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Abstract

This paper addresses the problem of estimating the extreme value
index in presence of random censoring and competing risks for
heavy tailed distributions. Asymptotic normality of the proposed
estimator (which has the form of an Aalen-Johansen integral) is
established. A small simulation study exhibits its performances
for finite samples.
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1. Introduction

The study of duration data (lifetime, failure time, re-employment time...) subject to random censoring
is a major topic of the domain of statistics, which finds applications in many areas (in the sequel we will, for
convenience, talk about lifetimes to refer to these observed durations, but without restricting our scope to
lifetime data analysis). In general, the interest lies in obtaining informations about the central characteristics
of the underlying lifetime distribution (mean lifetime or survival probabilities for instance), often with the
objective of comparing results between different conditions under which the lifetime data are acquired. In
this work, we will address the problem of inferring about the (upper) tail of the lifetime distribution, for
data subject both to random (right) censoring and competing risks.

Suppose indeed that we are interested in the lifetimes of n individuals or items, which are subject
to K different causes of death or failure, and to random censorship (from the right) as well. We are
particularly interested in one of these causes (this cause will be considered as cause number k thereafter,
where k € {1,...,K}), and we suppose that all causes are exclusive and are likely to be dependent on the
others. The censoring time is assumed to be independent of the different causes of death or failure and of the
observed lifetime itself. However, since the other causes (different from the k-th cause of interest) generally
cannot be considered as independent of the main cause, in no way they can be included in the censoring
mechanism. This prevents us from relying on the basic independent censoring statistical framework, and we
are thus in the presence of what is called a competing risks framework (see Moeschberger and Klein (1995)).

For instance, if a patient is suffering from a very serious disease and starts some treatment, then the final
outcome of the treatment can be death due to their main disease, or death due to other causes (nosocomial
infection for instance). And censoring can occur due to loss of follow up or end of the clinical study. Another
example, in a reliability experiment, is that the failure of some mechanical system can be due to the failure
of a particular subpart, or component, of the system : since separating the different components for studying
the reliability of only one of them is generally not possible, accounting for these different competing causes
of failure is necessary. Another field where competing risks often arise are labor economics, for instance in
re-employment studies (see Fermanian (2003) for practical examples).

One way of formalising this is to say that we observe a sample of n independent couples (Z;,&;)1<i<n
where

Z; =min(X;,C;), 6 =Ix,<c;, &= { 0% g gz _ (1)7
The i.i.d. samples (X;)i<n and (C;)i<n, of respective continuous distribution functions F' and G, represent
the lifetimes and censoring times of the individuals, and are supposed to be independent. For convenience,
we will suppose in this work that their are non-negative. The variables (%;);<, form a discrete sample with
values in {1,..., K}, and represent the causes of failure or death of the n individuals or items. It is important
to note that these causes are observed only when the data is uncensored (i.e. when §; = 1), therefore we
only observe the &;’s, not the complete €;’s.

One way of considering the failure times X; is to write
Xi = HliIl(XiJ, . 7X7;7K)7

where the variable X, ;, is a (rather artificial) variable representing the imaginary latent lifetime of the i-th
individual when the latter is only affected by the k-th cause (the other causes being absent). This viewpoint
may be interesting in its own right, but we will not keep on considering it in the sequel, one reason being
that such variables X 1,...,X; xk cannot be realistically considered as independent, and their respective
distributions are of no practical use or interpretability (as explained and demonstrated in the competing
risks literature, these distributions are in fact not statistically identifiable, see Tsiatis (1975) for example).

The object of interest is the probability that a subject dies or fails after some given time ¢, due to the
k-th cause, for high values of ¢. This quantity, denoted by

FO@)=P[X >t, € =Fk],
is related to the so-called cumulative incidence function F*) defined by

FO@)=P[X <t, € =k]



Note that F*)(t) is not equal to 1—F®) (1), but to P(€ = k)— F®)(t), because F(’i) is only a sub-distribution
function. However we have F(¥)(t) = S:O dF®) (u). In the sequel, the notation S(.) = S(c0) — S(.) will be
used, for any non-decreasing function S.

In this paper, we are interested in investigating the behaviour of F(*)(t) for large values of t. This amounts
to statistically study extreme values in a context of censored data under competing risks, and will lead us
to consider some extreme value index v, related to F*), which will be defined in a few lines. Equivalently,
the object of interest is the high quantile sr:,(,k) = (F™)~(p) = inf{z e R; F*)(x) = p} when p is close to 0,
which can be interpreted as follows (in the context of lifetimes of individuals or failure times of systems) :
in the presence of the other competing causes, a given individual (or item) will die (or fail), due to cause k
after such a time J;ék), only with small probability p. A nonparametric inference for quantiles of fixed (and
therefore not extreme) order, in the competing risk setting, has been already proposed in Peng and Fine
(2007).

One way of addressing this problem could be through a parametric point of view (see Crowder (2001) for
further methods in the competing risk setting), however, the non-parametric approach is the most common
choice of people faced with data presenting censorship or competing risks. Of course, the standard Kaplan-
Meier method for survival analysis does not yield valid results for a particular risk if failures from other
causes are treated as censored, because the other causes cannot always be considered independent of the
particular cause of interest.

The commonly used nonparametric estimator of the cumulative incidence function F*) is the so-called
Aalen-Johansen estimator (see Aalen and Johansen (1978), or Geffray (2009) equation (7)) defined by

0;lleg, — g
EP(@t) = ), ==
Fiot nGn(Z;)

where G,, denotes the Kaplan-Meier estimator of G, so that we can introduce the following estimator for

Fk) .

- 0l -
F7(Lk)(t) = Lﬁf
Z;t nGn(Zz )

But if the value ¢ considered is so high that only very few observations Z; (such that &; = k) exceed ¢, then
this purely nonparametric approach will lead to very unstable estimations F\" (t) of F)(t). This is why
a semiparametric approach is desirable, and the one we will consider here is the one inspired by classical
extreme value theory.

First note that in this paper, we will only consider situations where the underlying distributions F' and
G of the variables X and C are supposed to present power-like tails (also commonly named heavy tails),
and we will focus on the evaluation of the order of this tail. Our working hypothesis will be thus that the
different functions F'®) (for k = 1,...,K) as well as G = 1 — G belong to the Fréchet maximum domain
of attraction. In other words, we assume that they are (see Definition 1) regularly varying at infinity, with
respective negative indices —1/v1,...,—1/vx and —1/y¢
V1<k<K, Vo>0, lim F® (tz)/F®) (t) = 271/ and Jim G(tx)/G(t) = =Y. (1)
—+00 — 400
Consequently, FF = 1-F = Zszl F®) and H = FG (the survival function of Z) are regularly varying (at +o0)
with respective indices —1/yr and —1/7, where vr = max(7y1,...,vx) and 7 satisfies y~! = yp~1 + 7o~ L.

The estimation of vz has been already studied in the literature, as it corresponds to the random (right)
censoring framework, without competing risks. We can cite Beirlant et al. (2007) and Einmahl et al. (2008),
where the authors propose to use consistent estimators of v divided by the proportion of non-censored
observations in the tail, or Worms and Worms (2014), where two Hill-type estimators are proposed for g,
based on survival analysis techniques. However, our target is v, (for a fixed k = 1,..., K) and the point is
that there seems to be no way to deduce an estimator of v from an estimator of yr. Note that the useful
trick used in Beirlant et al. (2007) and Einmahl et al. (2008) to construct an estimator of yp does not
seem to be extendable to this competing risks setting. To the best of our knowledge, our present paper is
the first one addressing the problem of estimating the cause-specific extreme value index i .



Considering assumption (1), it is simple to check that, for a given k, we have

1() J:OO log(u/t) dF®) (t) = %

tgrfoo F(k) (¢

It is therefore most natural to propose the following (Hill-type) estimator of 7 , for some given threshold
value ¢, (assumptions on this threshold are detailed in the next section) :

Ak = J G (W) dFP (u)  where ¢, (u) = %log (“) Lust,
E(tn) " \tn

which can be also written as

~ " log(Zi/tn) 1 log(Z(;)/tn)
Yk = — e, =klz,>t, = —7— —— 0w le, =k
nF(lC ; n(Z;) - nFF (t,) Z(i)2>tn G (Z(z—l ) o
where Z(1) < ... < Z(,) are the ordered random variables associated to Z1,...,Z,, and ;) and €(;) are

the censoring indicator and cause number which correspond to the order statistic Z(;). Note that the only
observations which are used to estimate v, are those above the threshold ¢,. It is clear that this estimator
is a generalisation of one of the estimators proposed in Worms and Worms (2014), in which the situation
K =1 (with only one cause of failure/death) was considered. The asymptotic result we prove in the present
work is then valid in the situation studied in Worms and Worms (2014), where only consistency was proved
and a random threshold was used.

Our paper is organized as follows: in Section 2, we state the asymptotic normality result of the proposed
estimator. Section 5 is devoted to its proof. In Section 3, we present some simulations in order to illustrate
finite sample behaviour of our estimator. Some technical aspects of the proofs are postponed to the Appendix.

2. Assumptions and Statement of the results

The Central Limit Theorem which is going to be proved has the rate /v, where v, = nFy*) (tn)G(tn)
and t,, is a threshold tending to oo with the following constraint

vy, =% 400 such that n v, =5 oo for some 79 > 0. (2)

If we note I, the slowly varying function associated to F*) (i.e. such that F*)(z) = 2=/, (2) in condition
(1)), the second order condition we consider is the classical SR2 condition for /) (see Bingham, Goldie and
Teugels (1987)),

lk (tx)

L (t)
where g is a positive measurable function, slowly varying with index p; < 0, and h,, (z) = % when
pr <0, or h,, () =logz when p, = 0.

