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Abstract

Octal games are a well-defined family of two-player games played on heaps of counters, in which the players
remove alternately a certain number of counters from a heap, sometimes being allowed to split a heap into
two nonempty heaps, until no counter can be removed anymore.

We extend the definition of octal games to play them on graphs: heaps are replaced by connected
components and counters by vertices. Thus, an octal game on a path Pn is equivalent to playing the same
octal game on a heap of n counters.

We study one of the simplest octal games, called 0.33, in which the players can remove one vertex or
two adjacent vertices without disconnecting the graph. We study this game on trees and give a complete
resolution of this game on subdivided stars and bistars.

Keywords: Combinatorial Games; Octal Games; Subtraction Games; Graphs

1. Introduction

Combinatorial games are finite two-player games without chance, with perfect information and such that
the last move alone determines which player wins the game. Since the information is perfect and the game
finite, there is always a winning strategy for one of the players. A formal definition of combinatorial games
and basic results will be given in Section 2. For more details, the interested reader can refer to [1], [2] or [3].

A well-known family of combinatorial games are subtraction games, which are played with a heap of
counters. A subtraction game is defined by a list of positive integers L and is denoted by Sub(L). A player
is allowed to remove k counters from the heap if k ∈ L. The first player unable to remove an allowed number
of counters from the heap loses the game. For example, consider the game Sub({1, 2}). In this game, both
players take turns removing one or two counters from the heap, until the heap is empty. If the initial number
of counters is a multiple of 3, then the second player has a winning strategy: by playing in such a way that
the first player always gets a multiple of 3, he will take the last counter and win the game.

A natural generalization of subtraction games is to allow the players to split a heap in two nonempty
heaps after having removed counters. This defines a much larger class of games, called octal games [1]. An
octal game is represented by an octal code which entirely defines its rules. As an example, Sub({1, 2}) is
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defined as 0.33. A precise definition will be given in Section 2. Octal games have been extensively studied.
One of the most important question [4] is the periodicity of these games. Indeed, it seems that all finite octal
games have a periodic behaviour in the following sense: the set of initial numbers of counters for which the
first player has a winning strategy is ultimately periodic. This is true for all subtraction games and for all
finite octal games for which the study has been completed [5, 1].

Octal games can also be played by placing counters on a row. Heaps are constituted by consecutive
counters and only consecutives counters can be removed. According to this representation, it seems natural
to play octal games on more complex structures like graphs. A position of the game is a graph and players
remove vertices that induce a connected component which correspond to consecutive counters. The idea to
extend the notion of octal games to graphs was already suggested in [6]. However, to our knowledge, this
idea has not been further developed. With our definition, playing the generalization of an octal game on a
path is the same as playing the original octal game. In the special case of subtraction games, players have
to leave the graph connected. As an example, playing 0.33 on a graph consists in removing one vertex or
two adjacent vertices from the graph without disconnecting it.

This extension of octal games is in line with several take-away games on graphs as Arc Kayles [7] and
Grim [8]. However, it does not describe some other deletion games, such as the vertex and edge versions of
the game geography [7, 9], vertex and edge deletion games with parity rules, considered in [10] and [11],
or scoring deletion games such as Le Pic’arete [12].

We will first give in Section 2 basic definitions of combinatorial games theory as well as a formal definition
of octal games on graphs. We then focus on the game 0.33 which is one of the simplest octal games, and to
its study on trees. We first study subdivided stars in Section 3. We prove that paths can be reduced modulo
3 which leads to a complete resolution, in contrast with the related studies on subdivided stars of Node

Kayles [6] and Arc Kayles [13]. In Section 4, we extend our results to subdivided bistars (i.e. trees with
at most two vertices of degree at least 3) using an operator similar to the sum of games. Unfortunately,
these results cannot be extended to all trees and even not to caterpillars. In a forthcoming paper [14], some
of our results are generalized to other subtraction games on subdivided stars.

2. Definitions

2.1. Basics of Combinatorial Game Theory

Combinatorial games [1] are two-player games such that:

1. The two players play alternately.

2. There is no chance.

3. The game is finite (there is finitely many positions and no position can be encountered twice during
the game).

4. The information is perfect.

5. The last move alone determines the winner.

In what is called normal play, the player who plays the last move wins the game. In what is called misère
play, the player who plays the last move loses the game. Impartial games are combinatorial games where at
each turn the moves are the same for both players. Hence the only distinction between both players is who
plays the first move. In this paper, we will only consider impartial games in normal play.

Positions in impartial games have exactly two possible outcomes: either the first player has a winning
strategy, or the second player has a winning strategy. If a game position falls into the first category, it is an
N -position (for N ext player wins); otherwise, it is a P-position (for Previous player wins).

From a given position J of the game, the different positions that can be reached by playing a move from J
are the options of J , and the set of options of J is denoted opt(J). If we know the outcomes of the positions
in opt(J) we can deduce the outcome of J , using the following proposition:
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Observation 1. Let J be a position of an impartial combinatorial game in normal play:

• If opt(J) = ∅, then the position J is a P-position.

• If there exists a P-position J ′ in opt(J), then the position J is an N -position: a winning move consists
in playing from J to J ′.

• If all the options of J are N -positions, then the position J is a P-position.

Every position J of a combinatorial game can be viewed as a combinatorial game with J as the initial
position. We therefore often consider positions as games. Given two games J1 and J2, their disjoint sum,
noted J1 + J2, is defined as the game where, at their turn, each player plays a legal move on either J1 or
J2. Once J1 (resp. J2) is finished, the two players play exclusively on J2 (resp. J1), until it is over. The
player who plays the last move wins the game. If J1 is a P-position, then J1 + J2 has the same outcome as
J2: the winning player of J2 applies his strategy on J2, and if the other player plays on J1 then he applies
the winning strategy on J1. In order to study the disjoint sum of two N -positions, we define the equivalence
of two games J1 and J2: J1 ≡ J2 if and only if J1 + J2 is a P-position. According to this relation, one can
attribute to a game a value corresponding to its equivalence class and called the Grundy value. The Grundy
value of a game position P for a game J , denoted by GJ (P ), can be computed from the Grundy value of its
options using the following formula:

GJ (P ) = mex(GJ (P
′)|P ′ ∈ opt(P ))

where, for any set of integers S, mex(S) is the smallest nonnegative integer not in S. In particular, P is a
P-position if and only if GJ (P ) = 0. Note that this is consistent with Observation 1. When the context is
clear, we will denote GJ (P ) as G(P ).

