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Abstract

The aim of this work is a construction of a dual mixed finite element method for a quasi-Newtonian
flow obeying the Carreau or power law. This method is based on the introduction of the stress tensor
as a new variable and the reformulation of the governing equations as a twofold saddle point problem.
The derived formulation possesses local (i.e. at element level) conservation properties (conservation
of the momentum and the mass) as for finite volume methods. Based on such a formulation, a
mixed finite element is constructed and analyzed. We prove that the continuous problem and its
approximation are well posed, and derive error estimates.

AMS (MOS) subject classification 65N30; 65N15;
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1. Introduction

We propose a dual-mixed formulation for non-Newtonian fluid flow where the fluid viscosity
is assumed to be nonlinear function of the rate of strain tensor. The governing equations arise in
modeling flows of, for example, biological fluids, lubricants, paints and polymeric fluids. In [9, 10]
we have introduced and analyzed a dual-mixed finite element method for quasi-Newtonian fluid flow
obeying to the power law. A priori error estimates for the finite element approximation were proved
in [9], while a posteriori error estimation was provided in [10]. However, in both [9, 10] the analysis
used the assumption that the equation describing the stress tensor in terms of the rate of strain
tensor was invertible to give the rate of strain tensor as function of the stress tensor. The mixed
finite element method developed in [9] possesses local (i.e., at element level) conservation properties
(conservation of the momentum and the mass) as in the finite volume methods. Furthermore, it
allows the approximations of all the physical variables (stress, velocity and pressure).

The aim of this work is to extend our investigations by avoiding the assumption of expressing
the rate of strain tensor as function of the stress tensor. As example of such a situation is a non-
Newtonian fluid flow obeying the Carreau law. For this purpose, we introduce an additional variable
for the rate of strain tensor and reformulate the governing equations as a twofold saddle point prob-
lem. It must be noted that this kind of approach has been introduced and analyzed in [12, 7] for a
class of quasi-Newtonian Stokes flows. However, in both [12, 7] the tensor gradient of the velocity
was used instead of the rate of strain tensor. The fact to use the rate of strain tensor introduces a
major difficulty in the construction of mixed finite element methods (for more details, see [4]). The
difficulty lies essentially in the symmetry of this tensor. One way to overcome this difficulty is to
relax the symmetry of this tensor by a Lagrange multiplier. We will present our dual-mixed formu-
lation and establish well posedness. The mixed finite element for this formulation will be provided
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and the associated a priori error estimates are then derived. The error estimates are optimal and
are the same as the ones obtained in the particular case of Power law ([9]).

The outline of the paper is as follows: In Section 2 the governing equations and the mixed
formulation of non Newtonian flows whose viscosity obeys a power law or the Carreau law are
presented. Existence and uniqueness results are given in Section 3. In Section 4 we introduce our
finite element approximation and establish well posedness. The a priori error estimates are then
derived and last section is devoted to the conclusion.

2. Governing equations and mixed formulation

Governed by the classical Stokes problem, the Newtonian fluid flows are a reasonable approxi-
mation of the more realistic non—-Newtonian fluids (quasi-Newtonian or Viscoelastic). In the case of
quasi—-Newtonian fluids, the viscosity is a function of gradient tensor, temperature, time, etc. For a
steady and creeping flow of an incompressible quasi-Newtonian fluid, the most used formulation is
based on the strain rate tensor.

In that case, for  a bounded domain of R? with a Lipschitz boundary I" and a given mass forces
f defined in 2, the combination of the conservation equations leads to the following Nonlinear Stokes
problem:

— div <2y(|d(u)|) d(u)) YVp=Ff inQ Q)
divu =0 in €,
where u and p, the unknowns of the problem, are the velocity and pressure, respectively. d(u) =
2
L(Vu+(Vu)') is the strain rate tensor, and ld(u)]* = Z d(u)};.
i,5=1

For 1y > 0 a reference viscosity and r a fluid characteristic real parameter verifying 1 < r < oo,
the viscosity function v(-), depending on |d(u)|, is usually given by one of the two following famous
models:

v(r) = wvya" 2, Vo € Ry, for the Power law model, and

)<r72>/2

v(z) = (1 + 22 , Yz € Ry, for the Carreau model.

Finally, system (1) is supplemented by a set of boundary conditions.

