
HAL Id: hal-01418141
https://hal.science/hal-01418141v1

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to be attractive: probabilistic computation
with dynamic attractor networks

Alexander Gepperth, Mathieu Lefort

To cite this version:
Alexander Gepperth, Mathieu Lefort. Learning to be attractive: probabilistic computation with
dynamic attractor networks. Internal Conference on Development and LEarning (ICDL), 2016, Cergy-
Pontoise, France. �hal-01418141�

https://hal.science/hal-01418141v1
https://hal.archives-ouvertes.fr

Learning to be attractive: probabilistic computation with dynamic
attractor networks

Alexander Gepperth1 and Mathieu Lefort2

Abstract— In the context of sensory or higher-level cognitive
processing, we present a recurrent neural network model,
similar to the popular dynamic neural field (DNF) model,
for performing approximate probabilistic computations. The
model is biologically plausible, avoids impractical schemes such
as log-encoding and noise assumptions, and is well-suited for
working in stacked hierarchies. By Lyapunov analysis, we make
it very plausible that the model computes the maximum a
posteriori (MAP) estimate given a certain input that may be
corrupted by noise. Key points of the model are its capability
to learn the required posterior distributions and represent
them in its lateral weights, the interpretation of stable neural
activities as MAP estimates, and of latency as the probability
associated with those estimates. We demonstrate for in simple
experiments that learning of posterior distributions is feasible
and results in correct MAP estimates. Furthermore, a pre-
activation of field sites can modify attractor states when the
data model is ambiguous, effectively providing an approximate
implementation of Bayesian inference.

I. INTRODUCTION

A. Context and scope

This contribution is conducted in the context of cognitive
neural modeling, essentially trying to elucidate how neural
populations can perform probabilistic computations which
are speculated to play an important role in the considerable
performance of biological brains. However, especially the
currently influential Bayesian paradigm, stating that the
basic quantities to be manipulated and passed around should
be probability distributions, poses considerable difficulties.
Considering the limited operations available to neurons (es-
sentially just weighted summation), the following questions
may be asked: How should such distributions be represented
on a neural level? How can the multiplications required
for manipulating them be performed, not to speak of the
necessary renormalizations after each such step? And, lastly,
how can neural populations take optimal decisions based on
distributions? Please see Sec. V for a discussion of these
questions in hindsight.

This article presents a network model that proposes an-
swers to some of these questions, is biologically plausible
(see Sec. V for a discussion of this claim) and yet com-
putationally (rather) inexpensive. The basic properties of the
model, some of which are already demonstrated in [1], some
of which shall be demonstrated or at least made plausible
here, are as follows:

1 UIIS lab, FLOWERS team, INRIA, ENSTA ParisTech, 828 Blvd des
Marechaux, 91762 Palaiseau (France), alexander@gepperth.net

2LIRIS laboratory, university Lyon 1, Lyon (France),
mathieu.lefort@liris.cnrs.fr

• Bayesian processing is approximate: we approximate
full posterior probabilities in each layer by their argmax
(the MAP estimate) and its associate posterior probabil-
ity, see Fig. 1 for a visualization of this process.

• Neural activities represent MAP estimates: given an
afferent input, we assume that neural dynamics, guided
by lateral connections, converge to a MAP estimate
given the input. Neural activities are therefore not at
all related to probability distributions.

• Weights represent distributions: for ensuring conver-
gence towards MAP estimates, the lateral connections
must represent in some way a posterior distribution of
the data

• posterior distributions are learned: as a model with
pre-specified posterior distributions would be useless
in practice, we propose a simple learning scheme for
adapting the lateral connections to data statistics

The basic functionality achieved by the model is depicted in
Fig. 2: following a period of training with clean stimuli, the
model receives a noisy stimulus and attempts to converge
to the noise-free (”true”) underlying stimulus based on
the results of the training phase. In this contribution, we
shall make it very plausible (by considering the Lyapunov
functional of the model) that the model in fact converges
to the maximum a posteriori (MAP) estimate for the given

 0
 0.2

 0.4
 0.6

 0.8
 1 0 0.2 0.4 0.6 0.8 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Fig. 1. Illustration of the basic approximation process proposed in this
article: the approximation of a full probability distribution by its argmax
(the MAP estimate), and its associated probability. We assume a 2D neural
layer where each neuron represents a certain stimulus, and a probability
distribution defined over stimuli (and thus over neuronal sites). The depicted
Gaussian distribution can then be approximated by the three numbers: 0.2
and 0.5 for the ”position” of the MAP state, as well as 0.75 for its probability
under the given distribution. In our neural implementation, these quantities
are expressed by the 2D position of the attractor state as well as its latency
(time to convergence).