Vi > 0, —1 "3 hy(z) g(t) (Vo> 1), (3)

Theorem 1. Under assumptions (1), (2) and (3), if there exists X\ = 0 such that \/v,g(t,) "= X, and if
Y& < Yo then we have

\/Un(:)\/n,k - ’Yk) —d> JV()\m,Jz) as n — 0

where

2
Vi if pr <0, 2
= ek and o? = % (1+ ) — 2cq)
ol if pr = 0, (1-q)
with ¢ = lim,_,, F®) (2)/F(x) € [0,1] and ¢ = v1./7c-

Remark 1. Note that when v < vp, then ¢ = 0, and, when vy, = vp and ¢ = 1 (for instance when there is
only one cause), then o2 reduces to v&/(1 — q).

Proposition 1. Under assumptions (1) and (2), we have
Ak — k  asm— .

Remark 2. The condition v, < yc (weak censoring) is not necessary for the consistency of Vn 1.
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3. Simulations

In this section, a small simulation study is conducted in order to illustrate the finite-sample behaviour
of our new estimator in some simple cases, and discuss the main issues associated with the competing risks
setting.

For simplicity, we focus on the situation with two competing risks (K = 2), also called causes below. Data
are generated from one of the following two models : for ¢1, c2 non-negative constants satisfying c¢; +ca = 1,
we consider the following (sub-)distribution for each cause-specific function F*) (ke {1,2}) :

— Fréchet : FR)(t) = ¢, exp(—t~Y®), for t =0 ;

— Pareto : FR)(t) = ¢ t— Y% for t > 1.
The lifetime X, of survival function F = F(!) 4+ F(®2) is generated by acceptance-rejection algorithm. Cen-
soring times are then generated from a Fréchet or a Pareto distribution :

G(t) = exp(—t~ 7€) (t=0) or Gt) =t (t=1).

In this section, we consider (as it is often done in simulation studies) that the threshold ¢, used in the
definition of our new estimator 4, is taken equal to Z(,,_y,) (i.e. we consider it as random). One aim of
this section is to show how our estimator (with random threshold)

) 1 % lOg(Z(n—i+l)/Z(n—kvL))

"M==
TLFy(ll) (Z(n—kn)) i=1 Gn(Z(nfi,n))

On—it ) _ipry=1

of 71 behaves when the proportion ¢; of cause 1 events varies : we consider ¢; € {1,0.9,0.7,0.5}, the case
c1 = 1 corresponding to the simple censoring framework, without competing risk.

Another aim is to illustrate the impact of dependency between the causes, when estimating the tail. The
starting point is that, if cause 2 could be considered independent of cause 1, then we could (and would)
include it in the censoring mechanism and we would be in the simple random censoring setting, without
competing risk. In this case, it would be possible to estimate ; by one of the following two estimators, the
first one being proposed in Beirlant et al. (2007) (a Hill estimator weighted with a constant weight), and
the second one in Worms and Worms (2014) (a Hill estimator weighted with varying Kaplan-Meier weights):

A§BDF‘C'Y) = &Z,H’L‘ll/ﬁl WheI‘e ﬁl = é Zf‘il 5('”77;“1’1)1[(5(7171'4»1):1 5 (4)
kn
(K M) 1 log(Z(n—i+1)/Z(n-1.))
Y = = = On—ivn e neiiy =15 5
1 nFn,b(Z(nszn)) ;L Gn,b(Z(nfi,n)) (n—i+1)2C(n—it1)=1 ( )

where the Kaplan Meier estimators Fn,b and C_v’mb are based on the Si = §;l4,—1. These two estimators

consider the uncensored lifetimes associated to cause 2 as independent censoring times. Comparing our new

estimator with these latter two estimators, when c¢; < 1, will empirically prove that considering cause 2 as

a competing risk independent of cause 1 has a great (negative) impact on the estimation of «;. Note that
. . (K M)

when ¢; = 1, the new estimator 4; and 4, are exactly the same.

We address these two aims for each set-up (Fréchet, or Pareto), by generating 2000 datasets of size
500, with three configurations of the triplet (v1,72,7¢) : (0.1,0.25,0.3) (71 < 72, moderate censoring
Yo > vr), (0.1,0.25,0.2) (71 < 72, heavy censoring v < vr), or (0.25,0.1,0.45) (1 > 72, moderate
censoring y¢ < yr). Median bias and mean squared error (MSE) of the different estimators are plotted
against different values of k,, the number of excesses used.

Figures 1, 2 and 3 illustrate the behaviour of our estimator when ¢; varies. In terms of bias and MSE,
we can see that the first configuration is a little better than the second one, which is itself much better than
the third one. We observed this phenomenon in many other cases, not reported here : our estimator behaves
best when it is the smallest parameter ~;, which is estimated, and when the censoring is not too strong. Our
simulations also show that the quality of our estimator (especially in terms of the MSE) diminishes with ¢;.

Figures 4, 5, 6 and 7, 8, 9 present the comparison between our new estimator and the ones described in

(4) and (5). A general conclusion (confirmed by other simulations not reported here) is that %BDFG) and

%KM) behave worse in most cases, even for a value of ¢; of 0.9, which is only a slight modification of the
situation without competing risk (¢; = 1). Therefore, a contamination of the cause 1 distribution by another

cause rapidly yield inadequate estimations of ~; if dependency between causes is ignored ; this conclusion is



true for both %BDFG) and %KM), but to a greater extent for %BDFG) . In the atypical case (0.25,0.1,0.45),

the improvement provided by 4; becomes notable when ¢; drops below 0.7.
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Figure 1: Bias and MSE of 41 for different values of ¢1, with 71 = 0.1, 79 = 0.25 and ¢ = 0.3 : top : Pareto , bottom: Fréchet

4. Conclusion

In this paper, we consider heavy tailed lifetime data subject to random censoring and competing risks,
and use the Aalen-Johansen estimator of the cumulative incidence function to construct an estimator for
the extreme value index associated to the main cause of interest. Its asymptotic normality is proved and a
small simulation study exhibiting its finite-sample performance shows that accounting for the dependency
of the different causes is important, but that the bias can be particularly high. Estimating second order tail
parameters would then be interesting in order to reduce this bias. A first step towards this aim is to study
the following moments

1 2 log®(Z; [ty
M = —— ), o8 1) )H£i=kﬂzi>t",
’I’LFn (tn> i=1 GTL(ZZ )
which asymptotic behaviour can be derived following the same lines as in the proof of Theorem 1. The next
direction of work would then be to exploit this methodology in order to estimate extreme quantiles of the

cumulative incidence function.

5. Proofs

This Section is essentially devoted to the proof of the main Theorem 1. Some hints about the proof of
the consistency result contained in Proposition 1 are given in the last Subsection 5.3.

We adopt a strategy developed by Stute in Stute (1995) in order to prove his Theorem 1.1, a well-
known result which states that a Kaplan-Meier integral of the form §¢ dF,, can be approximated by a sum
6
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of independent terms. This idea is used in Suzukawa (2002) in the context of competing risks. We thus
intend to approximate ¥, ; by the integral Sd’n dFy(Lk) of some deterministic function ¢,,, with respect to the
Aalen-Johansen estimator, and approximate this integral by the mean of independent variables U; , + V; p.
However, a major difference with Stute (1995) or Suzukawa (2002) is that the function we integrate here,
On(u) = mlog(u/tn)}luxn, is not only an unbounded function, depending on n, but it also has a
’sliding” support [t,, +o0[, which therefore always include the endpoint of the distribution H. In Stute
(1995), a crucial point of the proof consists in considering (at least temporarily) that the integrated function
¢ has a support which is bounded away from the endpoint of H (condition (2.3) there). Considering the kind
of function ¢, we have to deal with here, we will not be able to make such an assumption. Dealing with the
remainder terms is the most challenging part of this work. Finally, note that we will also have to consider
simultaneously integrals (with respect to F,(Lk)) of another function g,, defined below, which basically shares
the same flaws as ¢,,.

Let us first recall or define the following objects :

~ 1 U
b~ ()
F”g‘k) (tn) tn u>t

1
Pn(u) = Wlog (Z)Hunn

J Sn()dF® (u) =Xy

Tnk =
ok = j G (w)dF ) (1)
Sun = j B (u)dFH) (u)

We thus have 7, x = A, ', x, where

_ 1
_ F () = (k) - el
Bu = FP@FO0) = [gdF0w a0 = FasTen,
and we now introduce the following new quantities, related to the Stute-like decomposition of ¥,  and A, :
Zi)
gV - &2 )5]1 a4 v = Il
hn G(Z) o o G(z) "
U. = = ny Z; d Vi = I ’ Zi
,M H(Zz)w(dj Z) an ,M H(Zz)dj(gn Z)
Zi
vl = J G(pn,u)dC(u) and Vo f (gn, u) dC (u)
0
Up = UN 102 —U® ana v, = V) +v® —v¥
where, for any function f: R. — R, we note (for any given z > 0)
+o0 (k)
) = t)dF d C —
w2 = | F0dE ) an e
This enables us to finally define the important objects
1 ¢ ~ 1 &
vn = - Uzn d An = - V;n 6
Tk n Z ’ an n Z ’ (6)

which are the triangular sums of independent terms which will respectively approximate ¥, and A,. At
the beginning of section 5.1, it will be proved that E(U( )) Yn,k and IE( ) = 1, while E(U(z)) E(U(g))

and E( i’n)) = (‘/7,('::)1 ), yielding E(¥,, k) = v,k and E(A,) = 1, while the terms Ul(zn)7 Uz(n), and V )

only participate to the variance component of the estimator. The relation between all these quantltles 1s
made clearer in the following Lemma :

Lemma 1. We have

VO Ging =) = A7 (Zn + VOB + Von (g = ) ) (7)
15



where

~

Zn = 4/Un ((’\}//n,/c - fYn,/c) - ’yk(ﬁn - 1)) and Rn = (’vn,k: - ’\)//n,k:) - ’Yk:(An - An)
The proof of Lemma 1 is simple :

AV Un (an,k - ’Yk) = A:Ll\/ Un ('NYn,k - An'}/k)
= ALV ATk = vn k) + (1= An) + Gk = Fnk) + (g = 70)}
which leads to the desired relation (7).

