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ANALYSIS AND APPROXIMATION OF ONE-DIMENSIONAL SCALAR CONSERVATION LAWS WITH GENERAL

POINT CONSTRAINTS ON THE FLUX

BORIS ANDREIANOV, CARLOTTA DONADELLO, ULRICH RAZAFISON, AND MASSIMILIANO D. ROSINI

ABSTRACT. We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks,
such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic.
Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose
a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical
comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (“panic”) near the exit observed in
dense crowds and the capacity drop at tollbooth in vehicular traffic.

Existence and uniqueness of solutions are shown under suitable and “easy to check” assumptions on the constraint op-
erator. A numerical scheme for the problem, based on finite volume methods, is designed, its convergence is proved and
its validation is done with an explicit solution. Numerical examples show that nonlocally constrained models are able to
reproduce important features in traffic flow such as self-organization.
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dynamics
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1. INTRODUCTION

1.1. Well posedness and approximation of conservation laws with point constraints on the flow. In this paper we
study Cauchy problems for one-dimensional scalar conservation laws subject to point constraints of the form

ρt + f (ρ)x = 0, x ∈R, t ∈ (0,T ] ,(1.1a)

f (ρ)(t ,0±) ≤ q(t ), t ∈ (0,T ] ,(1.1b)

ρ(0, x) = ρ0(x), x ∈R.(1.1c)
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Above ρ is the unknown variable, f is the flux, q gives the maximal flow allowed through x = 0 and ρ0 is the initial
datum. Such problems naturally arise in modeling the flows of conserved quantities through bottlenecks, namely at
points where an obstacle hinders the flow. At last, the final time T > 0 will be called time horizon in the sequel.

Despite the concept of point constraints is stated in a general mathematical framework, see for instance [45],
according to the authors’ knowledge, problem (1.1) is so far applied only in two frameworks: crowd dynamics [3, 2,
4, 16, 17, 18, 20, 22, 23] and vehicular traffics [7, 5, 6, 14, 19, 21, 25, 26, 27, 29]. However, it is easy to envisage the
application of (1.1) in other fields of research, such as biology (e.g., to model flows of biological substances across cell
membranes), biomedicine (e.g., to model blood flows in vessels through thromboses), internet traffic engineering
(e.g., to model flows of data through routers or proxies), etc. Moreover, recent empirical data for both pedestrian
and vehicular flows highlight phenomena such as capacity drop, self-organization, Braess’ paradox, etc., that can not
be reproduced by the macroscopic models already available. However, modifications can be introduced in the basic
models in order to capture such specific features of real traffic flows.

In the literature the existence results for models based on (1.1) are achieved by means of mathematical tools de-
veloped ad hoc for each model. As a consequence, an existence result obtained for a model can be hardly adapted
to other models, even if they are slight modifications of the original one. Indeed, for instance, the existence results
in [5, 4, 17, 19, 25, 27] are obtained by applying the wave-front tracking method proposed by Dafermos in [24] and
improved later on by Di Perna [28] and Bressan [11], see [12, 34] and the references therein for more details. However,
this method can be hardly adapted from one model to another one because it relies on a case-by-case study of all the
possible interactions, that strictly depend on the model under consideration.

The lack of general hypotheses that guarantee the existence of entropy solutions for models based on (1.1) is a
serious obstacle toward a wider application of (1.1). For instance, the examples proposed in Section 1.3 and the cor-
responding numerical simulations given in Section 7 consist of models which are extremely close to the one proposed
in [4], are of some interest by them own and, at the same time, seem excessively expensive to treat with the wave-front
tracking machinery.

We deal in this paper with modifications to (1.1a) that are quite practical because they do not modify the structure
of the fundamental model nor of its discrete counterparts, but they add complexity due to the introduction of a cou-
pling with operators prescribing point constraints (1.1b) non-locally depending on the flow. Simulations based on
elementary splitting numerical procedures for resolving the coupling between the flow and the non-local constraint
permit testing and adaptation of models at low cost. Our aim is to provide a mathematically rigorous set of general
and “easy to check” hypotheses that guarantee existence (and sometimes uniqueness) of entropy solutions to (1.1a)
coupled to wide classes of constraint operators described in Section 2. We highlight the results presented in Theo-
rem 3.1, Corollary 3.1 and Theorem 3.2 in Section 3. In Section 4 we give examples of problems of the form (1.1) that
can be used as building blocks to construct more complex problems. As our well-posedness results in this paper rely
on fixed point techniques, they are not constructive or they do not lead to practical algorithms for construction of so-
lutions. To palliate this drawback we also introduce a general numerical scheme and “easy to check” hypotheses that
guarantee the convergence of the scheme to entropy solutions to (1.1), see Section 5. Moreover we apply in Sections 6
and 7, the numerical scheme to the building blocks introduced in Section 4.

1.2. State of the art and the general framework of the present paper.

1.2.1. Applications to crowd dynamics. In [22] the authors apply (1.1) to model pedestrians evacuating a corridor
through an exit door located in x = 0. In this framework, ρ ∈ [0,ρmax] is the density of pedestrians and f : [0,ρmax] →
[0, fmax] the flux of pedestrians. In order to reproduce the capacity drop of the door in presence of high densities, they
consider the following basic expression for the constraint

q(t ) =
{

qL if ρ(t ,0−) < R,
qH if ρ(t ,0−) > R,

where qL and qH are, respectively, the efficiency of the door at low and high densities, 0 < qH < qL , and R > 0 is
the threshold between low and high densities. Let us recall that the main assumptions of the model are empirically
confirmed in [33]. The existence of entropy solutions is proved in [23, 44] by applying the wave-front tracking method.
Numerical approximations of the model are developed in [16, 17]. We underline that the model is able to reproduce
the Braess’ paradox for pedestrian flows [35], as the examples given in [18, 20, 23] show.

According to the above expression of the constraint q , the capacity drop of the door has a non-realistic behaviour
since it is instantaneous when a high density reaches the door and it only depends on the density at the door. More
realistic models should reproduce a gradual decay in the efficiency of the door as the pedestrians accumulate close to
it, see [15, Figure 1]. Moreover, according to the above model, during the evacuation of pedestrians that are initially
uniformly distributed, once the efficiency of the door falls, it remains constant until the very last pedestrian is evacu-
ated, see [22, Figure 9]. On the contrary, in real life the efficiency of the door gradually increases as the number of the
remaining pedestrians to be evacuated becomes smaller and smaller, see again [15, Figure 1]. All these considerations
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lead the authors of the recent paper [4] to the following expression for the constraint

q(t ) = p(ξ(t )) with ξ(t ) =
∫ 0

−∞
w(x)ρ(t , x)dx,(1.2)

where w is a weight supported in some upstream bounded neighbourhood of x = 0 and p is a given non-increasing
map that encodes the influence on the efficiency of the door of some subjective crowd density near the door. In
fact, the quantity ξ has the meaning of the crowd density as perceived by a pedestrian located just before the door.
The Riemann problems corresponding to (1.1), (1.2) are studied in detail in [2], where it is also investigated how the
regularity of p impacts the well-posedness of the problem, in particular in the case of a piecewise constant function p,
which is the relevant one for the numerical applications. The numerical approximation of its solutions together with
its qualitative validation are proposed in [3], where the convergence of the numerical scheme is proved by reduction
to the case where q is a given function of time. It is shown in [3] that the model is able to reproduce the main effects
related to the capacity drop, that are the faster is slower effect [32] and the Braess’ paradox for pedestrian flows [35].

Well-posedness of (1.1), (1.2) is proved in [4], under the Lipschitz continuity assumption on the function p. This
work is based on a wave-front tracking method with discretized (piecewise constant) function p. This construction
has some drawbacks (actually we have a sequence of ill-posed problems converging to a well-posed one), we refer
to [2] for the details. Therefore, even if the wave-front tracking strategy proved useful in the theoretical analysis, in [3]
we prefer to use a simple finite volume scheme for illustrating some key features of pedestrian flows in the context of
model (1.1), (1.2).

1.2.2. Applications to vehicular traffics. Colombo and Goatin apply in [19] the concept of point constraints to the
first order model for road traffic by Lighthill, Whitham [39] and Richards [43], with the goal to reproduce the effects of
obstacles along the road, like toll gates, traffic lights or localized construction sites. The resulting model reads (1.1),
where q is a function of time given beforehand, ρ ∈ [0,ρmax] is the density of vehicles and f : [0,ρmax] → [0, fmax] is
the flux function that satisfies the following assumption

(F)
f belongs to Lip

(
[0,ρmax];

[
0, fmax

])
and is bell-shaped, that is f (0) = 0 = f (ρmax)

and there exists ρc ∈ (0,ρmax) such that f ′(ρ) (ρc −ρ) > 0 for a.e. ρ ∈ [0,ρmax].

The existence of a unique solution is proved in [19] by using the wave-front tracking method. One of the main diffi-
culties in this approach is the proof of a uniform bound for the total variation of the solution. The authors show that
t 7→ TV(ρ(t )) may increase; hence, to overcome this difficulty they rather prove that t 7→ TV(ψ(ρ(t ))) does not increase,
where ψ(ρ) = ∫ ρ

ρc

∣∣ f ′(r )
∣∣dr . Only recently in [14] an estimate for the local total variation of the solution is provided.

The convergence of a numerical approximation by means of a monotone finite volume scheme is proposed in [6].
Recall that the model can also be applied in traffic management, e.g. to synchronize traffic lights, see [21].

Finally, for the sake of completeness, let us also briefly recall two recent generalizations of (1.1), even if the results
of the present paper do not directly apply to them. The first one is the application of the theory of point constraint
to the second order model for road traffic by Aw, Rascle [8] and Zhang [49], see [7, 5, 29, 30]. Clearly, the resulting
model does not fit in the framework of the present paper, which deals with scalar conservation laws. However we will
give comments and remarks related also to this model. The second generalization that we want to recall is that one
proposed in [25, 26, 27], where the authors introduce the concept of moving point constraint to model the influence
of a slow and large vehicle on road traffic, problem that is considered also in [10, 37] but with different approaches.

1.2.3. Our general framework. In [19] and in [22], q is given beforehand as a function of time and as a function of the
density at x = 0−, respectively. Here, we consider a problem (1.1) subject to the more general class of point constraints

(1.3) q(t ) =Q[ρ](t ) for a.e. t ∈ [0,T ],

where

Q : C0([0,T ];L1(R;R)) −→ L1([0,T ]; [0, fmax]).

As a result, the operator Q may be non-local both in time and space, and it may account for psychological features
that strongly influence the dynamics of a living system. Additional structure restrictions on Q will be imposed later,
see Section 2.1. Moreover, to shorten notation and calculations, in the sequel we will assume that Q does not depend
explicitly on time; the general case does not present additional analytic difficulties.

In the present work, we rely on the approach of [3], both at the theoretical and at the numerical level. We describe
a class of non-locally constrained models for which the existence, the approximation results and (under stronger as-
sumptions) the uniqueness of solutions can be derived. Namely, starting from the well-posedness results and estab-
lished approximation techniques for (1.1) (see [6, 19]), using fixed point arguments we are able to address solvability
of non-locally constrained problems of the kind (1.1), (1.3). Further, as in [3] we combine the simple finite volume
strategy of the work [6] for numerical computation of the solution ρ to (1.1) with the fractional step technique, tak-
ing into account the evolution of the constraint q = Q[ρ]. For compact operators Q, we justify convergence of the
resulting algorithm. Finally we use the scheme to simulate crowd or vehicle motions for some model cases, where
non-local constraints (with space and/or time non-locality) may be of interest.
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1.3. Examples of new advanced models. In this section we introduce some models related to the one proposed in [4]
together with their physical motivation. They are divided into three examples, addressing

• the comparison of different ways to collect data on the state of traffic;
• self-organization;
• a more precise description of capacity drop;
• capacity drop related to perceived density.

Numerical simulations on these examples are postponed to Section 7.
Let us underline that in Section 4 we present further elementary examples of constraint operators to which our

results apply. Their discrete counterparts are proposed in Section 6. We do not fix a physical interpretation for these
operators, which can be used as a set of building blocks to construct more complex models.

For later use let us introduce the maps p : [0,ρmax] → (0, fmax], w : R− →R+ and κ : R+ →R+ and, for simplicity, let
us assume that

(PWK)
• p ∈ Lip([0,ρmax]; (0, fmax]) is a non increasing map;
• w ∈ L∞(R−;R+) is an increasing map with compact support and ‖w‖L1(R−) = 1;
• κ ∈ Lip(R+;R+) is a non increasing map with ‖κ‖L1(R+) = 1 and supp(κ) = [0,τ], τ> 0.

Whenever w ′ appears in the expression of a constraint operator, (wLip) below is assumed as well.
The above assumptions can be relaxed to varying degrees in each specific modeling context, with minor conse-

quences on the subsequent results.