MAP
estimation

learned
data model

Fig. 2. Functionality of the proposed neural model. Given an afferent synaptic input (left), supposed to be population-coded so that activity at a certain
place codes for a certain quantity/concept, a neural layer converges to an attractor state (right) with activity corresponding to the MAP estimate of the
underlying true stimulus. Input is supposed to be a noisy version of this stimulus, which is recovered from input by making use of learned statistical
properties of the data, indicated on the left by synaptic connections whose strength (indicated by brightness) represents the probability of co-activation.
The time until the attractor state is reached is a measure for the posterior probability of the MAP estimate. In this concrete example, the left stimulus is
suppressed because it has zero probability of co-occurrence with the right stimulus, and a weaker probability of co-occurrence with the central stimulus.

stimulus. We have already shown in [1] that the time to
convergence to this estimate, denoted latency, is a measure
of its actual probability under the posterior distribution.

It is these two quantities, the MAP estimate and its
probability, that are therefore passed to subsequent neural
layers, thus replacing the actual posterior distribution by an
unimodal approximation (see Fig. 1 for a visualization). This
approximation allows a mapping of probabilistic processing
to a neural model, as the competitive dynamics prevents
the representation of arbitrary distributions in the form of
neural activities. Lastly, this model can be explicitly fed with
prior distributions by pre-activating certain field sites, thus
approximating Bayesian inference in the course of the MAP
calculation process.

B. Rigorous problem formulation

The basic representational unit we consider here is a
neural layer X where neural activities (firing rates) ~zX(t)
are arranged on a rectangular grid.

For a layer receiving an input ~I , we suppose the input to
be a noisy version of the underlying ”true” stimulus ~T . Input
and underlying stimulus are related by the probabilistic input
model p(~I|~T). The basic task we wish to accomplish is the
estimation of the most likely ”true” stimulus ~T ∗ given the
current input ~I , as well as its associated probability p(~T =
~T ∗|~I). In other words, what we are looking for is the so-
called maximum a posteriori (MAP) estimate given the input
stimulus ~I . This task must involve some way of estimating
the ”inverse” distribution p(~T = ~T |~I) which is related to the
input model by the law of Bayes:

p(~T = ~T |~I) =
p(~I|~T = ~T)p(~T = ~T)

p(~I)
(1)

.
Summing up, we wish to approximate the following quan-

tities:

~T ∗ = argmax~T p(~T = ~T |~I) (2)

p∗ = p(~T = ~T ∗|~I)

Furthermore, we wish to influence the outcome of this
computation by specifying priors for the ”true” stimulus ~T .
This is totally consistent with Bayes’ formula, which in our
case states that the basic distribution p(~T = ~T |~I) can be
re-stated as

p(~T = ~T |~I) ∼ p(~I|~T = ~T)p(~T = ~T), (3)

where the a priori probability for the true stimulus appears
explicitly on the right-hand side of the equation.

C. Modeling approach: competitive neural dynamics and
space-latency coding

We will demonstrate by Lyapunov analysis that a compet-
itive neural dynamic approach very similar to the dynamic
neural field (DNF) model [2] converges to an attractor
state that is maximally compatible with afferent and lateral
input, the latter defined by lateral connections. Learning and
representation of the distribution p(~T = ~T |~I) required for
the computation of the MAP estimate in eqn.(2) is realized
by the lateral connections weights by linear regression. If
the lateral input thus obtained can be associated with a
likelihood distribution, this would make it very plausible that
the attractor state of the model indeed corresponds to, or at
least approximates, the MAP estimate1.