The main theorem thus becomes an immediate consequence of the following four results, the second one
being the most difficult to establish.

Proposition 2. Under condition (1) and assuming that
vy =3 oo, (8)

if 76 < c, then
Zy L N(0,0%)  asn— o

where o2 is defined in Theorem 1.
Proposition 3. Under conditions (1) and (2) , if v < vo, then

Fnk = Fngk + Rug  and Ay =N, + Ry, (9)
where Ry, 4, Ry 4 (and consequently R, too) are op(vn'?).

Lemma 2. Under conditions (1), (3) and \/vng(ty,) — X = 0, the bias term /vy (Ynkx — V&) i (7) converges
to Am as n — o0, where m is defined in Theorem 1.

Lemma 3. Under the conditions of Proposition 3, A, converges to 1 in probability as n — 0.

Propositions 2 and 3 will be proved in Sections 5.1, 5.2 respectively, sometimes with the help of other
results stated and established in the Appendix. The proofs of Lemmas 2 and 3 are short, we state them
below.

~ Concerning Lemma 2, recall that v, = Sgbn(u)dF,Sk)(u). An integration by parts and the fact that
F®) () = = Y%, (2) yields

Vo (Vg — k) = \/UTLLM y Yt (l?k(élti”)) - 1) dy,

and, using assumption (3) and Proposition 3.1 in de Haan and Ferreira (2006), we can write

[t (B )y = gt [ sy + ot

The result then follows from assumption /o,g(t,) — A = 0 and the fact that { ™y~ h, (y)dy = m.

Concerning Lemma 3, once the proof of Proposition 2 has been gone through, it will become clear to
the reader that An converges to 1 in probability, and therefore A,, as well (since Proposition 3 states that
A, =A, + R,, 4 where R, 4 tends to 0 in probability).

In the rest of the paper, we will have a heavy use of the well-known sub-distibutions functions H(® and
HWF) defined, for all t > 0, by

HO@) =P(Z <t,6 =0) and H®(t) = P(Z < t,£ = k).

Note that we have B B
dH = FdG and HF) = GdF®)

5.1. Proof of Proposition 2
We first write
n -
\/m 7 > Uz n — Uz n — Tn,k
Zy = S Wi, wh W-=—<U4—V4> d i, : !
n ;1 i,n  Where in n in — VkVin an Vi,n _ Vz’,n 1
16



where W, ,, ffm and ffm are centred, because the random variables U; ,, and V; ,, have expectations respec-
tively equal to 7, and 1. Indeed, we have

E (Ui(,1n)> -E (% Z)(; e, k) :S%(U)dH LK) (4 = (pn(u) YAE® (1) = Yook

G(u)
and
E(U2) = E(4256(0m 20)) = §§ gilimudn(t) AP ) dHO () = §§ ghsTimun(t) dFO)(£) dG(u)
as well as

E(US) = B (5 0(én,w)dCw)) = §§Lmulizudn(t) dH () dFW (1) 52500 — E(U).
The proof for E(V;,,) = 1 is similar.

We will now prove the asymptotic normality of Z,, by using the Lyapunov criteria.

Lemma 4. Under the conditions (1) and (8) , if v, <y :

(i) we have

Var(Usn = wVin) = E(UT,) +E(VE,) = 20E(U1n Vi 0) + o(1) (10)
(i) we have
2 u
- [2Barw - [ ac) (1)
E(7,) = ((;‘))dF ) — [l dc (12)
B Vi) - [ 2l d’““‘ Dar®w) — [6(6nu)blgnwdc) (13)
(#4i) we have
(O T ) = 1 (1 +¢°) . _1-p 27} . .
Var(Uun = Vi) F£k><tn>a<tn>( g o) ~ g (S ) + e
(14)

Lemma 5. Under the conditions (1) and (8) , if vk < Yo, then

> E |Wi7n|2+6 — 0, as n tends to infinity, for some § > 0.

We can then immediately prove Proposition 2. Indeed, since Z,, = ZZ 1 Wi n, Lemma 4 yields

Var(Z,) = nVar(Wi ,,) = ?nVar(ULn — Vi)

which, since v, = nF" (t,)G(ty), becomes
Var(Z,) = 421+ -9 — (20— phir @ =) ) (FO@)/F()) + o).

Therefore, depending on the limit ¢ of the ratio F*)(t,)/F(t,) when n — oo (for instance, it converges to
0 when 4 < vr), it is simple to check that the variance of Z,, converges to the value o2 described in the
statement of Theorem 1. Thanks to Lemma 5, the Lyapunov CLT applies and Proposition 2 is proved.

The two subsections 5.1.1 and 5.1.2 are now respectively devoted to the proofs of Lemmas 4 and 5.

5.1.1. Proof of Lemma 4

Part (¢) of the lemma is straightforward : since Ulyn and Vln are centred, we have indeed
Var(Uyn —wVin) = E((Uin—%Vin)?) = E(UR,) +7E(VE,) = 29E(U1n Vi)
= (E(Ul%n) *77%&) + 7]%(]13(‘/12,71) - ) - 2776( (Ul,nvl,n) *'Yn,k)
and the result comes by using the fact that -, , converges to v as n — c0.
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Now we proceed to the proof of part (i7), and will only prove (11) because, by definition of ¢, and g,
the proofs for (12) and (13) will be completely similar. First of all, we obviously have
(U10)? = (U2 + (U2 + (U2 + 2000 8) —20)U) — 202U )

n n n-1n

a (15)
The first term in the right-hand side of (11) is equal to E((Ul( T)L) ), and the second one (without the minus
sign) is equal to IE((U1(272) ) and to IE(U(I)U1 ) because

E((U{9)?) = E <;[2(Z(5 )w Pny Z ) JH2 U, 2))2 dHO (2) = J(w(gémz))? dC(2)

and

E(US UL = ¢" <f Y (fn, u)dC(u ))dH“%)

[w6nu ( f ¢n<z>dF<k)<z>) 10w = [won)dc)

The expectation IE(Ul( ,)LU (QT)L) equals 0 because d;(1 — d1) is constantly 0, and we are now going to prove
that E((U(B))z) = ZE(U1,272U1(,37)L)7 which ends the proof of (11) in view of (15). Indeed, noting h(z) =
So (¢n, u)dC(u) and using the simple fact that h(z) = h(y) + S; Y(¢n, u)dC(u) for every y < z, we have

sl - [ ([ w<¢n,y>h<z>dc<y>) aH (2)
2+ [ (j H(60,C() ) (0 )AC) | (2

HE) fo{j ([ wt6nmicw) vionwac )

[ [
%%
% 3° 8
88—
N 55—
%
=
G -
e 3
5 <
S \_/\_/
- o
Q.
=

and

EURU®) -

I
° 3
7~ N N

as announced.

We can now start proving part (i¢) of the lemma, in which the exact nature of the function ¢,, matters.
let us defines the constant ¢; and d; (j = 0,1,2) by
S Lo/ SN I Lo/ Al
Tl =gttt T (2= /)i
According to Lemma 8 part (ii) (a+b=1/yc —1/v, <0, for ¢;j and a+b = —=2/y, +1/v = (1/v¢ —1/7k) +
(1/vF — 1/y%) < 0 for d;) , we have

[ o (£) 50~ ot o () (B2 289 5.

n n

Hence, by definition of ¢y, gn, the first terms of E(U7,,), E(V?,) and E(U1,,V1,,) in relations (11), (12) and
(13) are respectively equivalent (as n — o) to e D(ty,), coD(t,) and ¢1 D(t,,) where D(t,) denotes

1
F®) ()G (t,)
Since ¢ 4+ vico — 2vkcr is equal to 42 (1 4+ ¢*)/(1 — ¢)3, in view of (10) this proves the first term in relation
(14). We now need to obtain equivalent expressions for the quantities {(¢)(¢n,u))? dC(u), §(¥(gn,u))? dC(u)

18
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and {9(¢n, u)1(gn, u) dC(u) in order to prove the second part of relation (14) and therefore finish the proof
of Lemma 4.

For saving space, we will use temporarily the following notations :
In(u) =log (w/tn) , Ra(u) = F®(u)/FP(t,)

+o0
tn 7

According to the technical Lemma 10 of the Appendix and, after splitting the integral into SJ * and S
we can write

| wrdcw = 22, | " o)

0

" f (12 @) B2 () +97 (/t) ™ +29dn () Ru(w) (u/t) ™ )dC(w) + o(C(t)), (17)

n

where o(C(t,)) in (17) is due to part (i¢) of Lemma 8 and to the fact that €,(u) in Lemma 10 converges to
0 uniformly in u. According to (16), we thus have

J(w(qﬁmw)Q dC(u) = (7i +da +vido + 27.d1)C(tn) + o(C(tn)) (18)

The other terms are treated similarly (using the fact that v (g,,u) = 1 when u < t,,, and = F®) (u)/F®)(t,)
when u > t,,) and we obtain

f(mgn,u)ﬁdo(u) = (14 do) Cltn) + o(Ctn), (19)

wan, )t (gn, u) dC(u) (v + di +kdo) C(tn) + o(C(tn)).- (20)

In view of (10), combining (18), (19) and (20) and using Remark 3 to write that C(t,) ~ (1 — p)/H(t,) (as
n — o) proves the second term in relation (14).

