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Abstract-This paper studies the migration pattern of characteristic imaginary roots of multiplicity three and four in time-delay systems with two delays when the delay parameters undergo small deviations. Stability analysis for such problems is often based on Puiseux series, as multiple roots are not differentiable with respect to delay parameters. However, in this paper the approach is more traditional without using Puiseux series. In the case of triple roots, we show that the stability crossing curves are smooth; when a perturbation occurs in the delay parameter space, two roots move to one half-plane and one root to the other half-plane. The case of quadruple root is more complicated as the stability crossing curve has a cusp. Thus, in the neighbourhood of the critical point, the delay parameter space is divided in an S-sector and a G-sector. When the parameters move into the G-sector, two roots move to the right half-plane, and the other two roots move to the left half-plane. When the parameters move into the S-sector, then three of the roots move to one half-plane, and the remaining root moves to the other half-plane, depending on the conditions.

I. INTRODUCTION

As many dynamic process contain some aftereffect (delay) phenomenon, the scientific community has a great interest in time-delay systems. However, the stability analysis of such systems is not an easy task as they belong to the class of functional differential equations. A very useful method for such an analysis is D-decomposition method [START_REF] Gryazina | D-decomposition technique state-of-the-art[END_REF]. Suppose the system depends on some parameters, the idea of D-decomposition method is to find the values of these parameters at which the number of the characteristic roots in the right half-plane changes. Such values divide the parameter space into regions. The method is especially valuable for analyzing time-delay systems [START_REF] Chebotarev | The Routh-Hurwitz problem for polynomials and for entire functions (in Russian)[END_REF] [3] [START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF]. When the parameters are the delays, this method is also known as τ -decomposition method [START_REF] Lee | On the τ -decomposition method of stability analysis for retarded dynamical systems[END_REF] [START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF].

In this paper we consider a case not sufficiently discussed in the literature (see for instance [START_REF] Jarlebring | Invariance properties in the root sensitivity of time-delay systems with double imaginary roots[END_REF], [START_REF] Li | On computing Puiseux series for multiple imaginary characteristic roots of LTI systems with commensurate delays[END_REF]), namely when the system's characteristic equation has multiple imaginary roots for some parameters. The stability analysis of systems with two delays and without multiple imaginary roots is discussed in [START_REF] Gu | On stability of crossing curves for general systems with two delays[END_REF]. Next, [START_REF] Gu | Migration of double imaginary characteristic roots under small deviation of two delay parameters[END_REF] presents an analysis for the case of double imaginary roots, it was shown that the local stability crossing curve has a cusp as shown in Figure 1, and an explicit criterion is given regarding how the double characteristic USA. kgu@siue.edu imaginary roots migrate as the delay parameters deviate from the critical values.

The cases of roots with multiplicity three and four have recently come into attention of the control community, and some work has been already done in connection with inverted pendulum (see, for instance, the bifurcation analysis of triplezero eigenvalue in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] and [START_REF] Boussaada | Inverted pendulum stabilization: Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF]).

Puiseux series are often used in the literature for the stability analysis in the case of multiple roots (see [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] and Part II, Chapter 5 of [START_REF] Knopp | Theory of Functions, Parts I and II[END_REF]). This approach is also important for time-delay systems (see for instance [START_REF] Chen | An eigenvalue perturbation approach to stability analysis, part 1: eigenvalue series of matrix operators[END_REF], [START_REF] Chen | An eigenvalue perturbation approach to stability analysis, part 2: when will zeros of time-delay systems cross imaginary axis?[END_REF], [START_REF] Li | On computing Puiseux series for multiple imaginary characteristic roots of LTI systems with commensurate delays[END_REF], where stability analysis is based on Puiseux series). We also mention [START_REF] Kharitonov | Static output feedback stabilization: necessary conditions for multiple delay controllers[END_REF], where delay blocks have been used in order to control a chain of oscillators.

In this paper, we study the case of imaginary characteristic roots of multiplicity three and four, and show that the stability analysis can be based on a more conventional approach without using Puiseux series. We shall see that if the system has an imaginary root of multiplicity four, then the stability crossing curve has a cusp in the parameter space. This is not the case for triple roots. The paper is structured as follows: Section II states the problem and introduces the notation. In Sections III and IV we give the results concerning the behaviours of characteristic roots when a small change in the parameters occurs, for the case of triple and quadruple roots, respectively. The last section contains some concluding remarks.

