumptions 1 and 2 hold. Let (xn)n∈N and
(
yn = (yjn)16j6J

)
n>1

be sequences generated by Algorithm 5. If (yn)n>1 is bounded, then (xn)n∈N converges to the
solution to the primal problem (22) and (yn)n>1 converges to a solution to the dual one (23).
Proof. We have seen that our algorithm amounts to applying a block-coordinate forward-
backward approach to the function:

Φ: (yj)16j6J 7→ ϕ
(
−

J∑

j=1

A⊤
j y

j + x̃
)

+

J∑

j=1

h∗j (y
j). (34)

Since ‖·‖2 is a semi-algebraic function and semi-algebraicity is preserved under standard opera-
tions such as sum, infimum, conjugate, and inf-convolution, it can be deduced from Assumption
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2.3 that Φ is semi-algebraic. It follows from [9, Theorem 3.1] that the sequence
(
yn

)
n>1

gener-
ated by Algorithm 5 converges to a critical point ŷ of Φ. Since Φ is a convex function, such a
critical point is a (global) minimizer of Φ. By using now (14) and the continuity of the proxim-
ity operator, it follows that the sequence (xn)n∈N converges to a solution x̂ satisfying (16). As
already mentioned, x̂ is then the solution to (22).

Remark 3

1. The boundedness of sequence (yn)n>1 is satisfied if Φ is a coercive function. This happens,
in particular, if all the functions (h∗j )16j6J are coercive, that is when, for every j ∈
{1, . . . , J}, 0 ∈ int(dom hj) [24, Proposition 14.16].

2. The quasi-cyclic rule (also sometimes called essentially cyclic rule) provides much more
flexibility than the cyclic one. In particular, some of the (blocks of) variables may be
activated more frequently than others, and the order in which the variables are swept can
be randomly chosen.

Some more accurate convergence rate results can also be provided. In particular, we give
below conditions for which the linear convergence of the proposed algorithm is secured.

Proposition 2 Suppose that Assumptions 1 and 2 hold and that x̂ and ŷ are the limits of the
sequences (xn)n∈N and

(
yn = (yjn)16j6J

)
n>1

, respectively. assuming that (yn)n∈N is bounded,

there exist α ∈]0,+∞[ and λ ∈]0,+∞[ such that, for every n > 1,

‖xn − x̂‖ 6 λ‖A‖n−α (35)

‖yn − ŷ‖ 6 λn−α. (36)

In addition, if one of the following conditions is met:

1. Φ, as defined by (34), is strongly convex,

2. f is Lipschitz differentiable and A is surjective1,

3. for every j ∈ {1, . . . , J}, hj is Lipschitz differentiable,

4. Φ is a piecewise polynomial function of degree 2,

5. f is a quadratic function and, for every j ∈ {1, . . . , J}, h∗j is a piecewise polynomial
function of degree 2,

then, there exist τ ∈ [0, 1[ and λ′ ∈]0,+∞[ such that, for every n > 1,

‖xn − x̂‖ 6 λ′‖A‖τn (37)

‖yn − ŷ‖ 6 λ′τn. (38)
Proof. As shown by [9, Theorem 3.2], the convergence rate of the Dual Forward-Backward
algorithm depends on the  Lojasiewicz exponent of function Φ defined by (34) at ŷ. Then,
(36) corresponds to the worst case upper bound. It then follows from (14), (16), and the
nonexpansiveness of the proximity operator [24] that, for every n > 1,

‖xn − x̂‖ = ‖proxf (x̃−A⊤yn) − proxf (x̃−A⊤ŷ)‖

6 ‖A⊤(yn − ŷ)‖

6 ‖A‖‖yn − ŷ‖, (39)

1It is sometimes said that A is full row rank.
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which yields (35).
If Φ is a strongly convex function [25] or Φ is a piecewise polynomial function of degree 2

[25], the  Lojasiewicz exponent of function Φ is equal to 1/2. It then follows from [9, Theorem
3.2] that (38) holds. The decay behavior of (xn)n>1 in (37) is then deduced as previously.
If f is Lipschitz differentiable, then f + 1

2‖ · ‖
2 is also Lipschitz differentiable, and its conjugate

ϕ is thus strongly convex [24]. Since A is surjective,

(yj)16j6J 7→ ϕ
(
−

J∑

j=1

A⊤
j y

j + x̃
)

is strongly convex. The strong convexity of Φ is then guaranteed.
Similarly, if Condition 3 holds, then, for every j ∈ {1, . . . , J}, h∗j is strongly convex, hence Φ.