5.1.2. Proof of Lemma 5

We have to prove that, for some § > 0 small enough, nE |W1,n|2+6 tends to 0, as n — co. In the sequel,
cst denotes an unspecified absolute positive constant. According to the definition of W ,,, it is clear that

146/2 (3 246 3 246
2468 v j 248 j 2468
n Wil < ost 5 (Z Ul > ‘V&) + Y,k — Wl
i= i=1

n 1

First, we clearly have n=179 p:+%/2 Yk — ve*T® —> 0 as n — 0. Secondly, since Vl(il) has the same form

,n

such that, as n — oo,

as Ul(J ), with g, instead of ¢, (i.e. without the log factor), we will only prove that there exists some § > 0

1248 _ _ 1+448/2 S2+s
n~1=¢ v,ﬁ+5/2E]U{f,{] e (F<k>(tn)G(tn)) E‘Uf{,{ "0 forjefl,2,3) (21
For j =1, we have
246 +o0 2+46 B +oo B
Bl = [ antne) = FOe) 66 tonte/e) G )
' 0 z tn
_ o \1eb Glt,) '™ dF®) (z)
F® (t,)G(ty J log(z/t, 2”( o > R
(FOe)G) | Gose/a)™ (G5 ) Fag

Applying part (ii) of Lemma 8 for « = 2+ 6, a = (1 +6)/yc and b = —1/v; (with ¢ sufficiently small so
that a +b = 1/yc — 1/9 + §/7c is kept < 0), and using the fact that v, = nF®*)(¢,)G(t,) — oo, this ends

the proof of (21) for j = 1.
2+6 JHO
o H(z)

By definition of ¢, ¢, and vy, x, we have ¥(¢p,2) = ypr when z < ¢,. Therefore, splitting the integral

For j = 2, we have
2446

¥($n, 2) F(2)dG(2).

E|vf?)

1,n
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above into two integrals Sé and S:m we obtain

2495
= Ii(tn) + Ix(tn),

where, on one hand,

hita) = (na)* | W - o™ [ (ZC(S; < (W)Mm

and, on the other hand, using the technical Lemma 10, for some ¢’ > 0,

712496
+00 (Z) P —1/vk 2 —1/yk+d
2] Jt °g< )F%)(tn)ﬂ’“ (tn> e (u)(tn>

n

[ () ()
o [T S e [T (2) T e

- iy {f o () (fﬁ)((t)))“@;(t)))é o)

e [T ()T e e e [ ()T () )

Applying Lemma 9 to 6 = 1, we have C(t,) = O (1/H(ty)), therefore I1(t,) = O ((H(t,))~'7°). It is then

easy to check that n=%/2 (F(k)(tn)@(tn))1+5/2 I1(t,) tends to 0, because F(*) < F and nH(t,) — oo, since
H(t,) = F® (t,)G(t,).

F(2)dG(2)
(H (=)

N

For I5(t,), since by Lemma 9 the function C' is regularly varying with index 1/, the application of part (i7) of

Lemma 8 to a = 0 or 2+ 6 and to various couples of values of a and b finally yields I>(t,) = O ((H(t,))~'79),
and consequently n=92 (F(*) (¢ )G(tn))1+6/2 Iy (t,) tends to 0.

We now come to the study of relation (21) for j = 3. We have

e Lﬂo (sz(qﬁn,u)dC(u))2+6dH(z).

Proceeding as above by splitting the integral into two integrals Sé"’ and S:—OO, we obtain

)

E’Ul(

245
]E‘Uln = Ji(tn) + Ja(tn),
where
_ ors [ 216 _ 246 24 [ C(2) 204 (=
Bitn) = s [ = G ) [T (ED) G
and
Ja(tn) < est(J5 () + TS (1)),
where
+o0 b 2446 +0o0
I (1) = f ( ¢<¢mu>d0<u>> QH(z) = 230 f (Clt)ZOdH (z) = 2230 (C(tn)) H(ty)

20



and, using the technical Lemma 10 as we did some lines above,

+o0 z 2446
TP (tn) = L (L w(¢>n,u)d0(u)) dH (2)
+00 246 2+46

< est J (J 1og<tn)§(($(<))d0( )) dH(z)—i—kaJm(f: (Z:L)lm dC(u)) dH (z)

n

“ ( f (Z‘) e dC(@)M dH(z) |. (22)

Using Lemma 9 and part (i4i) of Lemma 8, we find that both J;(¢,) and Jél)(tn) are O ((H(t,))"'7?) and,
though the term JQ(Z) (t,,) is more involved, we are also going to prove below that the same property holds

for J(z)( t,) : this will finish the proof of Lemma 5 because n =%/ (F(k)(tn)é(tn))1+6/2 (H(t,))~'7? tends to
0, as already seen in the proof for j = 2.

We only treat the first integral in the right-hand side of (22), since the two others are very similar, i.e.
we need to prove that

7 ([ () i) =0 (i) o

2495

177 (F v ) Fggoca) o = ctrs [ (s G} e

n

+
+ sup \en(u)\2+6 f

u>ty,

Now

)

Using Potter-bounds (40) for F*) e RV_,,,,, integration by parts and then Potter-bounds (40) for C' €
RVj ., it is easy to see that for n sufficiently large and € > 0, there exists some positive constants c, ¢/, ¢’

such that
= 246 . )
([ v ) < () () v (@) v
where a = (2 + 5)(* — - + 2¢). Consequently
f:oo (J log < ) ij(( ))(( )) dC(U)>2+é dH (2)
v (<[ e () () [ (2 )

This yields (23), by using part (i) of Lemma 8 to this value of a, to b= —1/y (and to & = 2+ ¢ or a = 0),
as well as Lemma 9.

N

5.2. Proof of Proposition 3

Let us start with an important note. In Proposition 3, the main result is that the remainder terms R,, ¢
and R, 4 are op(vn Y 2). Proving this will be conducted in a similar way as proving that R, is op(n~'/?) in
Theorem 1.1 of Stute (1995). But, recall that in our situation, the function that we integrate here is ¢y,
which is depending on n, with a ”sliding” support [t,, +o0[. We will need to be particularly cautious with
integrability issues, especially when dealing with U-statistics for the terms R, 2 and R, 3 in the remainder
R, c, defined below.

Before we proceed with the proof, let us define the following empirical (sub)-distribution functions : for
t=0,

1 n
2 ]IZ <t n E Z HZ <t 52" H’r(Ll,k)(t) = Z HZiSt d; H‘@‘,:k'

First note that, since g, is the function ¢, w1th0ut the log factor, it should be clear to the reader that
proving that A, = A, + R, 4 and /v, R, g = op(1) will be simpler than proving that ¥, x = Ynx + Rn,¢
and /v, Ry,.4 = op(1). We will thus only prove the latter two relations.
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Let us start with the first one, in other words let us define the remainder term R, 4. Remind that
the definitions of ¥, and ¥, % are Y, 5 = §&n(u) dF,(L )( ) and Yp U(l) + U(z) (77(13)7 where Ij(j)
denotes the mean of the n variables U(] ). We need to decompose the integral of ¢, with respect to Fj (k)
which is a stepwise subdistribution functlon which jumps at the (ordered) observations Z(; are equal to
Hg(i):k/(nGn( (i—1))). But it is known that (see Lemma 2.1 in Stute (1995))

1 Za) _ » :
m = exp {nfo log(1 + (nH,(z))"") dH{® (x)}

Therefore, using the fact that G(z) = exp (— §; H1dH®), we have

Z %(Z(z))]Ig . _G(Z(_i))
K G(Z(z)) v G”(Z(ifl))

Tn,k
i=1

“ = Z; (0)
- *Z% z Hsl—kexp( f log(1 + (nHy,(z))™ ") dH () _L d}f;, )

0

Consequently, using the mean value theorem for exp, and introducing the important notations

z; B zZ; dH(O)
B = [ tosl+ i) an® ) - [
0 o Hn
o Jzi dH Jzi dH©)
7,m - 0 Hn o E[ )

it is easy to see that

n

~ 1 ¢ (bn(ZZ) N
S 11 W Bin + 11 Cim
1 & .
27 Z H§ —k 'L','n, + Ci,n)zeAh"
_ () an 2)
= Un + RnB + *Z 7kCzn + Rn JA (24)

G(z) "
where U,S” is the first term in the definition of ¥, j, and A, ,, is a random quantity lying between SOZ " qlaH©)
and nSOZ; log(1 + (nH,(z))™1) g (z).

What we now need to do is to show that the term involving the quantity C; ,, in relation (24) above can be
written as UT(LQ) — Uy (3) plus a remainder term R, ¢, and therefore we have ¥, = Yn.x + Rn,¢, where

Rn,¢ = Rn,B + Rn,C + Rn,A~ (25)
The rest of the proof will, afterwards, be devoted to showing that each term of R,, 4 is op(vn Y 2).