Remark 2.1. For r = 2, both models provide the well known classical Stokes problem:

—2pdiv(d(u))+Vp = f inQ,
divu = 0 nQQ,

corresponding to a Newtonian fluid flow.

The generalized Stokes problem (1) and its approximation by standard finite elements was first
studied in Baranger and Najib [1]. Extensions and improvements of the error bounds have been
obtained in Sandri [17] and Barrett and Liu [2, 3].

In these works, only the primal variables velocity and pressure are taken into account. But, for
various reasons, we need information on other variables as velocity gradients V u, strain rate tensor
d(u), extra-stress tensor o = 2v(|d(u)|) d(u) etc. In that case, it is necessary to build appropriate
mixed formulations.

On the other hand, in connection with the use of the gradient tensor V u which corresponds to
the Ladyzhenskaya model [14]:

v(Vaul)= o +un [Vu|) ™2, 1 >0, 11 >0, r>1,



a large amount of work is available in the literature. Among these works, there may be mentioned
Manouzi and Farhloul [15], Farhloul and Zine [8], Gatica et al. [11, 12] and Ervin et al. [7].

The major drawback of formulations using the gradient lies in the fact that we can not deal with
natural boundary conditions. To overcome this drawback related to the boundary conditions, we
have introduced and analyzed a dual-mixed finite element method for quasi-Newtonian fluid flow
obeying to the Power law, in Farhloul and Zine [9, 10]. A priori error estimates for the finite element
approximation were proved in the first paper, while a posteriori error estimation was provided in the
second work. In both, the analysis is based on the fact that the equation describing the extra—stress
tensor in terms of the rate of strain tensor:

o = |d(w)"d(u) (n=1/2),
is invertible and give the rate of strain tensor as a function of the stress tensor,
d(u) = |o|" 0.

r’ being the conjugate of r.

The aim of this work is to extend our investigations by avoiding the assumption of expressing
the rate of strain tensor as function of the stress tensor. We may be then able to deal with both
problems associated with Power law and Carreau Model.

In order to obtain a dual-mixed formulation of (1), we first formulate problem (1) as:

—div(o’—pI):f in €,
divu =0 in €, (2)
u=20 on I,

and then, we introduce two new variables

t = d(u), the strain rate tensor, (3)
A(t) = 2v(|t])t =0, the extra stress tensor. (4)

Suppose f € [L"(2)]%, 1 < r < co. Let 7’ being the conjugate number of 7, i.e. % + % = 1. Let
w = w(u) = 3(Vu—(Vu)') be the vorticity tensor. Then, for all (7,q) € [L"(Q)]**2 x L (Q),
such that div (1 —qI') € (L7 (Q)]?, and for all w € W17 (Q) such that divu = 0, it is easy to see
that:

(t,7) = (d(u),7),= —(div(T — g I),u) - (w,T),

where, from now on, (-, -) denotes the duality pairing between L™ () and L"(£2). The space LSI (Q)
is defined by

Ly (Q) = {qeLT’(Q); /qux(]}.

In order to derive the mixed formulation of (2), we define the following spaces:

T = (L@,
= = {(ra) e [L7@P x Ly (Q): div(r —qI) € [L7 (@)},
M = {(m) e L@ x L@ n+a' =0},

equipped with the following norms:

1
7

1
Islr = s||0,r,9=(/§2 |s|r) ,

(1115, 2 + gl 0 + v = a Dl )™

(7, 9)ll=

1

r »
0,7, .

Il = (Illg,q+ I



The dual-mixed formulation of problem (2) reads as follows: Find ¢t € T', (o, p) € ¥ and (u,w) € M

such that
(A(t),s) — (o,8) = VseT,
(t,7) + (div(T — I) u)+ (T,w) =0 VT = (7,9) € %, (5)

o
(div(o —pI),v) + (o,m) + (f,0) =0 Vy = (v,n) € M.

Remark 2.2. From the last equation of (5),
(div(o —pI),v) + (o,n) + (f,v) = 0, V(v,n) € M,

one gets
(a,m) =0, Vi € [L"(Q)]**? such that n+n' =0.

This corresponds to the symmetry relaxation of the extra—stress tensor o by a Lagrange multiplier.

