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Migration of imaginary roots of multiplicity three and four under small
deviation of two delays in time-delay systems

Dina Irofti1 Keqin Gu2 Islam Boussaada1 Silviu-Iulian Niculescu1

Abstract— This paper studies the migration pattern of char-
acteristic imaginary roots of multiplicity three and four in
time-delay systems with two delays when the delay parameters
undergo small deviations. Stability analysis for such problems
is often based on Puiseux series, as multiple roots are not
differentiable with respect to delay parameters. However, in this
paper the approach is more traditional without using Puiseux
series. In the case of triple roots, we show that the stability
crossing curves are smooth; when a perturbation occurs in
the delay parameter space, two roots move to one half-plane
and one root to the other half-plane. The case of quadruple
root is more complicated as the stability crossing curve has
a cusp. Thus, in the neighbourhood of the critical point, the
delay parameter space is divided in an S-sector and a G-sector.
When the parameters move into the G-sector, two roots move
to the right half-plane, and the other two roots move to the left
half-plane. When the parameters move into the S-sector, then
three of the roots move to one half-plane, and the remaining
root moves to the other half-plane, depending on the conditions.

I. INTRODUCTION

As many dynamic process contain some aftereffect (delay)
phenomenon, the scientific community has a great interest
in time-delay systems. However, the stability analysis of
such systems is not an easy task as they belong to the
class of functional differential equations. A very useful
method for such an analysis is D-decomposition method
[1]. Suppose the system depends on some parameters, the
idea of D-decomposition method is to find the values of
these parameters at which the number of the characteristic
roots in the right half-plane changes. Such values divide
the parameter space into regions. The method is especially
valuable for analyzing time-delay systems [2] [3] [5]. When
the parameters are the delays, this method is also known as
τ -decomposition method [4] [5].

In this paper we consider a case not sufficiently discussed
in the literature (see for instance [6], [7]), namely when the
system’s characteristic equation has multiple imaginary roots
for some parameters. The stability analysis of systems with
two delays and without multiple imaginary roots is discussed
in [8]. Next, [9] presents an analysis for the case of double
imaginary roots, it was shown that the local stability crossing
curve has a cusp as shown in Figure 1, and an explicit
criterion is given regarding how the double characteristic
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imaginary roots migrate as the delay parameters deviate from
the critical values.

The cases of roots with multiplicity three and four have
recently come into attention of the control community, and
some work has been already done in connection with inverted
pendulum (see, for instance, the bifurcation analysis of triple-
zero eigenvalue in [10] and [11]).

Puiseux series are often used in the literature for the
stability analysis in the case of multiple roots (see [12] and
Part II, Chapter 5 of [13]). This approach is also important
for time-delay systems (see for instance [14], [15], [7],
where stability analysis is based on Puiseux series). We also
mention [16], where delay blocks have been used in order
to control a chain of oscillators.

In this paper, we study the case of imaginary characteristic
roots of multiplicity three and four, and show that the stabil-
ity analysis can be based on a more conventional approach
without using Puiseux series. We shall see that if the system
has an imaginary root of multiplicity four, then the stability
crossing curve has a cusp in the parameter space. This is not
the case for triple roots. The paper is structured as follows:
Section II states the problem and introduces the notation.
In Sections III and IV we give the results concerning the
behaviours of characteristic roots when a small change in
the parameters occurs, for the case of triple and quadruple
roots, respectively. The last section contains some concluding
remarks.

II. PROBLEM FORMULATION

Consider a system with two delays, τ1 and τ2, with the
characteristic equation

p(s, τ1, τ2) = p0(s) + p1(s)e
−τ1s + p2(s)e

−τ2s = 0, (1)

where pk(s), k = 0, 1, 2 are polynomials of s with real
coefficients, τ1, τ2 are independent positive delays, and s
is the Laplace variable. For τ1 = τ10, τ2 = τ20, we assume
p(s, τ1, τ2) has an imaginary root s0 = iω0 of mth order. In
other words,

∂kp

∂sk

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

= 0, for k = 0 . . .m− 1 (2)

∂mp

∂sm

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

6= 0. (3)

The case of m = 2 (double roots) is presented in [9]. This
paper studies the case of m = 3 (triple roots) and m = 4
(quadruple roots).