II. PROBLEM FORMULATION

Consider a system with two delays, τ 1 and τ 2 , with the characteristic equation p(s, τ 1 , τ 2 ) = p 0 (s) + p 1 (s)e -τ1s + p 2 (s)e -τ2s = 0, [START_REF] Gryazina | D-decomposition technique state-of-the-art[END_REF] where p k (s), k = 0, 1, 2 are polynomials of s with real coefficients, τ 1 , τ 2 are independent positive delays, and s is the Laplace variable. For τ 1 = τ 10 , τ 2 = τ 20 , we assume p(s, τ 1 , τ 2 ) has an imaginary root s 0 = iω 0 of m th order. In other words,

∂ k p ∂s k s=s0 τ1=τ 10 τ2=τ20 = 0, for k = 0 . . . m -1 (2) 
∂ m p ∂s m s=s0 τ1=τ 10 τ2=τ20 = 0.

The case of m = 2 (double roots) is presented in [START_REF] Gu | Migration of double imaginary characteristic roots under small deviation of two delay parameters[END_REF]. This paper studies the case of m = 3 (triple roots) and m = 4 (quadruple roots).

Throughout this paper, we make the following "least degeneracy" assumption:

D = det Re ∂p ∂τ 1 Re ∂p ∂τ 2 Im ∂p ∂τ 1 Im ∂p ∂τ 2 s=s0 τ1=τ 10 τ2=τ20 = 0, (4) 
where Re(•) denotes the real part, and Im(•) denotes the imaginary part of a complex number. In view of implicit function theorem, a consequence of the assumption (4) is that the characteristic equation (1) defines the pair (τ 1 τ 2 ) in a small neighbourhood of the critical point (τ 10 τ 20 ) as a function of s in a sufficiently small neighbourhood of s 0 .

Introduce the notation

N ε (x 0 ) = {x | |x -x 0 | < ε} .
Then, in a sufficiently small neighbourhood N δ (s 0 ) of s 0 , we can define (see proposition 1 in [START_REF] Gu | Migration of double imaginary characteristic roots under small deviation of two delay parameters[END_REF]) two functions, τ 1 (s) and τ 2 (s), differentiable up to an arbitrary order, as the unique solution of characteristic equation (1) in a small neighbourhood, (τ 1 (s) τ 2 (s)) ∈ N ε (τ 10 , τ 20 ) (but this characteristic equation may have other solutions outside the of N ε (τ 10 , τ 20 )).

Define local stability crossing curve as the set

T (ω0,τ10,τ20) = {(τ 1 (iω), τ 2 (iω)) ∈ N ε (τ 10 , τ 20 ) | iω ∈ N δ (iω 0 )} .
This curve divides N ε (τ 10 , τ 20 ) into two regions. We will study how the triple or quadruple roots migrate as the delay parameters (τ 1 τ 2 ) move into one of these two regions.

For the sake of convenience, we also define the positive local stability crossing curve as

T + (ω0,τ10,τ20) = {(τ 1 (iω), τ 2 (iω)) ∈ N ε (τ 10 , τ 20 ) | iω ∈ N δ (iω 0 ), ω > ω 0 } ,
and the negative local stability crossing curve as

T - (ω0,τ10,τ20) = {(τ 1 (iω), τ 2 (iω)) ∈ N ε (τ 10 , τ 20 ) | iω ∈ N δ (iω 0 ), ω < ω 0 } .

III. MULTIPLICITY THREE

In this section, we study the migration of triple roots. Theorem 1: Suppose system (1) satisfies ( 2) and ( 3) for m = 3, and assumption (4) holds. Then, as (τ 1 τ 2 ) moves from (τ 10 τ 20 ) to one of the two regions of N ε (τ 10 , τ 20 ) divided up by T (ω0,τ10,τ20) , at least one root moves to the right half-plane, and one other root moves to the left half-plane. The remaining root may move to either the left half-plane, or the right half-plane. Specifically: Case i. D > 0 and (τ 1 τ 2 ) moves in the region on the clockwise side of T + (ω0,τ10,τ20) and on the counterclockwise side of T - (ω0,τ10,τ20) . In this case, two characteristic roots of (1) move to the right-half complex plane, and the third root moves to the left-half plane. Case ii. D > 0 and (τ 1 τ 2 ) moves in the region on the clockwise side of T - (ω0,τ10,τ20) and on the counterclockwise side of T + (ω0,τ10,τ20) . In this case, two characteristic roots of (1) move to the left-half complex plane, and the third root moves to the right-half plane.