Example 1.1. Let p, w and κ be as in (PWK) with w ∈ C1
c (R;R+). In this section we consider the following equivalent

(in a sense that will be specified in Definition 2.2) non-local (both in time and space) constraint operators

Q[ρ](t ) = p

(∫
R−

∫ t

0
w(x)κ(t − s)ρ(s, x)ds dx

)
,(1.4)

Q̂[ρ](t ) = p

(∫
R−

[
w(x)κ(t )ρ0(x)+w ′(x)

∫ t

0
κ(t − s) f (ρ)(s, x)ds

]
dx −w(0−)

∫ t

0
κ(t − s) f (ρ)(s,0−)ds

)
,

where κ ∈ C2(R+;R+) is the primitive of κ such that κ(0) = 0.
The constraint operators Q and Q̂ reproduce the situation in which the maximal flow at time t in x = 0 depends

on the values of the density in supp(κ(t − ·))× supp(w). Moreover, due to the monotonicity assumptions on w , re-
spectively on κ, the efficiency is more affected by the “closest” values of the density, respectively by the “more recent”
values of the density. Introduce also the constraint operators

Q̃[ρ](t ) = p

( ∑
0<ti≤t

[ti − ti−1]κ(t − ti−1)
∫
R−

w(x)ρ(ti , x)dx

)
,

Q[ρ](t ) = p

( ∑
yi<0

[
yi+1 − yi

]
w(yi )

[∫ t

0
κ(t − s)ρ(s, yi+1)ds

])
,

which can be interpreted as discretized versions of Q, with 0 ≤ ti < ti+1 and y0 ≤ yi < yi+1 ≤ yM+1 = 0.
Let us underline that constraint operators of the form introduced above naturally arise in modelling vehicular

traffics through a toll booth if the number of open gates is decided according to on line data. In fact, we have the
following:

• In the case the data are collected by a video camera, then the corresponding constraint operator takes the
form Q or Q̂, being supp(w) the area registered by the video camera and supp(κ) the period of time the data
are taken into account.

• In the case the data come from a photo camera that shoots photos at times ti of the area given by supp(w),
then the corresponding constraint operator is Q̃, being again supp(κ) the period of time the data are taken
into account.

• In the case the data come from local sensors located in yi , then the corresponding constraint operator takes
the form Q, being again supp(κ) the period of time the data are taken into account.

Observe that the introduction of a time delay σ> 0 in adapting the number of open gates to the available data can
be modelled, for instance, by taking

Q[ρ](t ) = p

(∫
R−

∫ max{0,t−σ}

0
w(x)κ(t −σ− s)ρ(s, x)ds dx

)
.

The numerical simulations based on the models introduced in this example are deferred to Example 7.1, where we
compare the resulting numerical simulations corresponding to the different models. In particular we show that the
simulations corresponding to Q and Q̂ are essentially the same. Also the simulations with Q̃ and Q are essentially
the same as those with Q and Q̂ if the number of times ti and of sensors yi is very high. 2
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Example 1.2. In [4] the authors consider the constraint operator

Q[ρ](t ) = p (ξ(t )) , ξ(t ) =
∫
R−

w(x)ρ(t , x)dx,(1.5)

where p and w are given by (PWK), to reproduce the capacity drop of a bottleneck when a very high density of pedes-
trians accumulate upstream (see also the examples 2.1 and 4.1). However this model is not realistic if the density
contains big oscillations. In fact, as soon as a high density approaches the bottleneck, its efficiency can become very
small. As a consequence, even a small density of pedestrians may form a queue provided a sufficiently high density is
approaching from behind. In order to temper this drawback, we propose a constraint operator of the form

Q[ρ](t ) = p(ξ(t )), ξ(t ) = min

{∫
R−

w(x)ρ(t , x)dx, α f −1
−

(∫ t

0
κ(t − s) f (ρ)(s,0−)ds

)}
,(1.6)

where 0 <α≤ R
ρc

is a constant, p, w and κ are as in (PWK) and f− is the restriction of f to [0,ρc ]. In (1.6), the maximal
flow at time t in x = 0 depends at the same time on the weighted number of pedestrians located in a neighbourhood
before the bottleneck and on the weighted number of pedestrians that have passed through the bottleneck during
the period [0, t ]. In fact, when a density of pedestrian approaches the bottleneck, the constraint operator defined in
(1.6) first takes into account the flow of pedestrians through the bottleneck. Next, because the number of pedestrians
before the bottleneck decreases in time, this latter is taken into account by the constraint operator in a second step.
The two numerical simulations given in Example 7.2 (see Figure 6) with the same initial datum and map w , but one
with the constraint operator (1.5) and one with the constraint operator (1.6), show that at least in this test case the
constraint operator (1.6) does not present the drawback. At the same time and on the contrary to (1.5), the constraint
operator (1.6) is able to take into account the self-organization of pedestrians and the capacity of the bottleneck,
see [48, Figure 3] for empirical data detected in a London underground station that put in evidence both these aspects.
Clearly, the choice of the functions w and κ should take into account the empirical data. However, this goes behind
the aims of the present paper. The resulting numerical simulations are presented in Example 7.2 (see Figure 7). Let
us finally underline that the same approach can be used to model analogous dynamics occurring in vehicular traffic
through bottlenecks, see [48, Figure 4]. 2

Example 1.3. In the model (1.1), (1.3), (1.5) introduced in [4], the function ξ serves as the indicator of the subjective
density at the bottleneck and is the solution of a Cauchy problem for an Ordinary Differential Equation (ODE), see [4,
page 2688] and (2.5). In this example we model the fact that the panic can not disappear too fast by considering the
constraint operator

Q̂[ρ](t ) = p(ξ(t )),(1.7)

where ξ is defined as the solution in D′([0,T )) of the following Cauchy problem for an ODE

ξ̇(t ) = max

{∫
R−

w ′(x)
[

f (ρ)(t , x)− f (ρ)(t ,0−)
]

dx,−δξ
}

, ξ(0) = ξ0[ρ0],(1.8)

or

ξ̇(t ) = max

{∫
R−

w ′(x)
[

f (ρ)(t , x)− f (ρ)(t ,0−)
]

dx,−δ
}

, ξ(0) = ξ0[ρ0],(1.9)

where ξ0 : L1(R) →R, δ> 0 is a constant and w : R− →R+ is such that

(wLip) w ∈ Lip((−∞,0);R+) but it can be/is discontinuous at x = 0.

This has to be compared to the original model (1.5), cf. Example 2.1 below. We defer to Remark 4.3 for an existence and
uniqueness result for (1.1), (1.3), (1.7), (1.8). By the numerical simulation in Example 7.3 we see that the constraints
operator (1.7) with (1.8) or (1.9) is able to avoid the level of subjective density to decrease too quickly. 2

We recall that the wave-front tracking approach used in [4] provides well posedness results and allows for a rather
precise study of the profiles of the solutions. Unfortunately, it requires an extremely careful case by case study of all
possible interactions and the intermediate results obtained for the specific model cannot be adapted in a straightfor-
ward way to different models, even very close to the original one, such as those proposed in this section. Nevertheless,
in general, once the study of a specific model is advanced, one would like to consider other similar models to com-
pare them and to check which one fits the best with real life observations. This paper provides some abstract general
tools to address existence and uniqueness for a wide class of models with point constraints. These methods are not
constructive, and this is why we couple them with a numerical scheme, whose convergence is proved under general
hypotheses. In Section 7 we defer numerical simulations based on the models introduced in the above examples.



6 B. ANDREIANOV, C. DONADELLO, U. RAZAFISON, AND M.D. ROSINI

1.4. Structure of the paper. The paper is organized as follows. In Section 2, we introduce the general assumptions
on the constraint operators that allow to prove well-posedness of (1.1) and we recall the definition of entropy solu-
tions for (1.1). In Section 3, we prove well-posedness results for (1.1) under the assumptions introduced in Section 2.
In Section 4, we give examples of constraint operators that satisfy the general assumptions introduced in the previ-
ous sections and that can be used as building blocks to construct more complex ones. In Section 5, we introduce
the numerical scheme, based on finite volume methods and we prove its convergence. Section 6 is devoted to the
construction and the study of approximate constraint operators related to the constraint operators introduced in
Section 4. Finally in Section 7, we first validate the numerical scheme with an explicit solution and then we perform
numerical simulations using constraint operators given in examples 1.1–1.3.

2. ASSUMPTIONS AND DEFINITIONS

Our first goal is to point out properties of the constraint operators Q for which a sound mathematical theory can
be established.

2.1. Assumptions. We take the classical assumption (F) on the flux function f that appears in the equation (1.1a).
Existence results will be stronger under the additional genuine nonlinearity assumption:

(GNL) for any ρ1,ρ2 ∈
[
0,ρmax

]
such that ρ1 < ρ2, the restriction of f to [ρ1,ρ2] is not affine.

For the sake of simplicity and because this is enough for our modeling purposes, we will impose that the initial da-
tum ρ0 that appears in (1.1c) belongs to L1(R; [0,ρmax]). Let us underline that, thanks to the property of finite speed of
propagation for equation (1.1a), extension of the existence and uniqueness results to L∞(R; [0,ρmax]) is rather straight-
forward (see, in particular, the proof of [4, Theorem 2.1]).

Now, let us specify properties of the operator Q. Firstly, we need an operator acting as follows

Q : C0(0,T ;L1) −→ L1(0,T ),

where

C0(0,T ;L1) = C0([0,T ];L1(R; [0,ρmax])) and L1(0,T ) = L1((0,T ); [0, fmax])

are endowed, respectively, with the distances induced by the norms

∥∥ρ∥∥
C0(0,T ;L1) = max

t∈[0,T ]

∫
R

∣∣ρ(t , x)
∣∣dx and

∥∥q
∥∥

L1(0,T ) =
∫ T

0

∣∣q(t )
∣∣dt .

On concrete examples, the technical assumptions imposed below may be easier to verify as consequences of some
reinforced assumptions involving L1(0,T ;L1) or L∞(0,T ) in the place of C0(0,T ;L1) and L1(0,T ), where

L1(0,T ;L1) = L1((0,T )×R; [0,ρmax]) and L∞(0,T ) = L∞((0,T ); [0, fmax])

are endowed, respectively, with the distances induced by the norms

∥∥ρ∥∥
L1(0,T ;L1) =

∫ T

0

∫
R

∣∣ρ(t , x)
∣∣dx dt and

∥∥q
∥∥

L∞(0,T ) = ess supt∈(0,T )

∣∣q(t )
∣∣.

For this reason, whenever necessary, we assume that the constraint operator Q can be extended to L1(0,T ;L1). Ob-
serve that the embeddings L1(0,T ;L1) ⊃ C0(0,T ;L1) and L∞(0,T ) ⊂ L1(0,T ) are continuous.

The first natural assumption is that Q is “history dependent” (cf. [46] for a related work on history-dependent
operators in the setting of viscoplastic contact problems) in the sense that

(Qhd) ρ1,ρ2 are in the domain of Q and coincide on [0, t ]×R=⇒Q[ρ1] =Q[ρ2] in [0, t ].

This simply means that the constraint level does not depend on the future traffic but only on the past and actual
traffic, therefore it is a fully natural assumption in applications (even if the existence result may not require assump-
tion (Qhd)). In particular, assuming (Qhd) one can introduce for any t ∈ [0,T ] the restriction of Q to C0(0, t ;L1) as
the operator Qt : C0(0, t ;L1) → L1(0, t ) defined as follows. First, for any given function ρ ∈ C0(0, t ;L1) one introduces
an arbitrary extension E [ρ] ∈ C0(0,T ;L1), say, by letting E [ρ](s) = ρ(s, ·) 1[0, t ](s)+ρ(t , ·) 1[t ,T ](s). Then, one defines

Qt [ρ] as the restriction to [0, t ] of Q[E [ρ]].
In the sequel, whenever necessary we will tacitly use the possibility of such restriction of Q and denote the resulting

operator by Qt . Yet, property (Qhd) will not explicitly appear in our assumptions, because it is either too weak or too
strong for our purposes. Indeed, in view of the uniqueness study, assumption (Qhd) has to be strengthened to a kind of
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Lipschitz continuity assumption on Qt , with Lipschitz constant that is small for small times. The precise assumption
is technical and reads as follows:

(QLip)

for any t ∈ [0,T ] the operator Qt : C0(0, t ;L1) → L1(0, t ) is Lipschitz continuous, moreover, there exists
ω : R+ →R+ continuous, non-decreasing, ω(0) = 0 and for any ρ1,ρ2 ∈ C0(0,T ;L1)∥∥Qt [ρ1]−Qt [ρ2]

∥∥
L1(0,t ) ≤ω(t −τ)

∥∥ρ1 −ρ2
∥∥

C0(0,t ;L1) for a.e. t ∈ [0,T ],

where τ= max{s ∈ [0, t ] : ρ1 = ρ2 in C0(0, s;L1)}.

