
HAL Id: hal-01418255
https://hal.science/hal-01418255v1

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RDF Graph Summarization Based on Approximate
Patterns

Mussab Zneika, Claudio Lucchese, Dan Vodislav, Dimitris Kotzinos

To cite this version:
Mussab Zneika, Claudio Lucchese, Dan Vodislav, Dimitris Kotzinos. RDF Graph Summarization
Based on Approximate Patterns. Information Search, Integration, and Personalization; 10th Interna-
tional Workshop, ISIP 2015, 2015, Grand Forks, United States. pp.69 - 87, �10.1007/978-3-319-43862-
7_4�. �hal-01418255�

https://hal.science/hal-01418255v1
https://hal.archives-ouvertes.fr

RDF Graph Summarization Based on
Approximate Patterns

Mussab Zneika1, Claudio Lucchese2, Dan Vodislav1, and Dimitris Kotzinos1

1ETIS Lab (ENSEA, UCP, CNRS UMR 8051)
Pontoise, France

2ISTI-CNR,
Pisa, Italy

Mussab.Zneika@ensea.fr,Claudio.Lucchese@isti.cnr.it,

Dan.Vodislav@u-cergy.fr,Dimitrios.Kotzinos@u-cergy.fr

Abstract. The Linked Open Data (LOD) cloud brings together infor-
mation described in RDF and stored on the web in (possibly distributed)
RDF Knowledge Bases (KBs). The data in these KBs are not necessarily
described by a known schema and many times it is extremely time con-
suming to query all the interlinked KBs in order to acquire the necessary
information. But even when the KB schema is known, we need actually
to know which parts of the schema are used. We solve this problem by
summarizing large RDF KBs using top-K approximate RDF graph pat-
terns, which we transform to an RDF schema that describes the contents
of the KB. This schema describes accurately the KB, even more accu-
rately than an existing schema because it describes the actually used
schema, which corresponds to the existing data. We add information on
the number of various instances of the patterns, thus allowing the query
to estimate the expected results. That way we can then query the RDF
graph summary to identify whether the necessary information is present
and if it is present in significant numbers whether to be included in a
federated query result.

Keywords: RDF graph summary, approximate patterns, RDF query,
Linked Open Data, federated query

1 Introduction

The amount of RDF (Resource Description Framework, www.w3.org/RDF/)
data available on the semantic web is increasing fast both in size and complexity,
e.g. more than 1000 datasets are now published as part of the Linked Open Data
(LOD) cloud, which contains more than 62 billion RDF triples, forming big and
complex RDF data graphs. It is also well established that the size and the
complexity of the RDF data graph have a direct impact on the evaluation of the
RDF queries expressed against these data graphs. There are cases, especially
on the LOD cloud, where we observe that a query against an RDF Knowledge
Base (KB) might retrieve no results at the end because either (a) the association
between the different RDF KBs is weak (based only on a few associative links) or

2 Zneika et al.

(b) there is an association at the schema level that has never been instantiated
at the actual data level. The bigger and more complex the RDF KBs involved
are, the more costly this operation will be, without giving any useful results at
the end. So it is useful to know before evaluating a complex query towards an
actual KB both the structure and the size of the content of the KB. This means
that we need to know the main associations among the different ”types” of data
stored and statistical information (mainly counts) for the instances that can be
classified under them.

By creating summaries of the RDF KBs, we allow the user or the system to
decide whether or not to post a query, since (s)he knows whether information
is present or not. This would provide significant cost savings in processing time
since we will substitute queries on complex RDF KBs with queries first on the
summaries (on much simpler structures with no instances) and then with queries
only towards the KBs that we know will produce significant results. We need
to compute the summaries only once and update them only after significant
changes to the KB. Given the (linked) nature of LOD KBs this will speed up
the processing of queries in both centralized and distributed settings. Moreover,
this would allow working and posting queries towards many RDF KBs that carry
none at all or only partial schema information. By applying RDF summarization
techniques, we can extract, at least, a subset of the schema information (that
should represent quite well at least the main types of instances stored in the
KB and their relationships) and thus facilitate the query building for the end
users with the additional benefit of categorizing the contents of the KB based
on the summary. We can envision similar benefits when KBs are using mixed
vocabularies to describe their content. In all these cases we can use the RDF
summary to concisely describe the data in the RDF KB. Thus in this work we
study the problem of LOD/RDF graph summarization that is: given an input
RDF graph (that might extending itself over multiple RDF stores and might
link different datasets), find the summary graph which reduces its size, while
preserving the original inherent structure and correctly categorizing the instances
included in the KB.

Two main categories of graph summarization efforts have been proposed
in the literature to this date and are discussed in more detail in Section 5 of
this paper: (1) aggregation and grouping approaches [11], which are based on
grouping the nodes of input RDF graph G into clusters/groups based on the
similarity of attributes’ values and neighborhood relationships associated with
nodes of G and (2) structural extraction approaches [4, 6] which are based on
extracting some kind of schema where the summary graph is obtained based
on an equivalence relation on the RDF data graph G, where a node represents
an equivalence class on nodes of G. To the best to our knowledge, few of these
approaches are concentrating on RDF KBs and only one of them [4] is capable of
producing RDF schema as result, which would allow the use of RDF tools (e.g.
SPARQL) to query the summary. Our approach provides comparable or better
results in most cases.