Case iii. D < 0 and (τ 1 τ 2 ) moves in the region on the clockwise side of T - (ω0,τ10,τ20) and on the counterclockwise side of T + (ω0,τ10,τ20) . In this case, two characteristic roots of (1) move to the right-half complex plane, and the third root moves to the left-half plane. Case iv. D < 0 and (τ 1 τ 2 ) moves in the region on the clockwise side of T + (ω0,τ10,τ20) and on the counterclockwise side of T - (ω0,τ10,τ20) . In this case, two characteristic roots of (1) move to the left-half complex plane, and the third root moves to the right-half plane.

Proof: In the complex plane consider a point s in the neighbourhood of s 0 , let

s = s 0 + ue iθ . (5) 
Denote

γ = e iθ = ∂s ∂u .
Differentiate (1) with respect to u with the angular variable θ fixed (equivalently with γ fixed), and consider τ 1 (s) and τ 2 (s) as functions of u and θ. This yields:

∂p ∂τ 1 ∂τ 1 ∂u + ∂p ∂τ 2 ∂τ 2 ∂u + ∂p ∂s γ = 0. (6) 
Setting u = 0 and using equation ( 2 = 0,

in view of ( 4) and ( 5). Differentiating [START_REF] Jarlebring | Invariance properties in the root sensitivity of time-delay systems with double imaginary roots[END_REF] with respect to u again yields

∂ 2 p ∂τ 2 1 ∂τ 1 ∂u 2 + 2 ∂ 2 p ∂τ 1 ∂τ 2 ∂τ 1 ∂u ∂τ 2 ∂u + 2 ∂ 2 p ∂τ 1 ∂s ∂τ 1 ∂u γ+ + ∂p ∂τ 1 ∂ 2 τ 1 ∂u 2 + ∂ 2 p ∂τ 2 2 ∂τ 2 ∂u 2 + 2 ∂ 2 p ∂τ 2 ∂s ∂τ 2 ∂u γ+ + ∂p ∂τ 2 ∂ 2 τ 2 ∂u 2 + ∂ 2 p ∂s 2 γ 2 = 0. (8)
Similar to the way we obtained ( 7) from ( 6), we may conclude from (8) using ( 2) for k = 2 and equation ( 7) that

∂ 2 τ1 ∂u 2 ∂ 2 τ2 ∂u 2 u=0 = 0. (9) 
Differentiating ( 8) again with respect to u yields

∂ 3 p ∂τ 3 1 ∂τ 1 ∂u 3 + 3 ∂ 2 p ∂τ 2 1 ∂ 2 τ 1 ∂u 2 ∂τ 1 ∂u + +3 ∂ 3 p ∂τ 2 1 ∂τ 2 ∂τ 1 ∂u 2 ∂τ 2 ∂u + 3 ∂ 3 p ∂τ 2 1 ∂s ∂τ 1 ∂u 2 γ+ +3 ∂ 2 p ∂τ 1 ∂τ 2 ∂ 2 τ 1 ∂u 2 ∂τ 2 ∂u + 3 ∂ 3 p ∂τ 1 ∂τ 2 2 ∂τ 1 ∂u ∂τ 2 ∂u 2 + +3 ∂ 2 p ∂τ 1 ∂τ 2 ∂τ 1 ∂u ∂ 2 τ 2 ∂u 2 + 6 ∂ 3 p ∂τ 1 ∂τ 2 ∂s ∂τ 1 ∂u ∂τ 2 ∂u γ+ +3 ∂ 3 p ∂τ 1 ∂s 2 ∂τ 1 ∂u γ 2 + ∂p ∂τ 1 ∂ 3 τ 1 ∂u 3 + 3 ∂ 2 p ∂τ 1 ∂s ∂ 2 τ 1 ∂u 2 γ+ + ∂ 3 p ∂τ 3 2 ∂τ 2 ∂u 3 + 3 ∂ 2 p ∂τ 2 2 ∂τ 2 ∂u ∂ 2 τ 2 ∂u 2 + +3 ∂ 3 p ∂τ 2 2 ∂s ∂τ 2 ∂u 2 γ + 3 ∂ 2 p ∂τ 2 ∂s ∂ 2 τ 2 ∂u 2 γ+ +3 ∂ 3 p ∂τ 2 ∂s 2 ∂τ 2 ∂u γ 2 + ∂p ∂τ 2 ∂ 3 τ 2 ∂u 3 + ∂ 3 p ∂s 3 γ 3 = 0. ( 10 
)
If we set u = 0 and use ( 7) and ( 9) in equation ( 10), we obtain ∂p ∂τ 1