Proceeding as in Stute (1995) or Suzukawa (2002), and using the fact that for any given function f we
have Sde,(Ll’k) = Ly f(Zi)lg,—i, we can write

72% ) 5, $Cim = —CV 420® —c® 4+ R, | (26)
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where

Gl = fﬂ éf Loyl dHy (u)dHP (0)dH D (2),
@ _ %(Z) (0) (1,k)
o = ] Gyl () = W AT (E),
(3 _ ¢n(2) (0) (1,k)
c® f f e (v _Onl2) g GHO ()aH R (),
_ <Z5n H —H)’() 0 (1,k)
R = || GO s A D )

Note that C,gl) and C’,(LQ) are a kind of U-statistics, which need to be approximated by sums of independent
variables called Hoeffding decompositions : more precisely, if we introduce the functions (important in the
sequel)

h(v,w) = C%HMMEK@M@O and  h(u,v,w) = h(v,w) Hfb” (27)

forue R, veR U {+w} and w e R u {+w0}, then these decompositions are defined by

= Jffﬁ(u,%w)dHn(u)dH(O)(U)dH(1,k)(w)+
_UJ h(u, v, w)dH (u)dH (v)dHYF () +
fffﬁ(uaU,w)dH(u)dH(O)(v)dHr(Ll,k)(w)

_ 2H f h(u, v, w)dH (w)dH® () dHO (w) (28)
cP = thw v)dH ) (w fhvwdH 0)dH P (w)
- ” (v, w)dH® (v)dH®F (w). (29)
Therefore, if we introduce the remainder terms
Rno = CW—CW  and R,3 = C® —-C? (30)
then (26) becomes
. Z ¢n 2 57 kOZ RO 76’7(7,1) + 267(12) - Cr(zg) + Rn,c where Rn,C’ = Rn,l - Rn,Z + 2Rn,3-

We are thus left to prove that —CA'T(LI) + QCA’T(LQ) — C’T(l?’) = (77(12) — US’). This is indeed the case because, if we
note
0n = §§ h(v,0)dHO (v)dHF (w), (31)

then, by definition of h, the last (fourth) term in CAE(«}) equals —26,,, the third one equals C’T(P)7 the second
one is (because dHMF) (w) = G(w™)dF® (w))

ﬂf@(u,v,w)dH(u)ngm(v)dHM)(w) H (v, w)dHO (v)dH™P (w)

= 23800 [ Wz wGlr) ar 9w

i=1
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and the first one is (because dH %) (w) = G(w™)dF® (w) and dH) (v) = F(v)dG(v))

ijﬁ(u,v,w)dHn(u)dH(o)(v)dH(l,k)(w) = %i JJQ(Z“”7w)dH(0)(v)dH(1vk)(w)
LG ([ Saw) S
nl_ZlJJ G(U)E(U)H”<w]lv<zi dG(v) dF™ (w)

Ly (* ac(v) = U®
22, venmace) = 0.

Likewise, the first term of 6}52) equals 177(12), the second one equals Cr(?), and the last one equals —6,,. After

straightforward simplifications, we obtain the desired equality —6’7(11) + 2CA'7(12) — C’,(L3) = 17,(12) (3) , and the
proof of F,, & = Y,k + Rn ¢ is over.

The proof of Proposition 3 is now based on the following two lemmas : Lemma 6 is proved in subsection
5.2.1, and Lemma 7 is the longest to establish, its proof will be split across subsections 5.2.2 to 5.2.5.

Lemma 6. If conditions (1) and (2) hold with vy < ¢, then we have
VOrRn B = 0p(1), \/UnRn1 = 0p(1), and /v, R, A = op(1).
Lemma 7. If conditions (1) and (2) hold with v < ¢, then we have
VorRy j =o0p(1)  forj=2 and for j = 3.

5.2.1. Proof of Lemma 6
e We start with the remainder term R, g, which is defined as

1 ¢ Pn(Zi)
-3 OnlZi)y
Rn)B ni:l G(Zl_) &=k

where B, ,, = nSOZ’?_ log(1+ (n,(x))~Y) dHY (z) — OZ df[( Since, for all z > 0, x— “”2—2 <log(l+z) <,
we obtain "

1 (% a1 ()

_%L (@, (2))? <Bin<0

and then
1 7 a7 (x
R >}
H(z)\" 1 on(Zi) % qHYO ()
s 0<qscl<lg(n) H, (x) anZ{ z; (L W : (32)

But

FWW%LfWWW>fW®Wﬂ%m
o H@)? Jo (H@=)? Jo (H (z))? 7
so, if we define
1 1 ¢
T(l) _ - T(l) d T(2) _ T(2)
n Z in ANC S0 n 2

in
i=1 i=1

where
) z; (0)
0= eyl
@ 1 ¢ Z5 d(HY — HO)(z)
R M T

then it remains to prove (thanks to part (i) of Lemma 11) that VoI = op(1) and VT = op(1).
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Concerning T,gl), since H > H© implies that Tz(i) < %%H&:k, then ,/vnT,(Ll) =op(l) is a
consequence of Lemma 12, used with o = 0 and d = 1.
Concerning T,(LQ), an integration by parts yields

fzi dHY — HO)@)| _ |HY - HO|(Z]) JZz- 1A — HO)|(x)

~x

H(z) + |H(0) — HO(0)]

0 (H(x))? H2(Z]) 0 H3(x)
v e lEY = HOY@) (AO @)\
s 0<oZ 0, (HO) ()2~ ( H(z) >
2 (% dH() O (0) — T
\/ﬁ(ﬁ(Z, +a + \/RJO (ﬁ($>)g+a + | n ( ) ( >|a

for any given 0 < a < 1. Lemma 11 (applied with a = 1/2 — a < 1/2) and the fact H®) < H thus imply

2
that

< 0p(1) ! + [ (0) — HO(0)),

VA (H(z)

so that, by definition of T?  the desu"ed statement /vnTT(L2) = op(1) is a consequence of Lemma 12, applied

1, )

J 7 aun?) — HO) (@)
o HE@)

with a > 0 sufficiently small and d = 5, and of
\/n 1n ; = — — - FO(t,)G(t,)
’ Z L H0) = FOO) = VAl 0) = 10 0)] x S Cel ) ) — o),

Indeed UM converges to v, and H\” (0) — H©(0) equals L3 Isi—o — P(6 = 0), which is Op(n™'/2) by
the standard central limit theorem.

e Let us now turn to the remainder term R, ;, which is defined as

[ ¢a(2) (H, — H)*(v) 0 DNdH LR (5
Rn,l = J;[ G(Z) Hz>v EQ(’U)HR(U) dHn ( )dHn ( )

A simple calculation leads to

Bun < 0<w<g<n) <\f( ())2a> 0<I<PZ)(n>H nQZ{ fti <L (ﬁ(v))2+20‘

for any 0 < o < % Taking « sufficiently small, the rest of the proof is very similar to the one for R, p

(compare to (32)) and relies on Lemma 11 and Lemma 12.

e We can finally deal with the last remainder term R,, A, defined as
nA— Z¢n ]If kB1,7L+O1n) 1n7

where A, ,, is a random quantity lying between a,, := SOZ; H'dH® and b,, := SOZ; log(1+(nH,(z))~") dH,gO) (x).
Since e = 1/G(Z;"), we have

1 &
n,A*TZ

. Z dH< ) Z7 qgO
Since b, — ap, = B; p, + C; , where B; ,, <0 and C;,, = — S dH , we clearly have

I[gl_k an-i-cl n) l”_a”.

elBin—a) < max(l,e in) < elci’"l.

But C;,, = /A\n’g(Zi) — A (Z;), where Ag is the cumulative hazard function assiciated to G, and An)g its
Nelson-Alen estimator. Relying on Zhou (1991) Theorem 2.1, we can deduce that sup,c;<, |Cin| = Op(1).
Hence, e(8in=%) = Op(1).
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Now,

1 (% ag®
Cp - f M o Bt Cin < Cin
K™ NN E ’

By writing

Z (0) _ (0 2
= [ A HO) (5 (L 1)
7 0 Hn 0 Hn H

we prove (using Lemma 11 and simple integrations as for the previous treatment of T}\2) above) that |C; | <

Op(1) 1/(v/n(H (Z:)V2+2) + | HL” (0) — HO(0)] for 0 < a < 1/2.
Hence, on one hand (C; ,,)? < Op(1)(n(H(Z;))**2*) " +0p(n 1) < Op(1)(n(H©(Z;))'+2*) 1 +0p(n™1),
and on the other hand

1 (% dH® ? 1 1 _
(Ci’”‘znfo <H>> =0 (n( HO(Z )>1+2a+n2<ﬁ<0>(zi>>2>+OP(” )

for any given 0 < a < 1/2 (where the Op(n~1) comes from |H\” (0) — H©® (0)|?, which does not depend on
1). Therefore, it is sufficient to prove that

1 i V0 10g(Z;/tn)le, =kl z,>1,, and L i Vn 10g(Z;/tn)le,=klz, 1,
n = F(k)(tn)G(Zi_)n(}_[(O)(Zi))l+2°‘ n = F(k)(tn)G(Z;)nQ(E(O)(Zi))Q

are op(1), and that

1/2 1 log(Z;/t)le, =L
—1/2 (F(k)( ) ) - g 51, k Zi>tn
Z )G(Z7)
is op(1) as well. But the first two statements are consequences of Lemma 12 with « > 0 sufficiently close to
0 and, respectively, d = 1 and d = 2. And for the third statement, the expectation of the expression turns
out (thanks to Lemma 8 part (ii)) to be equivalent to a constant times n='/2(F®*)(t,,)G(t,))"/?, which tends
to 0.

5.2.2. Preliminaries to the proof of Lemma 7

We start this section by introducing important objects, issued from an idea appearing (to the best of our
knowledge) in Stute (1994). We define the improper variables (V;)1<i<n and (W;)1<j<n by

- Z; iféd; =0 o +00 lf(SJ:OOI'CfJ?Ek
Vl_{—i—oo it =1 nd W‘{Zj it6; =L and G, = k

which have H® and H®F) for respective subdistribution functions. We thus have 1 — §; = Iy, <o, and

I, =1 = Iw, <c0, which, according to the definitions of Cy(ll) and CT(LZ) on one hand, and of functions h and h
(in (27)) on the other hand, leads to

o - Lyy _OnlZ) g (- 550 = = LS S v, wy)

n i=14=1 G(Z] )H(ZZ) i#]
and
C’r(Ll) %i 3 ZMHZ>ZHZZ>Z( 5)(5 H% =k = BZZZ}LZh‘/MW
nt o E a6 H(Z) i# 5,1l

Since the latter triple sum is not convenient, we also define

c = W L FM where & = — LSS bz, Vi W) and a@— S S (Vi W) H(V),

i,7,0 distincts i#j

where CN',(Ll) will be the quantity approximated by CA',(LD, and 5'7(}) will be a remainder. We can indeed rewrite
(30) as

Ryg = 00 (G0@ - CR) - C@)m, (33)
Rn,Q = n(nfil)s(an) (n(n—?)s(n—Q)é b 6’7(11)) - 371;267:) + N'r(zl) (34)
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The terms in parentheses in (33) and (34) turn out to be genuine U-statistics of 2 and 3 variables, denoted

by
U = sy L, Ve Wy) and Vo= s 3 ) > AL, Vi W) (35)

i#J 1,7, distincts

where functions s and 4 will be defined in a few lines (relation (36)) after some preliminaries, certainly
well-known in the U-statistics literature, but which we include here to make our proof self-contained (and
since we are dealing with improper variables).