Under assumption (QLip), the Banach-Picard fixed point argument can be used recursively on small time intervals to
yield both existence and uniqueness of solutions. There are simpler sufficient conditions under which (QLip) holds,
namely, that there exists a constant C > 0 such that∥∥Q[ρ1]−Q[ρ2]

∥∥
L1(0,t ) ≤C

∥∥ρ1 −ρ2
∥∥

L1(0,t ;L1) for all t ∈ [0,T ],(2.1)

or ∥∥Q[ρ1]−Q[ρ2]
∥∥

L∞(0,t ) ≤C
∥∥ρ1 −ρ2

∥∥
C0(0,t ;L1) for all t ∈ [0,T ].(2.2)

Assumptions (2.1) and (2.2) are uniform in t Lipschitz continuity assumptions between the appropriate spaces; these
assumptions are easily checked for the examples in Section 4. We refer to Corollary 3.1 below for a proof that any of
the above two conditions entails (QLip).

Let us underline that for the existence result, assumption (QLip) is sufficient but in general it is too restrictive. More-
over, (QLip) should be used in combination with the Lipschitz estimate (3.3) stated in Lemma 3.2 below. The result of
this lemma holds true for the scalar constrained Cauchy problem (1.1). Note that the theory of point constraints has
recently been applied to systems of conservation laws as well, see for instance [5]; in the context of systems, results
analogous to those of Lemma 3.2 can hardly be proved. In further perspective, we are interested in studying such
more complex models, at least from the perspective of existence and approximation of their solutions. For this rea-
son we observe that under assumption (GNL) it is enough to require the mere continuity property of an extension of
Q, namely

(Qcont) Q can be extended to a continuous map from L1(0,T ;L1) to L1(0,T ).

In the situation where the genuine nonlinearity assumption (GNL) should be dropped, we can replace (Qcont) by

(Qcomp) Q is continuous and compact from C0(0,T ;L1) to L1(0,T ).

Because the topology of L1(0,T ;L1) is weaker that the one of C0(0,T ;L1), the two assumptions (Qcont) and (Qcomp)
are not directly comparable. Let us explain the roles of the assumption (Qcomp) or of the pair of assumptions (GNL),
(Qcont). In the latter case, compactness of families of functions (ρ∆) solving (1.1a) away from x = 0 can be justified by
using the compactification properties of genuinely nonlinear scalar conservation law, see [41]. The appropriate topol-
ogy is the L1 topology, which requires to use the space L1(0,T ;L1) in the place of the more natural space C0(0,T ;L1).
Under the assumption (Qcomp), compactness of the corresponding constraints (q∆) (and consequently that of (ρ∆)) is
a straightforward property. In both cases, the Schauder fixed point argument can be used in order to resolve the cou-
pling between ρ and q in (1.1), (1.3). Assumption (Qcomp) will be also taken for the study of numerical approximations
of the problem, for the sake of simplicity of the proof. We refer to Remark 5.2 for details.

2.2. Entropy solutions for models with point constraints. We are ready to define a notion of solution for the equa-
tion (1.1a) subject to a nonlocal point constraint. We define the solution on [0,T ] for T > 0; extension of the definition
to t ∈ R+ is straightforward. Throughout the paper, assumptions on f and ρ0 are those of the introduction, except
for (GNL) which will be mentioned explicitly each time it is used.

For our purposes, it is convenient to consider the problem as a 2×2 system of equations for the two unknowns ρ
and q . We split the definition into two points, the first one being applicable to the case where q is a given function on
[0,T ].

Definition 2.1. A couple (ρ, q) such that ρ ∈ C0([0,T ];L1
loc(R; [0,ρmax])) and q ∈ L∞(0,T ) is an entropy solution to (1.1),

(1.3) if the following conditions hold.

(i) The function ρ is an entropy solution of the constrained Cauchy problem (1.1) with the constraint q, i.e., for
every test function φ ∈ C∞

c ([0,T )×R;R+) and for every k ∈ [0,ρmax]∫
R+

∫
R

[∣∣ρ−k
∣∣∂tφ+ sign(ρ−k)

(
f (ρ)− f (k)

)
∂xφ

]
dx dt(2.3a)

+2
∫
R+

[
1− q (t )

f (ρc )

]
f (k) φ(t ,0)dt(2.3b)

+
∫
R

∣∣ρ0(x)−k
∣∣ φ(0, x)dx ≥ 0,(2.3c)
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and the left and right traces t 7→ γ± f (ρ)(t ) of f (ρ) at {x = 0} fulfill

γ± f (ρ)(t ) ≤ q (t ) for a.e. t ∈ [0,T ] .(2.3d)

(ii) The function q is linked to ρ by the relation (1.3).

Recall that the item (i) is precisely [6, Definition 2.1], which is a minor generalization of the original one [19, Defini-
tion 3.2] introduced by Colombo and Goatin. Let us stress that the lines (2.3a), (2.3c) constitute the classical Kruzhkov
definition of an entropy solution, see [36], suitable in the case of a conservation law set up in R+×Rwithout any con-
straint condition, namely for (1.1a), (1.1c). Lines (2.3b) and (2.3d) account for the constraint (1.1b).

Remark 2.1.
(i) In order to give a precise meaning to (2.3d), let us stress that strong (in the L1

loc sense) left and right traces at
x = 0 of the flux of a function verifying (2.3a)-(2.3c) do exist. We refer, for instance, to [6, Theorem 2.2] which gives a
convenient reformulation of the results of Vasseur [47] and Panov [42].

We also stress that in practical applications where f is non-constant on any interval (assumption (GNL) is a suffi-
cient condition) f (ρ)(t ,0±) coincides with f (ρ(t ,0±)). Indeed, in this case the strong traces t 7→ γ±ρ(t ) exist as well,
see [42]. In the sequel, we will write f (ρ)(t ,0±) for γ± f (ρ)(t ) and ρ(·,0±) for γ±ρ(t ).
(ii) Let us recall that the assumption of time-continuity (with values in L1

loc(R)) of entropy solutions in the sense of

Definition 2.1 (i) is a regularity property of general L1
loc((0,T )×R) solutions, analogous to the above property of exis-

tence of traces. This regularity is justified, e.g., in [13].
(iii) We refer to [6, Proposition 2.6] for a series of equivalent formulations of conditions (2.3) that we will not exploit
directly in this paper, although the results we exploit in the sequel (continuous dependence of ρ on q , convergence
of numerical schemes for a given q) do rely upon the reformulations from [6]. 2

It turns out that the constrained problems of the form (1.1), (1.3) corresponding to two different constraint oper-
ators Q and Q̂ may lead to the same solutions for all data. In this context, the mathematical properties of one of the
constraint operators can be better than those of the other one, which is sometimes instrumental for the analysis. For
this reason, we introduce and exploit the following definition.

Definition 2.2. Two constraint maps Q and Q̂ are equivalent if Q[ρ] = Q̂[ρ] for any entropy solution ρ of (1.1), (1.3)
corresponding to Q or to Q̂.

Example 2.1. Consider the constraint operator Q introduced in [4] and defined in (1.5) with p and w that sat-
isfy (PWK). Assume in addition that w satisfies (wLip) and introduce also the constraint operator

(2.4) Q̂[ρ](t ) = p(ξ(t )),

where ξ is the solution in D′([0,T )) of the following Cauchy problem for an ODE

ξ̇(t ) =
∫
R−

w ′(x)
[

f (ρ)(t , x)− f (ρ)(t ,0−)
]

dx, ξ(0) =
∫
R−

w(x)ρ0(x)dx.(2.5)

Then the constraint operators Q and Q̂ are equivalent in the sense of Definition 2.2. Indeed, for any entropy solution
(ρ, q) to (1.1), (1.3), (1.5) or to (1.1), (1.3), (2.4), (2.5), ρ satisfies the Cauchy problem for a conservation law (1.1a),
(1.1c) in D′([0,T )×R) (this is a consequence of (2.3a)-(2.3c) with k = 0 and k = ρmax). It is evident that, given (ρ, q)
entropy solution to the constrained Cauchy problem (1.1), (1.3), (1.5), there exists a unique solution ξ to problem (2.5).
Then, by applying the integration by parts formula to the right-hand side of the ODE in (2.5) we find

ξ̇(t ) =−
∫
R−

w(x) f (ρ)x (t , x)dx in D′((0,T )),

hence by (1.1a), (1.1c) and by taking into account the initial condition in (2.5), we see that ξ coincides in [0,T ] with ξ
given in (1.5) and

Q̂[ρ] = p(ξ(t )) = p

(∫
R−

w(x)ρ(t , x)dx

)
=Q[ρ].

Reciprocally, taking the time derivative of (1.5) in the sense of distributions, with the same arguments we infer (2.4),
(2.5). We defer to Example 4.1 for a deeper study of the constraint operator Q and to Example 6.1 for the study of a
corresponding discrete constraint operator. Finally, we defer to Remark 4.2 for an existence and uniqueness result
for (1.1), (1.3), (2.4), (2.5). 2

Example 2.2. Take p and κ as in (PWK) and φ ∈ Lip([0,T ];C1
c (R;R)) such that φ(·,0−) = κ(·). Take in addition r ∈

Lip([0, fmax ]; [0,ρmax ]). The constraint operators

Q[ρ](t ) = p ◦ r

(∫ t

0
f (ρ)(s,0−)κ(t − s)ds

)
and Q̃[ρ](t ) = p ◦ r (ξ(t )) ,
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where

ξ(t ) =
∫ t

0

∫
R−

[−ρ(s, x)φt (t − s, x)+ f (ρ)(s, x)φx (t − s, x)
]

dx ds

+
∫
R−

[
ρ0(x)φ(t , x)−ρ(t , x)φ(0, x)

]
dx,

are equivalent. As in the example above, the equivalence is established by using integration by parts formula and the
fact that ρ satisfies the Cauchy problem for a conservation law (1.1a), (1.1c) in D′([0,T )×R). We refer to Example 4.3
for the study of an analogous example.

Observe that the definition of ξ in terms of the averaged trace of the flux f (ρ(0−, ·)) permits to recover stability
properties of the constraint operator due to the Green-Gauss formula. In contrast, time averaging of the trace ρ(0−, ·)
does not lead to a consistent mathematical theory. For this reason, in the present example we need to introduce a
function r that plays the role of a partial inverse of f . To be specific, let us denote by f− (respectively, by f+) the
restriction of f to [0,ρc ] (respectively, to [ρc ,ρmax ]). Observe that the model of this example can be seen as qualita-
tively close to (1.5) for sufficiently large crowd densities (respectively, for moderate crowd densities), if we choose r
that behaves like f −1

+ (respectively, as f −1
− ) on some interval [0,F ] with F < fmax . Compared to (1.5) where the sub-

jective density results from the perception of the instantaneous spatial distribution of the crowd, in this example the
subjective density results from the memory of the crowd behavior at the precise location of the bottleneck. 2

3. EXISTENCE AND UNIQUENESS OF ENTROPY SOLUTIONS TO CONSTRAINED PROBLEMS

In this section, using fixed point arguments we show existence results (under the assumptions (GNL) and (Qcont)
or under the assumption (Qcomp)) and uniqueness results (under the assumption (QLip)).

3.1. Evolution operators. To start with, let us define the following operators. Here and throughout the section, the
initial datum ρ0 is fixed. The maps

Rt : L1(0, t ) → C0(0, t ;L1)

associate to a given constraint function q the entropy solution ρ to (1.1) with time horizon t in the sense of Defini-
tion 2.1 (i). Composing this map with Qt , we define the map

Tt =Rt ◦Qt : C0(0, t ;L1) → C0(0, t ;L1).

Let us stress that t is not necessarily fixed to be equal to T , namely, under the history dependence assumption (Qhd),
we can consider first sufficiently small time horizon and then proceed by bootstrapping the construction of entropy
solutions in order to achieve the prescribed final time T . To be precise, we have

Lemma 3.1. Assume that the constraint operator Q verifies property (Qhd). Let 0 = t0 < ti < ti+1 < tN = T and let
(ρ(1), q (1)), . . . , (ρ(N ), q (N )) be defined recursively as follows. First,

(ρ(1), q (1)) is an entropy solution in the sense of Definition 2.1 to the constrained Cauchy problem (1.1), (1.3)
with initial datum ρ0, constraint operator Q and time horizon t1.

Then for i = 2, . . . , N , we set ρ(i )
0 = ρ(i−1)(ti−1 − ti−2) and for s ∈ [0, ti − ti−1], q i (s) := Q(i )[ρ](s) = Q[E (i )[ρ]](s + ti−1),

where1

E (i )[ρ](t ) := ρ0 1{0}(t )+
i−1∑
j=1

ρ( j )(t − t j−1) 1(t j−1, t j ](t )+ρ(t − ti−1) 1(ti−1, ti ](t ).

With these notations in hand, we assume that

(ρ(i ), q (i )) is an entropy solution in the sense of Definition 2.1 of the constrained Cauchy problem (1.1), (1.3)
with initial datum ρ(i )

0 , constraint operator Q(i ) and time horizon ti − ti−1.