RDF Graph Summarization Based on Approximate Patterns 3

Thus in this paper, we address the problem of creating RDF summaries
of LOD/RDF graphs that is: given an input RDF graph, find the summary
graph which reduces its size, while preserving the original inherent structure
and correctly categorizing the instances included in the KB. The contribution of
our work is a novel solution into summarizing semantic LOD/RDF graphs, where
our summary graph is a RDF graph itself so that we can post simplified queries
towards the summarizations and not the original graphs and exploit also the
statistical information about the structure of a the RDF input graph which are
included to our summary graph like the number of class and property instances
per pattern, so as to decide whether or not to post a query to a specific RDF
KB, our solution is based on mining top-k approximate graph patterns [13]. In
summary, our solution is responding to all the requirements by extracting the
best approximate RDF graph patterns, construct a summary RDF schema out
of them and thus concisely describe the RDF input data. We offer the following
features:

– The summary is a RDF graph itself, which allows us to post simplified queries
towards the summarizations using the same techniques (e.g. SPARQL).

– Statistical information like the number of class and property instances per
pattern is included in our summary graph, which allows us to estimate a
query’s expected results’ size towards the original graph.

– The summary is much smaller than the original RDF graph, contains all the
important concepts and their relationships based on the number of instances.

– Schema independence: it summarizes the RDF input graphs regardless of
having or not RDFS triples (this means that we do not require or assume
any schema information).

– Heterogeneity independence: it summarizes the RDF graphs whether they
are carrying heterogeneous or homogeneous information.

In the sequel, Section 2 recalls the some of the foundations of RDF and RDFS,
which are useful for defining some concepts in our work and are used to define
both the schema and the queries asked against any RDF graph; section 2 also
sets the requirements for calculating RDF summaries. Section 3 describes our
approach for RDF graph summarization and describes both the pre-processing of
the data and the post processing of the results in order to construct a summary
that is also a valid RDFS. Section 4 presents our preliminary experiments while
Section 5 presents related work. We then conclude our paper in section 6.

2 Preliminaries

In this section, we give basic terminology used in this work about the RDF data,
schema and queries. We then formulate the problem this work addresses.

The RDF data model is the standard model for representing data on the
Web in terms of triples of the form (s, p, o), explaining that the subject s has the
property p, and the value of that property p is the object o. Each triple denotes a
binary relationship between two entities. For example, the triple (X, painted, Z)

4 Zneika et al.

denotes a relationship between an entity represented by X (e.g., a painter) and
another entity represented by Z (e.g., a painting). The intuitive way to view
a collection of RDF data statements is to represent them as a labeled directed
graph in which entities are represented as nodes and named relationships as
labeled directed edges. These RDF data statements are usually accompanied
with a schema called RDF Schema which provides a data-modeling vocabulary
for RDF data. RDF Schema provides concepts for declaring and describing the
resource types (called classes) (e.g. Painter) and the resource relationship and
attributes (called properties) (e.g. paints). RDF Schema can also be represented
as a directed labeled graph where the labeled nodes represent the names of
classes and the labeled edges the name of relations and properties. Some defini-
tions are given below to define and explain the RDF schema graph and the RDF
instance Graph. Let C,P, I and L be the sets of class Universal Resource Iden-
tifiers (URIs), property URIs, instance URIs and literal values respectively,and
let T be a set of RDFS standard properties { rdfs:range, rdfs:domain, rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:label, rdfs:comment }.The concepts of
RDF schemas and instances can be formalized as follows.

Fig. 1. RDF Schema and instance graphs

Definition 1 (RDF schema graph). An RDF schema graph Gs =
(Ns, Es, λs, λe, C, P, T) is a directed labeled graph where:

RDF Graph Summarization Based on Approximate Patterns 5

– Ns is the set of nodes.
– Es ⊆ {(x, α, y)|e : x ∈ Ns, α ∈ T, y ∈ Ns} is the set of labelled edges.
– λs : Ns −→ C ∪ P is a injective node labeling function that maps nodes of
Ns to class and property URIs, such that λs(n) ∈ C ∪ P for any n ∈ Ns.

– λe : Es −→ T is a injective edge labeling function that maps edges of Es to
RDFS standard property URIs included in T , such that λe(e) ∈ T for any
e ∈ Es.

Example 1. The upper part of Fig. 1 shows a visualization example of an RDF
schema graph which describes the cultural domain. For example, the class Artist
denotes the set of resources which represent artists’ entities, while the class
Artifact denotes the set of resources which represent artifacts’ entities. Note that
properties serve to represent characteristics of resources as well as relationships
between resources. For example the properties fname,lname represent the first
name and the last name of an artist respectively, while property creates denotes
that instances of the class Artist are related to instances of the class Artifact
by a create relationship. Both classes and properties support inheritance, e.g.,
the class Painter is a subclass of Artist class while the property paints is sub-
property of creates property.

Definition 2 (RDF data graph). An RDF instance graph or RDF data graph
Gi = (Ni, Ei, λi, λei, I, P, L) Gs is a directed labeled graph where:

– Ni is the set of nodes.
– Ei ⊆ {(x, α, y) : x ∈ Ni, α ∈ P, y ∈ Ni} is the set of labelled edges.
– λi : Ni −→ I ∪ L is a node labelling function that maps nodes of Gi to

instance URIs or literals, respectively such that λi(n) ∈ I ∪ L for any n
∈ Ni.

– λei : Ei −→ P is a injective edge labeling function that maps edges of Ei to
property URIs, such that λei(e) ∈ P for any e ∈ Ei.