Finally, if Condition 5 holds, f + 1
2‖ · ‖2 is a quadratic function and so is its conjugate ϕ.

Since functions (h∗j )16j6J are assumed to be piecewise polynomial functions of degree 2, Φ is a
piecewise polynomial function of degree 2.

5 Application to video restoration

5.1 Observation Model

In this section, we consider the problem of jointly deblurring and deinterlacing video sequences.
Interlacing scan has been the main format for TV recording, broadcasting, and displaying [26],
where each frame is formed by merging two successive fields resulting from even (resp. odd)
horizontal lines of the first (resp. second) image. However, with the increased popularity of HD
flat LCD and plasma screens, that benefit from high brightness and contrast, the human visual
system becomes more sensitive to interlacing artefacts [27]. Hence, the need for high image
quality has become essential to meet the actual customer’s demand [28].
The degradation model is expressed as

(∀t ∈ {1, . . . , T}) yt = St (h ∗ xt) + wt, (40)

where (yt)16t6T ∈ R
TL denotes the interlaced frame sequence, (xt)16t6T ∈ R

TN is the sought
progressive video sequence with T the number of time frames, and L (resp. N) the number
of pixels in each image of the interlaced (resp. progressive) sequence. The operator St is a
row decimation operator where St = So for odd frames and St = Se for even frames. h ∈ R

P

corresponds to a convolution kernel accounting for spatial blur, and (wt)16t6T ∈ R
TL is an

unknown additive noise.
Note that in deinterlacing problems, the number of rows in the progressive video sequence
(xt)16t6T is equal to twice that of the fields in the interlaced video sequence (yt)16t6T , thereby
we have N = 2L.

5.2 Optimization problem

An estimate of the original sequence can be obtained by finding a solution to the following
penalized least squares problem:

minimize
x∈RTN

F (x) = Φ(x) + Ψ(x), (41)

where Φ denotes the data fidelity term given by

(∀x ∈ R
TN) Φ(x) =

1

2

T∑

t=1

‖St(h ∗ xt) − yt‖
2, (42)
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and Ψ is a regularization function introducing prior informations on the sought video sequence
defined as

(∀x ∈ R
TN) Ψ(x) =

T∑

t=1

Θt(xt) + ι[xmin,xmax]TN (x) + M(x). (43)

The indicator function ι[xmin,xmax]TN imposes a range [xmin, xmax] on the pixel values of the
images composing the video sequence. Θt is a spatial regularization term that manages each
image xt ∈ R

N independently, while M accounts for a temporal regularization function.

5.2.1 Spatial Regularization

For every t ∈ {1, . . . , T}, Θt incorporates prior information on each image xt ∈ R
N and is

defined as Θt(xt) = η sltv(xt) where η > 0 and “ sltv ” denotes the semi-local total variation
from [29]:

(∀z ∈ R
N ) sltv(z) =

∑

ℓ∈Ω

χ (Dz − VℓDz) . (44)

Hereabove, D ∈ R
2N×N is the concatenation of the horizontal and vertical gradient operators:

D =

[
∇h

∇v

]
, with ∇h ∈ R

N×N , ∇v ∈ R
N×N , (45)

Ω = {1, . . . , 6} and (Vℓ)ℓ∈{1,...,6} ∈ R
2N×2N represent shift operators as illustrated in Fig. 1.

Moreover, χ : R2N → R is given by

χ

(
z1
z2

)
=

N∑

n=1

√
((z1)n)2 + ((z2)n)2. (46)

zn(V1z)n(V3z)n

(V2z)n

(V4z)n

(V5z)n

(V6z)n

Figure 1: Shift operators (Vℓ)ℓ∈{1,...,6} applied to a given pixel position n ∈ {1, . . . , N}.