If V and W denote independent improper random variables with subdistribution functions H(® and
HWLE) (je. V = Zls—g + 0ls—1 and W = Z'6'Tegr—y, + 0(1 — 8" + Tegrsp,) where (Z,6,%) and (Z,8,€") are
independent copies of (Z7, 01, %1)), we introduce the following notations : for any function g : [0, 0] x [0, 0] —
R,

gre(v) = E(g(v, W)) and  ga1(w) = E(g(V,w)) ,
as well as, for any function g : [0, 0[x[0, 0] x [0,00] — R, with Z (of distribution function H) independent
of V.and W,

gree(u) =E(g(u, V;W)) ,  gere(v) = E(9(Z,v,W)) and geer(w) = E(9(Z,V,w)).

Since h(v,w) = 0 whenever v or w equals oo, we then have (the proof is simple)
60 = || o, 0)a® @)aH P w) = BV W) = ER(Z, VW)

Therefore, setting (for z in [0, 00[ and v and w in [0, o0])
Hv,w) = hlv,w) — hie(v) — her(w) + 6,
H(z,0,w) = h(z,0,0) = h14e(2) = Bero(v) = heur (W) + 20,
it is then not difficult to check (using (28) and (29)) that %, and ¥;, in relation (35) are indeed equal to the

differences in parentheses in relations (33) and (34), respectively. Lemma 7 thus becomes a consequence of
the following facts : /v, %, = op(1), /Un¥n = op(1), and

(36)

the three sequences CS" | CAZ’,(Ll)/n and 6'7(12)/71 are 0]1)(1}771/2). (37)

We will prove these statements in the next 3 subsections.

5.2.8. Proof of /v, X, = op(1)
We note . = {I = (i,j); 1 <i<j<n}, # =(V;,W;) when I = (4,j) € &, and N = n(n —1)/2.
It is clear that it suffices to prove that

Sy =op(l) where Sy = Z */]?"%”1
Iey

The good point is that Sy turns out to be a sum of identically distributed centred and uncorrelated random
variables 77, but unfortunately these variables .77 are not square-integrable and potentially only have a
moment of order slightly larger than 4/3 when v, < v¢. In order to deal with this difficulty, since we cannot
handle directly the LP norm of Sy of order p = 4/3, we will follow a strategy similar to that found in Csorgo,
Szyszkowicz and Wang (2008), based on truncation. We set
= H(Vi,Ws)
M, = n?%/ o,
The variables 7" = J*(V;,W;) (I € #) are centred and bounded, but they lose the non-correlation
property of the variables ¢7. This is why we define now

JF = AV, W) where S (v,w) = ¥ (v,w) — % (v) — H (w)

which are centred and bounded but are also uncorrelated (see part (i) of Lemma 14), and we write

Sy = SV + S = MmN, A+ RS (A — ). (39)

H*(v,w) = H(0, ) p0w)<m, — E(SAL Lz <m,) where { (38)

We thus need to prove that SI(\}) and SI(\?) both converge to 0 in probability.

27



Concerning S](\}), since the J¢** are centred and uncorrelated, we have
E((S9)2) = (@u/NE ((Lres #74)°) = (0a/N)E (i, W2))2) < est(vn /)BT 1<, )

where 7] was defined in (38) (the justification of the last inequality is postponed to part (i) of Lemma
14). Remind that 4 is not square-integrable and M,, = n?/\/v, = n3/?/(F®)(t,,)G(t,))"/?, and introduce
my, = n®?/(F®) (t,)G(t,))?~¢ = o(M,,) for some given small ¢ > 0. We then write

Un Un,

E ((Sﬁ)F) < estym?2°E (%\4/3) + st M2PE (|f/a|4/311w>m“) — cst(Ap + B).
Thanks to Lemma 13 (parts (¢) and (i¢)) and to the definition of m,,, the term A,, is bounded by a quantity
which is equivalent (as n — o) to Z—gmi/?’ (”7")72/3 = (F®) (t,)G(t,))*/3 = o(1). We now rely on Holder’s
inequality for dealing with the term B,, . Let p > 1 and ¢ > 1 such that 1/p + 1/q = 1. Since 8,, = E(J4),
again thanks to Lemma 13 ((4), (ii) and (v)), for p sufficiently close to 1 so that 4p/3 < 1+ (1 + 2v/v¢) "},
we have

Un

B, < ()" (Bloae) " @A) > m)

() (0 ()™ ™)) e an o

Un, ) 2/3+2(1-1/q)—8/3

o) (=

n

< O 2FD (£,)G (1)) (GlE) (<o G(ta)) " = o(1) (n(F® (1) G (2a)) %)

N

M HA(EW® ()G (tn) " (—log G(ta))

n

N

—3/2¢q

which converges to 0 thanks to assumption (2), for € > 0 small enough (we used part (v) of Lemma 13 in
the third upper bound).

We are thus left to prove that S](\?) also converges to 0, but this time in L'. We start by writing that

E(1SP1) < W Sies B - H6%)) = JOnE (16 — H*(Vi, Wa) + H5(Vi) + 25 (W)

< 4o E (A4 5 0,) »

the last inequality being proved in the appendix (part (iéi) of Lemma 14). The follow-up is a bit similar to
the treatment of B,, above, relying on Lemma 13 (parts (i), (i¢) and (v)) and on Holder’s inequality : for
p > 1 close to 1 and a large ¢ such that 1/p+ 1/g = 1, we can write

1/p
E(1591) < aved (BlA1) T (B4 > M)

—3/2

1/q
< 0 (-1ogG(t)" < 00 | (w(FD (0G0 ) " (Gl (- loxGir)

which, for € > 0 small enough, is o(1) thanks to assumption (2).

5.2.4. Proof of \/up¥n = op(1)

The proof is very similar to the one contained in the previous subsection. We nonetheless provide a few
details to convince the reader of the validity of the result. We note now & = {I = (i,,1); 1 <i<j<l<n}
and ;= H(Z;,V;,W;) when I = (i,7,1) € &, with N = n(n — 1)(n — 2)/6 denoting the cardinal of the
index set .#. Since the observations (Z;);<, are i.i.d., it should be clear to the reader that it suffices to prove
that

SN = 0[@(1) where SN = Z \/;\;7%]
Iey

As previously, the problem lies with the moments of the centred and uncorrelated variables J2;, and now
we only have a guaranteed moment of order slightly more than 6/5 instead of 4/3 in the previous situation.
Fortunately, the cardinal N is now of order n?, which turns out to be the right compensation.

We thus define, for (u,v,w) € [0,00[x[0, 0] x [0, 0],

i = K(Z?n‘/laWQ)
K (u,v,w) = (0, W) sp w00y <m, — BN, 1<m,) where { M, - n3)\fin
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as well as

1?* = i**(zlvvgﬁwj) where %**(uvvvw) = %*(uﬂ%w) - H (u) _iflo(’u) _%fol(w)

ZL lee

which are centred and bounded but are also uncorrelated (see part (i) of Lemma 14 in the Appendix), and
we write

1 2 Un Un
Sn = SO +SY = WS, K + G Sy (- HF).
Introducing m,, = M, (F*)(t,)G(t,))¢ and skipping details, we assess that

E ((55\}))2) < cst%mfﬁE (\ﬁ1|6/5> + cst ZM$/5]E (|ﬁ1|6/511‘%1|>mn)

(¥
n

and that this quantity converges to 0, as n — oo, thanks to parts (i) and (ii7) of Lemma 13. The same
argument is used to prove that E(|S[) "=5 0.

5.2.5. Proof of relation (37)

Let us first prove that, for some d €]4/5, 1], E(|\/ﬁg’g) |4) tends to 0, as n tends to infinity. Recall that
aﬁ” =4 2 2 (Vi W;)/H(V;). Since d < 1, we have

E(yaCOM < a2 (Gt P9 (6)) " nin — 1B (h(Vi, Wo)/H(A)]7)

2-5d/2

According to part (iv) of Lemma 13, the right-hand side of the inequality above is O(1) v
to 0, since d > 4/5, and so we are done.

, which tends

Let us now prove that E(|4/vn6’7(¢1) /n]) tends to 0, as n tends to infinity. CVY is defined in (28), where

the expectation of each of the four integrals is 0,, : therefore, we only need to prove that ‘/;7"9” tends to 0.
This is straightforward using part (v) of Lemma 13.

We can prove in a very similar way that E(|«/vn@(¢2)/n\) tends to 0, as n tends to infinity.

5.3. Proof of Proposition 1
Using the same notations as in the begining of Section 5, we have,

~ _ Z,
Tk — Ve = Anl <\/5—n+Rn+(7n,k'7k) ) .
The fact that % £ 0 is due to the application of a triangular weak law of large numbers (see Chow and

Teicher (1997) for example) to 1 3] Ui, and to i3 Vi.n. By carrefully following the proof of proposition 3
in Section 5.2, we can see that R,, = op(1). The condition v, < ¢ is not used, neither in the treatment of

% nor in that of R,,. Details are omited.

6. Appendix

This appendix contains various results : some of them are used repeatedly in the proof of the main result
(in particular Proposition 4, Lemmas 8, and 11, and to a lesser extent Lemmas 10 and 9), the other ones
concern parts of the main proof which are postponed to the appendix for better clarity of the main flow of
the proof (Lemmas 12, 13 and 14).

Definition 1. An ultimately positive function f : Rt — R s regularly varying (at infinity) with index
aeR, if
f(tz)

= (1)
This is noted f € RV,. If a =0, f s said to be slowly varying.

=z% (Vx> 0).