Example 2. The lower part of Fig. 1 depicts an instance graph building on the
schema information explained in the Example 1, where the dashed arrows denote
a member of relationships from instances to classes. This graph represents 6
different resources. The resource [Picasso] (we use [X] to denote that X is an
instance of some textitclass) is an instance of the Painter class (part of the RDF
Schema defined earlier) having two properties fname and lname with values of
type String and two properties paints with value the resources [Woman] and
[Guernica]. The resource [Rembrandt] is also described as an instance of the
Painter class having two properties fname and lname with string value but it
has only one property paints with value the resource [Abrahama]. [Abrahama],
[Woman] and [Guernica] resources are described as instances of Painting class
having exhibited property with value the resource [museum.es] which is described
as an instance of the Museum class.

Definition 3 (Type Edge). We define Type Edge the edge with rdf:type label,
which is typically used to define a type of which the node is an instance of,

6 Zneika et al.

e.g., the dashed edge type in Fig. 1 declares that the node Picasso is a Painter.
We denote the type edge with (x, τ, y). Let Types(x) = {λi(y) : ∀(x, τ, y) ∈
Ei ∧ x ∈ Ni} be the set of nodes’ labels related to the node x via an explicit type
edge definition, e.g., the Types(Picasso)= {Painter}, while Types(Guernica)=
{Painting}.

Definition 4 (Properties). We define as Properties(x) = {α : ∀(x, α, y) ∈
Ei : α 6= τ ∧ λi(y) ∈ I ∧ x ∈ Ni} the set of labels of the non-Type edges which
associate the node x with a set of entity nodes(nodes labeled by instance URIs).

Definition 5 (Attributes). We define as Attributes(x) = {α : ∀(x, α, y) ∈
Ei : α 6= τ ∧ λi(y) ∈ L ∧ x ∈ Ni} the set of labels of the non-Type edges which
associate the node x with a set of literal nodes(nodes labeled by literal values) ,

Example 3. The set of properties associated with [Picasso] node in our example
are {paints}, while the set of attributes of [Picasso] node are {fname, lname}.

Definition 6 (RDF graph pattern). An RDF graph pattern GP = (NP , EP , λP , β, P)
is a connected edge-labeled directed graph where:

– NP is a set of nodes;
– EP ⊆ ES;
– λP : EP −→ P and for e ∈ EP , λP (e) = λs(e);
– β : NP −→ N maps nodes to the set of natural numbers.

Example 4. The pattern {1 −→ paints −→ 2 −→ exhibited −→ 3} has adequate
support in the instance graph shown in the bottom part of Fig. 1, which means
that we can find an adequate number of instances and instance relationships
or properties in the corresponding part of the RDF data graph that could be
represented by this pattern.

2.1 RDF Summary Requirements

Given the above definitions, we are interested in extracting a summary graph
having the following characteristics:

– The summary is a RDF graph: The summary graph should be a RDF graph
itself, which allows us to post simplified queries towards the summarizations
using the same languages or techniques (e.g. SPARQL).

– The size of the Summary: The volume of a graph is the numbers of its edges
and nodes. Reducing the volume of a summary comes with a price, that of
reduced precision of the summary. Thus the summary graph should:
• Be smaller than the original RDF graph.
• Contain all the important information.
• Report the most representative nodes (classes) and edges (properties).
• Be schema independent: It must be possible to summarize the RDF

graphs whether or not they have associated RDFS triples.

RDF Graph Summarization Based on Approximate Patterns 7

We are also interested in working towards specifying the quality of the summary.
An example of this is identifying the summary’s precision, i.e. errors in summary
that can be e.g. invalid edges or path(s), which do not exist in the actual data
graph. The precision model should account for the paths that exist in summary
but not in data graph.

3 RDF summarization

We present in this section our approach of RDF graph summarization, which is
based on extracting the smallest set of approximate graph patterns (as provied in
[13]) that best describe the input dataset, where the quality of the description is
measured by an information theoretic cost function. We use a modified version of
the PaNDa+ algorithm presented in [13], which uses a greedy strategy to identify
the smallest set of patterns that best optimize the given cost function. The
PaNDa+ algorithm normally stops producing further patterns when the cost
function of a new patterns’ set is larger than the corresponding noise reduction.
It also allows the users to fix a value k to control the number of extracted
patterns. Since PaNDa+ is using a binary matrix to represent the instances
participation in a property (column), one of the challenges that we faced was
how to map the RDF KB to this binary matrix while preserving the semantics
of this KB and in addition producing always a valid RDF graph as a result.
Our approach works in three independent steps that are described below and
are visualized in Fig.2.

Fig. 2. Our RDF graph summarization approach

3.1 Binary Matrix Mapper

We transform the RDF graph into a binary matrix D, where the rows repre-
sent the subjects and the columns represent the predicates. We preserve the
semantics of the information by capturing distinct types (if present), all at-
tributes and properties. In order to capture both the subject and the object of

8 Zneika et al.

a property, we create two columns for each property. The first column cap-
tures the instance that is the subject (belongs to the domain of the prop-
erty), while the second one(we call it reverse property) captures the instance
that is the object (belongs to the range of the property),eg. for the property
paints we create two columns(paints,R paints) see Table 1 where the column
paints captures the participation of an instance as subject {Picasso,Rembrant}
while the column R paints captures the participation of an instance as ob-
ject {Woman,Guernica,Abrahama}. We extend the RDF URI information by
adding a label to represent the different predicates carrying this information into
the patterns. This label is of the following form: Usage prefix and the RDF URI
element label where these two parts are concatenated with a forward slash (”/”),
where the usage prefix is T for type, P for property and R for reverse properties.
This matrix is defined in the following way:

D(i; j) =

1, the i-th URI (as defined in RDF) has j-typeof or is j-property’s

domain/range or is j-attribute’s domain

0, otherwise

Example 5. Table 1 shows the mapped binary matrix D for the RDF graph de-
picted in Fig.1. This matrix consists of 9 columns and 6 rows, where the columns
represent 2 distinct attributes(fname,lname), 2 distinct properties (paints, exhib-
ited), 2 distinct reverse proprieties (Reverse paints, Reverse exhibted), 3 distinct
types (Painter(c), Painting(c),Museum(c)). In order to distinguish between the
types/classes and the properties/attributes at the visualization level , we use
Y(c) to denote that Y is type/class. The rows represent the 6 distinct sub-
jects (Picasso, RembrantvanRijn, Woman, Guernica, Abraham,museum.es), e.g.
D(1,1)=D(1,3)=D(1,4)= D(1,5)=1 because Picasso, who is described in the first
row, is an instance of Painting class and has (lname, fname) attributes and paints
properties respectively, while D(1,6)=0 because Picasso does not have the ex-
hibited property.

Table 1. The mapped binary matrix D for the RDF instance graph depicted in Fig.1

Painter(c) Painting(c) lname fname paints exhibited R paints R exhibited Museum(c)

Picasso 1 0 1 1 1 0 0 0 0
Rembrant 1 0 1 1 1 0 0 0 0
Woman 0 1 0 0 0 0 1 0 0

Guernica 0 1 0 0 0 1 1 0 0
Abraham 0 1 0 0 0 1 1 0 0

museum.es 0 0 0 0 0 0 0 1 1

Note here that our experiments so far (please see next section) provide in-
dication that the algorithm works adequately well even in the absence of any
schema information, or in other words no schema information is required for the
algorithm to work adequately well.

RDF Graph Summarization Based on Approximate Patterns 9

3.2 Graph Pattern Identification

We aim at creating a summary of the input RDF graph by finding patterns in
the binary matrix produced in the previous step (see Table 1). By patterns, we
mean properties (columns) that occur (are marked with 1) either completely or
partially (and thus approximately) in several subjects (rows). This problem is
known in the data mining community as approximate pattern mining. This is an
alternative approach to pattern enumeration. It aims at discovering the set of k
patterns that best describe, or model, the input data. Algorithms differ in the
formalization of the concept of dataset description. The quality of a description is
measured internally with some cost function, and the top-k mining task is casted
into the optimization of such cost. In most of such formulations, the problem
is demonstrated to be NP-hard, and therefore greedy strategies are adopted.
Moreover in our case, it is important that we also manage to preserve or extract
some meaningful semantics from the KB, so the problem has an additional level
of complexity, which is partially handled in the next step where an RDF graph
is constructed from the extracted patterns.

Example 6. Table 2 shows possible patterns which can be extracted from the
mapped binary matrix depicted in Table 1. The first column represents the
pattern id. The second column represents the predicates included in a pattern
and the third column represents the number of subjects per pattern, e.g., the
pattern P1 denotes that there are three subjects belong to the Painting class
and have {exhibited} an outgoing attribute and{paints} an incoming attribute.
It should be noted here that since approximate patterns are computed having
a subject classified under a pattern, as already explained, does not necessarily
mean that in the KB this subject carries necessarily all the properties. This one
reason why the information on which subjects are classified under which pattern
is not carried along in the extracted schema.

Table 2. Extracted patterns example

ID Pattern Correspondence class

P1 Painting(c),exhibited, revers paint 3
P2 Painter(c),paints, fname, lname 2
P3 Museum(c) 1

Firstly we introduce some notation. Without loss of generality we refer to
a binary matrix D ∈ {0, 1}N×M as a transactional dataset of N transactions
and M items, where D(i, j) = 1 if the j−th item occurs in the i−th transac-
tion, and D(i, j) = 0 otherwise. An approximate pattern P identifies two sets
of items/transactions, and is denoted by a pair of binary vectors P = 〈PI , PT 〉,
where PI ∈ {0, 1}M and PT ∈ {0, 1}N . The outer product PT · PT

I ∈ {0, 1}
N×M

of the two binary vectors identifies a sub-matrix of D. We say that the occurrence
(i, j) is covered by P iff i ∈ PT and j ∈ PI .

10 Zneika et al.

The quality of a set of patterns Π =
{
P1, . . . , P|Π|

}
depends on how well

they match the given dataset D. We account for the mismatches with a noise
matrix N ∈ {0, 1}N×M defined as:

N =
∨
P∈Π

(PT · PT
I) Y D. (1)

where ∨ and Y are respectively the element-wise logical or and xor operators.
The matrix N encompasses those occurrences D(i, j) = 1 which are not covered
by any pattern in Π (false negatives), as well as those D(i, j) = 0 which are
incorrectly covered by any of the patterns in Π (false positives).

Approximate Top-k Pattern Discovery requires to find a small set of patterns
Π that minimizes the noise matrix N . More formally:

Problem 1 (Approximate Top-k Pattern Discovery). Given a binary dataset D ∈
{0, 1}N×M and an integer k, find the pattern set Πk,

∣∣Πk

∣∣ ≤ k, that minimizes
a cost function J(Πk,N):

Πk = argmin
Πk

J(Πk,N). (2)

Different approaches proposed different cost functions which are tackled with
specific greedy strategies. In addition, it is usually possible to specify additional
parameters, whose purpose is to make the pattern set Πk subject to some con-
straints, such as the minimum frequency of a pattern (i.e., the number of its
transactions), or the maximum amount of false positives tolerated in each pat-
tern.