∂ 3 τ 1 ∂u 3 + ∂p ∂τ 2 ∂ 3 τ 2 ∂u 3 + ∂ 3 p ∂s 3 γ 3 s=s0 τ1=τ 10 τ2=τ20 = 0 or ∂p ∂τ 1 ∂ 3 τ 1 ∂u 3 + ∂p ∂τ 2 ∂ 3 τ 2 ∂u 3 s=s0 τ1=τ 10 τ2=τ20 = - ∂ 3 p ∂s 3 γ 3 s=s0 τ1=τ 10 τ2=τ20
.

We separate real and imaginary part to obtain .

Thus ∂ 3 τ1 ∂u 3 ∂ 3 τ2 ∂u 3 s=s0 τ1=τ 10 τ2=τ20 = -   Re ∂p ∂τ1 Re ∂p ∂τ2 Im ∂p ∂τ1 Im ∂p ∂τ2   -1 s=s0 τ1=τ 10 τ2=τ20   Re ∂ 3 p ∂s 3 γ 3 Im ∂ 3 p ∂s 3 γ 3   s=s0 τ1=τ 10 τ2=τ20 . ( 11 
)
Using Lemma 6 in [START_REF] Gu | Migration of double imaginary characteristic roots under small deviation of two delay parameters[END_REF] and in view of [START_REF] Boussaada | Inverted pendulum stabilization: Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF], we know that a 90 • counterclockwise rotation of γ in the complex plane will generate a 270 • rotation in τ 1 -τ 2 parameter space, in the counterclockwise direction if D > 0, and in the clockwise direction if D < 0.

Accounting for higher order terms, the situation is illustrated in Figure 2 for Cases i and ii (D > 0), and in Figure 3 for Cases iii and iv (D < 0). In both Figures 2 and3 Therefore, for any (τ 1 , τ 2 ) in this region, there must be one root in region I, one root in either region II or region III, and one root in region IV . In other words, there must be two roots on the right half plane, and one root on the left half plane. This proves Case i. Case ii can be shown by noticing that the region on the clockwise side of Im(-) (or T - (ω0,τ10,τ20) ) and on the counterclockwise side of Im(+) (or T + (ω0,τ10,τ20) ) in the neighborhood of (τ 10 , τ 20 ) may be expressed as (I ∪ IV ) ∩ II ∩ III . Cases iii and iv may be shown similarly.

Remark 1: Note that [START_REF] Boussaada | Inverted pendulum stabilization: Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF]. This means, in view of ( 7) and ( 9), that T + (ω0,τ10,τ20) has the same tangent as T - (ω0,τ10,τ20) at (τ 10 τ 20 ). Thus, T (ω0,τ10,τ20) is a smooth curve. In other words, unlike the double root case discussed in [START_REF] Gu | Migration of double imaginary characteristic roots under small deviation of two delay parameters[END_REF], the stability crossing curve is smooth without a cusp at (τ 10 τ 20 ).

∂ 3 τ 1 ∂u 3 γ=-i = - ∂ 3 τ 1 ∂u 3 γ=i in view of

IV. MULTIPLICITY FOUR

In this section we study the migration of quadruple roots. For system (1), s 0 is a quadruple root if conditions ( 2) and (3) hold for m = 4.

Parameterize s by u and θ (or γ) as in [START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF]. From ( 7), ( 9) and ( 11), we immediately conclude

∂ k τ1 ∂u k ∂ k τ2 ∂u k u=0 = 0 for k = 1, 2, 3. ( 12 
)
The above is true for k = 3 due to [START_REF] Boussaada | Inverted pendulum stabilization: Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF] and equation ( 2) for k = 3.

Differentiate [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] again with respect to u, taking into account [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]; we obtain .

This can be solved to obtain T rotates four times as fast as γ does. To understand this case, we shall divide the circle in s domain in 45 • pieces in the complex plane, in order to work with singly connected regions (see Figures 4 to 7, left).