In previous works on the subject [1], we already showed
that this model can represent both the MAP estimate and
its probability under the posterior distribution, ~T ∗ and p∗,
by its attractor state and the associated latency (time-to-
convergence). This naturally gives rise to a novel way of
encoding information, which we term space-latency coding
[1], into neural populations, which is exclusively due to the
dynamic properties of the DNF model. We already showed in
[3], [4] that this space-latency code is well suited for trans-
mitting information in a neural hierarchy, and demonstrated
its appropriateness for realistic information processing.

1We would be delighted about rigorous mathematical proofs on this
subject

D. Related work

There exists a large body of literature [5], [6], [7], [8],
[9], [10] on probabilistic aspects of neural coding. Most
authors explicitly assume that neural population activity is
directly related to probability distributions [5], [6], [8], [9],
[10]; posing the question of how to appropriately multiply
and renormalize neural activities in a biologically plausible
way. A very influential idea for addressing this issue posits
that single-neuron activity is in fact related to log-probability
[9], [10], [7], which would allow to perform multiplication
by summation, which neurons do easily. Other authors have
questioned the practicability of this scheme [5] as it would
require all sorts of cut-offs due to the unbounded nature
of logarithms as probabilities go to zero, and which would
have to be performed at each hierarchy level which is
deemed unfeasible and lossy. An alternative approach [5]
is to consider single neuron’s firing rates as the realizations
of Poisson-like random variables whose mean is determined
by the match of neural preferences to afferent input. Under
certain conditions, sums of two such variables can be proven
to come from a distribution whose mean corresponds to the
product of individual means, thus realizing a multiplication
by summation.

E. Novelty

When comparing our approach to related work, several
differences are evident: First of all, and different from [7],
[10], [9], our approach does not treat neural activities as
log-probabilities. More generally, and in line with [5], we
do not treat the set of input activations ~S as a probability
distribution but as the expression of match to individual
neuron’s preferences, corrupted by noise. In contrast to [5],
however, we do not require this noise to have any particular
form in order for our approach to work. Conversely, our
approach does not profit from noise but tries to remove it
to recover the underlying stimulus. This will work best if
the noise is not on the single-neuron level but consists, e.g.,
in the apparition or fluctuation of local activity bubbles. A
further, related difference to [5], who treat each neuron in
absolute isolation from is neighbours, is that we consider
data models that are global in the sense that they consider
the values of other, not necessarily adjacent neurons in the
approximation of the MAP estimate. In contrast to all of
the approaches listed here, our model alone exploits the
fact of using a dynamic model for encoding information,
in this case by latency. Furthermore, as we could show in
previous work [1], [3], our model accounts for the encoding,
the transmission and the decoding of this so-called space-
latency code in a deep hierarchy as a direct consequence of
its dynamics. Lastly, the idea of using a DNF-like model
with a plastic, learned kernel is, to our knowledge, unique
w.r.t. to related work in the subject. Summarizing, this
article suggests a new way of approximately representing
and processing probabilistic information in neural hierarchies
which is quite different from what has been proposed in
previous works, although it will be validated only for very
simple stimuli. To be fair, on the other hand, most previous

work on the subject uses test stimuli of similar simplicity
with the possible exception of [10].

F. Goals of the article

As this article extends our previous work mainly by the
aspects of Lyapunov analysis as well as the learning of lateral
connection weights, we wish to show that
• convergence towards the MAP estimate is plausible
• learned lateral connections (empirically) produce the

correct MAP estimates in simple cases
• the space-latency code produced by learned connections

is consistent with data statistics
• pre-activation of field sites acts as a prior distribution

in ambiguous cases

II. METHODS

Throughout the paper, we will make use of an extension of
the dynamic neural field (DNF) model [2], [11], which repre-
sents two-dimensional sheets of rate-coded model ”neurons”
who have an internal state termed the ”membrane potential”
that evolves according to a differential equation taking into
account the membrane potential, afferent synaptic input and
lateral input mediated via a symmetric weight matrix termed
”convolution kernel” or ”interaction kernel”. In its original
formulation, the DNF model assumes infinitesimal model
neurons, which allows analytical treatments of simple situ-
ations which would otherwise be impossible. In this article,
all insights are gained through simulation experiments for
which naturally a neural sheet has to be discretized.