Note that (44) can be rewritten as

(∀z ∈ R
N ) sltv(z) =

∑

ℓ∈Ω

χ (Lℓz) with Lℓ = (I2N − Vℓ)D. (47)

14



5.2.2 Temporal Regularization

In (43), M represents a nonsmooth temporal regularization term similar to the one proposed in
[30] that takes into account temporal redundancies. It is given by

(∀x ∈ R
TN) M(x) =

T∑

t=1

∑

ℓ∈Vt

βℓ,t‖xt −Mℓ→txℓ‖1, (48)

where ‖ · ‖1 denotes the l1 norm, in addition, for every t and ℓ, βℓ,t are positive weights, the
index set Vt defines the neighborhood of the current image xt (i.e., ℓ ∈ Vt is such that |ℓ − t|
is small), and Mℓ→t ∈ R

N×N is a linear operator modelling the sought motion fields between
the current image xt and the neighboring image xℓ of the video. The matrices Mℓ→t are related
to some vertical and horizontal shift matrices uℓ→t ∈ R

N1×N2 and vℓ→t ∈ R
N1×N2 respectively,

with N1 (resp. N2) corresponding to the height (resp. width) of the images (i.e., N1N2 = N),
such a way that, (∀i ∈ {1, . . . , N1}) (∀j ∈ {1, . . . , N2})

Mℓ→txℓ(i, j) ≈ xℓ (i− uℓ→t(i, j) , j − vℓ→t(i, j)) . (49)

More precisely, we set

uℓ→t = uℓ→t + δuℓ→t and vℓ→t = vℓ→t + δvℓ→t, (50)

where uℓ→t and vℓ→t represent the integer part of uℓ→t and vℓ→t respectively, and δuℓ→t, δ
v
ℓ→t

are their decimal part. We propose to resort to the following bilinear interpolation in order to
approximate (49):

(∀i ∈ {1, . . . , N1}) (∀j ∈ {1, . . . , N2}) Mℓ→txℓ(i, j)

= (1 − δuℓ→t(i, j)) (1 − δvℓ→t(i, j)) xℓ (i− uℓ→t(i, j) , j − vℓ→t(i, j))

+ (1 − δuℓ→t(i, j)) δ
v
ℓ→t(i, j)xℓ (i− uℓ→t(i, j) , j − vℓ→t(i, j) − 1)

+ δuℓ→t(i, j) (1 − δvℓ→t(i, j)) xℓ (i− uℓ→t(i, j) − 1 , j − vℓ→t(i, j))

+ δuℓ→t(i, j)δ
v
ℓ→t(i, j)xℓ (i− uℓ→t(i, j) − 1 , j − vℓ→t(i, j) − 1) . (51)

Thus

Mℓ→t = D1,ℓ→tM1,ℓ→t +D2,ℓ→tM2,ℓ→t +D3,ℓ→tM3,ℓ→t +D4,ℓ→tM4,ℓ→t, (52)

where Dk,ℓ→t ∈ R
N×N with k ∈ {1, . . . , 4} are diagonal matrices such that, for every y ∈ R

N ,
for every i ∈ {1, . . . , N1} and for every j ∈ {1, . . . , N2}:

D1,ℓ→ty(i, j) = (1 − δuℓ→t(i, j)) (1 − δvℓ→t(i, j)) y(i, j),

D2,ℓ→ty(i, j) = (1 − δuℓ→t(i, j)) δ
v
ℓ→t(i, j) y(i, j),

D3,ℓ→ty(i, j) = δuℓ→t(i, j) (1 − δvℓ→t(i, j)) y(i, j),

D4,ℓ→ty(i, j) = δuℓ→t(i, j) δ
v
ℓ→t(i, j) y(i, j),

and Mk,ℓ→t ∈ {0, 1}N×N , k ∈ {1, . . . , 4}, are defined as

M1,ℓ→ty(i, j) = y (i− uℓ→t(i, j) , j − vℓ→t(i, j)) ,

M2,ℓ→ty(i, j) = y (i− uℓ→t(i, j) , j − vℓ→t(i, j) − 1) ,

M3,ℓ→ty(i, j) = y (i− uℓ→t(i, j) − 1 , j − vℓ→t(i, j)) ,

M4,ℓ→ty(i, j) = y (i− uℓ→t(i, j) − 1 , j − vℓ→t(i, j) − 1) .
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The adjoint operator (Mk,ℓ→t)
⊤ is such that, for every n ∈ {1, . . . , N}, the n′-th component

of
(

(Mk,ℓ→t)
⊤ y

)
with y ∈ R

N , corresponds to the sum of all the pixels located at n ∈ {1, . . . , N}

in the image y to which the pixel of index n′ has been displaced in the resulting image (Mk,ℓ→ty).
Thereby, for every n′ ∈ {1, . . . , N}