Remark 2.3. As stated above, the use of the rate of strain tensor enable to handle different type of
boundary conditions, such as mized boundary conditions. More precisely, assuming that we consider
the following boundary conditions:

u=0 onTp and (2v(|d(u)|)d(u) —pI)n =0 on Iy,

where ' =Tp Uy, I'p # 0 and n is the unit outward normal vector field along the boundary of Q.
Then, the only change to be made is to replace the space 3 by the following one:

= = {(r.q) € L7 ()72 x L (Q); div(r —qI) € L7 ()% (r—qD)n=0onTy}.

However, we choose to make the analysis in the case of Dirichlet boundary conditions only for the
sake of clearness.

To formally rewrite (5) as a twofold saddle-point problem, see Gatica et al. [11, 12], we define
the following operators:

A:T —T, B:T —X andC:¥% — M/,

where for a Banach space X, X' denotes the dual space with associated norm || - || ..
[A(t),s] = (A(t),s), Vs, teT, (6)
[B(s),7] = —(s,7), VseT, VT =(1,9) €%, (7)
[C(r),v] = —(div(r—ql),v)—(7,n), VT €EX,VveM. (8)

Remark 2.4. Recall that the operator A is defined by Vt € T, A(t) =2v(|t]) t, v being given by
either Power or Carreau law.

The problem (5) can be then written in the following twofold saddle-point form: Findt € T', o € X
and u € M such that
[A(t),s] +[s,B(g)] =0 VseT,
B(), 7] +[1.C'(w] =0 VreX, 9)
[C(g), 2] = [F, ] Vv e M,

where, [F,v] = (f,v),Vv € M, and B’ and C’ denote the dual operators of B and C, respectively.



3. Solvability of the continuous problem

To prove existence, uniqueness and stability conditions of

(t,g,y) =(t,(o,p),(u,w)) eT XX XM

solution of (9), we shall recall some technical results given bellow. These results concern the properties
of the operators A, B and C. Mainly:

e A is bounded, continuous and strictly monotone,

e B verifies the inf-sup condition on the Kernel of C,

e C verifies the inf-sup condition.
Here we give several technical lemmas that establish the appropriate conditions on the operators .A.
These properties are given for both Power and Carreau laws. In the following, to distinguish the two
models, we set § = 0 for Power law and § = 1 for Carreau law. For details on the following three
Lemmas, see Sandri [17].

Lemma 3.1. Let s,t € T = [L"()]**?, we have the following results: For 1 < r < 2,

s =t 0
0+ sllorle +I1E1G

I46) - ADloro < 0| [ 1460~ Aw]1s 1 dxr/"/.

[A(s) — A(t), s — ]

Lemma 3.2. Let s,t €T = [L’"(Q)]2X2, we have the following results: For r > 2,

(Als) — A(t),s 1] > O(Ilstlla,r,w | (vtsl 1) |st|2dx),
Q
1/2
I A(s) = A®) 0.0 < C[/Q(Hls”HtI”) s—t“'dx] (64181837 +1158"%)

Lemma 3.3. Let s,t €T = [LT(Q)]2X2, we have the following inequality: For r > 1,
[A(s) — A(t),s—t] > C/ |A(s) — A(t)||s — t| du.
Remark 3.1. The above Lemmas 3.1, 3.2 and 3.3, imply that the operator A is bounded, continuous
and strictly monotone on reflexive Banach spaces.
We also state two known results that will be utilized.

Lemma 3.4. Let (X, || - ||x) and (M, || -||la) be two reflexive Banach spaces. Let (X', || - ||x/) and
(M| - |larr) be their corresponding dual space. Let B : X — M’ be a linear continuous operator,
and B' : M — X' its dual. Let V = Ker(B) be the kernel of B; we denote by V° C X' the polar
set of V, e, VO ={2' € X', <a',v>=0, Yv €V}, and B: (X/V) — M’ the quotient operator
associated to B. Then, the three following properties are equivalent:

(i) there exists > 0, such that

B
ot wup (B0
a€M yex ||qllallvlx

=5,
(it) B is an isomorphism from M onto V° and

IBallx > Bllallm Vg€ M,
(i4) B is an isomorphism from (X/V) onto M’ and

| BO |[ar > Bl 0 llxpvy Vo€ (X/V).