Throughout this paper, we make the following “least
degeneracy” assumption:

D = det

(
Re

(
∂p
∂τ1

)
Re

(
∂p
∂τ2

)
Im

(
∂p
∂τ1

)
Im

(
∂p
∂τ2

)
)

s=s0
τ1=τ10
τ2=τ20

6= 0, (4)

where Re(·) denotes the real part, and Im(·) denotes the
imaginary part of a complex number. In view of implicit
function theorem, a consequence of the assumption (4) is
that the characteristic equation (1) defines the pair (τ1 τ2)
in a small neighbourhood of the critical point (τ10 τ20) as a
function of s in a sufficiently small neighbourhood of s0.

Introduce the notation

Nε(x0) = {x | |x− x0| < ε} .

Then, in a sufficiently small neighbourhood Nδ(s0) of s0,
we can define (see proposition 1 in [9]) two functions,
τ1(s) and τ2(s), differentiable up to an arbitrary order,
as the unique solution of characteristic equation (1) in a
small neighbourhood, (τ1(s) τ2(s)) ∈ Nε(τ10, τ20) (but this
characteristic equation may have other solutions outside the
of Nε(τ10, τ20)).

Define local stability crossing curve as the set

T(ω0,τ10,τ20) =

{(τ1(iω), τ2(iω)) ∈ Nε(τ10, τ20) | iω ∈ Nδ(iω0)} .

This curve divides Nε(τ10, τ20) into two regions. We will
study how the triple or quadruple roots migrate as the delay
parameters (τ1 τ2) move into one of these two regions.

For the sake of convenience, we also define the positive
local stability crossing curve as

T +
(ω0,τ10,τ20)

=

{(τ1(iω), τ2(iω)) ∈ Nε(τ10, τ20) | iω ∈ Nδ(iω0), ω > ω0} ,

and the negative local stability crossing curve as

T −(ω0,τ10,τ20)
=

{(τ1(iω), τ2(iω)) ∈ Nε(τ10, τ20) | iω ∈ Nδ(iω0), ω < ω0} .

III. MULTIPLICITY THREE

In this section, we study the migration of triple roots.
Theorem 1: Suppose system (1) satisfies (2) and (3) for

m = 3, and assumption (4) holds. Then, as (τ1 τ2) moves
from (τ10 τ20) to one of the two regions of Nε(τ10, τ20)
divided up by T(ω0,τ10,τ20), at least one root moves to
the right half-plane, and one other root moves to the left
half-plane. The remaining root may move to either the left
half-plane, or the right half-plane. Specifically:
Case i. D > 0 and (τ1 τ2) moves in the region on the
clockwise side of T +

(ω0,τ10,τ20)
and on the counterclockwise

side of T −(ω0,τ10,τ20)
. In this case, two characteristic roots of

(1) move to the right-half complex plane, and the third root
moves to the left-half plane.
Case ii. D > 0 and (τ1 τ2) moves in the region on the
clockwise side of T −(ω0,τ10,τ20)

and on the counterclockwise
side of T +

(ω0,τ10,τ20)
. In this case, two characteristic roots of

(1) move to the left-half complex plane, and the third root
moves to the right-half plane.
Case iii. D < 0 and (τ1 τ2) moves in the region on the
clockwise side of T −(ω0,τ10,τ20)

and on the counterclockwise
side of T +

(ω0,τ10,τ20)
. In this case, two characteristic roots of

(1) move to the right-half complex plane, and the third root
moves to the left-half plane.
Case iv. D < 0 and (τ1 τ2) moves in the region on the
clockwise side of T +

(ω0,τ10,τ20)
and on the counterclockwise

side of T −(ω0,τ10,τ20)
. In this case, two characteristic roots of

(1) move to the left-half complex plane, and the third root
moves to the right-half plane.

Proof: In the complex plane consider a point s in the
neighbourhood of s0, let

s = s0 + ueiθ. (5)

Denote

γ = eiθ =
∂s

∂u
.