(
(Mk,ℓ→t)

⊤ (Dk,ℓ→t)
⊤y

)
n′

=
∑

n∈Sk
n′,ℓ→t

(Dk,ℓ→t y)n , (53)

where, for every i ∈ {1, . . . , N1} and for every j ∈ {1, . . . , N2},

S1
n′,ℓ→t = {n | i = i′ + uℓ→t(i, j) ; j = j′ + vℓ→t(i, j)},

S2
n′,ℓ→t = {n | i = i′ + uℓ→t(i, j) ; j = j′ + vℓ→t(i, j) + 1},

S3
n′,ℓ→t = {n | i = i′ + uℓ→t(i, j) + 1 ; j = j′ + vℓ→t(i, j)},

S4
n′,ℓ→t = {n | i = i′ + uℓ→t(i, j) + 1; j = j′ + vℓ→t(i, j) + 1},

and n (resp. n′) is the index of the pixel located at (i, j) (resp. (i′, j′)) in the corresponding
image.

According to (52), the norm of the motion compensation operator Mℓ→t reads

‖Mℓ→t‖ = ‖
4∑

k=1

Dk,ℓ→tMk,ℓ→t‖ 6

4∑

k=1

‖Dk,ℓ→tMk,ℓ→t‖. (54)

Note that, for every k ∈ {1, . . . , 4}, Mk,ℓ→t is an N × N binary matrix. By definition, for
every n′ ∈ {1, . . . , N}, the n′-th column of this matrix has nonzero entries at the row indices
n ∈ Skn′,ℓ→t. Therefore, since Dk,ℓ→t is a diagonal matrix,

(Mk,ℓ→t)
⊤ (Dk,ℓ→t)

⊤Dk,ℓ→tMk,ℓ→t

is also diagonal with n′-th diagonal entry equals

∑

n∈Sk
n′,ℓ→t

Dk,ℓ→t(n, n)2.

Thus, ‖Dk,ℓ→tMk,ℓ→t‖ can be easily computed according to

‖Dk,ℓ→tMk,ℓ→t‖ = max
n′∈{1,...,N}



√√√√

∑

n∈Sk
n′,ℓ→t

Dk,ℓ→t(n, n)2


 . (55)

5.3 Minimization Strategy

A solution to Problem (41) is obtained by making use of PALM Algorithm recently proposed
in [31] (see also [9] for recent extensions) which provides an asymptotically exact solution to
(41). The images (xt)16t6T are processed sequentially, where at each iteration, an image xt is
updated with a forward-backward iteration that consists of gradient step on Φ with respect to
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xt, and a proximal step on Ψt which represents the restriction of Ψ to the t-th image defined
as: for every x ∈ R

TN ,

(∀z ∈ R
N ) Ψt(z|x) = η

∑

ℓ∈Ω

χ (Lℓz) + ι[xmin,xmax]N (z)

+
∑

ℓ∈Vt

βℓ,t‖z −Mℓ→txℓ‖1 +
∑

ℓ∈Vt

βt,ℓ‖xℓ −Mt→ℓz‖1, (56)

where (βℓ,t)ℓ∈Vt
and (βt,ℓ)ℓ∈Vt

are selected proportionally to the distance |t − ℓ| between the
frame index of images xt and xℓ. Thus, the number of terms in (56) is equal to

J = |Ω| + 2 |Vt| + 1, (57)

where |Z| denotes the cardinality of a set Z. PALM algorithm reads:

Algorithm 10 PALM algorithm

Initialization:

Let
(
x0t

)
16t6T

∈ R
TN

For every k ∈ N and t ∈ {1, . . . , T}, σkt ∈]0,+∞[

for k = 0, 1, . . . do

for t = 1, . . . , T do

x̌t,k =
(
xk+1
1 , . . . , xk+1

t−1 , x
k
t , x

k
t+1 . . . , x

k
T

)

x̃kt = xkt − σkt
(
∇xtΦ(x̌t,k)