Proposition 4. (See de Haan and Ferreira (2006) Proposition B.1.9)
Suppose f € RV,,. If v <1 and € > 0, then there exists to = to(€) such that for every t > to,

f(tz)
ft)
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and if x =1,

(1— )z < fjfff)) < (1 +e)zote. (40)

Lemma 8. Let x € R} , a e Ry, f > —1, and for a and b real numbers, f and g are two regular varying
functions at infinity, with index, respectively, a and b. Then, as t — +00,

+00
(1) Ja(z) = L log”(y) y~"'dy = %-

y TP ey fyt) dg(yt)  bD(a+1)
() Tnos = | log™() L2 2000

ifa+b<0

(M ft) dg(yt) b
(444) Ja,b—L 0 o0 " atd ifa+b>0
Proof :

(7) A simple change of variable and the definition of the I" function yields the result.

(i) For the sake of simplicity, we are going to treat the case a < 0 and b < 0. The only difference for
the other cases is the sign in front of the € or € appearing below (coming from the application of (40)
several times), which can depend on the sign of a, b or another constant, but does not affect the result.
Using Potter-bounds (40) for f yields, for n sufficiently large and € > 0 |

" +00
(1+ e)f1 log™(y) y** dzgj;) <lopap <(1- G)L log®(y) y*~ dggt)).

Let us treat only the upper bound and the case o # 0 (the other cases being similar). By integration
by parts, with a + b < 0, we have

i dg(ytn) e 9(yta) B 9(ytn)
log™ (y) y*~° = —ozf log™ ' (y) y* ' ° dy—(a—e f log™(y) y*~'~¢ dy
J, st e S 1 WV gl T ] TG
Using Potter-bounds (40) for g yields, for n sufficiently large and € > 0

J - log™(y) y*~ ¢ dg(ytn) <—a(l—€)a1(—a—b+e+€)—(a—e)(1+€)Ja(—a—b+e—¢).
1 g(tn)

Doing the same with the lower bound and making € and €’ tend to 0, yields the result after simplifica-
tions.

(#41) As in (i7), using Potter-bounds (40) for f, integration by parts and then again (40) for g yields the
result.

Lemma 9. For any 6 > 0, let Cs denote the function

_ t dG(v)
UJ;@MENM'

Under condition (1), this function is regularly varying of order /v and we have Cs(t) ~ (v/vc)/(SH® (1)),
as t — +00.

Proof : by writing H(t)C, So Ig:((t'z) C—?((ttg) dgg;‘) , the lemma is an immediate consequence of part (i)

of Lemma 8, with a + b = (5/7 + 1/v¢) + (=1/v¢) = §/y > 0 and —=b/(a + b) = (v/7¢)/9.

Remark 3. In the Lemma above, Cy is the important function C' introduced at the beginning of Section
5, and thus C(t) ~ (v/vc)/H(t), as t — +00. Hence, C is regqularly varying at infinity with index 1/v, a
property which proves useful several times in the main proofs.

Lemma 10. Let ¢(¢p,u) = S+OO bn(8)dAFF) (), for u = 0 and ¢, (u) = F<k>(t log(u/tp)lyst,. Under
condition (1), we have
1/)(¢mu) = Tnk, 1

fu<t
: F_' + u _1/’ch+ » u —1/vk+0 fus
og F V& t En U . yu ns
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where €,(u) is a sequence tending to 0 uniformly in u, as n — 00, and § a positive real number such that
1

——+6<0.
Tk

Proof : We only consider the second situation where u > t,, (the first one is straightforward) :

+0 +o0 (k)
bn(s)dF M (z) = Ji 1og(y)d1};(k>gt;)

u
An integration by part and the fact that F(*) is regularly varying at infinity with index —1/74, yields

w F) ()
tn ) F®)(t,)

+00

bu(5)AF ) () = 1og( - (t“>/ + D),

+0o0 F(k)
Ay, (u) = J- ((yt") _ y—l/%> @

u

where

F(k)(tn) y
Let § be a positive real number. Then
e yfl/wkflJré yl/'ykfé Fl(k) (ytn) _ yfé dy
i F®)(t,)

1/w 6F( )( n) 7y75
(k)( n)

|An(u)] =

tn

< sup|y
y=1

+00
J y71/7k71+6dy,

tn

where the function y — y¥/7% 9 F (k)(y) is regularly varying with index —¢. Then since

1/’Yk75FL(k)(ytn) —
F®)(t,)

n—o0
sup |y — 0
y=1

and, when —%k + 0 < 0, we have Sloo y V10 gy — st (u/tn)_l/%M, this concludes the proof.
tn

Lemma 11. Recalling that H is a distribution function with infinite right endpoint, we have :

(i) SUPg<y<zon H(x)/Hy(z) = Op(1)
(i1) for any a < 1/2,

Vasip EnO = HOL_ 001 g i O = HO0)

>0 W B o (HO (1)) = Op(1).

Proof : part (i) is well known (see for instance section 3 of chapter 10 of Shorack and Wellner (1986)), while
the two statements in (i¢) are proved by usual empirical processes techniques, showing that the family
of functions (f;)i<c defined in one case by fi(z) = L.-:/(H(t))*, and in the other case by fi(§,z) =
(1= 6)L>/(HO(t))* are Donsker whenever a < 1/2 (using respective square integrable envelope functions
*(2) = 1/(H(2))* and f*(6,2) = (1—6)/(H©®(2)), which bound from above the functions f; uniformly in

t) .
Lemma 12. Under conditions (1) and (2), suppose that o > 0 and d = 1 are real numbers. If v, < v¢ and

VUn ¢(Z:)
Xip = n'+d G(zZ,)(HO (Z ))dJra]IEi:k’

then we have Y\ | X; p, LN 0, as n tends to infinity, if o is 0 or sufficiently close to it.

Proof :
According to the LLN for triangular arrays, we need to prove the following three statements :
(i) Ye>0, Y P(|X;n]>¢) =30
(i) X B(Xin)Lx, <)) = 0
(ii1) Y E(Xinlx, . 1<1) =30

But, X; ,, being positive, (ii7) clearly implies (7). We thus need to prove that (i) and (¢¢) hold.
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Let us start with assertion (7). If € > 0 is given, then

oi? log(Z;/tn)

Xin = R 2l 3
’ nt T F®) (t,)G(tn) (H O (tn)) 4

Iz,>t, 1=k

Glt) (HO@t) "
G(Zy) <H(O)(Zi)> .

Now, put a = 7% + ’”Ta (> 0); since, for a given ¢’ > 0, there exists ¢ > 0 such that Vz > 1, log(z) < cz€,

and using Potter-bounds (40) for G—1(H©)~(¢+®) ¢ RV_,, we can write (using the definition of v,,)

B —(d+0c) Zz a+2¢€
{|IXinl >€¢} < {U;I/Qn—d (H(O) (tn)) c(1+¢€) (t> > e} n{¢& =kand Z; > t,}

n

c {Z,» > c(e, €) tpwy, } Nn{& =Fkand Z; > t,},

_ o\ 1/ (a+2¢€")
where w,, = <’U71,,/2’I’Ld (H©® (tn))d+ ) and c(e, €’) is a constant depending on e and €' only. Conse-
quently, if w,, tends to infinity,
n o0
SE(Xial >0 < mBllseeernmle) =n [ G@iE@
i=1 c(e€’) tnwn

(F®G)(c(e, €) tpwy)
FOG) 1)

< cst vnw;ﬁ,

N

Un

where 5 = 7% + 'y% — ¢ and the last inequality is due to Potter-bounds (40) applied to F®MGeRV_ 1 1.

Yo Yk
Then, assertion (i) above will be true as soon as we prove that w,, — 0 and v,w;? — 0, as n — 0.

Since HO)(t) is equivalent to a positive constant times H(t) when t — +oo, and H(t,) > v,/n, then
Wi > st (n"Mvy,)", for r = +d+a>0and n=% > 0. Assumption (2) finally yields that w, tends
to 400, since 0 < n < no for « sufficiently close to 0.

_ ’ _ d
Now, proving that v,w;? tends to 0 is equivalent to proving that v, (at+2e)/B,,1/2pd (HO(t,)) " tends to
+00. The same arguments as in the previous paragraph yield that it is sufficient to prove that vAin= =

(n‘”vn)A tends to +o0, for A = —(a+2¢)/f+1/2+d + a and n = §. This is a consequence of hypothesis
(2), since A > 0 and a < oA, for a sufficiently close to 0. This ends the proof of (7).

Let us now start the proof of assertion (iii). If € > 0 is given, using Potter-Bounds (40) for G~ (H(0))~(d+)

which belongs to RV_,, and introducing h(x) = log(z)x*~¢, we find that (for some positive constant c)
HlXiTnlgl]IZ'i>tn < Hh(Zi/tn)gcwnHZi>tn
where we set w,, = U}L/Qnd (g(o) (tn))dJra. Hence, denoting by h~! the inverse function of h,

H|X1‘,n\<1ﬂzi>tnﬂ€i=k < th <Zi<tnh*1(cwn)ﬂf1'=k'

Consequently, using once again Potter-Bounds (40) and bounding the log with a constant times a power of
2/ty, we get

1/2 ntnh ™t (cwy)
Un log(2/tn) (1,k)
E(X; I < — = = — dH'Y™
nE(X1nlix, . <1) nd ), F®) (t,)G(2)(HO)(z))d+e (2)
“ewn
< st Up, o )Sb+2€/ d}_?(k)(Stn)
Wn J1 F(k)(tn) ’

dta

where b = dw and ¢ > 0 is some given positive value (the inequality log(s) < cst s, Vs = 1, was used).