A. Notation

We will consider, for simplicity of notation, the case of
discretized fields in two dimensions having a size of (N,M)
elements. The set of membrane potentials in the whole field
at a given instant shall be denoted ~u(t), a particular activity
value ui(t) being identified by its one-dimensional index i.
Please note that this is done for simplicity of notation: the
field is considered to be two-dimensional. The dimension of
the field is in fact irrelevant except in the definition of the
lateral interaction, as all the other operations updating the
field are applied in an element-wise fashion. The element-
wise application of a non-negative, monotonous transfer
function f to all field potentials, giving the firing rate vector
~z(t) shall be denoted as ~z(t) = f [~u(t)]. In this article, we
will always a transfer function of the form

f(x) =
1

1 + exp
(
−x−θν

) , (4)

with two free parameters, the threshold θ and the slope ν.
The application of a symmetric 2D convolution kernel K
of size (N ′,M ′) < (N,M), represented by a vector of
coefficients (kj), j = 0 . . . N ′ × M ′, to a vector of firing
rates ~z(t) (producing the transformed version ~z′), is denoted
by

z′i = (K ∗ ~z)i. (5)

The afferent input vector to a neural field is denoted by
~I , whose entries we suppose to be always positive and
normalized in the interval [0, 1]. Using this notation, the
classical DNF model evolves according to:

τ u̇i = −ui + Ii + (K ∗ f [~u])i + h, (6)

h denoting the so-called resting potential.

B. Lyapunov analysis of the DNF model

Lyapunov analysis denotes the analysis of the asymptotic
behavior of a dynamical system by means of a Lyapunov
functional L, more commonly termed ”energy functional”
by analogy to physics. This is a functional that maps the
current system state to a real number (the current ”energy”):
L [χ(t)] → R, and which has the property that it is being
minimized by the system’s dynamics. In addition, the Lya-
punov functional is bounded from below, which means that at
least one stable state exists, the ground state where L reaches
the lower bound and thus cannot decrease any further,
making the state stable. All these properties make Lyapunov
analysis interesting for studying non-linear dynamic systems
such as the extended DNF model which is proposed here,
given of course that a Lyapunov functional exists, which is
not self-evident and has to be rigorously proven for each
dynamical system under consideration. Fur a more in-depth
discussion of Lyapunov analysis, see [12].

In [13], a Lyapunov functional for the DNF model was
shown to exist, and an explicit expression for it was pre-
sented. In our notation, it has the following form:

L [~u(t)] = −
∑
i

zi(Ii − h)− 1

2

∑
i

zi(K ∗ ~zi)i +
∑
i

f−1(zi) =

= −
〈
~z, ~I − h

〉
− 1

2

〈
~z,K ∗ ~z

〉
+
∑
i

F (zi), (7)

where F (z) denotes a monotonous function of z which is
derived from the transfer function f . As we can see, the first
two terms can be restated as scalar products, whereas the
third acts as a bound on total field activity. In qualitative
terms, the evolution of a neural field thus aims simultane-
ously to achieve the highest possible similarity between firing
rate and input, between firing rate and lateral input, all of
this while maintaining a bounded overall activity.

C. Extension of DNF model

We now propose the following formal generalizations:
• Position-dependent global kernel: in order to learn com-

plex data models as shown in Fig. 2, separate lateral
interaction kernels must be learned for all neuronal
sites. Furthermore, these local kernels must take into
account all other field activities and not just adjacent
ones, as statistical relations will not necessarily be local
in the 2D plane. We therefore replace the convolution
operation in eqn.(6) by a simple linear transformation
L, which amounts to a normal matrix multiplication.

• Separation into excitatory and inhibitory lateral inter-
actions: We wish to split the lateral interaction into

learned
data model

Interaction
kernelupdatediff

excite sites with
high lateral input

Fig. 3. Schematic sketch of the learning of kernel matrices, i.e., lateral
connection weights. Basically, weights are adapted so that the difference
between field activity (center,top) and input (left,bottom) is minimized.
Modified kernel matrices act upon field activities in a non-linear way via
lateral inputs (right,bottom).

a part that always gives positive results and which
is potentially plastic, and a part that always acts in
an inhibitory fashion and is fixed, ensuring a global
attractor dynamics of the model. Therefore the lateral
interaction term in eqn. (6) is split into a negative
part with a constant coefficient γ, and a positive part
depending on the position-dependent global kernel L.