In this work, we adopted the state-of-the-art PaNDa+ algorithm [13] to
extract relevant patterns from the binary dataset resulting from a transformation
of the original RDF graph.

PaNDa+ adopts a greedy strategy by exploiting a two-stage heuristics to
iteratively select a new pattern: (a) discover a noise-less pattern that covers the
yet uncovered 1-bits of D, and (b) extend it to form a good approximate pattern,
thus allowing some false positives to occur within the pattern. It is discussed also
in section5 that PaNDa+ is considered the state of the art for the approximate
pattern mining algorithms.

PaNDa+ greedily optimizes the following cost function:

J+(Πk,N , γN , γP , ρ) = γN (N) + ρ ·
∑
P∈Πk

γP (P) (3)

where N is the noise matrix, γN and γP are user defined functions measuring
the cost of the noise and patterns descriptions respectively, and ρ ≥ 0 works as
a regularization factor weighting the relative importance of the patterns cost.

Depending on the parameters of the J+, PaNDa+ can greedily optimize
several families of cost functions, including the ones proposed by other state-of-
the-art algorithms [25, 15, 16, 12]. In this work, inspired by the MDL principle

RDF Graph Summarization Based on Approximate Patterns 11

[19] we used γN (N) = enc(N), γP (P) = enc(P) and ρ = 1, where enc(·) is the
optimal encoding cost.

PaNDa+ extracts patterns iteratively, and each pattern is grown greedily by
adding new items and checking those transactions that approximately include
those items. Rather than considering all the possible exponential combinations
of items, these are sorted to maximize the probability of generating large cores,
and processed one at the time without backtracking. We mention two sorting
strategies: (a) by frequency of an item in the full dataset, and (b) by the average
frequency of every pair of items including the given item (named charm by [26]).

Differently from other algorithms, PaNDa+ allows to define two maximum
noise thresholds εr, εc ∈ [0, 1] which bound the ratio of false positive, row- and
column-wise respectively, of each extracted pattern. Finally, it also allows to tune
via the parameter ρ the relative importance of the patterns simplicity versus the
amount of noise induced.

These features make PaNDa+ a very flexible tool for approximate pattern
mining extraction and allow us to include some RDF related knowledge in the
algorithm so that the computations will benefit from that.

3.3 Constructing the RDF summary graph

We have implemented a process, which reconstructs the summary as a valid RDF
graph using the extracted patterns. For each pattern, we start by generating a
node labeled by a URI (minted from a hash function), then we add an attribute
with the bc:extent label representing the number of instances for this pattern.
Then and for each item involved in this pattern, we use the labels generated in
3.1 to understand its type. So depending on whether it is:

– a property: We generate a direct edge from the node representing the pattern
containing this property to the node representing the pattern containing the
reverse property.

– an attribute: We generate a direct edge to a newly generated node labeled
by a URI (g from a hash function).

– Type: We generate a direct edge labeled with RDF:type label to the newly
generated node labeled with the RDFS label of this type.

The process exploits RDF-related information already embedded in the binary
matrix (e.g. property X range links) and tries to construct a valid RDF schema
to represent the KB. This schema is enriched with statistical information since
the algorithm returns for each pattern the number of instances it corresponds
to.

Example 7. Fig.3 shows the constructed RDF summary graph for the set of
patterns depicted in Table 2. The names of the patterns (using their pattern-
ids (e.g. P1, P2, etc.) are not showed here) but we can easily, even visually,
observe that we have recovered the original schema minus the subclassof and
subpropertyof relationships, which we do not deal with at this stage of the work.
In this example we also do not capture the superclasses but this is due to the
fact that they are not explicitly instantiated in the KB.

12 Zneika et al.

Fig. 3. RDF Summary graph for the set of patterns depicted in Table 2

4 Experiments

In this section, we give an evaluation of our RDF graph summarization approach
using the real-world Jamendo1 dataset. Jamendo is a real dataset from the LOD
cloud containing information about music artists and their productions, since it
is an online distributor of the production of independent music artists. The data
focus on record authorship, release and distribution over internet channels. Its
data representation relies on the Music Ontology2 and parts of FOAF, Dublin
Core, Event, Timeline and Tags ontologies. This dataset is interlinked with the
Geonames3 and the Musicbrainz4 datasets. It consists of 1,047,837 triples, which
are classified under 11 classes and are using 25 properties. The schema informa-
tion about the Jamendo dataset is reported in Fig 4. We evaluate our approach
for the following two cases:

– Fully typed data: Where each instance of this dataset has at least one typeof
link/property.

– Untyped Data: Where none of the datasets subjects/objects or properties
has a defined type (we explicitly deleted all of them).