A fundamental result of Combinatorial Game Theory is the Sprague-Grundy Theorem that gives the
Grundy values of the sum of games:

Theorem 2 (Sprague-Grundy Theorem [15]). Let J1 and J2 be two game positions. Then G(J1 + J2) =
G(J1)⊕G(J2), where ⊕, called the nim-sum, is the bitwise XOR applied to the two values written in base 2.

2.2. Octal games

A well-known family of impartial games is the family of octal games, which are played on heaps of counters.
On their turn, each player removes some counters from one heap and may also divide the remaining counters
of the heap into two nonempty heaps. The rules of an octal game are encoded according to an octal number
as follows:

Definition 3 (Octal games [1]). Let u1, u2, . . . , un, . . . be nonnegative integers such that for all i, ui ≤ 7. In
the octal game 0.u1u2...un..., a player can remove i counters from a heap if and only if ui 6= 0.

Moreover, if we write ui as ui = bi1 + 2 ∗ bi2 + 4 ∗ bi3 with bij ∈ {0, 1}, then,the player can, when removing
i counters:

1. empty the heap if and only if bi1 = 1;

2. leave one nonempty heap if and only if bi2 = 1;

3. split the remaining heap in two nonempty heaps if and only if bi3 = 1.

An octal game is finite if it has a finite number of non-zero values. In this case, we stop the code at the
last non-zero ui’s.

As an example, ui = 3 means that a player can remove i counters from a heap without splitting it. Octal
games with only 0 and 3 in their code correspond to subtraction games since the heap is never divided. In
particular, the game 0.33 is the game where one can remove one or two counters from the heap. A value
ui = 7 means that one can remove i counters from a heap, possibly dividing the heap in two heaps whereas
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ui = 6 means that one can remove i counters from a heap except if the heap has exactly i counters, and
possibly divide it into two heaps.

To study an octal game, it suffices to consider it on a single heap. Indeed, using Theorem 2, one can
obtain the Grundy value of any octal game by computing the nim-sum of its components. The Grundy
sequence of an octal game is the sequence of the Grundy values of the game on a heap of n counters with
n = 0, 1, 2, .... For example, the Grundy sequence of 0.33 is 0, 1, 2, 0, 1, 2, ... since the Grundy value of the
game 0.33 on a heap of size n is n mod 3.

The Grundy sequence of 0.33 is periodic and one can prove that this is the case for all finite subtraction
games [1]. Actually, all the octal games which have been completely studied have an ultimately periodic
Grundy sequence1. This led to the following conjecture, proposed by Guy:

Conjecture 4 (Guy’s conjecture [4]). All finite octal games have ultimately periodic Grundy sequences.

2.3. Octal games on graphs

A natural question is whether this periodicity can be extended to more complex structures. A relevant
structure is graphs. Indeed, as explained in the introduction, octal games are generally played with counters
on a row. Considering a row of counters as a path and replacing the notion of consecutive counters by
connected components, we get the following definition of octal games on graphs:

Definition 5 (Octal game on graphs). Let u1, u2, . . . , un, . . . be nonnegative integers such that for all i,
ui ≤ 7. Let G be a graph and H a connected component of G.

In the octal game 0.u1u2...un... played on G, a player can remove a set Xi of i vertices of H only if
ui 6= 0 and Xi induces a connected graph.

Moreover, if we write ui as ui = bi1 + 2 ∗ bi2 + 4 ∗ b3, with bij ∈ {0, 1}, then:

1. the player can empty H (i.e. Xi = H) if and only if b1 = 1;

2. the player can leave H connected with at least one vertex (i.e H \ {Xi} is non empty and connected)
if and only if b2 = 1

3. the player can disconnect H if and only if b3 = 1.

If G is a path, then the game is equivalent to the corresponding standard octal game of Definition 3.
We now consider several examples. The game 0.33 on a connected graph corresponds to the game where
one can take one vertex or two adjacent vertices without disconnecting it. The game 0.07 corresponds to
the game where one can remove any two adjacent vertices of the graph. That is exactly the well known
game Arc Kayles [7]. Recently, Adams et al. [8] studied the game Grim that is exactly 0.6 on some
graphs (players are allowed to remove any vertex of the graph, except if it is an isolated vertex). A scoring
version of 0.6 is also currently studied [16]. Hence our definition is relevant with existing work. Note that
the well-known game Node Kayles cannot be seen as such an octal game even if on a path it is equivalent
to 0.137. Indeed, in Nodes Kayles, when four vertices can be removed, they cannot induce a P4. This
cannot match our definition.

Remark 6. We ask for the i removed vertices to form a connected component for two reasons. First, in
traditional octal games, the counters are generally taken consecutively. The second reason is that if we remove
this condition, then all subtraction games on graphs will be trivial. Indeed, it is always possible to remove a
vertex of a connected graph and keep the graph connected. Therefore it is also always possible to remove i
vertices of the graph without disconnecting it if the vertices do not need to induce a connected graph. Thus
playing a subtraction game on a graph would be equivalent to playing the same game on a path with the same
number of vertices and we lose the interest of considering more complex structures. With our definition,
subtraction games on graphs are not so straightforward.

1For an up-to-date table of octal games, see http://wwwhomes.uni-bielefeld.de/achim/octal.html
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In the rest of this paper, we focus on one octal game, namely 0.33, for which we provide a detailed
analysis on subdivided stars and bistars: by proving lemmas about reductability of paths, we provide an
equivalence between families of stars and bistars which allows us to determine their Grundy value.

3. A study of 0.33 game on subdivided stars

The subdivided star Sℓ1,...,ℓk is the graph composed of a central vertex connected to k paths of length
ℓ1, ..., ℓk. Figure 1 shows an example of such a graph. The subdivided star S0 has no chain attached to its
central vertex, so that it is isomorphic to P1.

Note that the subdivided star Sℓ1 is isomorphic to Pℓ1+1 and that the subdivided star Sℓ1,ℓ2 is isomorphic
to Pℓ1+ℓ2+1. For reasons of clarity, the notation as paths will be used whenever applicable.

Figure 1: The subdivided star S1,1,3,4.