Then the couple (ρ, q), with ρ defined on [0,T ]×R by

(3.1) ρ(t , ·) = ρ0 1{0}(t )+
N∑

i=1
ρ(i )(t − ti−1, ·) 1(ti−1, ti ](t )

and q defined a.e. on [0,T ] by

(3.2) q =
N∑

i=1
q (i )(t − ti−1) 1(ti−1, ti ](t )

is an entropy solution to the constrained Cauchy problem (1.1), (1.3) in the sense of Definition 2.1 with initial datum
ρ0, constraint operator Q and time horizon T .

Moreover, if at every stage of the construction (ρ(i ), q (i )), i = 1, . . . , N , are unique, then the uniqueness of the entropy
solution to (1.1), (1.3) also holds.

1The constraints Q(i ) depend explicitly on the time variable, through the already constructed functions ρ( j ), j = 1, . . . , i −1. This explicit time
dependence is handled without any additional difficulty within the construction of Theorem 3.1.
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Proof. The fact that (ρ, q) given by (3.1), (3.2) is an entropy solution until time T follows by a direct verification of
Definition 2.1 globally on [0,T ]. First, Definition 2.1(ii) comes from the fact that by construction and due to the
property (Qhd), we have for all i = 1, . . . , N , for a.e. s ∈ [ti−1, ti ),

Q[ρ](s) =Q(i )[ρ(i )](s + ti−1) = q (i )(s + ti−1) = q(s).

Second, observe that due to the time continuity of entropy solutions we can extend (2.3a)-(2.3c) to test functions
supported in [0,T ]×Rwith the additional term

∫
R

∣∣ρ(T, x)−k
∣∣ φ(T, x)dx in the right-hand side. Therefore it is imme-

diate to check the entropy inequalities for ρ with test functions restricted to [ti−1, ti ]; this is a mere time translation
of the corresponding inequalities (2.3a)-(2.3c) (with the extra term at t = ti − ti−1) for ρ(i ). Then it is enough to sum
up the entropy inequalities corresponding to different values of i and to use cancel the terms accounting for t = ti ,
i = 1, . . . , N −1, due to the fact that, by construction, ρ(i+1)(0, ·) = ρ(i )(ti − ti−1, ·) whence∫

R

∣∣∣ρ(i )(ti − ti−1, x)−k
∣∣∣ φ(ti , x)dx −

∫
R

∣∣∣ρ(i+1)(0, x)−k
∣∣∣ φ(ti , x)dx = 0.

Finally, assume that at every stage of the construction, uniqueness of (ρ(i ), q (i )) holds. Assume that (ρ̃, q̃) is a
solution on [0,T ]. The function ρ̃(1) = ρ̃|[0,t1] solves the same problem as ρ(1), therefore ρ̃(1) ≡ ρ(1). Then the initial
data and the constraint operators defining ρ(2) and ρ̃(2) : (t , ·) 7→ ρ(t + t1, ·) on [0, t2 − t1] coincide, therefore ρ̃(2) ≡ ρ(2).
Continuing by induction, we find that ρ̃ = ρ and conclude to uniqueness of the entropy solution to (1.1), (1.3) with
initial datum ρ0, constraint operator Q and time horizon T . �

Before stating our main results, let us recall the uniform Lipschitz continuity estimate for the maps Rt obtained
in [6, Proposition 2.10].

Lemma 3.2. For any q, q̃ ∈ L∞(0,T ) and t ∈ [0,T ] we have

(3.3)
∥∥Rt [q]−Rt [q̃]

∥∥
C0(0,t ;L1) ≤ 2

∥∥q − q̃
∥∥

L1(0,t ).

Further, let us give constraint-independent bounds in C0(0,T ;L1) on the component ρ of entropy solutions of (1.1).
They will be used to ensure boundedness and L1-tightness of families of entropy solutions (or approximate entropy
solutions) to constrained problems.

Lemma 3.3. Let T be the triangle {(t , x) : 0 ≤ t ≤ T, |x| ≤ Lip( f ) t }. Fix an initial datum ρ0 ∈ L1(R; [0,ρmax]) and let
ρfree ∈ C0(0,T ;L1) be the entropy solution of the unconstrained Cauchy problem (1.1a), (1.1c). Then for any constraint
q, the entropy solution ρ of the constrained Cauchy problem (1.1) verifies

•
∥∥ρ∥∥

C0(0,T ;L1) =
∥∥ρ0

∥∥
L1(R);

• 0 ≤ ρ ≤ ρmax a.e. on T;
• ρ ≡ ρfree and inf(ρ0) ≤ ρ ≤ sup(ρ0) a.e. on Tc = ([0,T ]×R) \T.

In particular, given ρ0 and T , the image of RT is bounded in C0(0,T ;L1).

Proof. The first claim is obvious because ‖ρ(t )‖L1(R) =
∥∥ρ0

∥∥
L1(R) for all t ≥ 0. Since the speed of propagation of the

waves is bounded from above by Lip( f ), the restriction of ρ to Tc can be seen as the entropy solution to a Dirichlet
boundary problem defined in a non-cylindrical domain, and then one can observe that the Dirichlet data are ignored
according to the Bardos-LeRoux-Nédélec interpretation [9]; cf. [1] for details of the argument. As a consequence, the
restriction of ρ to Tc is fully determined by the initial datum alone and thus it coincides with the restriction of ρfree

to Tc . The bounds therefore follows readily from the fact that ρfree satisfies the maximum principle and from the fact
that in T, ρ takes values in [0,ρmax]. Then the last claim is an immediate consequence of these bounds. �

3.2. A well-posedness result. We start with the following well-posedness result.

Theorem 3.1.

(1) If Q verifies (QLip), then the constrained Cauchy problem (1.1), (1.3) admits one and only one entropy solution
in the sense of Definition 2.1.

(2) The conclusion of (1) still holds true if Q is equivalent in the sense of Definition 2.2 to a constraint Q̂ that
verifies the assumption (QLip).

Proof. The second claim obviously follows from the first one. Therefore only the first claim has to be proved. Observe
that a couple (ρ, q) ∈ C0(0,T ;L1)×L1(0,T ) is an entropy solution of (1.1), (1.3) if and only if ρ is a fixed point of the
map TT = RT ◦QT . We will prove the theorem by applying the Banach-Picard fixed point theorem for sufficiently
small T . The general claim of existence and uniqueness follows then by bootstrapping the construction, according to
Lemma 3.1.

Let t1 > 0 be sufficiently small such that N = T /t1 ∈ N and 2ω(t1) < 1, where ω is the function defined in (QLip).
Combining (3.3) with (QLip), we find for all ρ1,ρ2 ∈ C0(0,T ;L1)

‖Tt1 [ρ1]−Tt1 [ρ2]‖C0(0,t1;L1) ≤ 2
∥∥Q[ρ1]−Q[ρ2]

∥∥
L1(0,t1)

≤ 2ω(t1 −τ)
∥∥ρ1 −ρ2

∥∥
C0(0,t1;L1) <

∥∥ρ1 −ρ2
∥∥

C0(0,t1;L1),
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where τ ∈ [0, t1] is the largest time for whichρ1(s, ·) = ρ2(s, ·) in L1(R) for all s ∈ [0,τ]. Moreover, according to Lemma 3.3,
the image of Rt1 is included in a ball B of C0(0, t1;L1) centred in 0 and with radius

∥∥ρ0
∥∥

L1(R), therefore, all fixed points
of Tt1 are included in this ball. Hence we can apply the contractive fixed point theorem to the restriction T |B of T

to B and conclude that there exists a unique solution ρ(1) of our problem with time horizon t1. We bootstrap the
argument applying Lemma 3.1 with ti = i t1. Indeed, using property (QLip) with τ= t1 we find the possibility to extend
the solution defined on [0, t1] to the larger interval [0,2t1]. Continuing in this way, we obtain a uniform partition of
[0,T ] on which we can apply both existence and uniqueness claims of Lemma 3.1. This concludes the proof. �

In practice, verification of assumption (QLip) may be tedious. Therefore we provide the following corollary based
on sufficient conditions.

Corollary 3.1. A constraint operator Q satisfies (QLip) and the corresponding constrained Cauchy problem (1.1), (1.3)
admits one and only one entropy solution in the sense of Definition 2.1 if one of the following conditions is satisfied:

(1) Qt verifies (2.1) for all t ∈ [0,T ].
(2) Qt verifies (2.2) for all t ∈ [0,T ].

Proof. Assume that ρ1 and ρ2 coincide in L1(R) up to a time τ≤ t .

(1) If Qt verifies (2.1) for all t ∈ [0,T ], then∥∥Q[ρ1]−Q[ρ2]
∥∥

L1(0,t ) ≤C
∥∥ρ1 −ρ2

∥∥
L1(0,t ;L1) =C

∫ t

τ
‖ρ1(s, ·)−ρ2(s, ·)‖L1(R) ds

≤C (t −τ) max
s∈[τ,t ]

‖ρ1(s, ·)−ρ2(s, ·)‖L1(R) =C (t −τ)
∥∥ρ1 −ρ2

∥∥
C0(0,t ;L1).

(2) First, observe that (2.2) implies property (Qhd). Therefore, Q[ρ1] and Q[ρ2] also coincide up to the time τ.
Hence, if Qt verifies (2.2) for all t ∈ [0,T ], then∥∥Q[ρ1]−Q[ρ2]

∥∥
L1(0,t ) =

∫ t

τ

∣∣Q[ρ1](s)−Q[ρ2](s)
∣∣ds ≤ (t −τ) ess sups∈[τ,t ]

∣∣Q[ρ1](s)−Q[ρ2](s)
∣∣

= (t −τ)
∥∥Q[ρ1]−Q[ρ2]

∥∥
L∞(0,t ) ≤ (t −τ)C

∥∥ρ1 −ρ2
∥∥

C0(0,t ;L1).

Thus in both cases we proved that (QLip) holds with ω=C Id and Theorem 3.1 applies. �

Remark 3.1. One can also get a result of continuous dependence on ρ using the above technique. To this end, it is
enough to include a term in the right-hand side of (3.3) to account for the L1 difference of initial conditions, and to
use the version of Banach fixed point theorem with parameter.

However, to state continuous dependence result in a more natural way (in this case, also a dependence on Q can be
studied), one can use the technique of Gronwall inequalities under the appropriate assumptions. We will not pursue
this line here, referring to [4] for an example. Observe that continuous dependence estimates obtained with these
techniques may be very pessimistic, cf. [2]. 2

3.3. Existence results. While uniqueness and continuous dependence arguments developed or evoked in the pre-
vious paragraph seem to require some kind of Lipschitz continuity of Q, existence results can be obtained in much
more generality. We have

Theorem 3.2. The constrained Cauchy problem (1.1), (1.3) admits at least one entropy solution in the sense of Defini-
tion 2.1 if one of the following conditions is satisfied:

(a) Q satisfies (Qcomp).
(b) f satisfies (GNL) and Q satisfies (Qcont).

The same conclusion holds if Q is equivalent to a constraint operator that satisfies (a) or (b).

Proof. As in the proof of Theorem 3.1, we reduce the question of existence of an entropy solution to the problem (1.1),
(1.3) to the question of existence of a fixed point for the map TT . Moreover, the last claim is an obvious consequence
of the claims of the theorem in the cases (a) and (b), which we now prove.
(a) We have seen in the proof of Theorem 3.1 that the definition of TT can be restricted to a ball B of C0(0,T ;L1) such
that Tt acts from the convex set B into itself. Due to estimate (3.3) and assumption (Qcomp), the map TT is continuous
from C0(0,T ;L1) to itself. Moreover, due to (Qcomp) the image TT (B) is relatively compact in C0(0,T ;L1) and one can
apply the Schauder fixed point theorem in C0(0,T ;L1) to get existence of a solution.
(b) Now, under assumptions (GNL), (Qcont), we will replace the space C0(0,T ;L1) by L1(0,T ;L1). Then we define
TT from L1(0,T ;L1) into C0(0,T ;L1) ⊂ L1(0,T ;L1). As before, due to Lemma 3.3 we can restrict this map to the ball
B ′ of L1(0,T ;L1) centred in 0 and with radius T

∥∥ρ0
∥∥

L1(R). We use the continuity assumption (Qcont) along with the

estimate (3.3) and the continuous embedding of C0(0,T ;L1) into L1(0,T ;L1) in order to justify the continuity of this
restriction of TT . It remains to prove the relative compactness of the image TT (B ′); then existence of a fixed point
of Tt in TT (B ′) ⊂ C0(0,T ;L1) follows, therefore we get an entropy solution to our problem (1.1), (1.3). To prove the
relative compactness of TT (B ′), observe that one has the L1

loc((0,T )×R) relative compactness of uniformly bounded
families of (local) entropy solutions of equation (1.1a) due to the genuine nonlinearity assumption (GNL) (see [42,
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40]). It remains to upgrade the L1
loc to L1 compactness, which is possible in our case due to the uniform tightness

property for functions in TT (B ′), which is a consequence of the last claim of Lemma 3.3 all functions in TT (B ′) are
dominated by a fixed C0(0,T ;L1) function ρfree). This concludes the proof of the theorem. �

In the spirit of Corollary 3.1, let us point out that the compactness assumption on Q can follow from the stronger
assumption of compactness of Q as operator from C0(0,T ;L1) to L∞(0,T ); we refer to Section 4 for examples where
the latter assumption is easy to check.