Table 3 shows the results of applying the PaNDa+ with the charm sort-
ing and typed Xor Cost function parameters (which are briefly explained in
section 3.2) on the fully typed Jamendo dataset. The first column shows the
pattern id, the second shows the predicates involved in the pattern, while the
third column shows the number of instances per pattern. The last column shows

1 http://dbtune.org/jamendo/
2 http://musicontology.com/
3 http://www.geonames.org/ontology
4 http://musicbrainz.org/

RDF Graph Summarization Based on Approximate Patterns 13

Fig. 4. Schema information about the Jamendo dataset

the corresponding class for a pattern. We have 15 patterns: P1 represents the
Playlist class and the properties that have this class as domain or range, P2
represents the Track class and the properties that have this class as domain or
range, P3 represents the Signal class and the properties that have this class as
domain or range, P4 represent the Interval class and the properties that have
this class as domain or range, P5 represents the Record class and the proper-
ties that have this class as domain or range, P6 represents the Tag class and
the properties that have this class as domain or range, P7 represents Lyrics
class and the properties that have this class as domain or range , P8 represents
MusicArtist class and the properties that have this class as domain or range,
P9 represents MusicArtist class also, P10 represents Document class and the
properties that have this class as domain or range, P14 represents Torrent class,
and P15 represents ED2k class. We can note that we have two patterns P8
and P9 represent the class MusicArtist. The pattern 8 represents it and its fol-
lowing properties(name,homepage,biography,based-near,img) while the pattern
P9 represents it and its following properties(name,made). We have this case
because at the level of data we have 3346 instances of MusicArtist have the
following properties (name,homepage,biography,based-near,img), while only 159
instances having (name,made. Our Post-processing in this case to merge these
two patterns and replace them by one pattern.

14 Zneika et al.

Table 3. PaNDa+ with fully typed Jamendo dataset

ID Pattern Extent corresponding class

P1 Playlist(c),Reverse available-as,format 102804 Playlist
P2 Track(c),available-as,title,license,track-

number,Reverse published-
as,Reverse track

45634 Track

P3 Signal(c),published-as,Reverse-recorded-
as,time

45634 Signal

P4 Interval(c),Reverse time,onTimeline 45634 Interval
P5 Record(c),date,image,Reverse made,

available-as,maker, track,title,taggedwith
5786 Record

P6 Tag(c),Reverse taggedwith,tagName 9235 Tag
P7 Lyrics(c),text,Reverse factor 8823 Lyrics
P8 MusicArtist(c),name,made,Reverse maker,

based-near, homepage, img
3346 MusicArtist

P9 MusicArtist(c),name,made,Revese-maker 159 MusicArtist
P10 Document(c),Reverse-license 92 Document
P11 recorded-as 45634 ...
P12 Factor 8823
P13 description 880
P14 Torrent(c) 11572 Torrent
P15 Ed2k(c) 11572 Ed2K

In comparison with the original schema of the Jamendo dataset, which was
reported in Fig 4, the results contain exactly the same information. In other
words, all the classes and all the properties are correctly identified (are the same
with the original schema of the dataset) and the corresponding instances are
correctly classified.

Table 4 shows the results of applying the PaNDa+ with the charm sorting
and typed Xor Cost function parameters on the untyped Jamendo dataset. In
comparison these results with the results of the Table 3, we find that these
results miss 2 patterns, the pattern P14 which represents Torrent class and
the pattern P15 which represents ED2k class. Note here that our experiments
provide indication that the algorithm works adequately well even in the absence
of all the schema information. One thing that can be noted here and needs to
be further investigated is that both those patterns are having only one member,
which is the corresponding class information and which is now deleted from the
dataset. Thus not finding these two patterns is completely reasonable since this
information does not exist anymore in the KB. Nevertheless we need to further
look into the matter.

RDF Graph Summarization Based on Approximate Patterns 15

Table 4. PaNDa+ with untyped Jamendo dataset

ID Pattern Extent corresponding class

P1 Playlist(c),Reverse available-as,format 102804 Playlist
P2 Track(c),available-as,title,license,track-

number,Reverse-published-as, Re-
verse track

45634 Track

P3 Signal(c),published-as,Reverse-recorded-
as,time

45634 Signal

P4 Interval(c),Reverse time,onTimeline 45634 Interval
P5 Record(c),date,image,Reverse made,

available-as,maker,track,title,taggedwith
5786 Record

P6 Tag(c),Reverse taggedwith ,tagName 9235 Tag
P7 Lyrics(c),text,Reverse factor 8823 Lyrics
P8 MusicArtist(c),name,made,Reverse maker,

based-near,homepage,img
3346 MusicArtist

P9 MusicArtist(c),name,made,Revese-maker 159 MusicArtist
P10 Document(c),Reverse-license 92 Document
P11 recorded-as 45634 ...
P12 Factor 8823
P13 description 880

5 Related Work

5.1 Graph Summarization

In the literature we find works that deal with the (RDF) graph summarization
problem either partially or to its full extent. So we can find relevant works
under the more generic concepts of graph compression [1, 18], graph synopsis
[2], graph simplification [24] and network abstraction [29]. All refer to the same
problem, i.e. how to extract from a graph the most representative nodes and
edges, thus minimizing the graph. The most extensive literature exists in the
field of graph compression, especially for Web graphs [1, 18]. One of the problems
usually encountered in these works is that the result is not RDF graph itself,
something not suitable for our case since we need to be able to keep querying
the graphs using the same techniques (e.g. SPARQL).