Differentiate (1) with respect to u with the angular variable
θ fixed (equivalently with γ fixed), and consider τ1(s) and
τ2(s) as functions of u and θ. This yields:

∂p

∂τ1

∂τ1
∂u

+
∂p

∂τ2

∂τ2
∂u

+
∂p

∂s
γ = 0. (6)

Setting u = 0 and using equation (2) for k = 1 in (6), we
obtainRe

(
∂p
∂τ1

)
Re
(
∂p
∂τ2

)
Im
(
∂p
∂τ1

)
Im
(
∂p
∂τ2

)
s=s0
τ1=τ10
τ2=τ20

(
∂τ1
∂u
∂τ2
∂u

)
u=0

= 0,

from which we conclude(
∂τ1
∂u
∂τ2
∂u

)
u=0

= 0, (7)

in view of (4) and (5).
Differentiating (6) with respect to u again yields

∂2p

∂τ21

(
∂τ1
∂u

)2

+ 2
∂2p

∂τ1∂τ2

∂τ1
∂u

∂τ2
∂u

+ 2
∂2p

∂τ1∂s

∂τ1
∂u

γ+

+
∂p

∂τ1

∂2τ1
∂u2

+
∂2p

∂τ22

(
∂τ2
∂u

)2

+ 2
∂2p

∂τ2∂s

∂τ2
∂u

γ+

+
∂p

∂τ2

∂2τ2
∂u2

+
∂2p

∂s2
γ2 = 0. (8)

Similar to the way we obtained (7) from (6), we may
conclude from (8) using (2) for k = 2 and equation (7)
that (

∂2τ1
∂u2

∂2τ2
∂u2

)
u=0

= 0. (9)



Differentiating (8) again with respect to u yields

∂3p

∂τ31

(
∂τ1
∂u

)3

+ 3
∂2p

∂τ21

∂2τ1
∂u2

∂τ1
∂u

+

+3
∂3p

∂τ21 ∂τ2

(
∂τ1
∂u

)2
∂τ2
∂u

+ 3
∂3p

∂τ21 ∂s

(
∂τ1
∂u

)2

γ+

+3
∂2p

∂τ1∂τ2

∂2τ1
∂u2

∂τ2
∂u

+ 3
∂3p

∂τ1∂τ22

∂τ1
∂u

(
∂τ2
∂u

)2

+

+3
∂2p

∂τ1∂τ2

∂τ1
∂u

∂2τ2
∂u2

+ 6
∂3p

∂τ1∂τ2∂s

∂τ1
∂u

∂τ2
∂u

γ+

+3
∂3p

∂τ1∂s2
∂τ1
∂u

γ2 +
∂p

∂τ1

∂3τ1
∂u3

+ 3
∂2p

∂τ1∂s

∂2τ1
∂u2

γ+

+
∂3p

∂τ32

(
∂τ2
∂u

)3

+ 3
∂2p

∂τ22

∂τ2
∂u

∂2τ2
∂u2

+

+3
∂3p

∂τ22 ∂s

(
∂τ2
∂u

)2

γ + 3
∂2p

∂τ2∂s

∂2τ2
∂u2

γ+

+3
∂3p

∂τ2∂s2
∂τ2
∂u

γ2 +
∂p

∂τ2

∂3τ2
∂u3

+
∂3p

∂s3
γ3 = 0. (10)

If we set u = 0 and use (7) and (9) in equation (10), we
obtain(

∂p

∂τ1

∂3τ1
∂u3

+
∂p

∂τ2

∂3τ2
∂u3

+
∂3p

∂s3
γ3
)∣∣∣∣ s=s0

τ1=τ10
τ2=τ20

= 0

or(
∂p

∂τ1

∂3τ1
∂u3

+
∂p

∂τ2

∂3τ2
∂u3

)∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

=

(
−∂

3p

∂s3
γ3
)∣∣∣∣ s=s0

τ1=τ10
τ2=τ20

.