The proof of this Lemma is given in Sandri [17] (see also Remark 4.2, p. 61, in Girault and
Raviart [13]).

Lemma 3.5. ([16], Theorem 9.45, p. 361, Browder-Minty). Let X be a real reflexive Banach space
and let K : X — X' be bounded, continuous, coercive and monotone. Then for any g € X' there
exists a solution u of the equation K(u) = g; i.e. K(X) = X".

Now, we establish the appropriate inf-sup conditions for the operators B and C. Define Z, the
null space for C:

le{zeE; [C(T),v] =0, VgeM}.

Lemma 3.6. There exists a positive constant 31 such that

B(s), 7] (
inf sup ——— > ;. 10
oz S sl Tls - )

Proof. Let T = (7,q) € Z;. Then, T € [L" ()]*>*%, ¢ € Ly (Q) and div(T — ¢I) = 0. Now, let

s* = —\T|T/_2T. We have s* € T and ||s*||; = ||T||6l;19 Thus,
[B(S*)yz] _(S*,T) HT Slrl o
= = — = lI7llos 0
e el g e

On the other hand, since div(T — ¢ I) = 0, there exists a constant C' > 0 such that (see Lemma 4
n [15]) [|gllo.@ < C||Tlo,r",- Therefore, for all T € Z;, we have

[B(s), 7]  [B(s") 7]

sup

= lITllo.r.0 = Clizls,
seT lslr

Is* Il

which completes the proof. ]

Lemma 3.7. There exists a positive constant B35 such that

[C(z), v
inf sup ———— > Bs. (11)
e o8 Tzl ol
Proof. The proof of this result is the same as the one of Proposition 2.2 in [9]. [ |

The main result of this section can be established now.

Theorem 3.1. Problem (9) admits a unique solution (t,a,u) € T x X x M satisfying the following

stability condition,
[tlr +lgls + llulla < C(F),

where C(f) is a positive constant depending on f.

Proof. Using the Inf-Sup condition (11) and applying Lemma 3.4(iii) to the operator C, we get the
existence of ¢= (¢,P) € £/ Z; such that

[C(g),v]=[F,v]VveM (12)



and
lglls, z, <Cliflloso (13)

Let 0% = (6,p°) €6 such that

Ig°ls =l s, z, <ClElor o (14)

Setting o = a* + g?, e, (o,p) = (6* + 0, p* + p°), problem (9) may be written in the following
way: Find t € T, and g* € Z; such that

[A(t),s] + [s,B'(g")] = —[s,B'(g”)] Vs€eT,

B(t), 7] =0 VT € Z,. (15)

Now, from the properties of the operator A (see Remark 3.1) and Lemma 3.5, there exists a t € Z5
such that
[A(t), 5] = ~[s,B'(g")] Vs € 2>, (16)

where Zy = Ker(B) = {s eT; [B(s), 1] = O}, V1 € X. Uniqueness of ¢ is implied by the fact

that the operator A is strictly monotone (see Remark 3.1).
Furthermore, one can prove that

It

0.0 < C (IElo.m.0 + IENG o) - (17)

Equation (16) implies [A(t)+B'(¢°),s] =0V s € Zs, i.e, A(t)+B'(¢”) € Z3. Thus, by the Inf-Sup
condition (10) and Lemma 3.4(ii), there exists a unique g* € Z; such that

B(g*).s] = ~[A(t) + B'(g).s] ¥s €T (18)

and
lo*lly < ClA®) +B'(g”)llo.r.q (19)

Therefore, from (12) and (18), we get
LA(t), 5]+ [5,B/(g)] = 0¥s € T, [C(g), 0] = [F,v] Vv e M,
and, owing to (14), (17) and (19), we have

Il +llglls < C0),

where C(f) is a positive constant depending on f.
On the other hand, since [B(t), 7] = 0 VT € Z1, we have B(t) € Z7. Thus, by the Inf-Sup condition

(11) and Lemma 3.4(ii), there exists a unique w € M such that [7,C'(u)] = —[B(t), 7] VT € =
and |lullpy < C||B(t)|sy. Therefore, [B(t), 7] + [1,C'(u)] = 0 V7 € T and |lul|p7 < C(f), which
completes the proof. [



4. Discrete mixed formulation and error analysis

We assume that the boundary I" of the domain 2 is polygonal. We first give some finite element
notations. Let h > 0 and 7j a triangulation of  into triangles. We assume that the triangulation
Tr, is regular in the sense of Ciarlet [5]. Let K € Tj, be an element of the triangulation, we denote
by bx the bubble function defined by:

bic(x) = M (@) ha(2)As(2), Vo € K,

Aiyi=1,--+,3 being the barycentric co-ordinates with respect to the element K. Let Py (K) denote
the space of polynomials of degree less than or equal to k on K, and

R(K) = [Pi(K)]” & R curl by,
Obx  Obk

where curlby = (—, ———).