4. BASIC EXAMPLES OF CONSTRAINT OPERATORS

In this section we introduce some examples of constraint operators satisfying the hypotheses of Theorem 3.1,
whence existence and uniqueness results for the corresponding constrained Cauchy problems (1.1), (1.3) follow. This
list is of course not exhaustive, but we indicate several ways to average density or flux values so that to ensure the
continuity of averages with respect to the a.e. convergence of solutions. As a consequence it is possible to use these
examples as “building blocks” to construct more complex constraint operators to which the theory in the previous
section applies.

Example 4.1. Let us consider first the constraint operator Q defined by (1.5), introduced in the framework of evacu-
ation of a crowd through an exit door in [4] and numerically studied in [3]. Existence and uniqueness of the entropy
solution to the constrained Cauchy problem (1.1), (1.3), (1.5) is proved in [4, Theorem 3.1]. Thanks to Theorem 3.1, we
can give a shorter alternative proof which requires weaker hypotheses on p and w . However this proof does not lead
to a practically implementable construction procedure, and it does not give any hint on the behaviour of the entropy
solution nor a priori bounds of its total variation, unlike to the (much longer) arguments of [4]. Observe that in the
present setting we do not need to assume (GNL) for f .

First, the property (Qhd) is clearly satisfied by (1.5). If p and w are as in (PWK), then for any ρ1,ρ2 ∈ C0(0,T ;L1) and
t ∈ [0,T ] we have ∥∥Q[ρ1]−Q[ρ2]

∥∥
L∞(0,t ) ≤ Lip(p)ess sups∈(0,t )

∣∣∣∣∫
R−

[
ρ1(s, x)−ρ2(s, x)

]
w(x)dx

∣∣∣∣
≤ Lip(p) ‖w‖L∞(R)

∥∥ρ1 −ρ2
∥∥

C0(0,t ;L1).

Therefore, condition (2.2) is satisfied with C = Lip(p) ‖w‖L∞(R). Hence by virtue of Corollary 3.1 the constraint opera-
tor given by (1.5) enjoys (QLip) and the constrained Cauchy problem (1.1), (1.3), (1.5) admits one and only one entropy
solution in the sense of Definition 2.1. 2

Example 4.2. Consider the case of a constraint operator Q[ρ] that depends on the values of ρ at times belonging to
an a priori fixed discrete set. More specifically, let t1, . . . , tM ∈ [0,T ] with ti < ti+1 and take

Q[ρ](t ) = p (ξ(t )) , ξ(t ) =
∑

ti≤t

∫
R

wi (t , x)ρ(ti , x)dx,(4.1)

where w1, . . . , wM : [0,T ]×R→R are in L∞. By definition the property (Qhd) is clearly satisfied. If p ∈ Lip(R;
[
0, fmax

]
),

then for any ρ1,ρ2 ∈ C0(0,T ;L1) and t ∈ [0,T ] we have∥∥Q[ρ1]−Q[ρ2]
∥∥

L∞(0,t ) ≤ Lip(p)ess sups∈(0,t )

∣∣∣∣∣ ∑
ti≤s

∫
R

wi (s, x)
[
ρ1(ti , x)−ρ2(ti , x)

]
dx

∣∣∣∣∣
≤

[
Lip(p)

M∑
i=1

‖wi‖L∞(0,T ;L∞)

]∥∥ρ1 −ρ2
∥∥

C0(0,t ;L1).

Therefore, condition (2.2) is satisfied with C = Lip(p)
∑M

i=1 ‖wi‖L∞(0,T ;L∞). Hence, by virtue of Corollary 3.1, the con-
straint operator given by (4.1) enjoys (QLip) and the constrained Cauchy problem (1.1), (1.3), (4.1) admits one and
only one entropy solution in the sense of Definition 2.1. 2

Example 4.3. Consider a constraint operator Q such that Q[ρ](t ) depends on the weighted average of f (ρ) in y ∈R on
the time interval [max{0, t −τ}, t ], with τ> 0. This can be expressed by introducing r ∈ Lip(R+; [0, fmax]), κ as in (PWK)
and by requiring that

Q[ρ](t ) = r (η(t )), η(t ) =
∫ t

0
κ(t − s) f (ρ)(s, y−)ds.(4.2)

Proving any continuity property for Q is not possible because its definition involves the traces of a function in
L1(R;R); to be precise, the operator Q is not well defined on the functional spaces we consider. However it is well
defined for functions ρ satisfying (1.1a) in the weak sense, because the field (ρ, f (ρ)) in the (t , x)-plane is divergence-
free. For this reason we construct a constraint operator Q̂ equivalent to Q in the sense of Definition 2.2, which is well
defined and for which continuity (and even Lipschitz continuity) can be easily proved. We fix φ ∈ Lip([0,T ]×

(−∞, y
]
)

such that φ(t , y) = κ(t ) and x 7→φ(t , x) is increasing. Introduce the constraint operator

(4.3a) Q̂[ρ](t ) = r (ξ(t ))
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with

ξ= ξa +ξb +ξc ,(4.3b)

ξa(t ) =
∫ t

0

∫ y

−∞

[−ρ(s, x)φt (t − s, x)+ f (ρ)(s, x)φx (t − s, x)
]

dx ds,(4.3c)

ξb(t ) =−
∫ y

−∞
ρ(t , x)φ(0, x)dx,(4.3d)

ξc (t ) =
∫ y

−∞
ρ0(x)φ(t , x)dx.(4.3e)

Observe that ξb and ξc have the same form as the argument of p in examples 4.1 and 4.2, respectively. The prop-
erty (Qhd) is clearly satisfied by the constraint operators under consideration. Moreover, by a direct application of the
integration by parts formula we obtain the equivalence of the two operators Q and Q̂, see Example 2.2.

We prove now that Q̂ satisfies (QLip). For any ρ1,ρ2 ∈ C0(0,T ;L1) and t ∈ [0,T ] we have∣∣Q̂[ρ1](t )−Q̂[ρ2](t )
∣∣≤ Lip(r )

[∣∣ξa
1 (t )−ξa

2 (t )
∣∣+ ∣∣∣ξb

1 (t )−ξb
2 (t )

∣∣∣]
≤ Lip(r )

[
Lip(φ)

(
1+Lip( f )

)
T +

∥∥φ∥∥
C0(0,t ;L∞)

]∥∥ρ1 −ρ2
∥∥

C0(0,t ;L1),

where ξa
i ,ξb

i correspond to ρi , i = 1,2. Therefore Q̂ satisfies (2.2) and, by Corollary 3.1, it satisfies also (QLip) and the
constrained Cauchy problem (1.1), (1.3), (4.3) admits one and only one entropy solution in the sense of Definition 2.1.

2

Let us underline the following observations:

• In Example 4.2, ξ accounts for a space average of the density at some specific moments of time, the value of ξ
being transformed into a constraint value by the nonlinear map p.

• In Example 4.3, η accounts for a time average of the flux at a specific location in space, the value of η being
transformed into a constraint value by the nonlinear map r .

If the flux f is bell shaped, see (F), then the link between the two examples for subjective densities lower than ρc can
be provided by the choice r = p ◦ f −1

− , where f− is the restriction of f to [0,ρc ].

Example 4.4. Inspired by the examples 1.3 and 2.1, we propose a class of operators

(4.4) Q̂[ρ](t ) = p(ξ(t )),

where p is given by (PWK) and ξ is the solution to the Cauchy problem for an ODE

ξ̇(t ) = H

(
ξ(t ),

∫
R−

F
(
t , x,ρ(t , x)

)
dx

)
, ξ(0) = ξ0[ρ0].(4.5)

Above ξ0 : L1(R) →R,

(4.6) H ∈ Lip(R×R;R)

and

(4.7)
F ∈ C0

c

(
[0,T ]×R−× [0,ρmax];R

)
and there exists a constant LF > 0 such that for any (t , x) ∈ [0,T ]×R− and

ρ1,ρ2 ∈ [0,ρmax] ∣∣F (t , x,ρ1)−F (t , x,ρ2)
∣∣≤ LF

∣∣ρ1 −ρ2
∣∣.

The property (Qhd) is clearly satisfied by Q̂. Moreover for any ρ1,ρ2 ∈ C0(0,T ;L1) and t ∈ [0,T ], if ξ1 and ξ2 are the
corresponding solutions of (4.5), then∣∣ξ̇1(t )− ξ̇2(t )

∣∣≤ Lip(H)

[
|ξ1(t )−ξ2(t )|+

∫
R−

∣∣F (
t , x,ρ1(t , x)

)−F
(
t , x,ρ2(t , x)

)∣∣dx

]
≤ Lip(H)

[
|ξ1(t )−ξ2(t )|+LF

∫
R−

∣∣ρ1(t , x)−ρ2(t , x)
∣∣dx

]
≤ Lip(H)

[
|ξ1(t )−ξ2(t )|+LF

∥∥ρ1(t , ·)−ρ2(t , ·)
∥∥

L1(R)

]
and by the Gronwall lemma we have

|ξ1(t )−ξ2(t )| ≤ Lip(H)LF

∫ t

min{τ,t }

∥∥ρ1(s, ·)−ρ2(s, ·)
∥∥

L1(R)e
Lip(H) (t−s) ds

≤ Lip(H)LF eLip(H)T T
∥∥ρ1 −ρ2

∥∥
C0(0,t ;L1),

where τ= max{s ∈ [0,T ] : ρ1 = ρ2 in C0(0, s;L1)}. Therefore, we have that∥∥Q̂t [ρ1]−Q̂t [ρ2]
∥∥

L1(0,t ) ≤
[
Lip(p)Lip(H)LF eLip(H)T T 2]∥∥ρ1 −ρ2

∥∥
C0(0,t ;L1)
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and Q̂t : C0(0, t ;L1) → L1(0, t ) is Lipschitz continuous. Moreover, we have that∥∥Q̂t [ρ1]−Q̂t [ρ2]
∥∥

L1(0,t ) ≤

≤ Lip(p)Lip(H)LF

∫ t

0

∫ s

min{τ,s}

∥∥ρ1(r, ·)−ρ2(r, ·)
∥∥

L1(R)e
Lip(H) (s−r ) dr ds

≤
[

Lip(p)Lip(H)LF

∫ t

0

∫ s

min{τ,s}
eLip(H) (s−r ) dr ds

]∥∥ρ1 −ρ2
∥∥

C0(0,t ;L1).

It is readily seen that the factor in front of
∥∥ρ1 −ρ2

∥∥
C0(0,t ;L1) vanishes as (t −τ) → 0. In conclusion we proved that Q̂

satisfies (QLip) and the constrained Cauchy problem (1.1), (1.3), (4.4) admits one and only one entropy solution in the
sense of Definition 2.1. 2

Remark 4.1. It is easy to relax the hypothesis of Lipschitz continuity on H in Example 4.4 to prove the existence of
an entropy solution to (1.1), (1.3), (4.4), (4.5). Indeed equation (4.5) admits a local solution provided the function H is
continuous. If in addition H is bounded, then the solution ξ is global and is uniformly in BV. This is enough to ensure
that property (Qcomp) holds. 2

Remark 4.2. Observe that the ODE in (2.5) in Example 2.1 can be written in the form (4.5). Indeed, letφ : [0, t ]×R− →
R+ be an arbitrary Lipschitz function such that φ(·,0) = 1 and supp(φ) ⊂ (0, t )×R−, then by the integration by parts
formula and by using the fact that ρ satisfies (1.1a) in D′([0,T )×R), we can express ξ as follows

ξ(t )−ξ(0) =
∫ t

0

{∫
R−

w ′(x) f (ρ)(s, x)dx −w(0) f (ρ)(s,0−)

}
ds

=
∫ t

0

∫
R−

{
w ′(x) f (ρ)(s, x)− [

w(x)φ(s, x) f (ρ)(s, x)
]

x

}
dx ds

=
∫ t

0

∫
R−

{[
w(x)[1−φ(s, x)]

]
x f (ρ)(s, x)+w(x)φ(s, x)ρs (s, x)

}
dx ds

=
∫ t

0

∫
R−

{[
w(x)[1−φ(s, x)]

]
x f (ρ)(s, x)−w(x)φs (s, x)ρ(s, x)

}
dx ds

and we can write the ODE in (2.5) as follows

ξ̇(t ) =
∫
R−

{[
w(x)[1−φ(t , x)]

]
x f (ρ)(t , x)−w(x)φt (t , x)ρ(t , x)

}
dx.

Hence (2.5) takes the form (4.5) with H(ξ, I ) = I , ξ0[ρ0] = ∫
R− ρ0(x)dx and

F (t , x,ρ) = [
w(x) (1−φ(t , x))

]
x f (ρ)−w(x)φt (t , x)ρ.