Considering ( 12) and ( 13) for γ = i and γ = -i, we see that the local stability crossing curve T (ω0,τ10,τ20) have a cusp at (τ 10 , τ 20 ) [START_REF] Guggenheimer | Differential Geometry[END_REF]. Indeed, T (ω0,τ10,τ20) partitions a sufficiently small neighborhood of (τ 10 , τ 20 ) into a great sector (or Gsector) and a small sector (or S-sector) as shown in Figure 1. Next theorem shows how the quadruple roots at iω 0 migrate as (τ 1 , τ 2 ) moves from (τ 10 , τ 20 ) to the G-sector or the Ssector. Theorem 2: Suppose system (1) satisfies ( 2) and ( 3) for m = 4, and assumption (4) holds.

If (τ 1 , τ 2 ) is in the G-sector in a sufficiently small neighborhood of (τ 10 , τ 20 ), then two roots of (1) in the neighborhood of s 0 are in the right half-plane, and the other two are in the left half-plane.

When (τ 1 , τ 2 ) is in the S-sector, then three roots move into one half-plane, and the fourth one moves into the other half-plane. More precisely, Case i. If D > 0, and T - (ω0,τ10,τ20) is in the counterclockwise side of T + (ω0,τ10,τ20) in the S-sector, then three roots are in the left half-plane, and one root is in the right half-plane.

Case ii. If D > 0, and T - (ω0,τ10,τ20) is in the clockwise side of T + (ω0,τ10,τ20) in the S-sector, then three roots are in the right half-plane, and one root is in the left half-plane.

Case iii. If D < 0, and T - (ω0,τ10,τ20) is in the counterclockwise side of T + (ω0,τ10,τ20) in the S-sector, then three roots are in the right half-plane, and one root is in the left half-plane.

Case iv. If D < 0, and T - (ω0,τ10,τ20) is in the clockwise side of T + (ω0,τ10,τ20) in the S-sector, then three roots are in the left half-plane, and one root is in the right half-plane.

Proof: Denote the sector ACE in the left-hand side of Figures 4-7 by region I. In the same manner, region II the sector ECF , region III the sector F CG, and so on. Thus, the neighbourhood of s 0 shown in left side of Figures 4 to 7 as a disk centered in C is divided into 8 regions, denoted by I, II, . . . , V III. The mapping of these regions to the τ 1 -τ 2 parameter space is represented in the right side of the figures. Note that we obtain another 8 singly connected regions: region I is bounded by curves A C , C E and A E , region II by C E , E F and F C , and so on.

The neighbourhood N ε (τ 10 τ 20 ) is divided into S-sector and G-sector by the curves A C and B C . In general, F and I each may be either in the S-sector, or in the G-sector. We shall only show the case where they are in the S-sector. Their location do not affect the validity of the conclusion. When one or both points F and I are outside of the Ssector, the proof for the G-sector is slightly more involved, but still possible.

Similar to the case discussed in [START_REF] Gu | Migration of double imaginary characteristic roots under small deviation of two delay parameters[END_REF] (see corollary 4) we can show that (τ 1 (s) τ 2 (s)) is a bijection from R to R when s is restricted to R, with R a region from the set {I, II, . . . V III}, and R the corresponding region in the set {I , II , . . . , V III }. Consider Case i. The S-sector (in a sufficiently small neighbourhood) can be expressed as 4 right. But the corresponding regions are (II ∩ III), which is in the righthalf plane, and V , (V I ∪ V II) and V III, which are all in the left-half plane. So we may conclude that when (τ 1 τ 2 ) is in the S-sector, the characteristic equation ( 1) has a root in the right-half plane, and three others in the left-half plane. As for the G-sector, Figure 4 shows that it can be expressed as (I ∪II )∩(III ∪IV )∩(V ∪V I )∩(V II ∪V III ). Thus, the characteristic equation ( 1) has two unstable roots in Gsector, within the regions (I ∪ II) and (III ∪ IV ), and two stable roots, within the regions (V ∪V I) and (V II ∪V III).

(II ∪ III ) ∩ V ∩ (V I ∪ V II ) ∩ V III , as depicted in Figure
Case ii: The S-sector can be expressed as I ∩(II ∪III )∩ IV ∩ (V I ∪ V II ), as shown in Figure 5. Therefore, for any (τ 1 τ 2 ) in S-sector, one characteristic root must be in (V I ∪ V II) (in the left half-plane), and the remaining three roots in right half-plane (one in I, one in II ∪ III, and one in IV ). Next, G-sector can be expressed as (I ∪ II ) ∩ (III ∪ IV ) ∩ (V ∪ V I ) ∩ (V II ∪ V III ). Therefore, we can conclude that there are two roots on the left-half plane and two roots on the right-half plane.