We separate real and imaginary part to obtain Re
(
∂p
∂τ1

)
Re
(
∂p
∂τ2

)
Im
(
∂p
∂τ1

)
Im
(
∂p
∂τ2

) 
s=s0
τ1=τ10
τ2=τ20

(
∂3τ1
∂u3

∂3τ2
∂u3

)
s=s0
τ1=τ10
τ2=τ20

= −

 Re
(
∂3p
∂s3 γ

3
)

Im
(
∂3p
∂s3 γ

3
) 

s=s0
τ1=τ10
τ2=τ20

.

Thus(
∂3τ1
∂u3

∂3τ2
∂u3

)
s=s0
τ1=τ10
τ2=τ20

=

−

Re
(
∂p
∂τ1

)
Re
(
∂p
∂τ2

)
Im
(
∂p
∂τ1

)
Im
(
∂p
∂τ2

)−1
s=s0
τ1=τ10
τ2=τ20

Re
(
∂3p
∂s3 γ

3
)

Im
(
∂3p
∂s3 γ

3
)

s=s0
τ1=τ10
τ2=τ20

.

(11)

Using Lemma 6 in [9] and in view of (11), we know that
a 90◦ counterclockwise rotation of γ in the complex plane
will generate a 270◦ rotation in τ1-τ2 parameter space, in the
counterclockwise direction if D > 0, and in the clockwise
direction if D < 0.

Accounting for higher order terms, the situation is illus-
trated in Figure 2 for Cases i and ii (D > 0), and in Figure

Fig. 1. G-sector and S-sector.

3 for Cases iii and iv (D < 0). In both Figures 2 and 3, the
line segment CD in the diagram on the left is mapped to
C ′D′ (in Re(+)) in the diagram on the right. Similarly, CB,
CE and CA in the diagram on the left are mapped to C ′B′

(in Im(+) or T +
(ω0,τ10,τ20)

), C ′E′ (in Re(−)) and C ′A′ (in
Im(−) or T −(ω0,τ10,τ20)

) in the diagram on the right.
Consider Cases i and ii shown in Figure 2. The arc BD in

darker solid curve on the diagram on the left is mapped to the
arc B′D′ in the same line type on the diagram on the right
that goes around point C ′ about 270◦. Therefore, region I
bounded by BC, CD, and arc DB in the diagram on the left
is mapped bijectively to the singly connected region bounded
by the arcs B′C ′, C ′D′ and the darker solid arc D′B′, which
we will denote as I ′, in the diagram on the right. Similarly,
region II is mapped bijectively to region II ′ bounded by
E′C ′, C ′B′ and the darker dotted arc B′E′, region III
is mapped bijectively by region III ′ bounded by A′C ′,
C ′E′ and the ligher solid arc E′A′, region IV is mapped
bijectively to region IV ′ bounded by D′C ′, C ′A′ and the
ligher dotted arc A′D′. Notice, the region on the clockwise
side of Im(+) (or T +

(ω0,τ10,τ20)
) and on the counterclockwise

side of Im(−) (or T −(ω0,τ10,τ20)
) in the neighbourhood of C ′

(or (τ10, τ20)) may be expressed as I ′ ∩ (II ′ ∪ III ′) ∩ IV ′.
Therefore, for any (τ1, τ2) in this region, there must be one
root in region I , one root in either region II or region III ,
and one root in region IV . In other words, there must be
two roots on the right half plane, and one root on the left
half plane. This proves Case i. Case ii can be shown by
noticing that the region on the clockwise side of Im(−)
(or T −(ω0,τ10,τ20)

) and on the counterclockwise side of Im(+)

(or T +
(ω0,τ10,τ20)

) in the neighborhood of (τ10, τ20) may be
expressed as (I ′ ∪ IV ′) ∩ II ′ ∩ III ′. Cases iii and iv may
be shown similarly.

Remark 1: Note that(
∂3τ1
∂u3

)
γ=−i

= −
(
∂3τ1
∂u3

)
γ=i

in view of (11). This means, in view of (7) and (9), that
T +
(ω0,τ10,τ20)

has the same tangent as T −(ω0,τ10,τ20)
at (τ10 τ20).