Few efforts have been reported in the literature on summarizing the Data
graphs. These efforts fall under two categories based on the type of algorithms
used and the goal of the summarization. The first category contains algorithms
[21, 22, 17, 28, 11, 23] for summarizing the homogenous directed labeled graph
based on an aggregation algorithm. The main goal of algorithms in this category
is to produce understandable concise graph representation, which is smaller than
the original graph in size, in order to facilitate the visualization and to highlight
communities in the input Data graph, which greatly facilitates its interpretation
based on an aggregation algorithm. The idea behind that is to group the nodes of
data graph G into clusters/groups based on the similarity of attributes’s values
and neighborhood relationships associated with nodes of G. The most known

16 Zneika et al.

algorithm in this category is the K-SNAP [23, 22] algorithm which produces a
summary graph with size K (contains K groups) by grouping nodes based on
set of user-selected node attributes and relationships. It begins with a grouping
based on attributes of the nodes, and then tries to divide the existing groups
according to their neighbors groups. Two super-nodes are connected by a super-
edge if there is a pair of nodes, one from each group, connected in the original
graph. They require nodes in each group having the same attribute information,
so the total number of possible attribute values cannot be too many. Otherwise,
the size of summaries will be too large for users to explore. K-SNAP allows
summaries with different resolutions, but users may have to go through a large
number of summaries until some interesting summaries are found. The second
limitation of the K-SNAP that it is only applicable for homogeneous graphs. In
other words, it is only applicable for the graphs which represent single community
of entities (e.g., student community, readers community), where all these entities
have to be characterized by the same set of attributes. Something not suitable
for the semantic web graphs since the RDF graphs are usually heterogeneous
and it also may be without knowledge (nodes are not attributed). The third
limitation is that it handles only the categorical node attributes but in the real
world, many node attributes are not categorical, such as the age of a user or the
salary.

The second category contains algorithms [4, 8, 5, 27, 6, 7, 3, 9, 10, 20] for sum-
marizing the hetero- or homo-geneous RDF graphs, based on an equivalence
relation. The main goal of this type of summarization is to extract some kind
of schema in order to understand the data and the interlinks that are used both
within and across the input linked datasets. A summary graph Gss is obtained
based on an equivalence relation on the RDF data graph G, where a node repre-
sents an equivalence class on nodes of G. Khatchadourian, Shahan, and Consens
[6, 7] propose a software called ExpLOD, which produces summary graphs for
one or more specific aspects of an RDF dataset, e.g., class or predicate usage.
Their summary can be generated even if the RDF input graph does not use the
full schema or it uses multiple schemas. Summary is computed over the RDF
graph using each nodes bisimulation label: two nodes v and u are bisimilar if
they have the same set of types and properties. Some statistics, like the num-
ber of instances per class or the number times a property is used to describe
all instances, are aggregated with the structural information. The advantage of
ExpLOD approach is that its generated summaries show a datasets structure as
homo- or heterogeneous as it may be. The level of detail (i.e., the granularity of
the summary graph) can be controlled by changing the labels that are created
for nodes. The big disadvantage is represented by the need for preprocessing the
whole RDF graph to the labeled graph, a process that requires the material-
ization of the whole dataset for many of the investigated aspects. The second
limitation is that the created summaries are not RDF graphs themselves. These
approaches are similar in principle with our approach in that they try to extract
some kind of schema. The main difference between us and them is that very few
of these summarization approaches are concentrating on RDF KBs and only one

RDF Graph Summarization Based on Approximate Patterns 17

of them [4] is capable of producing a guaranteed RDF schema as the result. Pro-
ducing valid RDF schema as a summary allows us to use standard RDF tools
(e.g. SPARQL) to query the summary. Our approach provides comparable or
better results in most cases.

5.2 Approximate frequent pattern mining

The classical definition of frequent item set requires that all the items of each
mined set actually occur in the supporting transactions. In order to deal with
noisy and large databases, the common approach is to relax the notion of support
of an item set by allowing missing items in the supporting transactions. Differ-
ent approaches proposed different cost functions which are tackled with specific
greedy strategies. Asso [15] is a greedy algorithm aimed at finding the pattern
set Πk that minimizes the amount of noise in describing the input data matrix
D. This is measured as the L1-norm ‖N‖ (or Hamming norm), which simply
counts the number of 1 bits in matrix N . The Hyper+ [25] algorithm also tries
to minimize the patterns cost ‖PI‖ + ‖PT ‖ in order to find a compact pattern
set. Finally, in [16] an information theoretical approach is adopted, where the
cost of the pattern set and of the noise is measured by their encoding cost in
bits.

PaNDa+ was shown to be more computationally efficient, able to extract
high quality patterns both from binary and from graph data [13], and that
such patterns can be successfully exploited for other data mining tasks, e.g.,
classification [14]. Differently from other algorithms, PaNDa+ allows to tune
the maximum allowed row-wise and column-wise missing items (noise) accepted
in each pattern. For these reasons, we adopted PaNDa+ a general approximate
pattern mining tool.

6 Conclusions and Future Work

In this work we apply a top-k approximate graph pattern mining algorithm in
order to extract a summary of an RDF KB. The summary is not necessarily
the complete schema of the KB but it is the used/active schema of the KB,
usually a subset of the original full schema, and always remains a valid RDF/S
graph. Comparing it with the original RDF schema that was used while creating
the KB, shows us that the summary presented by our system is very close to
it, which in the specific examples we run means that the algorithm performs
exceptionally well without relying on the existing schema information.

The work shows a lot of potential, so in the near future we plan to:

– perform experiments with bigger datasets, in order to explore the limits of
the algorithms and design new more scalable solutions for the problem

– perform experiments with different parameters for the algorithms based on
additional experiments or also parameters that will be guided by the data

18 Zneika et al.

– add the ability to capture user preferences and provide personalized sum-
maries of the large RDF graphs based not only on size (how big or small a
user requires the summary to be) but also based on intended use or based
on the application

– provide theoretical proofs on the ability to always create summaries that are
valid RDF schemas and can be queried by standard RDF machinery (e.g.
SPARQL)

– investigate how we can update the RDF summaries based on the updates in
the RDF KB.