• Learning of excitatory lateral interactions: A suitable
learning algorithm adapts the excitatory part of lateral
interactions (parametrized by L) to the statistics of input
data

All of this motivates us to reformulate the DNF equation (6)
as follows, additionally introducing the coefficients α, β and
γ before key terms:

τ u̇i = −ui + αIi + β(Lf [~u])i − γ
∑
i

zi + h, (8)

where we introduce a symmetric linear transformation L =
(lij) to a vector of firing rates ~z, producing the transformed
version ~z′ of same dimensionality (the matrix L is therefore
square and has dimensions (N ∗M,N ∗M)):

z′i = (L~z)i =
∑
j

lijzj ,

which does not in any way change the Lyapunov function
of the model given in eqn.(7) as the lateral interaction terms
are effectively still described by a symmetric convolution
kernel (the matrix L which is supposed symmetric, and the
constant γ which is position-independent and thus symmetric
by definition. As long as the learning rule for L therefore
guarantees symmetry of L, according to [13], the Lyapunov
functional stays well defined.

D. Learning of kernel matrices

We suppose that the task of the kernel is make fields
converge, starting with an empty field, to the underlying

true stimulus that has the highest probability given the input.
This will depend upon statistical properties of the data which
are encoded in the kernel matrices L by a learning process.
Assuming an unsupervised learning scenario where the true
stimuli ~T are unavailable, we suppose that the noise on inputs
is such as to cancel by averaging over longer time scales.
Thus, we are in an ”autoencoder” type of learning scenario,
where kernel matrices are adapted to make the field state
reproduce the (average) input, see Fig. 3. In the experiments
presented here, we do not even go this far as all training
stimuli are ”clean”, and just test stimuli are noisy. In this
case, learning supports pure disambiguation, i.e., deciding
which training stimulus is closest to the noisy test stimulus.
We therefore propose a simple linear regression model that
adapts kernel values guided by the difference between neural
field state (i.e., firing rates) and inputs, which we suppose
normalized in the same interval [0, 1]:

lij(t+ 1) = lij(t) + 2εzj [(L~z)i − Ii] , (9)

. This is stochastic gradient descent approximating a mean-
squared-error loss function, which has the advantage of
online learning capability: eqn. (9) is applied after each
iteration of the field using a suitable value of ε in order
to learn at the correct time scale.

III. MAP CALCULATIONS: HOW AND WHY IT WORKS

When performing Bayesian inference, the terms ap-
pearing in the likelihood and in the a priori distribution
are usually of different quality. An example would be
p(rain=yes|season=summer) ∼ p(season=summer|rain=yes)
p(rain=yes), where the quantities ”rain” and ”season” live
in different spaces that are not directly related. In contrast
to this, in our case the true stimulus ~T and the input ~I live
essentially in the same space, which does not in the least
invalidate our approach as we can still define meaningful
likelihoods and priors. What a neural field does is really a
sort of auto-encoder process, trying to derive a less noisy
version of its own input according to a learned data model.
This could be of immense practical value if learning could
efficiently be conducted in an unsupervised manner, which
is exactly what we propose in Sec. II-D.

A. How

Supposing a kernel matrix L has been learned on a set
of input samples following a certain distribution, we draw
samples from the same distribution and put them as input to
a neural field with kernel L (and parameters to be specified
in more detail in Sec. IV). This input will evoke a time-
varying firing rate ~z(t) that will converge after a certain time.
Time-to-convergence can be measured in various ways, most
simply by demanding that the sum over absolute values of the
left-hand side of the extended DNF equation (8) be smaller
than a threshold:

τ
∑
i

|u̇i| < Ω (10)

Fig. 4. 100x100 pixel input patterns used for training the lateral connection
weights of the model (axes are scaled differently).

As will be shown in the rest of this section, the converged
attractor state represents the maximum a posteriori (MAP)
estimate of the true stimulus ~T .