Thus, T(ω0,τ10,τ20)is a smooth curve. In other words, unlike
the double root case discussed in [9], the stability crossing
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curve is smooth without a cusp at (τ10 τ20).

IV. MULTIPLICITY FOUR

In this section we study the migration of quadruple roots.
For system (1), s0 is a quadruple root if conditions (2) and
(3) hold for m = 4.

Parameterize s by u and θ (or γ) as in (5). From (7), (9)
and (11), we immediately conclude(

∂kτ1
∂uk
∂kτ2
∂uk

)
u=0

= 0 for k = 1, 2, 3. (12)

The above is true for k = 3 due to (11) and equation (2)
for k = 3.

Differentiate (10) again with respect to u, taking into
account (12); we obtain

(
∂p

∂τ1

∂4τ1
∂u4

+
∂p

∂τ2

∂4τ2
∂u4

)
u=0
s=s0
τ1=τ10
τ2=τ20

= −
(
∂4p

∂s4
γ4
)

s=s0
τ1=τ10
τ2=τ20

.

This can be solved to obtain(
∂4τ1
∂u4

∂4τ2
∂u4

)
s=s0
τ1=τ10
τ2=τ20

=

−

Re
(
∂p
∂τ1

)
Re
(
∂p
∂τ2

)
Im
(
∂p
∂τ1

)
Im
(
∂p
∂τ2

)−1
s=s0
τ1=τ10
τ2=τ20

Re
(
∂4p
∂s4 γ

4
)

Im
(
∂4p
∂s4 γ

4
)

s=s0
τ1=τ10
τ2=τ20

.

(13)

Similar to the triple root case, the last equation above shows

that
(
∂4τ1
∂u4

∂4τ2
∂u4

)T
rotates four times as fast as γ does. To

understand this case, we shall divide the circle in s domain
in 45◦ pieces in the complex plane, in order to work with
singly connected regions (see Figures 4 to 7, left).

Considering (12) and (13) for γ = i and γ = −i, we see
that the local stability crossing curve T(ω0,τ10,τ20) have a cusp
at (τ10, τ20) [17]. Indeed, T(ω0,τ10,τ20) partitions a sufficiently
small neighborhood of (τ10, τ20) into a great sector (or G-
sector) and a small sector (or S-sector) as shown in Figure 1.
Next theorem shows how the quadruple roots at iω0 migrate
as (τ1, τ2) moves from (τ10, τ20) to the G-sector or the S-
sector.
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Theorem 2: Suppose system (1) satisfies (2) and (3) for
m = 4, and assumption (4) holds.

If (τ1, τ2) is in the G-sector in a sufficiently small
neighborhood of (τ10, τ20), then two roots of (1) in the
neighborhood of s0 are in the right half-plane, and the other
two are in the left half-plane.

When (τ1, τ2) is in the S-sector, then three roots move
into one half-plane, and the fourth one moves into the other
half-plane. More precisely,

Case i. If D > 0, and T −(ω0,τ10,τ20)
is in the counterclock-

wise side of T +
(ω0,τ10,τ20)

in the S-sector, then three roots are
in the left half-plane, and one root is in the right half-plane.

Case ii. If D > 0, and T −(ω0,τ10,τ20)
is in the clockwise

side of T +
(ω0,τ10,τ20)

in the S-sector, then three roots are in
the right half-plane, and one root is in the left half-plane.

Case iii. If D < 0, and T −(ω0,τ10,τ20)
is in the counterclock-

wise side of T +
(ω0,τ10,τ20)

in the S-sector, then three roots are
in the right half-plane, and one root is in the left half-plane.

Case iv. If D < 0, and T −(ω0,τ10,τ20)
is in the clockwise

side of T +
(ω0,τ10,τ20)

in the S-sector, then three roots are in
the left half-plane, and one root is in the right half-plane.

Proof: Denote the sector ACE in the left-hand side
of Figures 4-7 by region I . In the same manner, region II
the sector ECF , region III the sector FCG, and so on.
Thus, the neighbourhood of s0 shown in left side of Figures
4 to 7 as a disk centered in C is divided into 8 regions,
denoted by I, II, . . . , V III . The mapping of these regions
to the τ1-τ2 parameter space is represented in the right side of
the figures. Note that we obtain another 8 singly connected
regions: region I ′ is bounded by curves A′C ′, C ′E′ and
A′E′, region II ′ by C ′E′, E′F ′ and F ′C ′, and so on.