In the 0.33 game played on a graph, players can remove a vertex or two adjacent vertices from the graph,
provided that they do not disconnect the graph. Figure 2 shows the moves that are available for the first
player on a subdivided star. Note that in every figure describing moves, the original position will be boxed.

S1,1,3,4

S1,1,2,4

S1,1,1,4

S1,1,3,3

S1,1,2,3

S1,2,4

Figure 2: The available moves for the first player in the 0.33 game played on the subdivided star S1,1,3,4.

The 0.33 game on paths and cycles has the same nim-sequence as the 0.33 game on heaps of counters:
for any n ≥ 0, G(Pn) = G(Cn) = n mod 3. In this section, we will prove a similar result for subdivided stars:
every path can be reduced to its length modulo 3 without changing the Grundy value.

Theorem 7. For all ℓ1, . . . , ℓk, we have G(Sℓ1,...,ℓk) = G(Sℓ1 mod 3,...,ℓk mod 3).

To prove this theorem, it suffices to prove that a P3 can be added to the central vertex or appended to
a leaf of a subdivided star without changing the Grundy value. This will follow from a series of lemmas.

Lemma 8. Let S be a subdivided star, with S 6= P1 and S 6= P2. If S is an N -position, then there is a
winning move which does not involve taking the central vertex.
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Proof. Let S be a subdivided star (S 6= P1 and S 6= P2).
First, suppose that S is not a chain, i.e. S =Sℓ1,ℓ2,ℓ3 , with ℓ1, ℓ2, ℓ3 > 0. Then, no winning move may

involve taking the central vertex, as such a move would be illegal.
Now, let S be a chain of length n. Since S is an N -position, we can assume that n ≥ 4. If a winning move

involves taking the central vertex, then it can be taking one or two vertices including the central vertex.
Hence the central vertex is the first or the second vertex of the chain and this winning move can be replicated
on the other end of the chain without taking the central vertex, since n ≥ 4.

Lemma 9. Let ℓ ≥ 0 and S =S1,1,ℓ. We have G(S) = |V (S)| mod 3 = ℓ mod 3.

Proof. We use induction on ℓ. First, suppose that one can remove the central vertex of S. Thus, we are in
one of the following cases:

• ℓ = 0. In this case, S = P3, and we are done.

• ℓ = 1. In this case, the only available move is to remove a leaf, leaving only P3. Thus, G(S) =
mex(G(P3)) = mex(0) = 1.

Now, if ℓ > 1, then one cannot remove the central vertex of S. In this case, three moves are available
from S:

• Removing one of the two leaves, leaving Pℓ+2 which has ℓ+ 2 mod 3 as Grundy value;

• Removing one vertex from the chain of length ℓ, leaving a star which has ℓ+2 mod 3 as Grundy value
by induction hypothesis;

• Removing two vertices from the chain of length ℓ, leaving a star which has ℓ+1 mod 3 as Grundy value
by induction hypothesis.

Thus, we have G(S) = mex(ℓ+ 1 mod 3, ℓ+ 2 mod 3) = ℓ mod 3.

Lemma 10. A P3 can be appended to any leaf or to the central vertex of a subdivided star without changing
its Grundy value.

Proof. Let S be a subdivided star, and S′ be the subdivided star obtained by appending a P3 to any leaf
or to the central vertex of S. We show that S + S′ is a P-position by proving that the second player can
always play to a P-position following the first player’s move. The proof is by induction on |V (S)|.

First, we consider the cases where the first player can remove the central vertex of S:

• If S is empty (resp. S = P1, S = P2), then S′ = P3 (resp. S′ = P4, S′ = P5), and thus G(S) = G(S′);

• If S = P3, then either S′ = P6 and we are done, or S′ =S1,1,3 and the result follows from Lemma 9.

• If S = Pm with m ≥ 4, then, as said in the proof of Lemma 8, the second player will always be able
to replicate the first player’s move on S′, by playing the symmetrical move. By induction hypothesis,
the new position will be a P-position.

Now, we consider the cases where the first player cannot remove the central vertex of S:

• If the first player takes one vertex (resp. two vertices) from the new chain in S′, then the second player
takes two vertices (resp. one vertex) from it, leaving S + S which is a P-position.

• If the first player plays elsewhere on S′, the second player answers by playing the same move on S. By
induction hypothesis, the new position will be a P-position.

• If S 6= Pm, then the first player cannot remove the central vertex. In this case, for every first player’s
move on S, the second player can replicate it on S′, allowing us to invoke the induction hypothesis.
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Theorem 7 then directly follows from Lemma 10. Hence, all paths of length 3p can be reduced to 0, all
paths of length 3p+ 1 can be reduced to 1, and all paths of length 3p+ 2 can be reduced to 2. If we want
to know the Grundy value of a given subdivided star, it then suffices to study the Grundy values of the
subdivided stars with paths of length 1 and 2 attached to its central vertex.

We are able to build a table of positions and their options: the rows stand for the number of paths
attached to the central vertex, and the columns stand for the number of paths of length 2. Figure 3 shows
the first six rows of this table (the first two rows correspond to the empty graph and the subdivided star
reduced to its central vertex, respectively):

Number of paths of length 2 in the subdivided star

N
um

b
er

of
pa

th
s

in
th

e
su

b
di

vi
de

d
st

ar

0

1

2

3

4

5

0 1 2 3 4 5

∅

P1

P2 P3

P3 P4 P5

S1,1,1 S1,1,2 S1,2,2 S2,2,2

S1,1,1,1 S1,1,1,2 S1,1,2,2 S1,2,2,2 S2,2,2,2

S1,1,1,1,1 S1,1,1,1,2 S1,1,1,2,2 S1,1,2,2,2 S1,2,2,2,2 S2,2,2,2,2

Figure 3: The first six rows of the table of positions and their options.

Since the empty graph has a Grundy value of 0, we can deduce the Grundy value of every star by
proceeding inductively from the top lines:

Theorem 11. Figure 4 shows the table of the Grundy values of subdivided stars after reduction of their paths
modulo 3; rows stand for the number of paths attached to the central vertex and columns for the number of
paths of length 2 in the star.

Except for the four first lines, the lines with an odd number of paths are of the form 1203(12)∗ whereas
the even lines are of the form 0312(03)∗. Moreover, except for the four first columns, the columns with an
even number of paths of length 2 are of the form (01)∗ whereas the columns with an odd number of paths
of length 2 are of the form (23)∗.