For case iii and case iv, the conclusions can be drawn in a similar manner. Case iii is illustrated in Figure 6. S-sector can be expressed as I ∩ (II ∪ III ) ∩ IV ∩ (V I ∪ V II ), and G-sector as

(I ∪ II ) ∩ (III ∪ IV ) ∩ (V ∪ V I ) ∩ (V II ∪V III ).
Case iv is depicted in Figure 7, S-sector can be expressed as

(II ∪ III ) ∩ V ∩ (V I ∪ V II ) ∩ V III , and G-sector as (I ∪ II ) ∩ (III ∪ IV ) ∩ (V ∪ V I ) ∩ (V II ∪ V III ).

V. ILLUSTRATIVE EXAMPLE

Consider the quasi-polynomial p(s, τ 1 , τ 2 ) = s 4 + a 03 s 3 + a 02 s 2 + a 01 s + a 00 + + a 12 s 2 + a 11 s + a 10 e -sτ1 + + (a 21 s + a 20 ) e -sτ2 .

The system has a triple imaginary root at s = s 0 = iω 0 , with ω 0 = 1, for (τ 1 τ 2 ) = [START_REF] El'sgol'ts | Introduction to the Theory and Application of Differential Equations with Deviating Arguments[END_REF][START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF], a 03 = 1, a 12 = 1, a 21 = 1, and the values of other coefficients are given in table I, where s k stands for sin k, and c k stands for cos k. As depicted in Figure 8, the local stability crossing curves divide the neighbourhood of [START_REF] El'sgol'ts | Introduction to the Theory and Application of Differential Equations with Deviating Arguments[END_REF][START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF] in the τ 1 -τ 2 plane into two regions. Next, it can be calculated that D > 0. Therefore, for (τ 1 τ 2 ) taking values in the region below the curve, which is on the clockwise side of T - (ω0,τ10,τ20) and on the counterclockwise side of T + (ω0,τ10,τ20) , two roots will move in the left-half plane, and one root in the right-half plane. Similarly, for (τ 1 τ 2 ) taking values above the curve, two roots will move on the right-half plane, and one root on the left-half plane.

VI. CONCLUSIONS

The migration of imaginary characteristic roots of multiplicity three and four in time-delay systems under the deviation of two delay parameters can be studied by using a conventional approach, without using Puiseux series.

Under the least degeneracy assumption, neither the triple

Exact value

Approx. value a 20 = 630+193s 1 +219s 3 -583s 5 +108s 6 -s 9 +2s 11 -172c 1 +216c 3 -10c 5 +18c 6 +2c 11 223s 1 -337s 5 +2s 11 +105c 1 +435c 5 a 02 = -2.19272 a 11 = -58s 1 +1836s 2 +271s 3 -200s 5 +223s 7 +336s 8 -2s 11 +2s 13 +466c 1 -380c 2 -1515c 3 +250c 5 +15c 7 +20c 8 +4c 11 223s 1 -337s 5 +2s 11 +105c 1 +435c 5 a 11 = 6.27284 a 02 = -1439+606s 1 -418s 2 -5s 4 +1626s 5 -30s 6 +47s 8 +30s 10 +24s 11 -528c 1 +996c 2 -225c 4 +1620c 5 -100c 6 +84c 8 -36c 10 -12c 11 446s 1 -674s 5 +4s 11 +210c 1 +870c 5 a 02 = -2.19272 a 10 = -194s 1 +684s 2 +1119s 3 -679s 5 +167s 7 -96s 8 -s 11 -2s 13 +37c 1 -1742c 2 +486c 3 +145c 5 -188c 7 +302c 8 -2c 11 +2c 13 223s 1 -337s 5 +2s 11 +105c 1 +435c 5 a 10 = 2.03748 a 00 = -1849+1116s 1 -490s 2 -117s 4 +2112s 5 +66s 6 -73s 8 -2s 10 -12s 11 -850c 1 +1396c 2 -301c 4 +2430c 5 +76c 6 -38c 8 +44c 10 +4c 11 446s 1 -674s 5 +4s 11 +210c 1 +870c 5 a 00 = -2.52733 a 01 = 808+261s 1 +290s 2 +3s 4 -1815s 5 -92s 6 +65s 8 -44s 10 -6s 11 +691c 1 -628c 2 +95c 4 +225c 5 +50c 6 -67c 8 -18c 10 -16c 11 (ω 0 ,τ 10 ,τ 20 ) is the curve on the right-hand side of the point (τ 10 , τ 20 ) = [START_REF] El'sgol'ts | Introduction to the Theory and Application of Differential Equations with Deviating Arguments[END_REF][START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF]. These two curves divide τ 1 -τ 2 space into two regions. root case, nor the quadruple case may be stable under small deviation of delay parameters. More precisely, in the case of triple roots the local stability crossing curve divides the neighbourhood of τ 10 τ 20 into two regions of roughly equal size. In one region, there are two roots on the right-half plane, and one root on the left-half plane. In the other region, there are two roots on the left-half plane, and one root on the right-half plane.