B. Why

As we supposed that the kernel matrix L has been learned
in such a way as to transform the current field activity
~z(t) into a superposition of possible true stimuli, ~z′(t) =
L(t)~z(t). This is, as explained in Sec. II-D, because we
assume that noise influences are weak and cancel each other
over the course of the learning process. From the Lyapunov
analysis in Sec. II-B we know that the field will evolve such
that its firing rate resembles as closely as possible the input
and ~z′ while maintaining a bounded activity. This process
acts as a disambiguation between the possible true stimuli,
represented as a superposition, only one of which will be
selected due to global competitive dynamics.

Due to the nature of linear regression, which is sensitive
to the relative frequency of training samples, the sum in ~z′

will already be weighted by the prior probability p(~T = ~T)
of each true stimulus ~T . By applying preshape in the form of
certain true stimuli, or by adding an attenuated version of the
stimulus we wish to enhance to the input, we can manipulate
these prior probabilities directly, although the exact amount
of probability that is added by a certain amount of preshape
is difficult to quantify for the moment.

IV. EXPERIMENTS

All experiments are conducted using the exact same pa-
rameters and differ just by the nature of the input stimuli.
The parameters, as defined in Sec. II-C, are the following:
α = β = 2, γ = 0.15, h = −1, θ = 0, ν = 2.5,τ = 25.
To ensure numerical stability, field potentials are clipped to
the range [−2, 5] after each iteration. The neural field itself
has a size of 100x100 elements, and so do the inputs. Input
patterns are always presented for N = 400 iterations, and

Fig. 5. Discrete positions of stimuli in the test patterns used for subsequent
experiments. At each discrete position, a Gaussian stimulus can appear,
either in isolation or in combination with Gaussians at other positions.

Fig. 6. The eight 100x100 pixel test stimuli used in the experiments, consisting of superpositions of Gaussians (axes are scaled differently). Gaussian
amplitudes are 1.0 where not otherwise stated. In stimulus 4, the Gaussian at site B has amplitude 0.9. In stimulus 6, the Gaussian at site D has amplitude
0.8. In stimulus 8, the Gaussian at site D has amplitude 0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 86400 87600 88800

A
ct

iv
ity

 a
t s

ite
 ..

Iteration

A
B
C
D
E

Fig. 7. Overall field responses to the 8 test stimuli, presented sequentially
for 400 iterations each starting directly after the training phase at t = 86400
iterations. The curves correspond to field activity at each of the sites A-E
defined in Fig. 5. Please see text for a discussion of the significance of these
results. Best viewed in color.

fields are initialized to h before each pattern presentation.
The lateral connection learning rate is set to ε = 0.001.
Common to all experiments is a training phase, where the
three training patterns (see Fig. 4) are repeatedly presented,
one after the other, for a total duration of 86400 iterations. As
each pattern presentation lasts 400 iterations, this amounts
to 216 pattern presentations, or 72 presentations for each
pattern. Each test pattern (see Figs. 5, 6) is presented
once for N = 400 iterations. Inputs are superpositions
of unnormalized Gaussians having the same variance of 3
”pixels”. For simplicity, each Gaussian can appear at one of
5 predetermined positions, see Fig. 5 for details. The test
stimuli used to perform experiments are depicted in Fig. 6.
Some Gaussians are multiplied by a constant factor, reducing
their amplitude in order to test a particular point. Results
are presented in two forms: first of all, we wish to show
the overall behavior of the field at all of the sites A-E. For
this purpose, we simply plot the maximal value in a small
region around each of these sites over time, which is shown
in Fig. 7. Results for each pattern can be stated as follows:

• Stimulus 1: since the stimulus at site A was never
observed during training (compare with the training
stimuli depicted in Fig. 4, it can not create any lateral
input to support itself and is thus strongly suppressed
by global inhibition.

• Stimulus 2: the stimulus at site B was observed during
training, leading to a lateral response that sustains
activity despite inhibition.