The conditions (4.6), (4.7) are satisfied with LF = Lip(w (1−φ))Lip( f )+w(0)Lip(φ).
In particular the constrained Cauchy problem (1.1), (1.3), (2.4), (2.5) admits one and only one entropy solution in

the sense of Definition 2.1. 2

Remark 4.3. With reference to Example 1.3, observe that the ODE in (1.8) can be written in the form (4.5). Indeed,
analogously to Remark 4.2, for any Lipschitz functionφ : [0, t ]×R− →R+ such thatφ(·,0) = 1 and supp(φ) ⊂ (0, t )×R−,
we can take H(ξ, I ) = max{I ,−δξ} and

F (t , x,ρ) = [
w(x) (1−φ(t , x))

]
x f (ρ)−w(x)φt (t , x)ρ.

We stress that F is a function; indeed, even if w has a jump at zero, the factor of w ′(·) is (1−φ), which makes the
product equal to zero at x = 0. The conditions (4.6), (4.7) are satisfied with LF = Lip(w (1−φ))Lip( f )+w(0)Lip(φ).

In particular the constrained Cauchy problem (1.1), (1.3), (1.7), (1.8) admits one and only one entropy solution in
the sense of Definition 2.1. 2

Observe also that, taking the derivative of the function ξ defined by (4.3b) and integrating by part ξ̇b defined
by (4.3d), we obtain that the constraint operator Q̂ defined by (4.3) belongs to the class introduced in Example 4.4.

5. FINITE VOLUME APPROXIMATION OF NONLOCALLY CONSTRAINED PROBLEMS

The results in the previous section can be obtained by using a fractional step procedure in the place of fixed point
arguments in order to relax the coupling between ρ and q . As in the above proofs, Lipschitz continuity estimates
or compactness arguments are the cornerstones of the convergence proofs for such approximation procedures. A
combination of the classical wave-front tracking algorithm with fractional stepping was used in [4] for the case of
the constraint (1.5). The advantage of the wave-front tracking technique is that it is constructive and can be used
for numerical simulations (see in particular [4, Section 6]); but, because of the presence of “nonlocal interactions”
and of fractional stepping, this algorithm turns out to be very heavy. In this section, we follow the fractional step
strategy and the finite volume method to construct convenient numerical approximations. In particular, we design a
discretization algorithm for problem (1.1), (1.3) and prove its convergence. The details of the discretization for (1.1)
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and the scheme are essentially the same as in our work [3] devoted to the particular case of the constraint (1.5). Here,
we focus first on properties required for the discretization of general constraints of the form (1.3), and then we apply
the results to several examples of constraints relevant for modeling purposes. The convergence of the scheme will be
proved under general assumptions, see (Qcons

∆ ) and (Qcomp
∆

).

5.1. Non-local constrained finite volume method. In this section we describe the numerical scheme based on finite
volume method that we use to solve (1.1), (1.3) and we prove its convergence.

Let ∆x and ∆t be the constant space and time steps respectively. Introduce the points x j+1/2 = j∆x, the cells K j =
[x j−1/2, x j+1/2) and the cell centers x j = ( j −1/2)∆x for j ∈Z. Let jc be the index such that x jc+1/2 is the location of the
constraint. Define N = bT /∆tc and for n ∈N∩ [0, N ] introduce the time discretization t n = n∆t . For n ∈N∩ [0, N ] and
j ∈Z, we denote by ρn

j the approximation of the average of ρ(t n , · ) on the cell K j , namely

ρ0
j =

1

∆x

∫
K j

ρ0(x) dx and ρn
j ' 1

∆x

∫
K j

ρ(t n , x) dx if n > 0.

Let us introduce the discretized initial datum ρ0
∆ defined by

ρ0
∆(x) = ρ0

j for x ∈ K j .(5.1)

If ρ0 is a piecewise continuous function, we can re-define ρ0
j as point values of ρ0 at x j or as the mean of the one-sided

limits of ρ0 at x j if x j is a point of jump. In all cases, we have convergence of ρ0
∆ to ρ0 in L1(R), moreover, ρ0

∆ obeys
the same L∞ bounds as ρ0.

We seek for an approximate solution (ρ∆, q∆) defined on [0,T ]×R, taking values in [0,ρmax]× [0, fmax] and of the
form

ρ∆(t , x) =
N∑

n=1
ρn
∆(x) 1(t n−1, t n](t ), q∆(t ) =

N∑
n=1

qn
∆ 1(t n−1, t n](t ).

where (ρn
∆, qn

∆)n=1,...,N are discrete functions computed by executing the following algorithm, based on a suitable dis-

cretization Q∆ of Q that satisfies (Qhd).

0. Initialization. We start with the discretized initial datum ρ0
∆ given in (5.1) and an initial value of the constraint

q0
∆ =Q∆[ρ0

∆](0).
1. For each n = 0, . . . , N −1,

A. We recall that for the unconstrained Cauchy problem (1.1a), (1.1c), a standard finite volume method can
be written into the form

(5.2) ρn+1
j = ρn

j −
∆t

∆x

(
F n

j+1/2 −F n
j−1/2

)
,

where F n
j+1/2 = F

(
ρn

j ,ρn
j+1

)
is a monotone, consistent numerical flux, that is, F satisfies the following

assumptions:
∗ F is Lipschitz continuous from [0,ρmax]2 to Rwith Lipschitz constant Lip(F ),
∗ F (a, a) = f (a) for any a ∈ [0,ρmax],
∗ [0,ρmax]2 3 (a,b) 7→ F (a,b) ∈ [0, fmax] is non-decreasing with respect to a and non-increasing with

respect to b.
We also recall that in [6] the numerical flux for the Cauchy problem (1.1) with time dependent constraint
q is modified as follows in order to take into account the constraint condition

F n
j+1/2 =

 F
(
ρn

j ,ρn
j+1

)
if j 6= jc ,

min
{

F
(
ρn

j ,ρn
j+1

)
, qn
∆

}
if j = jc ,

(5.3)

where qn
∆ is an approximation of q(t n).

B. Given (ρk
∆)k=1,...,n with

ρn
∆(x) = ρn

j for x ∈ K j ,

we compute qn
∆ ∈ [0, fmax] by discretizing relation (1.3):

(5.4) qn
∆ =Q∆[E n[ρn

∆]](t n)

where

E n[ρn
∆](t , x) =

n∑
k=1

ρk
∆(t − t k−1, x) 1

(t k−1, t k ]
(t ).
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In the sequel, we will operate with the norm ‖·‖L1(0,T ) for q∆ and with the norm ‖·‖L∞(0,T ;L1) for ρ∆, both norms being
computed from the above expressions of q∆ and ρ∆ as functions of t and (t , x), respectively.

To prove convergence for this algorithm, we will need two specific properties of the discrete constraint operator
Q∆. First, we assume the following consistency for the approximation of Q by Q∆:

(Qcons
∆ )

[
q∆ =Q∆[ρ∆], ‖q∆−q‖L1(0,T ) → 0 and ‖ρ∆−ρ‖L1(0,T ;L1) → 0

]
=⇒ q =Q[ρ].

Next, we require an asymptotic compactness property which we expect to be compatible with constraints satisfying
the compactness assumption (Qcomp), but also with some other constraints like (1.2) thanks to the idea of equivalence
between constraints introduced in Definition 2.2:

(Qcomp
∆

)

the sequence of approximate solutions (ρ∆) obtained
with the above algorithm is bounded in L∞(0,T ;L1)
and q∆ =Q∆[ρ∆]

=⇒ (q∆) is compact in L1(0,T ).

Here and in the sequel, by compactness of (q∆) we mean the possibility to extract a convergent subsequence in
L1(0,T ), i.e., the relative compactness.

Remark 5.1. If a given constraint operator Q verifies (Qcomp), it is natural to construct discrete constraint operators
(Q∆) which verify (Qcomp

∆
) irrespective of the nature of the sequence (ρ∆).

Nonetheless, observe that requiring the (Qcomp
∆

) only for approximate solutions (ρ∆) obtained with the algorithm
described in this section makes the property much weaker: the sequence (ρ∆) need not to be arbitrary, but it solves
a discretized PDE. Therefore, (Qcomp

∆
) is a joint property of discretizations of Q and of the solution operator R to a

constrained Cauchy problem for a conservation law.
In this section, we do not formalize the idea of equivalence of two discrete constraint operators Q∆ and Q̂∆ like

this was done in Definition 2.2 for the continuous case; but in the examples, we exploit the same idea by proving
property (Qcomp

∆
) due to a transformation of Q∆ into a more convenient form, using the “weak formulation” of the

scheme (5.2). 2

The alternative line of analysis, with space C0(0,T ;L1) for ρ replaced by L1(0,T ;L1) and asymptotic compactness
for Q∆ replaced by the genuine nonlinearity assumption (GNL) and a kind of asymptotic continuity assumption on
(Q∆) is briefly discussed in Remark 5.2.

5.2. Convergence of the scheme. Let us notice that as in [6, Proposition 4.2], under the CFL condition

(5.5) Lip(F )
∆t

∆x
≤ 1

2
,

we have the L∞ stability of the scheme (5.2), (5.3), (5.4), that is

0 ≤ ρ∆(t , x) ≤ ρmax for a.e. (t , x) ∈ (0,T )×R.(5.6)

We are now in a position to prove a convergence result for the scheme (5.2), (5.3), (5.4). We have the following
results

Theorem 5.1. Let Q verify (QLip) and (ρ̃, q̃) be the unique entropy solution of (1.1), (1.3) in the sense of Definition 2.1.

(1) Assume that the approximation Q∆ of Q is consistent in the sense (Qcons
∆ ) and asymptotically compact in the

sense (Qcomp
∆

). Then (ρ∆, q∆) constructed by the scheme (5.2), (5.3), (5.4) converges to (ρ̃, q̃) as ∆t ,∆x → 0.

(2) If Q and Q̂ are equivalent in the sense of Definition 2.2 and Q̂ admits an approximation Q̂∆ that satis-
fies (Qcons

∆ ) and (Qcomp
∆

), then (ρ̂∆, q̂∆) constructed by the scheme (5.2), (5.3), (5.4) corresponding to Q̂∆ con-
verges to (ρ̃, q̃) as ∆t ,∆x → 0.

Proof. (1) By construction we have that (ρ∆) is uniformly bounded in L∞(0,T ;L1). Therefore (Qcomp
∆

) gives the exis-
tence of a subsequence of (q∆), still denoted (q∆) and a constraint function q ∈ L1(0,T ) such that (q∆) converges to q
strongly in L1(0,T ) as ∆t → 0. Let ρ ∈ C0([0,T ];L1

loc(R; [0,ρmax])) be the unique entropy solution to (1.1) in the sense

of Definition 2.1 (i) associated to q . We first prove that the subsequence (ρ∆) converges to ρ strongly in L1(0,T ;L1) as
∆t ,∆x → 0. Let q̂∆ be a piecewise constant (with step ∆t ) approximation of q such that q̂∆ converges to q strongly
in L1(0,T ). Let us introduce the auxiliary sequence ρ̂∆ constructed by the scheme (5.2), (5.3) and associated to the
sequence of discrete constraints q̂∆. We have∥∥ρ−ρ∆∥∥

L1(0,T ;L1) ≤
∥∥ρ− ρ̂∆∥∥

L1(0,T ;L1) +
∥∥ρ∆− ρ̂∆∥∥

L1(0,T ;L1).

But, thanks to [6, Theorem 4.9], under the CFL condition (5.5),
∥∥ρ− ρ̂∆∥∥

L1(0,T ;L1) tends to 0 as ∆t , ∆x → 0. Further-
more, thanks to [3, Proposition 3.1], we have∥∥ρ∆− ρ̂∆∥∥

L1(0,T ;L1) ≤ 2T
∥∥q∆− q̂∆

∥∥
L1(0,T ),

which also shows that
∥∥ρ∆− ρ̂∆∥∥

L1(0,T ;L1) tends to 0 as∆t , ∆x → 0. Now, by the definition of ρ, the couple (ρ, q) fulfills
Definition 2.1 (i). Moreover, due to the above convergences of (ρ∆) and (q∆) and the consistency property (Qcons

∆ ), it
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follows that (1.3) holds. Thus (ρ, q) coincides with the unique entropy solution (ρ̃, q̃). Finally, it is classical that the
extraction of a subsequence can be bypassed due to the uniqueness of (ρ̃, q̃).
(2) This item follows from the definition of equivalent operators Definition 2.2 and (1). �

Remark 5.2. We think that, like for the existence proof, in the above convergence result the discrete compactness
assumption (Qcomp) can be replaced by a discrete analogous of the mere continuity property (Qcont), whenever the
genuine nonlinearity assumption (GNL) on f is imposed. In this case, contrarily to the above proof one has to ensure
in the first step the relative compactness of (ρ∆). In the second step, discrete analogous of (Qcont) will ensure conver-
gence of the sequence (q∆) associated to the convergent subsequence of (ρ∆). Finally, (Qcons

∆ ) will permit us to link
the respective limits ρ and q by the constraint relation (1.3).