In the case of quadruple roots, the stability crossing curve has a cusp, and divides the neighbourhood of (τ 10 τ 20 ) into a S-sector and a G-sector. When the delay parameters move into the G-sector, there are two roots on the right-half plane and the other two on the left-half plane. When the delay parameters move into the S-sector, either there are three right-half plane roots and one left-half plane root, or there are three left-half plane roots and one right-half plane root.

  ) for k = 1 in (6), we obtain

Fig. 1 .

 1 Fig. 1. G-sector and S-sector.

  , the line segment CD in the diagram on the left is mapped to C D (in Re(+)) in the diagram on the right. Similarly, CB, CE and CA in the diagram on the left are mapped to C B (in Im(+) or T + (ω0,τ10,τ20) ), C E (in Re(-)) and C A (in Im(-) or T - (ω0,τ10,τ20) ) in the diagram on the right. Consider Cases i and ii shown in Figure 2. The arc BD in darker solid curve on the diagram on the left is mapped to the arc B D in the same line type on the diagram on the right that goes around point C about 270 • . Therefore, region I bounded by BC, CD, and arc DB in the diagram on the left is mapped bijectively to the singly connected region bounded by the arcs B C , C D and the darker solid arc D B , which we will denote as I , in the diagram on the right. Similarly, region II is mapped bijectively to region II bounded by E C , C B and the darker dotted arc B E , region III is mapped bijectively by region III bounded by A C , C E and the ligher solid arc E A , region IV is mapped bijectively to region IV bounded by D C , C A and the ligher dotted arc A D . Notice, the region on the clockwise side of Im(+) (or T + (ω0,τ10,τ20) ) and on the counterclockwise side of Im(-) (or T - (ω0,τ10,τ20) ) in the neighbourhood of C (or (τ 10 , τ 20 )) may be expressed as I ∩ (II ∪ III ) ∩ IV .

Fig. 2 .

 2 Fig. 2. The mapping (τ 1 (s), τ 2 (s)) in a neighborhood of s 0 . D > 0.
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 44 triple root case, the last equation above shows that τ2 ∂u 4

Fig. 3 .

 3 Fig.3. The mapping (τ 1 (s), τ 2 (s)) in a neighborhood of s 0 . D < 0.

Fig. 4 .

 4 Fig. 4. The mapping (τ 1 (s), τ 2 (s)) in a neighborhood of s 0 . Case i: D > 0, and T - (ω 0 ,τ 10 ,τ 20 ) is on the counterclockwise side of T + (ω 0 ,τ 10 ,τ 20 )

Fig. 5 .Fig. 6 .Fig. 7 .

 567 Fig. 5. The mapping (τ 1 (s), τ 2 (s)) in a neighborhood of s 0 . Case ii: D > 0, and T - (ω 0 ,τ 10 ,τ 20 ) is on the clockwise side of T + (ω 0 ,τ 10 ,τ 20 ) in the S-sector.t2
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Fig. 8 .

 8 Fig. 8. The positive local stability crossing curve T + (ω 0 ,τ 10 ,τ 20 ) is the curve on the left-hand side of the point (τ 10 , τ 20 ) = (3, 5). The negative local stability crossing curve T -(ω 0 ,τ 10 ,τ 20 ) is the curve on the right-hand side of the point (τ 10 , τ 20 ) =[START_REF] El'sgol'ts | Introduction to the Theory and Application of Differential Equations with Deviating Arguments[END_REF][START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF]. These two curves divide τ 1 -τ 2 space into two regions.
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