• Stimulus 3: here, we observe competition between two

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50

A
ct

iv
ity

Iteration

Stim.3
Stim.5
Stim.7

Fig. 8. High temporal resolution of the development of field activities at
”winning” sites for stimuli 3 (strong competition), 5(weak competition) and
7 (strong cooperation). It is evident that the time to convergence (latency)
depends on the amount of competition in the field. This is exactly what we
need to find if we wish to interpret latency as the posterior probability of
the converged state.

stimuli who have same amplitude, and who are both
supported by lateral input as they were part of the
training stimuli. Competition occurs as they never ap-
peared together during training, and thus did not form
mutually supporting lateral connections. Competition
finally suppresses one of the two Gaussians in a random
fashion. By putting a very slight Gaussian preshape, i.e.,
a pre-activation of the field potential with amplitude
A = 0.05 to one of the two sites, the randomness
disappears and the site with the preshape always wins
the competition. Preshape can thus effectively play the
role of a prior probability distribution.

• Stimulus 4: same as for stimulus 3 except that the
Gaussian at site B is weaker than 1.0, so it has a
competitive disadvantage and is suppressed.

• Stimuli 5, 6: here, we observe competition between two
stimuli as they were never seen together during training.
however the stimulus at site C was seen during training
and thus supports itself via lateral input, whereas the
stimulus at site D does not, and is therefore quickly
suppressed depending on its amplitude.

• stimuli 7, 8: interaction between stimuli that were
always seen together during training, and therefore
have mutually supporting lateral connections. Not only
does the weaker stimulus ”survive”, it is even boosted
depending on its original strength.

We therefore observe that the field always converges towards
the state that is evidently the most probable one given

the training data, see Fig. 4. A second result concerns the
continued validity of the space-latency coding now that
lateral interactions weights are learned from data statistics.
To this end, we consider the stimuli 3, 5 and 7 from Fig. 6.
Here, we observe the following interactions between peaks:
strong competition for stimulus 3, as both Gaussians are self-
supporting via lateral input, weak competition for stimulus
5 as one Gaussian can support itself and the other cannot,
and strong cooperation for stimulus 7 as both Gaussians
have bilateral exciting connections between them. Stronger
competition is intuitively equivalent to lower posterior prob-
ability, as competition means that the field and the lateral
input (the likelihood) do not match. This is indeed what
we observe when we plot the time evolution of the field
in response to these three stimuli, magnified so that small
latency differences may be perceived (see Fig. 8): stimulus
3 has the largest latency due to strong competition, stimulus
5 has lower latency as competition is weaker, and stimulus
7 has the lowest latency since there is collaboration going
on. Summarizing, at least for these simple cases, the space-
latency code continues to work correctly by expressing a high
level of conflict in a field, corresponding to a low posterior
probability, by increased latency. The effect is rather weak
here, but by correct parameter choices it can be magnified
to visible time scales.

V. DISCUSSION, CONCLUSIONS AND FUTURE WORK

Continuing our previous work on the subject, we have
presented a neural model that gives a complete account of
how neural systems may process and transmit probabilis-
tic information in a way that is applicable to real-world
processing. In particular, the presented model is capable of
learning from observations, creating its own internal models
of posterior distributions that allow Bayesian inference. We
have made it very plausible, by means of Lyapunov analysis,
that, if the model learns a true posterior distribution from
data, the final attractor state will closely resemble a MAP
estimate. Lastly, we have verified for some simple cases
that the field indeed converges towards the MAP estimate,
and that the latency of the attractor state is a measure of
competition in the field, or conflict to the learned posterior
distribution.

In Sec. I, three fundamental questions are posed:
1) How can distributions be represented on a neural level?
2) How can the multiplications required for manipulating

them be performed, not to speak of the necessary
renormalizations after each such step?

3) How can neural populations take optimal decisions
based on distributions?

In the light of the results and methods presented here, the an-
swers we give are the following: first of all, no distributions
are represented at the neural level, just an approximation
given by their dominant mode and its associated probability
(represented by latency). Then, as only the dominant mode of
the resulting ”multiplied” distribution needs to be represented
by the following layer, multiplications are indeed unneces-
sary and can be replaced by a simple competitive method of

determining the dominant mode while taking into account the
associated probabilities. And lastly, decision making occurs
when competitive dynamics ”selects” the dominant mode and
suppressed the others.