83:2 ’ 8:61

To write the discrete mixed formulation, we introduce the following finite dimensional spaces:

T, = {sh €T; sy, € R(K), VK € n}
Y, = { = (o) € 3 T € [RUOP, quy, € PuK), VEK € Th},
M, = {Nh = (v, M) € M; vp, € [PO(K)V,??;L =0n X, 0n, € P1(K),VK € 771}7
where
10 -1
X=11 ol
The discrete mixed formulation of problem (9) is given by: Find ¢, € T}, op € X, and up € M,
such that .
[A(th), Sh} + [Sh,B (O;h)] =0 Vs, €Ty,
[B(tn), 7n] + [Th,C'(un)] =0 Y7p € Iy, (20)
[C({h)v’th] Z[-'F,UNh] V'UNhth.

In order to analyze the discrete problem (20) and prove error estimates, we have to state some
intermediate results.

Lemma 4.1. There exists a positive constant 85 independent of h, such that

[B(sh), Th]
inf  sup

h > 81, (21)
7:’h’5Z1 sneTy,

sull [ITalls

where Z}l" is the discrete Kernel of C, i.e.,

Z}f = {t.h S Eh; [C(Th),’l)h} = O, V’lih € Mh} .

Proof. Let 7p = (Th,qn) € Z". Then, 7, € [L" (Q)]2*2, g, € L} () and div(7y, — g I) = 0. Now,

let s* = —\Th|’",_27'h and s}, € T, such that

/s}id)hdaj:/s*d)hdx, Ve, € T, .
Q Q



Proceeding as for the proof of Lemma 4.1 in [6], we have ||s} || < C'||s*||;, where C' is a positive
constant independent of h. Thus, s}, € T, and ||s ||, < C||Th|‘8/;}9. Therefore,

B(s;), T :

[B(s), Tn] —(85,,7h) Irallor o c
sz [ P — 1 = Climallos 0
st - sy T HTh“O,r/,Q

On the other hand, since div (T, — g, I) = 0, there exists a constant C' > 0 such that (see Lemma
4.3 below) ||gnllor.0 < C|Thllo.r - Therefore, for all 7y, € Z¥, we have

[B(sn), 7] [B(s},), 7a]
sup >
snel,  |8nllr skl 7

> Clitals,

which completes the proof. [ |

For the proofs of the two following results, see Farhloul and Zine [9].

Lemma 4.2. There exists a positive constant B35 independent of h, such that

[C(Th), vn]
inf sup ————— > f35. (22)
thMh Thezh ||7;h||2 ||1Lh||]\/l 2

Lemma 4.3. There exists a positive constant C, independent of h, such that

h
V"'Nh € 7y, ”q}L”o,r',Q <C ||ThH0,r’7Q' (23)

Due to the previous Lemma, the discrete inf—sup conditions (21) and (22), we obtain, as for the
continuous problem, the existence, uniqueness and stability of the discrete solution. More precisely,

Theorem 4.1. Problem (20) admits a unique solution (ty,,on,upn) € T X X, X M}, satisfying the

following stability condition,

tnllr + lonls + [lunla < COF).

wher C(f) is a positive constant depending on f and independent of h.
To prove the error estimates, we shall use the following result (see Farhloul and Zine [9]).