4. The game 0.33 on subdivided bistars

Let S1 and S2 be two subdivided stars. The subdivided bistar S1

m
S2 is the graph constructed by

joining the central vertices of S1 and S2 by a path of m edges. If m = 0, then the subdivided bistar is a
subdivided star. Likewise, if m = 1 and S1 = ∅ (resp. S2 = ∅), then the subdivided bistar is the subdivided
star S2 (resp. S1). Figure 5) shows an example of a subdivided bistar.

For the sake of convenience, we will denote S1

1
S2 by S1 S2.
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Number of paths of length 2 in the subdivided star

N
um

b
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ar
0

1

2

3

4

5

. . .

2p

2p+ 1

0 1 2 3 4 5 . . . 2p 2p+ 1

0

1

2 0

0 1 2

1 2 0 1

0 3 1 2 0

1 2 0 3 1 2

0 3 1 2 0 3 . . . 0

1 2 0 3 1 2 . . . 1 2

Figure 4: First six rows, and rows 2p and 2p + 1, of the table of Grundy values for the subdivided stars.

Figure 5: The subdivided bistar S1,2,3

2

S1,3,4.

We notice that playing the 0.33 game on a subdivided bistar is similar to playing the 0.33 game on the
two subdivided stars composing it with an "adjustment" depending on the length of the path linking the
two stars, except for some small cases where one of the stars can be emptied so that one can play on the
middle path.

This section is divided in two parts. In the first part, we will prove that every path in a subidvided bistar
can be reduced to its length modulo 3 without changing the Grundy value:

Theorem 12. For all ℓ1, . . . , ℓk, ℓk+1, . . . , ℓl,m, we have: G( S1

m
S2 ) = G( S′

1

m mod 3
S′

2 ), where
S1 =Sℓ1,...,ℓk , S2 =Sℓk+1,...,ℓl , S

′

1 =Sℓ1 mod 3,...,ℓk mod 3 and S2 =Sℓk+1 mod 3,...,ℓl mod 3.

The second part will focus on computing the Grundy value of a subdivided bistar, depending on the
Grundy values of each of its two subdivided stars.

4.1. Reducing the paths of a subdivided bistar

In this section, we prove Theorem 12. We begin by proving the result on the middle path, before proving
it on the paths of the two subdivided stars composing the bistar.
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Note that we allow the length of the middle path to reach 0. Thus, if a subdivided bistar has a middle
path of 3k edges, then it can be reduced to a subdivided star without changing its Grundy value.

Lemma 13. The path linking the two stars of a subdivided bistar can be reduced to its length modulo 3
without changing the Grundy value of the bistar.

Proof. It is enough to prove that adding three edges to the path does not change the Grundy value of the
subdivided bistar.

Let S1 and S2 be two subdivided stars. Let B =S1

m
S2 and B′ =S1

m+ 3
S2. We show that B+B′ is a

P-position by proving that for every first player’s move, the second player always has an answer leading to
a P-position. We use induction on the size of B.

The cases where the first player can play on the middle path are when one of the two stars is either
empty or reduced to a single vertex. In this case, B and B′ are subdivided stars, and the result follows from
Lemma 10.

Assume now that both S1 and S2 have at least two vertices. Hence, the first player is unable to play on
the middle path and can play either on S1 or S2. The second player will replicate the same move on the
other subdivided bistar. By induction hypothesis, the result follows.

In order to prove that the paths of the stars can be reduced, we need a few technical lemmas.

Lemma 14. Let S be a subdivided star, and B = S S1,1. We have G(S) = G(B).

Proof. We show that S +B is a P-position by proving that for every first player’s move, the second player
always has an answer leading to a P-position. We use induction on the size of S.

The cases where the first player can remove the central vertex of S are:

• S is empty, thus B = P3, which is a P-position;

• S is reduced to a vertex, thus B =S1,1,1. We know by Lemma 9 that G(B) = 1 = G(S);

• S = P2, thus B =S1,1,2. Considering Figure 4, we get G(B) = 2 = G(S);

• S = P3, and in that case, either S =S1,1 or S = S2:

1. B =S1,1 S1,1. B is a P-position: the first player has only one available move, and from the
resulting graph the second player can play to P3 which is a P-position. Both B and S being
P-positions, we have G(B) = G(S).

2. B =S1,1,3. By Theorem 7, G(S) = G(B).

• S = Pm with m ≥ 4. By Lemma 8, the second player will always be able to replicate the first
player’s move on B, by playing the symmetrical move. By induction hypothesis, the new position is a
P-position.

Figure 6 depicts the cases where the first player does not take the central vertex of S, and completes the
proof.

S + S S′ + S

S + S′

S′ + S′ P by induction

hypothesis

S + S
S + S P

Figure 6: The inductive part of the proof of Lemma 14

9



Let S be a subdivided star, we denote S ∅ by S . We then have:

Lemma 15. Let S be a subidvided star. We have G(S ) = G(S
2
S1,1).

Proof. We denote B = S
2
S1,1. We show that S +B is a P-position by proving that for every first player’s

move, the second player always has an answer leading to a P-position. We use induction on the size of S.
The cases where the first player can remove either the central vertex of S or both the central vertex of

S and the vertex from the middle path of S are:

• S is empty, thus B =S1,1,1. We know by Lemma 9 that G(B) = 1 = G(S );

• S is a single vertex, thus B =S1,1,2. Considering Figure 4, we get G(B) = 2 = G(S );

• S = P2, thus B =S1,1,3 which by Lemma 10 has the same Grundy value as S1,1, i.e. as P3. Thus,
G(B) = G(S );

• S =S1,1,1, thus B =1, 1
2

1, 1. Considering Table 4, we get G(S ) = 1. It is easy to see that
G(B) = 1, since only one move is available for the first player (removing one leaf vertex), which leaves
S1,1,3 which is a P-position. Thus G(S ) = G(B).

• S = Pm with m ≥ 4. By the same argument as in the proof of Lemma 8, the second player will always
be able to replicate the first player’s move on B, by playing the symmetrical move. By induction
hypothesis, the new position is a P-position.

Figure 7 depicts the cases where the first player does take neither the central vertex of S nor both the
central vertex of S and the vertex from the middle path of S , and completes the proof.