However, quite technical arguments of the compensated compactness kind, based on (GNL), are required in order
to handle (ρ∆) at the first step. Therefore we limit our convergence study to the setting of Theorem 5.1. Notice that
such alternative kind of compactness argument is however needed in studying approximations of the constrainted
Aw, Rascle [8] and Zhang [49] model studied in [5], since the arguments in [6, Theorem 4.9] and in [3, Proposition 3.1]
are specific to the scalar case. Studies of models as in [5] and of their approximation are postponed to future work. 2

6. EXAMPLES OF DISCRETE CONSTRAINT OPERATORS

In this section we apply the theory developed in Section 5 to construct and study discrete constraint operators
corresponding to the constraint operators introduced in Section 4. In particular we prove that the hypotheses of
Theorem 5.1 are satisfied and we infer the convergence of the scheme (5.2), (5.3), (5.4) as ∆t ,∆x → 0 to the unique
entropy solution of the corresponding constrained Cauchy problem (1.1), (1.3) in the sense of Definition 2.1.

Example 6.1. With reference to Example 1.2, we recall that as a discrete version of the constraint operator Q defined
in (1.5), in [3] the authors introduce

Q∆[ρ∆](t ) = p

(
∆x

jc∑
j= jw

ρn
j w j

)
for t ∈ (t n−1, t n],(6.1)

where w j =
1

∆x

∫
K j

w(x)dx and jw is an integer such that supp(w) ⊂ ⋃
jw≤ j≤ jc K j . Let’s prove first that Q∆ enjoys

property (Qcons
∆ ). If ‖Q∆[ρ∆]−q‖L1(0,T ) → 0 and ‖ρ∆−ρ‖L1(0,T ;L1) → 0, then

‖Q[ρ]−Q∆[ρ∆]‖L1(0,T ) ≤ Lip(p)
jc∑

j= jw

∥∥∥∥∥
∫

K j

[
ρ(·, x) w(x)−ρ∆(·, x) w j

]
dx

∥∥∥∥∥
L1(0,T )

≤ Lip(p)
jc∑

j= jw

[∥∥∥∥∥
∫

K j

ρ(·, x)
[
w(x)−w j

]
dx

∥∥∥∥∥
L1(0,T )

+
∥∥∥∥∥
∫

K j

[
ρ(·, x)−ρ∆(·, x)

]
w j dx

∥∥∥∥∥
L1(0,T )

]

≤ Lip(p)
jc∑

j= jw

[
ρmax T

∫
K j

|w(x)−w j |dx +‖w‖L∞(R)

∥∥∥∥∥
∫

K j

|ρ(·, x)−ρ∆(·, x)|dx

∥∥∥∥∥
L1(0,T )

]

≤ Lip(p)

[
ρmax T

jc∑
j= jw

∫
K j

|w(x)−w j |dx +‖w‖L∞(R)
∥∥ρ−ρ∆∥∥

L1(0,T ;L1)

]
−−−−→
∆x→0

0.

Finally, let us prove also that (Qcomp
∆

) holds. By definition (ρ∆) are constructed by applying a conservative finite
volume method, hence ∥∥ρ∆∥∥

L∞(0,T ;L1) =
∥∥ρ0

∆

∥∥
L1(R) =

∥∥ρ0
∥∥

L1(R).

We need to justify that (Q∆[ρ∆]) is compact in L1(0,T ). This can be done by changing Q∆ under an equivalent form,
see the proof of [3, Proposition 3.2], under the additional assumption of Lipschitz continuity of w . Namely, by [3,
Proposition 3.2] we have that (Q∆[ρ∆]) is uniformly bounded in BV, and therefore it is compact in L1(0,T ). In conclu-
sion, Theorem 5.1 applies if w satisfies (wLip). 2

Example 6.2. With reference to Example 4.2, let us introduce as a discrete version of operator defined in (4.1) the
discrete constraint operator

Q∆[ρ∆](t ) = p(ξ∆), ξ∆ =
∑

ti<t

∫
R

w∆
i (t , x) ρ∆(ti , x)dx(6.2)

where

w∆
i (t , x) = 1

∆x

∫
K j

wi (t n−1, y)dy, for t ∈ (t n−1, t n] and x ∈ K j .

For simplicity assume that

(wLipPC)
for any t ∈ [0,T ] we have x 7→ wi (t , x) is in Lip(R;R) and
for any x ∈Rwe have t 7→ wi (t , x) is piecewise constant.
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Let us prove first that (Qcons
∆ ) is satisfied by (6.2). If ‖Q∆[ρ∆]−q‖L1(0,T ) → 0 and ‖ρ∆−ρ‖L1(0,T ;L1) → 0, then

‖Q[ρ]−Q∆[ρ∆]‖L1(0,T ) ≤ Lip(p)
∫ T

0

∣∣∣∣∣ ∑
ti≤t

∫
R

[
wi (t , x)ρ(ti , x)−w∆

i (t , x) ρ∆(ti , x)
]

dx

∣∣∣∣∣dt

≤ Lip(p)
∫ T

0

∑
ti≤t

∫
R

[∣∣wi (t , x)−w∆
i (t , x)

∣∣ρ(ti , x)+w∆
i (t , x)

∣∣ρ(ti , x)−ρ∆(ti , x)
∣∣] dx dt

≤ Lip(p)
M∑

i=1

[∥∥wi −w∆
i

∥∥
L1(0,T ;L1)ρmax +‖wi‖L1(0,T ;L∞)

∥∥ρ−ρ∆∥∥
L1(0,T ;L1)

]
−−−−→
∆x→0

0.

Finally, it is immediate to check the compactness property (Qcomp
∆

) because p is continuous and the sequence (ξ∆)
takes values in a finite dimensional subset of L1(0,T ) due to assumption (wLipPC). 2

Example 6.3. With reference to Example 4.3, let js be the index such that x js+1/2 is the location of y . We introduce as
a discrete version of the constraint operator defined in (4.2) the discrete constraint operator

Q∆[ρ∆] = r
(
η∆

)
,

where

η∆(t ) =∆t
n∑

m=0
κn−m F m

js+1/2 for t ∈ (
t n , t n+1] ,

κ0 = κ(0),

κm+1 = 1

∆t

∫ t m+1

t m
κ(s)ds.

In order to check whether the above discrete constraint operator satisfies (Qcons
∆ ) and (Qcomp

∆
) we write η∆ in an

equivalent form. Let (φm
j ) be a discretization of φ such that φm

js
= κm . Since φ is Lipschitz continuous we have that

there exists a constant C > 0 such that∣∣∣φm+1
j −φm

j

∣∣∣≤C ∆t ,
∣∣∣φm

j+1 −φm
j

∣∣∣≤C ∆x.

Observe that

n∑
m=0

(
ρm+1

j −ρm
j

)
φn−m

j = ρn+1
j φ0

j −ρ0
j φ

n+1
j +

n∑
m=0

ρm
j

(
φn+1−m

j −φn−m
j

)
,∑

j≤ js

(
F m

j+1/2 −F m
j−1/2

)
φn−m

j =F m
js+1/2φ

n−m
js

−
∑

j≤ js

F m
j−1/2

(
φn−m

j −φn−m
j−1

)
.

Therefore, multiplying by φn−m
j the equality

ρm+1
j −ρm

j

∆t
=−

F m
j+1/2 −F m

j−1/2

∆x

derived from (5.2) and adding over j ≤ js and m ≤ n give

1

∆t

∑
j≤ js

[
ρn+1

j φ0
j −ρ0

j φ
n+1
j +

n∑
m=0

ρm
j

(
φn+1−m

j −φn−m
j

)]

=− 1

∆x

n∑
m=0

[
F m

js+1/2φ
n−m
js

−
∑

j≤ js

F m
j−1/2

(
φn−m

j −φn−m
j−1

)]
.

Thus for any t ∈ (
t n , t n+1

]
we have that

η∆(t ) =∆t
n∑

m=0
κn−m F m

js+1/2 = ∆t
n∑

m=0
φn−m

js
F m

js+1/2 =∆x
∑

j≤ js

[
ρ0

j φ
n+1
j −ρn+1

j φ0
j

]

+∆t∆x
n∑

m=0

∑
j≤ js

[
−ρm

j

φn+1−m
j −φn−m

j

∆t
+F m

j−1/2

φn−m
j −φn−m

j−1

∆x

]
.

Observe that in this way we obtained a discretization Q̂∆ of the operator Q̂ appearing in (4.3). Recall also that the
definition (4.2) of Q is a formal definition, while Q̂ in (4.3) is rigorous. Therefore it is natural to prove (Qcons

∆ ) for the

discretized constraint operator by comparing it to Q̂. For simplicity, assume jc 6= js . Let f (ρ)(t , ·) = 0 for all t < 0 and
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F h
· = 0 for all h < 0. Assume that ‖Q̂∆[ρ∆]−q‖L1(0,T ) → 0 and ‖ρ∆−ρ‖L1(0,T ;L1) → 0, then∥∥Q̂[ρ]−Q∆[ρ∆]

∥∥
L1(0,T ) ≤

≤ Lip(r )
N−1∑
n=0

∫ t n+1

t n

∣∣∣∣∣ξa(t )−∆t∆x
n∑

m=0

∑
j≤ js

[
−ρm

j

φn+1−m
j −φn−m

j

∆t
+F m

j−1/2

φn−m
j −φn−m

j−1

∆x

]∣∣∣∣∣dt

+Lip(r )
N−1∑
n=0

∫ t n+1

t n

∣∣∣∣∣ξb(t )+∆x
∑

j≤ js

ρn+1
j φ0

j

∣∣∣∣∣+Lip(r )
N−1∑
n=0

∫ t n+1

t n

∣∣∣∣∣ξc (t )−∆x
∑

j≤ js

ρ0
j φ

n+1
j

∣∣∣∣∣dt −−−−→
∆x→0

0.

Indeed we have that∣∣∣∣∣ξa(t )−∆t∆x
n∑

m=0

∑
j≤ js

[
−ρm

j

φn+1−m
j −φn−m

j

∆t
+F m

j−1/2

φn−m
j −φn−m

j−1

∆x

]∣∣∣∣∣(A)

≤
n∑

m=0

∑
j≤ js

∫ t m+1

t m

∫
K j

∣∣∣∣∣−ρ(s, x)φt (t − s, x)+ρm
j

φn+1−m
j −φn−m

j

∆t

∣∣∣∣∣dx ds

+
n∑

m=0

∑
j≤ js

∫ t m+1

t m

∫
K j

∣∣∣∣∣ f (ρ)(s, x)φx (t − s, x)−F m
j−1/2

φn−m
j −φn−m

j−1

∆x

∣∣∣∣∣dx ds

≤
n∑

m=0

∑
j≤ js

∫ t m+1

t m

∫
K j

[∣∣∣ρm
j −ρ(s, x)

∣∣∣Lip(φ)+ρmax

∣∣∣∣∣φ
n+1−m
j −φn−m

j

∆t
−φt (t − s, x)

∣∣∣∣∣
]

dx ds

+
n∑

m=0

∑
j≤ js

∫ t m+1

t m

∫
K j

Lip(F )
(∣∣∣ρ(s, x)−ρm

j−1

∣∣∣+ ∣∣∣ρ(s, x)−ρm
j

∣∣∣)Lip(φ)dx ds

+
n∑

m=0

∑
j≤ js

∫ t m+1

t m

∫
K j

fmax

∣∣∣∣∣φx (t − s, x)−
φn−m

j −φn−m
j−1

∆x

∣∣∣∣∣dx ds −−−−→
∆x→0

0,∣∣∣∣∣ξb(t )+∆x
∑

j≤ js

ρn+1
j φ0

j

∣∣∣∣∣≤ ∑
j≤ js

∫
K j

∣∣∣−ρ(t , x)φ(0, x)+ρn+1
j φ0

j

∣∣∣dx(B)

≤
∑

j≤ js

∫
K j

[∣∣∣ρ(t , x)−ρn+1
j

∣∣∣∥∥φ∥∥
L∞(R+×R) +ρmax

∣∣∣φ(0, x)−φ0
j

∣∣∣] dx −−−−→
∆x→0

0,

and ∣∣∣∣∣ξc (t )−∆x
∑

j≤ js

ρ0
j φ

n+1
j

∣∣∣∣∣≤ ∑
j≤ js

∫
K j

∣∣∣ρ0(x)φ(t , x)−ρ0
j φ

n+1
j

∣∣∣dx(C)

≤
∑

j≤ js

∫
K j

[∣∣∣ρ0(x)−ρ0
j

∣∣∣∥∥φ∥∥
L∞(R+×R) +ρmax

∣∣∣φ(t , x)−φn+1
j

∣∣∣] dx −−−−→
∆x→0

0.