)

xk+1
t = prox(σkt )

−1IN ,Ψt(·|x̌t,k)

(
x̃kt

)

end for

end for

where ∇xtΦ denotes the gradient of Φ with respect to xt and

0 < σkt < 2θ−1
t ,

with θt the Lipschitz constant of ∇xtΦ (i.e., θt = ‖StH‖ with H ∈ R
N×N the Hankel-block

Hankel matrix form of the convolution kernel h). Finally, prox(σkt )
−1IN ,Ψt

represents the prox-

imity operator of Ψt in the metric induced by (σkt )−1IN . Since F is semi-algebraic and Φ is
Lipschitz differentiable, the sequence (xk)k∈N generated by PALM algorithm is guaranteed to
converge to the solution to Problem (41) [31].

As the proximity operator of (56) does not have a closed form expression and involves several
linear operators, we resort to an inner iteration to estimate it by means of Algorithms 5, 6, and
8. Note that, when implementing Algorithm 5, function f in (22) is chosen equal to ι[xmin,xmax]N

since it does not involve any linear operator, whereas, in Algorithms 6 and 8, the latter function
is regarded as some of the hj functions, the corresponding Aj being the identity matrix. Let
us emphasize that PALM algorithm is robust to computational errors in the proximal step [9],
assuming that a sufficient decrease condition is satisfied. In practice, a rough stopping criterion
on the inner loop will be used in order to avoid numerical instabilities.

5.4 Data-set Benchmark

We evaluate the performance of our methods (Figs. 2, 3, and 4) using a benchmark of four
sequences of images (Figs. 5, 6, 7, 8, 9, and 10).
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• Two synthetic video sequences Foreman and Claire of size N = 352 × 288 (resp. N =
360 × 288) composed of T = 50 frames. These video sequences were blurred with the
horizontal convolution kernel shown in Fig. 5 which corresponds to a realistic model of
the observed degradations in the context of old television archives, then interlaced and
finally corrupted with a white Gaussian noise. The process results in a degraded video
sequence with spatial dimension L = 352 × 144 (resp. L = 360 × 144). The videos are
sourced from http://media.xiph.org/video/derf/.

• Two real interlaced sequences of size L = 720×288 supplied by INA from French broadcast
archive programmes Au théâtre ce soir and Tachan. We extract T = 50 fields from
each sequence and apply our method to recover progressive sharp video sequences with
resolution N = 720 × 576.
For the deconvolution task, we use spatial convolution kernels shown in Fig. 8a and Fig.
8b, that are obtained using blind identification methods in [32] and [30].

These sequences are provided as RGB videos. We apply our method on their luminance compo-
nent only, which represents a grayscale version of the original images, while the two chrominance
components are processed with a median filter of size 3 × 3 on each component separately, in
order to reduce the residual persistent noise. The motion matrices (uℓ→t, vℓ→t) involved in the
temporal regularization term are computed from the luminance component of the degraded
sequences using the method described in [33], and then spatially interpolated to reach the final
resolution. The neighborhood Vt includes the previous and next frames of the image xt. More-
over the set Ω involved in the semi-local total variation term is of size 6, so that the number of
terms in (56) is equal to J = 10 or 11, namely:

• (∀j ∈ {1, . . . , 6}) hj = χ and (Aj)16j66 = (Lℓ)ℓ∈Ω,

• (∀j ∈ {7, 8}) hj = ‖ · ‖1 and Aj = IN ,

• (∀j ∈ {9, 10}) hj = ‖ · ‖1 and (Aj)96j610 = (Mt→ℓ)ℓ∈Vt
,

• For Algorithm 6 or 8, h11 = ι[xmin,xmax]N and A11 = IN .

5.5 Experimental Results

5.5.1 Restoration Quality

Table 1 presents the performance of our restoration method in terms of SNR, averaged SSIM
[34], and MOVIE [35]. The latter is a video quality assessor, that takes into account both spatial
and temporal aspects in the quality measurement. Moreover, the results in terms of SNR per
frame are displayed in Figs 2a and 2b. The simulations are run using 100 iterations of PALM
algorithm, which appears to be sufficient to reach the convergence of the method. Note that
the values related to the degraded sequences are evaluated on a spatially interpolated version
of them, with a final resolution equals to N . In addition, it should be mentioned that all the
restoration results we obtained are similar in terms of visual quality, regardless of the chosen
optimization algorithm.
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Figure 2: SNR values per frame : Degraded (blue diamond), restored (red circle).