The neighbourhood Nε(τ10 τ20) is divided into S-sector
and G-sector by the curves A′C ′ and B′C ′. In general, F ′

and I ′ each may be either in the S-sector, or in the G-sector.
We shall only show the case where they are in the S-sector.
Their location do not affect the validity of the conclusion.
When one or both points F ′ and I ′ are outside of the S-
sector, the proof for the G-sector is slightly more involved,
but still possible.

Similar to the case discussed in [9] (see corollary 4) we
can show that (τ1(s) τ2(s)) is a bijection from R to R′

when s is restricted to R, with R a region from the set
{I, II, . . . V III}, and R′ the corresponding region in the
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is on the counterclockwise side of T +

(ω0,τ10,τ20)
in the S-sector.

set {I ′, II ′, . . . , V III ′}.
Consider Case i. The S-sector (in a sufficiently small

neighbourhood) can be expressed as (II ′ ∪ III ′) ∩ V ′ ∩
(V I ′∪V II ′)∩V III ′, as depicted in Figure 4 right. But the
corresponding regions are (II ∩ III), which is in the right-
half plane, and V , (V I ∪ V II) and V III , which are all in
the left-half plane. So we may conclude that when (τ1 τ2) is
in the S-sector, the characteristic equation (1) has a root in
the right-half plane, and three others in the left-half plane. As
for the G-sector, Figure 4 shows that it can be expressed as
(I ′∪II ′)∩(III ′∪IV ′)∩(V ′∪V I ′)∩(V II ′∪V III ′). Thus,
the characteristic equation (1) has two unstable roots in G-
sector, within the regions (I ∪ II) and (III ∪ IV ), and two
stable roots, within the regions (V ∪V I) and (V II∪V III).

Case ii: The S-sector can be expressed as I ′∩(II ′∪III ′)∩
IV ′ ∩ (V I ′ ∪ V II ′), as shown in Figure 5. Therefore, for
any (τ1 τ2) in S-sector, one characteristic root must be in
(V I ∪V II) (in the left half-plane), and the remaining three
roots in right half-plane (one in I , one in II ∪ III , and
one in IV ). Next, G-sector can be expressed as (I ′ ∪ II ′)∩
(III ′ ∪ IV ′)∩ (V ′ ∪ V I ′)∩ (V II ′ ∪ V III ′). Therefore, we
can conclude that there are two roots on the left-half plane
and two roots on the right-half plane.

For case iii and case iv, the conclusions can be drawn in
a similar manner. Case iii is illustrated in Figure 6. S-sector
can be expressed as I ′ ∩ (II ′ ∪ III ′)∩ IV ′ ∩ (V I ′ ∪ V II ′),
and G-sector as (I ′ ∪ II ′) ∩ (III ′ ∪ IV ′) ∩ (V ′ ∪ V I ′) ∩
(V II ′∪V III ′). Case iv is depicted in Figure 7, S-sector can
be expressed as (II ′ ∪ III ′) ∩ V ′ ∩ (V I ′ ∪ V II ′) ∩ V III ′,
and G-sector as (I ′ ∪ II ′) ∩ (III ′ ∪ IV ′) ∩ (V ′ ∪ V I ′) ∩
(V II ′ ∪ V III ′).

V. ILLUSTRATIVE EXAMPLE

Consider the quasi-polynomial

p(s, τ1, τ2) = s4 + a03s
3 + a02s

2 + a01s+ a00+

+
(
a12s

2 + a11s+ a10
)
e−sτ1+

+ (a21s+ a20) e
−sτ2 .