Proposition 4.1. Let s be a real such that s > 1, then there exists an operator

I, o [WHs(2))2%2 x (Wl’S(Q) N Lg(Q)) — 3,
T — (1)

which satisfies
[C(I - Hh(z)ﬂ /lih] =0, V'lih e My, . (24)

Further, for all T = (7,q) € [W™5(Q)]>*% x (W™5(Q) N L§(2)), m = 1,2, we have

17 @) = T (7, @)l < CB™ (171, s 0+ [dl ) (25)

where C' is a positive constant independent of h, and

@ =

I(m, @)llos.0 = (715 .0+ lallt s )



We are now able to state the error estimates for problem (20). In the following
(ta g, y') = (t, (Uap)v (u,w)) and (th7 o;h; ’u;h) = (t}w (O'h,ph), (’U/ha wh))

denote respectively the solution of the continuous problem (9) and the solution of the discrete
problem (20). In the sequel, we use the following notation:

u} = P u, the L?-projection of u onto H Py(K)
KET}L

, 2Xx2
Theorem 4.2. Let1 < r < 2 andm = 1,2. Suppose t € [W™(Q)]**2, o= (o,p) € [Wm’r (Q)} X

wmr'(Q), and u = (u,w) € [VVL’“(Q)]2 X [Wmr(Q))**2. Then, there exists a positive constant C
independent of h such that

lt—tullg,0 < CH™, (26)

o — o'h”o,r',Q + llp — ph”o,w@ < Chm(rfl)’ (27)

s, = unlly 0+ llo —whll,q < CH™/?, (28)
[u—unlly,.q < Ch'? ifm=1, and lu—unlly,.q <Ch ifm=2. (29)

Proof. By subtracting the last equation of (20) from the last equation of (9), we get for v = (v,n) =

(Uhﬂlh)
[C(g —an),vn) =0

and then, owing to (24),
(div (o7 — pid) = (on = pnD)] o) + (7 — o, my) =0, (30)

where (o7, p) = I, (o, p).

Let (u},w}) = (Pu, Plw) denote the L?-projection of (u,w) onto the space M, and ¢}, = P}t
the L?-projection of ¢ onto the space T',. By subtracting the second equation of (20) from the second
equation of (9), we get for 7 = (7,q) = (Th, qn)

(t—tn, ) + (div(Th — qnl), u — up) + (Th,w — wp) =0,
and then
(t—tn,7n) + (div(Th — quT), up — wp) + (Th, wj, — wn) = (Th, W} — w). 81
This last relation and (30) yield
(t—tn, o —on) = (0], —oh,wj, —w)

and then
(t), —tn, 08 —op) = (0], — op, Wi, — w). (32)

Now, by subtracting the first equation of (20) from the first equation of (9), we get for s = sy,

(A(t) — Al(tr), sn) = (sh, 0 —op). (33)

10



(A®) = A(tn) t—tn) = (A@) — Altn), t—t},) + (A(t) — Altn), B, —tn)
= (A@) = Altn),t—t,) + (t), —th,0 — on)
= (A@) = Altn),t —t;,) + (t, —th,0 — 03,) + (), —th, 05, — o)
= (A(®#) = A(tn), t —t;) + (8, —th,0 — 0}) + (0], — o, W —w)
= (A(t)— A(ty), t—t;,) + (t;, —t,oc— o)+ (t—ty, 0 —0o7})

therefore

(At) — A(ty), t—t) = (At) — Aty), t—t) + (t —t, o —of) + (t—th,0 — o)
+(o) —on,wj, —w).

On the other hand, owing to (33), we have
(A(t) — A(ty), sn) = (sp,0 —07,) + (sn, 05 —op) Vs, €Ty,

and then
(sh,05 — o) = (A(t) — A(tr), sn) + (sp, 05, —o) Vs, €T,

Thus, from (30) and the discrete Inf-Sup condition (21), we have
Billon = anllor < [ LA®) = Atn)llo. + o = o llor
Using this last estimate and (34), we get

(A(t) — A(tn), t — 1) I A®#) = Atn)llo,r [t =, llo,r

<
+ =t llorllo —ahllor + 1t =tnllorllo — oo
+ C(IA®) = A®n)llo. + llo = ahllor) lw = whllo.r

thus

(A(t) = A(tn), t —tn) < || .A() = Altn)lo,r ||t =1 [lo.r
+C|LA(E) — A(tn)lo.r[lw — willor + (| E=n florlle — oo
it =2 llorlloe = allor + Cllo = ajllorllw = willor-

Now, owing to Lemma 3.1, Lemma 3.3 and (36), we have

2
||t_th||0,r
2— 2—
d+ 1tho," + ltnllo,"