S + S S′ + S

S + S′

S + S′ P by induction

hypothesis

S + S

S + S

S + S
P by

Lemma 10

Figure 7: The inductive part of the proof of Lemma 15.

We are now ready to prove that the paths of the two subdivided stars of a bistar can be reduced:

Lemma 16. In a subdivided bistar, the paths of each star can be reduced to their length modulo 3 without
changing the Grundy value.

10



Proof. Thanks to Lemma 13, we only have to prove the result on the bistars with a middle path of length 1
or 2.

Let S1 and S2 be two subdivided stars, B =S1

i
S2 with i ∈ {1, 2}, and B′ the subdivided bistar

obtained by appending a P3 to a leaf or to the central vertex of (without loss of generality) S2. We prove
by induction on |V (B)| that G(B) = G(B′).

First, we consider the cases where the first player can remove the central vertex of S2:

• If S2 is empty (resp. a single vertex), then B is a subdivided star, and the result holds by Lemma 10;

• If S2 is a chain, and the P3 is appended to its central vertex, then replicating the first player’s move
will always be possible and lead to a P-position by induction hypothesis (by using the argument of

the proof of Lemma 8), except if B = S1 P2 (resp. B = S1

2
P2). In those cases, if the first player

empties S2 on B, then the second player is unable to replicate the move on B′. The strategy is then
to take two vertices from the new chain. By Lemma 14 (resp. Lemma 15), we have G(B) = G(B′).

Now, we consider the cases where the first player cannot take the central vertex of S2:

• If the first player takes one vertex (resp. two vertices) from the new chain on B′, then the second
player answers by taking two vertices (resp. one vertex) from it, leaving B +B which is a P-position.

• Otherwise, the first player plays either on S1 or on S2 in either of the two bistars. Note that the first
player cannot remove the central vertex of S2, since S2 is not a chain. The second player answers
by replicating his move on the other bistar, which is always a legal move, allowing us to invoke the
induction hypothesis.

Theorem 12 then follows from Lemmas 13 and 16. As in the subdivided stars section, we are left with a
limited number of bistars to study. The next section presents the study of the Grundy value of a subdivided
bistar depending on the Grundy values of its subdivided stars.

4.2. Computing the Grundy value of a subdivided bistar

We try to express the Grundy value of a subdivided star in function of the Grundy values of its two stars.
By Lemma 13, it is enough to consider bistars whose middle path has length either 1 or 2. We consider

these two cases separately.

4.2.1. When the middle path is of length 1

Playing on a subdivided bistar with a middle path of length 1 is almost equivalent as playing in the
disjoint union of the two subdivided stars, except for small cases when some moves are not available in the
bistar. We will see in what follows that except for some small cases, the Grundy value of the bistar is indeed
the nim-sum of the Grundy values of the two stars.

We refine the equivalence relation ≡ for subdivided stars as follows. Let S1 and S2 be two subdivided
stars. We say that S1 and S2 are ∼1-equivalent, denoted S1 ∼1 S2, if and only if for any subdivided star S,
S1 S ≡ S2 S.

Note that the Grundy value of a bistar S S′ only depends of the equivalence class under ∼1 of S and
S′. The equivalence ∼1 is a refinement of ≡ since taking S = ∅ we have S1 ≡ S2.

By Lemma 14, we already know that P3 ∼1 ∅, and thus S2 ∼1 ∅ and S1,1∼1 ∅.
We will prove that there are actually eight equivalence classes for ∼1:

• C∗

1 = {P1,S2,1,S2,2,2} (these stars have Grundy value 1);

• C∗

2 = {P2,S2,2} (these stars have Grundy value 2);

• C2

2 : subdivided stars S such that G(S) = 2 and S contains one or three paths of length 2;

11



• C2

3 : subdivided stars S such that G(S) = 3 and S contains one or three paths of length 2;

• For i ∈ {0, 1, 2, 3}, Ci: subdivided stars S with G(S) = i and S is not in a previous class.

Theorem 17. The equivalence classes for ∼1 are exactly the sets C0, C1, C∗

1 , C2, C∗

2 , C2

2 , C3 and C2

3 .
Moreover, Table 1 describes how the Grundy value of S S′ can be computed depending on the equivalence
class of S and S′.

C0 C1 C∗

1 C2 C∗

2 C2

2 C3 C2

3

C0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
C1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
C∗

1 ⊕ ⊕ 2 ⊕ 0 ⊕ ⊕ ⊕
C2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
C∗

2 ⊕ ⊕ 0 ⊕ 1 1 ⊕ 0
C2

2 ⊕ ⊕ ⊕ ⊕ 1 ⊕ ⊕ ⊕
C3 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
C2

3 ⊕ ⊕ ⊕ ⊕ 0 ⊕ ⊕ ⊕

Table 1: Computing the Grundy value of S S′ depending on the equivalence class of S and S′.

We will need some technical lemmas before proving the theorem:

Lemma 18. We have:

1. P1 ∼1 S2,1

2. P2 ∼1 S2,2

3. S1,1 ∼1 S2,2,1

4. S2,1 ∼1 S2,2,2.

Therefore, any two elements in C∗

1 (resp. C∗

2) are ∼1-equivalent.

Proof. Each of these equivalences will be proved in the same way: for an equivalence S1 ∼1 S2, we prove
that for every subdivided star S, G(S S1) = G(S S2). We will use induction on |S|. The base cases will
be when |S| ∈ {0, 1, 2}, that is to say when the first player is able to take the central vertex of S. Each of
these cases corresponds to a subdivided star, whose Grundy value is given in Figure 4. In the inductive part,
we need to prove that for every move on S S1 + S S2 by the first player, the second player has a move
leading to a P-position. In every case, if the first player plays on S, then the second player can replicate the
move, allowing us to invoke the induction hypothesis. Thus, we will only consider the moves on S1 or S2 in
each case.
Case 1 : P1 ∼1 S2,1

Figure 8 shows the possible moves on S1 or S2, and the answer leading to a P-position.
Case 2 : P2 ∼1 S2,2

Figure 9 shows the possible moves on S1 or S2, and the answer leading to a P-position.
Case 3 : S1,1 ∼1 S2,2,1

Figure 10 shows the possible moves on S1 or S2, and the answer leading to a P-position.
Case 4 : S2,1 ∼1 S2,2,2

Figure 11 shows the possible moves on S1 or S2, and the answer leading to a P-position.
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S + S S + S S + S
P by

∅ ∼1 P3

S + S

S + S

S + S P

S + S S + S
P by

∅ ∼1 S1,1

Pm−1 + S

(if the first player can

remove the central vertex,

then S = Pm with m ≥ 3)

Pm−1 +Pm+2 P

Figure 8: The inductive part of the proof that P1 ∼1S2,1.