The system has a triple imaginary root at s = s0 = iω0,
with ω0 = 1, for (τ1 τ2) = (3, 5), a03 = 1, a12 = 1,
a21 = 1, and the values of other coefficients are given in
table I, where sk stands for sin k, and ck stands for cos k.
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Fig. 5. The mapping (τ1(s), τ2(s)) in a neighborhood of s0. Case ii:
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Fig. 6. The mapping (τ1(s), τ2(s)) in a neighborhood of s0. Case iii:
D < 0, and T −
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Fig. 7. The mapping (τ1(s), τ2(s)) in a neighborhood of s0. Case iv:
D < 0, and T −

(ω0,τ10,τ20)
is on the clockwise side of T +
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in the

S-sector.

As depicted in Figure 8, the local stability crossing curves
divide the neighbourhood of (3, 5) in the τ1-τ2 plane into two
regions. Next, it can be calculated that D > 0. Therefore,
for (τ1 τ2) taking values in the region below the curve,
which is on the clockwise side of T −(ω0,τ10,τ20)

and on the
counterclockwise side of T +

(ω0,τ10,τ20)
, two roots will move

in the left-half plane, and one root in the right-half plane.
Similarly, for (τ1 τ2) taking values above the curve, two
roots will move on the right-half plane, and one root on the
left-half plane.

VI. CONCLUSIONS

The migration of imaginary characteristic roots of mul-
tiplicity three and four in time-delay systems under the
deviation of two delay parameters can be studied by using a
conventional approach, without using Puiseux series.

Under the least degeneracy assumption, neither the triple



Exact value Approx. value

a20 = 630+193s1+219s3–583s5+108s6–s9+2s11–172c1+216c3–10c5+18c6+2c11
223s1–337s5+2s11+105c1+435c5

a02 = –2.19272

a11 = –58s1+1836s2+271s3–200s5+223s7+336s8–2s11+2s13+466c1–380c2–1515c3+250c5+15c7+20c8+4c11
223s1–337s5+2s11+105c1+435c5

a11 = 6.27284

a02 = –1439+606s1–418s2–5s4+1626s5–30s6+47s8+30s10+24s11–528c1+996c2–225c4+1620c5–100c6+84c8–36c10–12c11
446s1–674s5+4s11+210c1+870c5

a02 = –2.19272

a10 = –194s1+684s2+1119s3–679s5+167s7–96s8–s11–2s13+37c1–1742c2+486c3+145c5–188c7+302c8–2c11+2c13
223s1–337s5+2s11+105c1+435c5

a10 = 2.03748

a00 = –1849+1116s1–490s2–117s4+2112s5+66s6–73s8–2s10–12s11–850c1+1396c2–301c4+2430c5+76c6–38c8+44c10+4c11
446s1–674s5+4s11+210c1+870c5

a00 = –2.52733

a01 = 808+261s1+290s2+3s4–1815s5–92s6+65s8–44s10–6s11+691c1–628c2+95c4+225c5+50c6–67c8–18c10–16c11
223s1–337s5+2s11+105c1+435c5

a01 = 5.60094

TABLE I
COEFFICIENTS’ VALUES FOR ILLUSTRATIVE EXAMPLE.
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1

2.5 3 3.5

= 2

4.5

5

5.5

Fig. 8. The positive local stability crossing curve T +
(ω0,τ10,τ20)

is the
curve on the left-hand side of the point (τ10, τ20) = (3, 5). The negative
local stability crossing curve T −

(ω0,τ10,τ20)
is the curve on the right-hand

side of the point (τ10, τ20) = (3, 5). These two curves divide τ1-τ2 space
into two regions.

root case, nor the quadruple case may be stable under small
deviation of delay parameters. More precisely, in the case
of triple roots the local stability crossing curve divides the
neighbourhood of τ10 τ20 into two regions of roughly equal
size. In one region, there are two roots on the right-half plane,
and one root on the left-half plane. In the other region, there
are two roots on the left-half plane, and one root on the
right-half plane.

In the case of quadruple roots, the stability crossing curve
has a cusp, and divides the neighbourhood of (τ10 τ20) into
a S-sector and a G-sector. When the delay parameters move
into the G-sector, there are two roots on the right-half plane
and the other two on the left-half plane. When the delay
parameters move into the S-sector, either there are three
right-half plane roots and one left-half plane root, or there
are three left-half plane roots and one right-half plane root.
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