/Q LA®) — At [t — th] de

IN

/7'
c| [ 1aw A je—tl ai] " je=til,

1/7'
cf [ 1w - awnlle—tl dr] " o - wil,
+ Clt=tnlorllo—olly, +Clt—1; |

+ Cllo=ahllgmllw—=willg, -

o llo— UZ”Q,W

Then, using the Young inequality,

1 T 1 b\
abﬁf(sa) +7(7> , fore>0,a>0andb>0,
T ' \e

11

(34)

(35)

(36)



we have

[t —tnll5,
9, + /|A Aty)| |t —tn| d

2— 2—
d+ 1tllo.,” + llenllo,"
C *x [|T x [|T
- \A A(tr) ot =thllo + llew = whllo )

+ ||t_th o, + llw —willg,) [l — O'hH()r
+ CHt_th”O,r HO’ o-hHO,r’ .

IN

Choosing 0 < € < 1 (for example, ¢ = 1/2), it follows from the previous inequality the following one:

1t —tnl
bl /|.A A(tn)| [t —tn] do
6+||t||0,7' +||thHO,r (37)
< <||t—t o, + llw = willo, + It =tally,. lo =l
+ (lt=tllo, + llw —willp,) llo = Uh”(m«')'

Then, using the stability conditions on ¢ and #;, (see Theorem 3.1 and Theorem 4.1), we get, for all
>0,

2 * * *
le=tally, < C(lE=till, +lw—will, + lt=tulo, llo = il
+ (It =tillo, + lw = whllo,) llo = il )
< c(le-tl, + (1t = illg,r + o = willg,) 7 = ohllo,)

c
— 2 * |12
+e ”t - th”O,r + g HO' - a-hHO,r’ )
which implies (taking, for example, € = 1/2)
2 * * * 12
le=talls, < C(le=tili, +lw—wilg, +llo = oill,
(=l + llw —whllo,) llo = UZ”O,W) :
Thus, using the interpolation results and (25), we obtain
It —tuly, < CR™/2),

From (37) and this last estimate, we get
/ ‘A th)| |t th| de < Ch™"

and then, by (35) and Lemma 3.1, we have

oy, = anllor < CUA®#) = Altn)llor + [lo = apllo.rm)

1/r!
C ([/ |A(t) — A(tp)| [t — ty| dx + a—a;;w) < Op™r/m)
Q

IA

thus /
lo = onlly,, < CR™C/™) = Ccpm=Y,

On the other hand, due to (30) and (23), we have

Ip, = Pullo, < Clloh, = anllo,

12



and then we get the following estimation for the pressure
lp = pallg,r < CR™CY.

It remains to prove the error estimates (28) and (29). To this end, using (31) and the discrete Inf-Sup
condition (22), we have

B5 1|y, — wn,wi, = wn)llag < It =tallo, + llw = willy, < O™/

and then
lup, —wnllo, + lw —wnlly, < Chm(r/2).

Finally, (29) is a consequence of this last estimate and the interpolation results. |

, 2x2
Theorem 4.3. Let r > 2 and m = 1,2. Suppose t € [W™"(Q)]>*?, o= (o,p) € [Wm”” (Q)} X

W™ (), and u = (u,w) € [VVLT(Q)]2 X [Wmr(Q)]**2. Then, there exists a positive constant C
independent of h such that

C hm(r'—l)’

IN

”t_th”O,r,Q

A

||0' - a-h”O;r",Q + ||p - ph”O,’r’,Q = Ch'm(T /2)1

), — unllg + lw = willg,g < CH™D,

lu—unlly,.q < Ch'"' ifm=1, and lu—unly,.q0< ¢ prin{ 1207 -1} if m=2.

Proof. The proof of this last Theorem is similar to the one of Theorem 4.2. [ |

5. Conclusion

We have developed in this paper a mixed approach for the approximation of all the important
variables (stress, velocity and pressure) appearing in quasi-Newtonian fluid flow problems. Our
approach allows to treat, independently, both the famous laws of Power and Carreau without using
the inversion of constitutive laws. The continuous and discrete problems are well posed. The error
estimates are optimal and are the same as the ones that we have obtained in the particular case of
Power law (see Farhloul and Zine [9]).
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