But, by integration by parts and (40) applied to F*), setting h,, = h~*(cw,,), we have

—1
Un. e sbt2e 7&:—‘(@(8%) < st (1 + hb*1/7k+36/) )
Wn J1 F(k)(tn) Wn, "
Proceeding similarly as in the previous paragraphs, we find that w,, /v, — © (and thus w, and h,, as well)
thanks to assumption (2), for a close to 0. We are thus left to prove that (v, /w,) x hY tends to 0, where
b =b—1/y, + 3€. If b — 1/~ is negative, this is immediate. We thus suppose that b — 1/9; = 0 and, after
some simple computations, we find out that (v,/w,)hY tends to 0 if v; %t w? ¥~ tends to o0, a property
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which holds true thanks to assumption (2), for «a close to 0 (we omit the details).

Lemma 13. Suppose that Vi and Ws are independent improper random variables of respective subdistribu-
tion functions H® and H®) | and Zs is independent of Vi and Wy and has distribution H. Consider h,
h, 7 and F the functions defined in (27) and (36).

(1) For any d = 1, there exist some positive constants ¢ and ¢ such that

E([24(Vi,W2)|) < cE(h*(Vi,W2)) and E(|20%(Zs,Vi,Wa)|) < ¢ E(h*(Zs, V1, Wa)).

(ii) For any d €]1,1 + (1 + 2v,/vc) [, we have
E (hd(Vi,Wa)) = O (F® (t,)G(t,))* =) .
In particular, if v, < vo, then B(hY3(Vy, W3)) is of the order of (F®) (t,)G (t,))~%/® and E(h*(Vi, W5))
is finite whenever d is (greater than but) sufficiently close to 4/3.
(iii) For any d €]1,1 + (1 + 3vk/vc) [, we have
E (h%(Z5,Vi,Wa)) = O (F®) (t,)G(t,))*1=D) .

In particular, if yi, < o, then E(ﬁ6/5(23, Vi, Wa)) is of the order of (F®) (t,)G(t,,))~%/° and E(h (Zg, Vi, Wa))
is finite whenever d is (greater than but) sufficiently close to 6/5.

(iv) Foranyd €]1/2, (270 +yp 7, 1)/ (370 +295 )L, we have E (h(Vi, W) /H (V1)) = O (F®)(£,)G (ta))*~7).
In particular, if v, < yo then taking 6 (greater than but) sufficiently close to 4/5 is permitted, otherwise
it is 2/3 instead of 4/5.

(v) The integral 0,, = {§ h(v,w)dH© (v)dH ) (w) is equivalent, as n — 0, to vx(—log G(t,)).
Proof :

(i) Let d > 1, and remind that h is a non-negative function. Using several times the inequality |a + b|¢ <
24=1(Ja|? + |b|?), we can write
E(l A4V, Wa)|) < est {E(h(Vi, Wa)) + E[(h14(V1)?] + E[(he1 (W2))?] + (E(h(V1, W2)))"} .

But using the fact that the L' norm is bounded by the L? norm whenever d > 1, we have (E(h(Vy, W3)))?¢ <
E(h4(V1,Ws)) and it is quite simple to prove (by independency of V; and W) that it is also the
case of E[(h1s(V1))?] = E[(E(h(V1, W2)|V1))?] < E[E(h%(Vy, W2)|V1)] = E(h4(Vy, Wa)), as well as for
E[(he1(W2))%]. The inequality is thus proved. The other one (concerning 2 and h) is proved similarly.

(#i) Let d > 1. Since h(v,0) = h(oo,w) = 0 (Yv,w), we have

E(h*(Vi,Wa)) = Jflog (w/tn) (H ()G (W) s, LysodH® (0)dH P (1)

1 (V) ) gr-agy FPw)
(O )= [ o) (f GHdl())G )

. — T (G‘(tn)) ! Caa(w) AP (w)

(F® (tn)G(tn)) =1 e, G(w) Ca-1(tn) F®(t,)
where the function Cy_1 was defined in the statement of Lemma 9. This lemma and Lemma 8, applied
with « = d, a = (d —1)/v¢ + (d —1)/y and b = —1/v, (the constraint specified on d certifies that
a + b < 0), imply that the integral in the previous line converges to a constant. And Lemma 9 also
implies that the ratio in front of this integral is equivalent, as n — 00, to a positive constant times

(ﬁ(tn)ﬁ(k)(tn)é(tn))l_d, which is itself lower than (F*) (tn)é(tn))2(1_d)

, as desired.
(7i1) Let d > 1. By definition of h in (27) and proceeding as in the previous item, IE(hd(Z37 Vi, W3)) equals
Jff log ))72d(é(w))7de>tn]Iw>v]Iu>vdH('UJ)dH(0) (U)dH(l’k) (’w)
= d—1
n _ (k)
i) (Gl ) Gz} 280

G(w) Cog—2(tn) F®(t,)’
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which is equivalent to O ((H(t,))?24(F®)(t,,)G(t,))1 ™) = O (F®W(t,)G(t,))* %) as soon as,
thanks to Lemma 8, the sum ((d — 1)/y¢ + (2d — 2)/v) — 1/ is negative, which turns out to be true
whenever d < 1 + (2 + 3vi/7c) ™!, as specified.

The proof is very similar to the previous ones, starting from

B (1 (Vi Wa) (V1)) = (F9(0,) [ log (/) () 2(Gw)) L, L dH O () ) 1)

so we omit the details.

Noting that —log G is slowly varying at infinity null at 0, we have
0 v . dF®) (w) - « —log G(ut,,) dF™® (ut,)
0 = 1 tn dG(v)/G ———— = (—logG(tn)) | — 1 = i
[ tosturta) ([ dGonG) ) ) = (tomGien)) (- [ tontu) ~5E )

which can be dealt with using part (i) of Lemma 8 with « = 1, a = 0 and b = —1/7;, : the obtained
constant is indeed equal to .

n

Lemma 14. In this Lemma, various notations defined in sections 5.2.2 to 5.2.4 are used.

(4)

(i1)
(iii)

The variables %”** for Ie{(i,5); 1 <i<j<n} are centred and uncorrelated . This is also true for
the variables 5% for I € {(i,5,1); 1 <i<j<l<n}.

We have E [(**(Vi, W2))?] < 48E[A] 4 <0, ]-
We have E (| — 5% (Vi, Wa) + A5 (Vi) + A5 (W2)| ) < AE (| AL 4>,

Proof :

(7)

Let us consider the first situation, where & = {(¢,7); 1 < i < j < n}. First, if [ = (i,5) € .#, then
E(7*) = 0-E(J4%5 (Vi) — (Jf*( ;) ; but, by definition of 7% and independency of V; and W, we
have E(s67%5(V;)) = E(o0*(V;, W;)) = 0 and E(%ﬂj( ;7)) = 0 is obtained similarly, so we proved that
E(2**) = 0. Note that we can prove (With similar arguments) that J2%* (v) = 5% (w) = 0 for every
v,w in [0, 0], a property which is repeatedly used below . Let us now deal with the non-correlation of
S and HAT*, by considering the various cases where I # I’ with I = (¢,7) and I’ = (k,1) are in .#.

If all four indices 1, j, k, | are distinct, then non-correlation of 7** and J¢;* is immediate by mutual
independence of the variables Z1,...,Z,.

If ¢ = k but j # [, then E(J**5¢75*) = E(¢(V;)) where ¢(v) = E(J** (v, W;) % (v,W})) =
(#%*(v))? = 0, by independence of V; with (W;,W;), and of W; and W;.

The case i # k and j = [ is similar using J£3*(-) = 0.

If i =1 but j # k, then E(£**2*) = E(v(V;, W;)) where ¢(v, w) = E(I** (v, W;)** (Vi,w)) =
SO (0) A8 (w) =0x 0=0; the case j = k and 7 # [ is treated similarly.

Note that the case i = and j = k (i.e. 5% = 50**(V;,W;), A7 = H7**(V;,W,)) is not permitted
(it would lead to dependency) since we cannot have simultaneously ¢ < j and j < ¢ ; this is the reason
why, in the beginning of section 5.2.3, we restricted the study of the sum %, to that of the sum Sy
having terms 7 (V;, W;) satisfying ¢ < j.

The second situation, for 2257* and 5" with [ # I' in & = {I = (i,j,1); 1 <i<j <l <n},isabit
more tedious (with more cases to detail) but very similar, so we omit its proof.

We start by the trivial bound
E[(o** (Vi, W2))?] < A{E[(5*(Vi, W2))*] + E[(24%(V1))°] + E[(25 (W2))°]} -

Noting 4~ = %_]I‘jfﬂgj\/[n, we can write, on one hand, by definition of J#*, E[(J£*(V1,Ws))?] <
2{E[(+47)%] + (E[2£])*} < 4E[(#)?]. On the other hand, if W is independent of V;, we have
E[(75(V1)?] = E[(E[27*(Vi,W)[V1])’] < E[E[(27*(Vi,W))*|[Vi]] = E[(s*(V1, W2))?], which is
the same term as the first one, and is thus lower than 4E[(7)?]. The same is true of E[(J£%(W2))?],
so the desired inequality is proved.
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(7i1) First recall that s# denotes 5(Vy,Ws). Now, since J# is centred and we trivially have 54 =
A \1<m, + HAL 5> 0, » noting A4 = HAN ;|5 v, yields

S — A (Vi,Wa) = A" —E(AT).
Secondly, using the fact that .(-) = 0 (simple to prove), we can write
%f(”) = E(H (v, W)HI%(U,W)KM”) - E(%”lméz"ugMn) = —j‘/jf(v) + E(%ﬂf)v
where 7 (v) denotes E( (v, W)L, (v, w) >, ) and satisfies E(7F (V1)) = E(o"), and similarly
HG(w) = —HJ (w) + E(AT)

with A} (w) = E(S(V,0)] e (v,u)>m,) and E(H] (W2)) = E(#;"). Summing these three terms
finally leads to

E (|74 — 2% (Vi,Wa) + H{(Vi) + AT (W2)) = E (147 — A0 (Vi) — A5 (W) + E(A)])

which is lower than 4E(|.7%"|), as announced.
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