Sequences SNR (dB) SSIM MOVIE

Foreman
Degraded

Restored

25.54

28.95

0.78

0.90

4.34 ×10−4

3.73 ×10−4

Claire
Degraded

Restored

25.27

29.21

0.85

0.96

1.97 ×10−3

1.77 ×10−3

Table 1: Quality of our deinterlacing and deconvolution method.

Our reconstruction method achieves good quality results for all tested sequences. This can
also be assessed by visual inspection on Figs 6 and 7, and for the real sequences on Figs 9 and
10, for which no ground truth is available. The motion compensation terms play a central role
in the restoration quality, especially in the deinterlacing process. This is emphasized in the case
of Foreman sequence, where the motion between two successive images is fast, which leads to
a rough estimation of motion operators, at the price of a lower improvement of the restoration
quality, especially in terms of MOVIE.

5.5.2 Convergence Speed

Let us analyse the convergence speed of the proposed algorithms. First, in order to investigate
the impact of preconditioning strategies, we have carried out a number of tests regarding the
preconditioning matrices related to the involved linear operators (Aj)16j6J . These evaluations
are performed on the synthetic sequence Foreman using the minimization strategy described
in section 5.3, combined with Algorithm 6. We work with diagonal preconditioning matrices
in order to achieve a good trade-off between the convergence acceleration and the computation
time.
The tested preconditioning matrices are

• ∀j ∈ {1, . . . , J} Bj = ‖Aj‖
2 IMj

,

and

• ∀j ∈ {1, . . . , J} Bj = Diag
(
|Aj | |A

⊤
j | 1Mj

)
,

(58)

(59)

where 1Mj
denotes the ones vector of RMj .

In the non-preconditioned case (58), we need to supply the norms of the operators (Aj)16j6J .
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(a) Average execution time per frame for computing
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using Algorithm 6 and Foreman se-
quence: preconditioning strategy (59) (red diamond), no
preconditioning (see (58)) using exact norms (magenta
cross), and no preconditioning strategy (58) using approx-
imate norms (yellow astrick)).
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(b) Comparison of the preconditioning strategies in terms
of execution time (s.): preconditioning strategy (59) (solid
tick red), no preconditioning strategy (58) with exact
norms (solid thin magenta) and no preconditioning strat-
egy (58) with approximated norms (dashed thin yellow).

Figure 3: Foreman sequence : Convergence acceleration.

When it comes to motion compensation operators, this norm is either approximated using (54),
or precomputed using the power iterative method in [36].

Fig. 3a presents the average execution time needed for computing the proximity operator
of Ψt per image, by means of Algorithm 6. The latter is stopped when the relative decrease
of the criterion gets below 10−5 which appears sufficient in practice to ensure the stability of
the whole PALM algorithm. A Matlab 7 implementation is used with an Intel(R) Xeon(R) E5-
2670 CPU @ 2.3 GHz. We get an acceleration of 50% using the preconditioning strategy (59)
instead of the approximated version of the non-preconditioned case (58), while the acceleration
is of 25% if the exact norms of the motion operators are used in (58). Note however that
the exact computation of these norms is not a realistic strategy when processing long videos
at standard or high resolution, since it calls upon an iterative and costly method. Figure
3b shows the variation of the cost function F (x) − F (x̂) with respect to the execution time,
where F is defined in (41), and F (x̂) represents the minimum of F obtained at the end of the
corresponding simulations. Figures 4a-4d illustrate the averaged time spent in computing the
proximity operator of Ψt for all the images composing the video sequences over 100 iterations
of PALM algorithm 10, using either Algorithm 5, 6, or 8. The preconditioning strategy (59)
is used for Algorithms 5 and 6. Depending on the video sequence, the best performance in
terms of computation time are obtained either with Algorithm 5 or Algorithm 6 with small
differences between them. Moreover, the dual FB Algorithm 8 from [5] is up to 18 times slower
to reach the stopping criterion. This emphasizes the gain provided by our algorithms in terms
of acceleration.
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(c) Tachan sequence.
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(d) Au théâtre ce soir sequence.