It may be criticized that we give up the idea of a fully
”Bayesian brain” in favor of an approximation that involves
the MAP estimate and its posterior probability. However, in
a behavioral context, it is often only the most likely inter-
pretation ~T ∗ of an input that is required to take an action.
Furthermore, sub-leading interpretations are just suppressed
but continue to exist, and can resurface if additional external
input is provided. In addition, we also compute a measure of
the posterior probability associated with the MAP estimate,
which effectively realizes an unimodal approximation of the
posterior distribution. If this probability is low, we know that
the other modes of the distribution are non-negligible and we
would do well not to take the MAP estimate too seriously.
This manner of thresholding and, if need be, of discarding
information is very relevant for intelligent agents, as it is
in general better to wait for additional inputs than to take
decisions based on inputs that are known to be inconclusive.

Although we do not present a spiking neural network
model, we nevertheless claim high biological plausibility for
the proposed model. Just as the original DNF model, it is
formulated at a lower spatial ”resolution” and thus not on the
single-neuron level but rather on the population level (e.g.,
minicolumns or macrocolumns). In this context, introducing
spiking models would be very inconsistent and is therefore
avoided. Moreover, what we primarily aim to model is the
dynamical interplay of lateral excitatory and inhibitory influ-
ences and its computational significance, especially since it
is well-known that lateral connections are subject to learning
as well [14]. In this sense, we feel it is well justified to claim
biological plausibility for our model.

It is very evident that the next step must be a rigorous
proof of the MAP property. Or rather: it must be shown that
the lateral connection weights learn a posterior distribution
(which will depend largely on the used learning rule).
Subsequently, it must be established to what extent, and
to what precision, the field converges to the maximum of
this distribution. it would be very helpful if, at the same
time, some statements could be made about the time to
convergence (i.e., the latency) and find a rigorous link to
probability here as well.

REFERENCES

[1] A Gepperth. Processing and transmission of confidence in recurrent
neural hierarchies. Neural Processing Letters, 2013.

[2] W. Erlhagen and G. Schöner. Dynamic field theory of movement
preparation. Psychological review, 109(3):545, 2002.

[3] GepperthA and M Lefort. Latency-based probabilistic information pro-
cessing in a learning feedback hierarchy. In International Conference
on Artificial Neural Networks 2014, 2014.

[4] A Gepperth and M Lefort. Latency-based probabilistic information
processing in recurrent neural hierarchies. In International Joint
Conference on Neural Networks (IJCNN), 2014.

[5] WJ Ma, Latham P Beck, J, and A Pouget. Bayesian inference with
probabilistic population codes. Nature Neuroscience, 9(11), 2006.

[6] R. S. Zemel, P. Dayan, and A. Pouget. Probabilistic interpretation of
population codes. Neural Comput, 10(2):403–430, Feb 1998.

[7] J. Gold and M. Shadlen. Neural computations that underlie decisions
about sensory stimuli. Trends Cogn Sci, 5(1):10–16, Jan 2001.

[8] David C Knill and Alexandre Pouget. The bayesian brain: the role
of uncertainty in neural coding and computation. Trends Neurosci,
27(12):712–719, Dec 2004.

[9] Raymond H. Cuijpers and Wolfram Erlhagen. Implementing bayes’
rule with neural fields. In ICANN ’08: Proceedings of the 18th
international conference on Artificial Neural Networks, Part II, pages
228–237, Berlin, Heidelberg, 2008. Springer-Verlag.

[10] Rajesh P N Rao. Bayesian computation in recurrent neural circuits.
Neural Comput, 16(1):1–38, Jan 2004.

[11] Shun-ichi Amari. Mathematical foundations of neurocomputing.
Proceedings of the IEEE, 78(9):1441–1463, 1990.

[12] Derek P Atherton. An introduction to nonlinearity in control systems.
Bookboon, 2011.

[13] Shigeru Kubota and Kazuyuki Aihara. Anayzing global dynamics of
a neural field model. Neural Processing Letters, 21, 2005.

[14] Risto Miikkulainen, James A Bednar, Yoonsuck Choe, and Joseph
Sirosh. Computational maps in the visual cortex. Springer Science &
Business Media, 2006.