S + S S + S S + S
P by

∅ ∼1S2

S + S

S + S

S + S P

S + S S + S
P by

Case 1

Figure 9: The inductive part of the proof that P2 ∼1 S2,2.
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S + S S + S S + S
P by

S1,1∼1S2

S + S

S + S

S + S P

S + S S + S
P by

Case 2

Figure 10: The inductive part of the proof that S1,1 ∼1 S2,2,1.

S + S S + S S + S
P by

Case 2

S + S

S + S

S + S P

S + S S + S
P by

Case 3

S + S S + S

P by

Case 3

since
S1,1∼1S2

Figure 11: The inductive part of the proof that S2,1 ∼1 S2,2,2.
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Lemma 19. Let S be a subdivided star not belonging to C∗

1 ∪ C∗

2 . Then S1,1,1 S ≡ P1 S.

Proof. We use induction on |S|. The base cases are the subdivided stars having an option in C∗

1 ∪ C∗

2 :

1. S = ∅. In this case, G(S1,1,1 S) = G(S1,1,1) = 1 = G(P1) = G(P1 S).

2. S =S1,1. In this case, G(S1,1,1 S) = G(S1,1,1) (by Lemma 18) = G(P1 S).

3. S =S2,1,1. In this case, G(S1,1,1 S) = 3 = G(S2,1,1,1) = G(P1 S).

4. S =S2,2,1. In this case, G(S1,1,1 S) = G(S1,1,1 S1,1) (by Lemma 18) = 1 = G(S2,2,1,1) = G(P1 S).

5. S =S2,2,2,1. In this case, G(S1,1,1 S) = 3 = G(S2,2,2,1,1) = G(P1 S).

6. S =S2,2,2,2. In this case, G(S1,1,1 S) = 1 = G(S2,2,2,2,1) = G(P1 S).

Although tedious, all these values can be computed by considering the Grundy values of the sets opt(S1,1,1 S)
and opt(P1 S).

We now prove that if S is a subdivided star not belonging to C∗

1 ∪ C∗

2 , then S1,1,1 S ≡ P1 S. We note
that the first player can neither empty S nor take its central vertex. We show that for every first player’s
move on S1,1,1 S + P1 S, the second player can always move to a P-position. If the first player plays
from S to S′, then S′ 6∈ C∗

1 ∪ C∗

2 , thus if the second player replicates the move, we can invoke the induction
hypothesis. Figure 12 shows the end of the inductive proof.

S + S S + S

S + S

S + S
P by

∅ ∼1S1,1

Figure 12: The inductive part of the proof for Lemma 19.

Proof of Theorem 17. We prove by induction on the total number of vertices of S1 and S2 that if S1 and S2

are in the same set C0, C1, C
∗

1 , C2, C
∗

2 , C2

2 , C3 or C2

3 , then they are ∼1-equivalent.
By Lemma 18, this is true if S1 and S2 are in C∗

1 or in C∗

2 . It is also true if S1, S2 = {∅,S1,1} by Lemma 14
or if S1, S2 = {∅, P3} since it is the same that adding a P3 to the central vertex of a subdivided star.

Furthermore, we can check that the lines of Table 1 for C∗

1 and C∗

2 are correct. To check that, it suffices
to prove it for one representant of C∗

1 (P1) and one representant of C∗

2 (P2). Adding P1 to a subdivided star
corresponds to going down in the table of Figure 4: there are always a 1 under a 0, a 2 under an element of
C∗

1 and a 0 under the other 1, a 2 under a 3 and a 3 under a 2 except for C∗

2 where the value under 2 is 0.
This corresponds exactly to the line of C∗

1 of Table 1. Similarly, adding P2 corresponds to going down right
in the table (in diagonal) and one can check that the grundy values are correct. Thus we are done.

Suppose now that S1 and S2 belong to the same set C, with C 6= C∗

1 and C 6= C∗

2 . Thus both S1 and
S2 are either empty or not a chain. We prove by induction on the size of S that S1 S ≡ S2 S for any
subdivided star S. This is true if S = ∅ (since G(S1) = G(S2)) or if S ∈ C∗

1 ∪C∗

2 (by the previous paragraph).
Hence we can assume that S /∈ C∗

1 ∪ C∗

2 and S is not a chain. We will prove that S1 S + S2 S is a
P-position. The first player cannot play both in S1 and S nor both in S2 and S since S is not a chain. If
the first player plays in S, leading to S′ in one of the two games, the first player cannot take the central
vertex (since S is not a chain). Hence the second player can reply to S1 S′ +S2 S′ which is a P-position
by induction hypothesis. Otherwise, the first player plays in S1 or in S2. By symmetry, we can assume that
the first player plays in S1, leading to a game S′

1 S + S2 S. We have to find an answer from that game
to a P-position.
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(i) If there is a move from S′

1 to S′′

1 with S′′

1 in the same set than S1 then the second player plays to
S′′

1 S+S2 S (this is always possible since if the move from S′

1 to S′′

1 is taking the central vertex and
S′′

1 is not empty, it means that S′

1 is a chain which is not P3, nor P4, a contradiction). By induction,
S′′

1 S + S2 S is a P-position.

(ii) If there is a move from S2 to S′

2 with S′

1 and S′

2 in the same set, then the second player plays to
S′

1 S + S′

2 S (again, this is always possible since S2 is not a chain), which is a P-position by
induction hypothesis.

Assume that none of these two cases occurs. If G(S1) = 3 then we are always in the case (ii). If G(S1) = 0
then we are always in the case (i). Hence we have G(S1) ∈ {1, 2}. If G(S1) = 1, then S1, S2 ∈ C1. If G(S′

1) = 0
then we are in the case (ii). Otherwise, G(S′

1) > 1, and there is always a move from S′

1 to S′′

1 ∈ C1 and we
are in the case (ii). Hence G(S1) = 2. If G(S′

1) = 0 or if S′

1 ∈ C1, then we are in the case (ii). If G(S′

1) = 3,
we are in the case (i). Hence the only remaining case is S′

1 ∈ C∗

1 . Then there is a move from S2 to S′

2

with S′

2 ∈ C1. By induction, S′

2 S ≡S1,1,1 S (indeed, the number of vertices in S1 and S2 is strictly
greater than the number of vertices in S′

2 and S1,1,1 since S1 has at least five vertices). By Lemma 19,
S1,1,1 S ≡ P1 S ≡ S′

1 S (since S /∈ C∗

1 ∪C∗

2 ). Thus S′

1 S ≡ S′

2 S and S′

1 S+S′

2 S is a P-position.
To compute Table 1, it is enough to consider one representant of each class, for instance ∅, P1, P2, S1,1,1,

S2,1,1, S2,1,1,1, S2,2,2,2,2, S2,2,2,2,2,1, respectively, and compute their Grundy value.