Additionally we envision to apply the algorithm in a set of interlinked KBs
where we can measure the actual benefits on the overall query performance
improvement for a set of queries run over all the KBs. This would allow us to
validate the original motivation of this work to its full extent.

References

1. Micah Adler and Michael Mitzenmacher. Towards compressing web graphs. In Data
Compression Conference, 2001. Proceedings. DCC 2001., pages 203–212. IEEE,
2001.

2. Charu C Aggarwal and Haixun Wang. Managing and mining graph data, volume 40.
Springer, 2010.

3. Anas Alzogbi and Georg Lausen. Similar structures inside rdf-graphs. In LDOW,
2013.

4. Stephane Campinas, Thomas E Perry, Diego Ceccarelli, Renaud Delbru, and Gio-
vanni Tummarello. Introducing rdf graph summary with application to assisted
sparql formulation. In Database and Expert Systems Applications (DEXA), 2012
23rd International Workshop on, pages 261–266. IEEE, 2012.

5. François Goasdoué and Ioana Manolescu. Query-oriented summarization of rdf
graphs. Proceedings of the VLDB Endowment, 8(12), 2015.

6. Shahan Khatchadourian and Mariano Consens. Explod: Summary-based explo-
ration of interlinking and rdf usage in the linked open data cloud. The Semantic
Web: Research and Applications, pages 272–287, 2010.

7. Shahan Khatchadourian and Mariano P Consens. Exploring rdf usage and inter-
linking in the linked open data cloud using explod. In LDOW, 2010.

8. Shahan Khatchadourian and Mariano P Consens. Understanding billions of triples
with usage summaries. Semantic Web Challenge, 2011.

9. Mathias Konrath, Thomas Gottron, and Ansgar Scherp. Schemex–web-scale in-
dexed schema extraction of linked open data. Semantic Web Challenge, Submission
to the Billion Triple Track, pages 52–58, 2011.

10. Mathias Konrath, Thomas Gottron, Steffen Staab, and Ansgar Scherp. Schemex-
efficient construction of a data catalogue by stream-based indexing of linked data.
Web Semantics: Science, Services and Agents on the World Wide Web, 16:52–58,
2012.

11. Amine Louati, Marie-Aude Aufaure, Yves Lechevallier, and France Chatenay-
Malabry. Graph aggregation: Application to social networks. In HDSDA, pages
157–177, 2011.

12. Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. Mining top-k patterns
from binary datasets in presence of noise. In SDM, pages 165–176. SIAM, 2010.

RDF Graph Summarization Based on Approximate Patterns 19

13. Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. A unifying framework
for mining approximate top-k binary patterns. IEEE TKDE, 26:2900–2913, 2014.

14. Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. Supervised evaluation
of top-k itemset mining algorithms. In Big Data Analytics and Knowledge Discov-
ery, pages 82–94. Springer, 2015.

15. P. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H. Mannila. The discrete
basis problem. IEEE TKDE, 20(10):1348–1362, Oct. 2008.

16. Pauli Miettinen and Jilles Vreeken. Model order selection for boolean matrix
factorization. In Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 51–59, 2011.

17. Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summarization
with bounded error. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 419–432. ACM, 2008.

18. Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In Data
Engineering, 2003. Proceedings. 19th International Conference on, pages 405–416.
IEEE, 2003.

19. Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–
471, 1978.

20. Alexander Schätzle, Antony Neu, Georg Lausen, and Martin Przyjaciel-Zablocki.
Large-scale bisimulation of rdf graphs. In Proceedings of the Fifth Workshop on
Semantic Web Information Management, page 1. ACM, 2013.

21. Yan Sun, Kongfa Hu, Zhipeng Lu, Li Zhao, and Ling Chen. A graph summarization
algorithm based on rfid logistics. Physics Procedia, 24:1707–1714, 2012.

22. Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Efficient aggregation
for graph summarization. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 567–580. ACM, 2008.

23. Yuanyuan Tian and Jignesh M Patel. Interactive graph summarization. In Link
Mining: Models, Algorithms, and Applications, pages 389–409. Springer, 2010.

24. Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. Compression
of weighted graphs. In Proceedings of the 17th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 965–973. ACM, 2011.

25. Yang Xiang, Ruoming Jin, David Fuhry, and Feodor F. Dragan. Summarizing
transactional databases with overlapped hyperrectangles. Data Min. Knowl. Dis-
cov., 23(2):215–251, September 2011.

26. Mohammed J. Zaki and Ching-Jui Hsiao. Efficient algorithms for mining closed
itemsets and their lattice structure. IEEE TKDE, 17(4):462–478, April 2005.

27. Haiwei Zhang, Yuanyuan Duan, Xiaojie Yuan, and Ying Zhang. Assg: adaptive
structural summary for rdf graph data. ISWC, 2014.

28. Ning Zhang, Yuanyuan Tian, and Jignesh M Patel. Discovery-driven graph summa-
rization. In Data Engineering (ICDE), 2010 IEEE 26th International Conference
on, pages 880–891. IEEE, 2010.

29. Fang Zhou and Hannu Toivonen. Methods for network abstraction. PhD thesis,
The Department of Computer Science at the University of Helsinki, 2012.