Finally, let us prove also (Qcomp
∆

), i.e., that (Q∆[ρ∆]) is compact in L1(0,T ).
We have that (Q∆[ρ∆]) is uniformly bounded in BV because

N−1∑
n=1

∣∣Q∆[ρ∆](t n+1)−Q∆[ρ∆](t n)
∣∣≤ Lip(r )

N−1∑
n=1

∣∣η∆(t n+1)−η∆(t n)
∣∣

= Lip(r )∆t
N−1∑
n=1

∣∣∣∣∣ n∑
m=0

κn−m F m
js+1/2 −

n−1∑
m=0

κn−1−m F m
js+1/2

∣∣∣∣∣
= Lip(r )∆t

N−1∑
n=1

∣∣∣∣∣κ0 F n
js+1/2 +

n−1∑
m=0

[
κn−m −κn−1−m]

F m
js+1/2

∣∣∣∣∣
≤ Lip(r )∆t

N−1∑
n=1

[
κ0 F n

js+1/2 +Lip(κ)∆t
n−1∑
m=0

F m
js+1/2

]
≤ 2

[
κ(0)+Lip(κ)T

]
Lip(r )Lip(F )Tρmax.

Therefore (Q∆[ρ∆]) is compact in L1(0,T ). 2

Example 6.4. In this example we propose a discrete version of the constraint operator given in Example 4.4. Let us
first rewrite the Cauchy problem (4.5) in its integral form

ξ(t ) = ξ0[ρ0]+
∫ t

0
H

(
ξ(s),

∫
R

F
(
s, x,ρ(s, x)

)
dx

)
ds.
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Its natural discretization is then the forward Euler discretization

ξ0 = ξ0[ρ0],

ξn+1 = ξn +∆t H

(
ξn ,∆x

∑
j∈Z

F
(
t n , x j ,ρn

j

))
, n ∈N.

Assume that the sequence of approximate solutions (ρ∆) obtained with the above algorithm is bounded in L∞(0,T ;L1),
then (ξn+1 −ξn)/∆t is uniformly bounded by the assumptions we made on H . Therefore (ξ∆) is bounded uniformly
in BV and we have (Qcomp

∆
). 2

7. NUMERICAL APPLICATIONS

In this section, we first validate the numerical scheme introduced in Section 5 with an explicit solution. Then we
present numerical simulations related to the constraint operators introduced in examples 1.1–1.3. In particular, the
simulations show that some drawbacks of (1.5) have been removed.

7.1. Validation of the numerical scheme. We propose here to validate the numerical scheme (5.2), (5.3), (5.4) by
showing its numerical convergence toward the exact solution to (1.1), (1.3), (1.4) presented in Figure 1 and obtained by
an explicit analysis of the wave-front interactions, with computer-assisted computation of interaction times and front
slopes. The set up for the simulation is as follows. Consider the domain of computation [−6,0], take a normalized flux
f (ρ) = ρ(1−ρ) (namely the maximal velocity and the maximal density are assumed to be equal to one) and the weight
functions w(x) = 2(1+ x) 1[−1,0](x) and κ(t ) = 2(1− t ) 1[0,1](t ). Assume a uniform distribution of maximal density

in [x1, x2] at time t = 0, namely ρ0(x) = 1[x1, x2](x). The efficiency of the exit, p is of the form

p(ξ) =


p0 if 0 ≤ ξ< ξ1,
p1 if ξ1 ≤ ξ< ξ2,
p2 if ξ2 ≤ ξ≤ 1.

(7.1)

The explicit solution ρ corresponding to the values

x1 =−6, x2 =−1.2, p0 = 0.16, p1 = 66/625 = 0.1056, p2 = 24/625 = 0.0384,

ξ1 =
1087

300
− 1152

625

p
2
(
3
p

3−4
)
+ 2

125
log

[
2p
3

]
∼ 0.508, ξ2 ∼ 0.6911,

is represented in Figure 1.
Moreover, the time values in Figure 1 are

tA = 4.8, tB = 1.2, tC = 2, tD = 4, tE ∼ 4.417, tF = 5, tG ∼ 5.878, tH ∼ 12.554, tI ∼ 105.063,

tL ∼ 105.553, tM ∼ 105.647, tN ∼ 106.759, tO ∼ 107.111, tP ∼ 107.185, tQ ∼ 108.464.

The approximate solution is numerically computed using the Godounov numerical flux (see e.g. [31, 38]), which
will be used in the remaining of this paper:

F (a,b) =
 min

[a,b]
f if a ≤ b,

max
[b,a]

f if a > b.

In Figure 2 we present the numerically computed solution x 7→ ρ∆(t , x) at different fixed times t on the domain [−6,1].
The parameters of discretization are ∆x = 10−3 and ∆t = 4×10−4. Let us now introduce the relative L1-error for the
density ρ, at a given time t n , defined by

E n
L1 =

[∑
j

∣∣∣ρ(t n , x j )−ρn
j

∣∣∣] /[∑
j

∣∣ρ(t n , x j )
∣∣] .

In Table 1, we computed the relative L1-errors for different numbers of space cells at the fixed time t = 10 and for a
fixed time step∆t = 10−4. As in [6, 3], we observe that the application of the constrained numerical flux (5.3) does not
affect the accuracy of the scheme.

Space step L1-error rate of convergence
600 5.4×10−3 -

1200 2.82×10−3 0.937
2400 1.52×10−3 0.915
6000 6.8×10−4 0.9

12000 3.37×10−4 0.916
24000 1.73×10−4 0.927

TABLE 1. Relative L1-error at time t = 10, where the constraint Q defined in (1.4) is used.
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(c) The solution in the (x, t )-coordinates.

(d) The solution in the (t , x,ρ)-coordinates. (e) The solution in the (x, t ,ρ)-coordinates. (f) The solution in the (x, t ,ρ)-coordinates.

FIGURE 1. Representation of the solution (t , x) 7→ ρ(t , x) described in Subsection 7.1.

In Figure 3 is presented the evolution in time of the function ξ∆, the approximation of

(7.2) ξ(t ) =
∫
R−

∫ t

0
w(x)κ(t − s)ρ(s, x)ds dx,

that reports the level of “panic” in the constraint operator Q defined in (1.4). The main feature that can be emphasized
is that the level of panic increases and disappears quickly. We shall see in Example 7.3, results when ξ∆ is an approxi-
mation of ξ defined by (1.8) or (1.9) that are extensions of (7.2) and that prevent the level of panic from disappearing
too fast.
Finally, we report in Table 2, the L1-errors at t = 10 between the exact solution and the approximate solution com-
puted with the constraint operator Q̂ defined in (1.4) for different numbers of space cells and for a fixed time step
∆t = 10−4. Observe that Q and Q̂ defined in (1.4) are equivalent in the sense of Definition 2.2. As expected, compar-
ing Table 1 and Table 2, one can easily check that the errors are essentially similar and thus the solutions computed
with Q and Q̂ are essentially the same.

Space step L1-error rate of convergence
600 6.53×10−3 -

1200 3.4×10−3 0.941
2400 1.83×10−3 0.917
6000 8.13×10−4 0.97

12000 4.11×10−4 0.941
24000 2.17×10−4 0.93

TABLE 2. Relative L1-error at time t = 10, where the constraint Q̂ defined in (1.4) is used.

7.2. Numerical simulations. In what follows, the exit is always located at x = 0, we always consider the normalized
flux f (ρ) = ρ(1−ρ), the space weight w(x) = 2(1+ x) 1[−1,0](x) and the time weight κ(t ) = 2(1− t ) 1[0,1](t ). If not

precised, the simulations are performed with the discretization parameters ∆x = 10−3 and ∆t = 4×10−4.
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FIGURE 2. With reference to Subsection 7.1: The numerically computed solution x 7→ ρ∆(t , x) at
different fixed times t .
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FIGURE 3. The function t → ξ∆(t )

Example 7.1. (With reference to Example 1.1) In this part, the set up for the simulations is the same as for the vali-
dation done in Subsection 7.1. We focus on the constraint operators Q̃ and Q that can be interpreted as discretized
versions of Q. We take as final time T = 10. For each of these constraint operators, we perform two types of sim-
ulations. A first type of simulations is carried out by taking a small number of discretized times and positions. We
thus take the times ti = i , for i = 0, · · · ,10 and positions y0 =−0.8, y1 =−0.5, y2 =−0.2 and y3 = 0. We present in Fig-
ure 4 (a) and Figure 5 (a) the obtained results. For the second type of simulations, we take all the times and positions
of the discretization, namely, ti = i∆t , for i = 0, · · · ,25000 and yi =−6+ i∆x, i = 1, · · · ,6000. The results are depicted
in Figure 4 (b) and Figure 5 (b), where we notice a good agreement with the solution presented in Figure 2(f). One
can notice that, as expected, the constraint operator that corresponds to the case where data are collected by video
camera is the more efficient since the two other may underestimate the importance of the congestion before the exit.

2

Example 7.2. (With reference to Example 1.2) Here the domain of computation is [−6,1] and the efficiency of the
exit is the continuous function defined by

p(ξ) =


p0 if 0 ≤ ξ< ξ1,
(p0 −p1)ξ+p1ξ1 −p0ξ2

ξ1 −ξ2
if ξ1 ≤ ξ< ξ2,

p1 if ξ2 ≤ ξ≤ 1,

(7.3)

with the values
p0 = 0.21, p1 = 0.07, ξ1 = 0.35, ξ2 = 0.731.

We consider the initial density ρ0(x) = 1[−1,−0.1](x). Figure 6 shows the evolution of the fluxes at the exit computed

with the constraint operators (1.5) and (1.6), where α= 2 is the maximum possible value. We can see that the value of
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(a) x → ρ∆(10, x) for ti = i , i = 0, · · · ,10.
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(b) x → ρ∆(10, x) for all ti = i∆t , i =
0, · · · ,25000.

FIGURE 4. The solutions x → ρ∆(10, x) corresponding to Q̃.
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(a) x → ρ∆(10, x) for y0 = −0.8, y1 = −0.2,
y2 =−0.5 and y3 = 0.
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(b) x → ρ∆(10, x) for yi = −6 + i∆x,
i = 1, · · · ,6000.

FIGURE 5. The solutions x → ρ∆(10, x) corresponding to Q.

the flux computed with (1.5) is immediately at the lowest level of the efficiency of the exit, whereas the one computed
with (1.6) grows quickly to the highest level of the efficiency of the exit.
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FIGURE 6. The fluxes at the exit F n,1
jc+1/2 and F n,2

jc+1/2 corresponding to the constraints (1.5) and (1.6), respectively.

Now, in order to clearly see the self-organization, we consider the domain of computation [−4,1], the initial density
ρ0(x) = 1[−4,−2](x) and the efficiency of the exit is still defined by (7.3), where

p0 = 0.2, p1 = 0.1, ξ1 = 0.32, ξ2 = 0.35.

Figure 7 shows the evolution in time of the flux at the exit. We can notice that this flux first increases until it reaches
the maximum level of the efficiency of the exit. Then it falls down until the lowest value of this efficiency. After a very
short period it increases without reaching the maximum level of the efficiency. This is the effect of self-organization.
Finally, after some time, the flux keeps a certain value until the low density observed upstream the exit allows the
efficiency to recover its max value. This is in a qualitative agreement with the empirical results by Cepolina [15].
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FIGURE 7. The flux at the exit corresponding to the constraint operator (1.6) showing the self-organization.

2

Example 7.3. (With reference to Example 1.3) In this part, we recall the set up introduced in [4]. The domain of
computation is [-6,1], the efficiency of the exit is defined by (7.1) with the values

p0 = 0.21, p1 = 0.168, p2 = 0.021, ξ1 = 0.566, ξ2 = 0.731.

The initial density is ρ0(x) = 1[−5.75,−2](x). Figure 8 shows the evolution in time of ξ1
∆, ξ2

∆ and ξ3
∆ computed using

(1.5), (1.8) and (1.9) respectively for δ= 8×10−3. The graphs show that the level of panic taking into account in ξ2
∆ or

ξ3
∆ disappears very slowly comparing to the one of ξ1

∆.

0 20 40 60 80 100
0

0.5

1

1.5

t

ξ
1 ∆

,ξ
2 ∆

,ξ
3 ∆

ξ1
∆

ξ2
∆

ξ3
∆

FIGURE 8. The functions ξ1
∆, ξ2

∆, ξ3
∆ for (1.5), (1.8) and (1.9), respectively.

2

8. CONCLUSIONS

In this paper, one-dimensional scalar conservation laws with nonlocal point constraints on the flux are considered.
General and “easy to check” assumptions on the constraint operator are given in order to establish well-posedness of
the problem using fixed point arguments. Examples of constraint operators that satisfy these assumptions are given
; they are extensions and improvements of the one considered in [4], in the sense that they remove some drawbacks
that may appear in the models based upon the latter one. A numerical scheme based on finite volume methods is
developed and validated with an explicit solution. Examples of discrete constraint operators, related to the examples
given in the continuous case, are given. The numerical results show that these constraints are able to reproduce
features in vehicular traffic and crowd dynamics such as the self-organization. The results presented in this paper
allow to consider management problems as in [18, 21].
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