4.2.2. When the middle path is of length 2

The situation in that case will be more complicatied than in the previous case. We similarly define an
equivalence relation ∼2. Let S1 and S2 be two subdivided stars. We say that S1 and S2 are ∼2-equivalent,
denoted S1 ∼2 S2, if and only if for any subdivided star S, S1

2
S ≡ S2

2
S.

By Lemma 15, we already know that P3 ∼2 ∅, and thus S2 ∼2 ∅ and S1,1∼2 ∅.
We will prove that there are exactly ten equivalence classes for ∼2:

• D∗

0 : subdivided stars S such that G(S) = 0 and S contains zero or two paths of length 2;

• D∗

1 = {P1,S2,1,S2,2,2} (these stars have Grundy value 1);

• D2

1 : subdivided stars S such that G(S) = 1, S contains zero or two paths of length 2 and S 6= P1;

• D∗

2 = {P2,S2,2} (these stars have Grundy value 2);

• D2

2 : subdivided stars S such that G(S) = 2 and S contains one or three paths of length 2;

• D2

3 : subdivided stars S such that G(S) = 3 and S contains one or three paths of length 2;

• For i ∈ {0, 1, 2, 3}, Di: subdivided stars S with G(S) = i and S is not in a previous class.

Theorem 20. The equivalence classes for ∼2 are exactly the sets D0, D∗

0, D1, D∗

1, D2

1 , D2, D∗

2, D2

2 , D3

and D2

3 . Moreover, Table 2 describes how the Grundy value of S
2
S′ can be computed depending on the

equivalence class of S and S′.

We can notice that when the two subdivided stars are of sufficientmy large order, they are in the classes
D0,D1,D2,D3, and the Grundy value of the bistar is given by the nim-sum of their Grundy values. For most
of the smallest subdivided stars, it is the nim-sum of the two stars and of 1 that gives the Grundy value of
the bistar.

The following lemma gives the validity of D∗

1 and D∗

2 . Its proof is not included, since it is similar to the
proof of Lemma 18.

Lemma 21. We have:

1. P1 ∼2 S2,1
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D0 D∗

0 D1 D∗

1 D2

1 D2 D∗

2 D2

2 D3 D2

3

D0 ⊕ ⊕1 ⊕ 2 ⊕1 ⊕ 0 ⊕1 ⊕ ⊕1

D∗

0 ⊕1 ⊕1 ⊕1 2 ⊕1 ⊕1 0 ⊕1 ⊕1 ⊕1

D1 ⊕ ⊕1 ⊕ 3 ⊕1 ⊕ 1 ⊕1 ⊕ ⊕1

D∗

1 2 2 3 0 3 0 1 1 1 0
D2

1 ⊕1 ⊕1 ⊕1 3 ⊕1 ⊕1 1 ⊕1 ⊕1 ⊕1

D2 ⊕ ⊕1 ⊕ 0 ⊕1 ⊕ 2 ⊕1 ⊕ ⊕1

D∗

2 0 0 1 1 1 2 2 2 3 3
D2

2 ⊕1 ⊕1 ⊕1 1 ⊕1 ⊕1 2 0 ⊕1 1
D3 ⊕ ⊕1 ⊕ 1 ⊕1 ⊕ 3 ⊕1 ⊕ ⊕1

D2

3 ⊕1 ⊕1 ⊕1 0 ⊕1 ⊕1 3 1 ⊕1 0

Table 2: Computing the Grundy value of S
2

S′ depending on the equivalence class of S and S′. Recall that ⊕ denotes the

nim-sum. Moreover, x⊕1 y stands for x⊕ y ⊕ 1.

2. P2 ∼2 S2,2

3. S1,1 ∼2 S2,2,1

4. S2,1 ∼2 S2,2,2.

Therefore, any two elements in D∗

1 (resp. D∗

2) are ∼2-equivalent.

We can now prove Theorem 20:

Proof of Theorem 20. Rather than proving the validity of equivalence classes and then deducing the table,
we prove by induction on the total number of vertices in S1 and S2 that the Grundy value of S1

2
S2 is given

by Table 2.
We can check that the lines of D∗

1 and D∗

2 in Table 2 are correct: it suffices to prove it for one representant
for D∗

1 (P1) and for D∗

2 (P2). This is possible since if S1, S2 ∈ D∗

1 ,D
∗

2 , then they are ∼2-equivalent by

Lemma 21. For any subdivided star S, S
2
P1 is S with a path of length 2 added to its central vertex. Thus,

we only need to look at the Figure 4 below and right of every class. We can check that if G(S) = 0 then

G(S
2
P1) = 2, if S ∈ D∗

1 ,D2,D
2

3 then G(S
2
P1) = 0, if S ∈ D1, C

2

1 then G(S
2
P1) = 3, if S ∈ D∗

2 ,D
2

2 ,D3

then G(S
2
P1) = 1. For any subdivided star S, S

2
P2 is S with a path of length 3 added to its central

vertex. Thus, G(S
2
P2) = G(S).

Now we study the Grundy value of S1

2
S2 depending on their classes. We can suppose that S1, S2 6∈

D∗

1 ,D
∗

2 , and that neither S1 nor S2 are S1,1 or P3 (since, by Lemma 15, S1,2∼2 ∅; and P3 ∼2 ∅ by Lemma 10).
We can find the options of S1 and S2 thanks to Figure 3. None of the options of S1 and S2 involves taking
their central vertex. We can verify Table 2 by computing the Grundy value of S1

2
S2 in function of the

Grundy values of their options, by using the induction hypothesis:

G(S1

2
S2) = mex(G(S′

1

2
S2),G(S1

2
S′

2)|S
′

1 option of S1, S′

2 option of S2)

In order to prove that the equivalence classes are correct, we need to check that the Grundy value of S1

2
S2

does not change with the classes of the options of S1 and S2. Indeed, two subdivided stars belonging to the
same class can have different options.