Figure 4: Averaged execution time (in s.) per frame: Algorithm 5 (blue square), Algorithm 6 (red
diamond) and Algorithm 8 (green circle).
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Figure 5: Synthetic spatial convolution kernel, P = 53.
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Figure 6: Foreman sequence: degraded low resolution fields (top), restored high resolution
images (bottom).

Figure 7: Claire sequence: degraded low resolution fields (top), restored high resolution images
(bottom).
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Figure 8: Spatial convolution kernels for real sequences provided by INA, P = 101.

Figure 9: Tachan sequence: degraded low resolution fields (top), restored high resolution
images (bottom).
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Figure 10: Au théâtre ce soir sequence: degraded low resolution fields (top), restored high
resolution images (bottom).

6 Conclusion

We have proposed several primal-dual splitting algorithms for computing the proximity op-
erator of convex composite functions. These algorithms can be applied in various areas. In
our application, we have considered the joint problem of deconvolution and super-resolution
enhancement of interlaced video sequences. The convergence of our approach has been theoret-
ically analyzed and the experimental results provide an illustration of its good performance in
terms of restoration quality and convergence speed.
In our future work, we intend to develop distributed versions of the proposed algorithms in
order to solve large-scale optimization problems in a more computationally efficient manner, by
exploiting the multi-core architectures of recent computer systems.
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[22] P. L. Combettes and B. C. Vũ, “Variable metric forward-backward splitting with applica-
tions to monotone inclusions in duality,” Optimization, vol. 63, no. 9, pp. 1289–1318, Sept.
2014.

[23] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “Variable metric forward-backward algo-
rithm for minimizing the sum of a differentiable function and a convex function,” J. Optim.
Theory App., vol. 162, no. 1, pp. 107–132, Jul. 2014.

[24] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer, New York, 2011.

[25] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. Suter, “From error bounds to the
complexity of first-order descent methods for convex functions,” Tech. Rep., 2015,
http://www.optimization-online.org/DB HTML/2015/10/5176.html.

[26] S. Mallat, “Super resolution bandlet upconversion for HD TV,” Tech. Rep., 2006,
http://www.di.ens.fr/∼mallat/papiers/whitepaper.pdf.

[27] S. H. Keller, F. Lauze, and M. Nielsen, “A total variation motion adaptive deinterlacing
scheme,” in 5th Int. Conf., Scale-Space 2005, Hofgeismar, Germany, 7-9 Apr. 2005, pp.
408–418.

[28] S. H. Keller, Video Upscaling Using Variational Methods, Ph.D. thesis, The Image Group,
Department of Computer Science Faculty of Science, University of Copenhagen, 2007.

[29] L. Condat, “Semi-local total variation for regularization of inverse problems,” in 22nd
IEEE Eur. Signal Process. Conf. (EUSIPCO 2014), Lisbon, Portugal, 1-5 Sep. 2014, pp.
1806–1810.

[30] F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chenot, and L. Laborelli, “A hybrid al-
ternating proximal method for blind video restoration,” in 22nd IEEE Eur. Signal Process.
Conf. (EUSIPCO 2014), Lisbon, Portugal, 1-5 Sep. 2014, pp. 1811–1815.

[31] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized minimization for
nonconvex and nonsmooth problems,” Math. Program., vol. 146, no. 1-2, pp. 459–494,
Aug. 2014.

26



[32] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity
measure,” in IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR 2011), Colorado Springs,
CO, USA, 21-25 Jun. 2011, pp. 233–240.

[33] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss, “Human-assisted motion annotation,”
in IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR 2008), Anchorage, Alaska, USA, 23-
28 Jun. 2008, pp. 1–8.

[34] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
From error visibility to structural similarity,” IEEE Trans. on Image Process., vol. 13, no.
4, pp. 600–612, Apr. 2004.

[35] k. Seshadrinathan and A. C. Bovik, “Motion tuned spatio-temporal quality assessment of
natural videos,” IEEE Trans. on Image Process., vol. 19, no. 2, pp. 335–350, Feb. 2010.

[36] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, USA, 3 edition, 1996.

27