We will prove two cases, the other ones being similar.
Case 1: S1 ∈ D1 and S2 ∈ D3

In this case, S1 always has three different options, but these options are not the same depending on S1.
S1 always has an option in D0, and it can have two options either in D2

2 and D2

3 or in D2 and D3. S2 has
three options, which are in D1,D2 and D3.

17



These possible options of S1 and S2 are shown on Figure 13. Left are the possible options of S1, and
right are the possible options of S2. The notation Di

2
Dj expresses the fact that the two subdivided stars

S′

1 and S2 (resp. S1 and S′

2) are in the classes Di and Dj , and that the subdivided bistar is smaller than

S1

2
S2, allowing us to invoke the induction hypothesis.

D1

2
D3

D1

2
D0

;D1

2
D1

;D1

2
D2

D0

2
D3

;D2

2

2
D3

;D2

3

2
D3

D0

2
D3

;D2

2
D3

;D3

2
D3

Figure 13: The possible options of S1

2

S2 when S1 ∈ C1 and S2 ∈ C3.

Now, we can compute the Grundy value of S1

2
S2. First, we compute it in the case where the options

of S1 are in D2

2 and D2

3 :

G(S1

2
S2) = mex(G(D0

2
D3),G(D

2

2

2
D3),G(D

2

3

2
D3),G(D1

2
D0),G(D1

2
D1),G(D1

2
D2))

= mex(3, 0, 1, 1, 0, 3) (by induction hypothesis)
= 2

Now, we compute it in the case where the options of S1 are in D2 and D3:

G(S1

2
S2) = mex(G(D0

2
D3),G(D2

2
D3),G(D3

2
D3),G(D1

2
D0),G(D1

2
D1),G(D1

2
D2))

= mex(3, 1, 0, 1, 0, 3) (by induction hypothesis)
= 2

The Grundy value being the same in both cases, we can conclude that G(S1

2
S2) = 2.

Case 2: S1 ∈ D0 and S2 ∈ D2

In this case, the possible options of S1 and S2 are given by Figure 14. Left are the options of S1, and right
are the options of S2. Below each possible bistar is the Grundy value of the bistar, thanks to the induction
hypothesis. By computing the mex value of each of the two right sets of options and each of the four left
sets of options, we always find the value 2. Thus, G(S1

2
S2) = 2.

D0

2
D2

D0

2
D0

;D0

2
D1

0 1

D0

2
D0

;D0

2
D1

;D0

2
D3

0 1 3

D∗

1

2
D2

;D2

2

2
D2

0 1

D1

2
D2

;D2

2

2
D2

;D2

3

2
D2

3 1 0

D1

2
D2

;D2

2
D2

;D3

2
D2

3 0 1

D2

2
D2

;D3

2
D2

0 1

Figure 14: The possible options of S1

2

S2 when S1 ∈ D0 and S2 ∈ D2.
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There is a total of 36 cases to consider. As they are all similar to the two we already considered, we only
present the possible classes of the options of S, on Figure 15.

D0 D∗

1 ; D2

2

D1 ; D2

2 ; D2

3

D1 ; D2 ; D3

D2 ; D3

D∗

0 D∗

1 ; D∗

2

D2

1

D∗

1 ; D∗

2 ; D2

2

D2

1 ; D2

2 ; D2

3

D1 D0 ; D2

2 ; D2

3

D0 ; D2 ; D3

D2

1 D∗

0

D∗

0 ; D2

2 ; D2

3

D2 D0 ; D1

D0 ; D1 ; D3

D2

2 D∗

0 ; D∗

1 ; D2

1

D∗

0 ; D2

1 ; D2

3

D3 D0 ; D1 ; D2 D2

3 D∗

0 ; D2

1 ; D2

2

Figure 15: The classes of the possible options of S depending on its class.

Going through all the cases allows to prove the correctness of Table 2.

This concludes our study of subdivided bistars.

5. Conclusion

In this paper, we provided a general definition of octal games on graphs, capturing some existing take-
away games on graphs. We then focused on one of the simplest octal games, 0.33, on some subclasses of
trees, namely subdivided stars and bistars.

We proved that for subdivided stars and bistars, as in paths, one could reduce the length of the paths to
their length modulo 3. Thanks to this result, we have computed the exact Grundy values of any subdivided
star, and thus exihibited a periodic behaviour. We have extended these results to bistars for which one
can also reduce the lengths of any chain modulo 3. Using operators and equivalence classes similar to the
nim-sum and Grundy classes, we could then compute the Grundy value of a subdivided bistar using values
of the two stars that are composing it.

However, the reduction of paths modulo 3 cannot be generalized to trees:

Observation 22. One cannot add a P3 to any vertex of a bistar without changing the Grundy value (and
even without changing the output). Indeed, the bistar of Figure 16 is an N -position, but appending a P3 to
u changes it into a P-position.

u

Figure 16: Counter-example for trees: appending a P3 to u changes the outcome.

Proof. The bistar is an N -position: removing u and the leaf attached to it leaves S1,1,3 which is equivalent
to S1,1 by Theorem 7, which is a P-position.

Appending a P3 to u changes the outcome: by a straightforward case analysis, we can check that every
move leaves a N -position.
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Actually, we conjecture that the Grundy value of trees for the 0.33 game is not even bounded.

Conjecture 23. For all n ≥ 4, there exists a tree T such that G0.33(T ) = n.

This conjecture might even be true in the class of caterpillars. A feeble argument to illustrate this
intuition comes from our computations. We may provide examples of caterpillars with Grundy values as
large as 11. Figure 17 depicts a caterpillar with a Grundy value of 10 (checked by computer).

Figure 17: A caterpillar with a Grundy value of 10.

Conjecture 24. For all n ≥ 4, there exists a caterpillar H such that G0.33(H) = n.

However, some of our results could be generalized to other octal games on subdivided stars, see [14].
Finally, we would like to mention that it would certainly be interesting to consider the misère version of

the 0.33 game on graphs.
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