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Abstract

Local stirring properties in two basic mixing flows – namely, the blinking vortex

and the sine flow – are studied through the tracer gradient approach. The veloc-

ity gradient tensor and related quantities such as the strain persistence parameter

are derived from the analytical velocity fields. Numerical Lagrangian tracking of

the gradient of a tracer shows how local stirring is affected by forcing experienced

through strain persistence. In both flows Lagrangian variations of strain persistence

occuring on a time scale shorter than the response time scale of the tracer gradient

lead the latter to align close to the direction determined by the mean strain per-

sistence. It is the special alternating behaviour of strain persistence resulting from

flow operation that makes this direction coincide with the local compressional strain

direction for both the sine flow and the clockwise/counterclockwise blinking vortex.

The rise of the tracer gradient and thus local stirring are in turn promoted by this

statistical alignment.
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1 Introduction

Mixing phenomena in fluid flows are far from being fully explained, despite

significant progress in the study of scalar transport by laminar or turbulent

flows. In a number of cases questions such as “which stirring gives the most

efficient mixing?” or “how long does it take to reach a given mixed state?”

remain unanswered. Actually, there is still an intense need of basic studies de-

voted to mixing phenomena, more especially as many industrial processes use

mixing flows. In chemical processes, for instance, reactions may take place in

a poorly mixed medium, well before homogenization is achieved, thus causing

damage of product quality or bringing about an excess of pollution. Developing

processes which ensure energy sparing, improvement of safety and productive

capacity together with low pollutant release therefore needs designing devices

in which mixing would be well understood and controlled.

As is well established, mixing in fluid flows is essentially a matter of stirring

and molecular diffusion. Stirring makes fluid-element pairs separate which is

also seen as stretching of material lines or surfaces. It is taken for granted

that stretching promotes mixing. Indeed the higher the stretching, the larger

the contact area and the smaller the distance between fluid portions to be

mixed. Hence the hastening of molecular diffusion and homogenization of the

mixture. In addition, “good mixing” often implies a uniform distribution of

stretching rate within the flow.

Understanding the advective part of mixing during which the mechanical ac-

tion of fluid flow produces small scales of the scalar field – heat, contaminant
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. . . – through “cascade phenomena” without significant influence of molecular

diffusion is a big issue of turbulent mixing, especially in large-Péclet-number

flows [1]. The passive scalar cascade and the way in which it may be connected

to mixing studies have been investigated through the statistical approach [2,3].

The study of advective mechanisms of mixing is also relevant to chaotic mix-

ing [4,5]. In this regard, different approaches have been used, namely those

based on Lyapunov exponents [4], on the concept of effective diffusivity [6] or

on geometrical properties of flows defined through stable and unstable mani-

folds [4]. The latter geometrical approach, in particular, provides a thorough

knowledge of mixing properties of two- and three-dimensional unsteady flows.

Efficiency of mixing, for instance, may be qualitatively diagnosed through the

detection of barriers to transport.

The approach based on the evolution of the gradient of a passive scalar –

or tracer – transported by the flow arises from a natural idea, for cascade

mechanisms result in production of large gradients and micromixing efficiency

is measured by the mean dissipation rate of tracer fluctuations, a quantity

proportional to the variance of the tracer gradient [3]. The rise of the local,

instantaneous gradient of a non-diffusive tracer is equivalent to the stretching

of fluid elements and both mechanisms have been used to investigate turbu-

lent [7,8] as well as chaotic mixing [9,10]. It is also worth mentioning that

properties of Lyapunov vectors and exponents can be understood through the

tracer gradient dynamics [11]. In addition, by providing quantitative insight

into local stirring properties, the tracer gradient approach is to a great extent

complementary to the geometrical approach. The tracer gradient properties

are even basically connected to the structure of mixing patterns in that the

gradient direction and magnitude respectively correspond to the striation ori-
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entation and thickness – fine structures meaning large gradients –. Moreover,

as concentration contours tend to align with manifolds in chaotic regions and

almost homogeneous tracer patches lie in islands, mixing patterns are tightly

linked to coherent structures in tracer trajectories.

Production of the norm of a tracer gradient – which in turn promotes mixing

through the resulting accelerated molecular diffusion – rests on both strain

intensity and gradient orientation with respect to strain principal axes. Ori-

entation of tracer gradient in the strain basis stems from the combination of

strain, vorticity, strain basis rotation and molecular diffusion [12]; strain basis

rotation itself depends on strain, vorticity, pressure and viscous effects [12]

and so do the strain eigenvalues. These established facts suggest the intri-

cacy of the mechanisms underlying the mixing process. In three-dimensional

flows analytical approaches are unfeasible unless simplifying hypotheses on

the dynamic field are made [13]. Assuming the flow to be two-dimensional

and neglecting molecular diffusion make the problem somewhat simpler and

even analytically tractable in some special cases [7].

Even so, mixing problems have most often to be addressed in unsteady con-

ditions. Actually, non-stationary aspects of the mixing process are essential

in the turbulent as well as in the chaotic regimes. In the view of the tracer

gradient approach, then, one has to examine mixing properties of fluid flows

through the dynamics of the tracer gradient, namely through its response to

varying mechanical actions or forcing. The dynamics of scalar gradient align-

ment, for instance, has been addressed in some previous studies [12,14,15].

Recently, it has also been shown that in two-dimensional flow – more specif-

ically in the laminar Bénard - von Kármán street [16,17] – forcing through

Lagrangian variations of strain persistence may deeply affect tracer gradient
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behaviour in terms of alignment properties and norm growth rate. In particu-

lar, local orientation of the tracer gradient appears to be strongly dependent

on whether or not the gradient responds to this kind of forcing. Further inves-

tigation needs addressing some remaining questions, more especially: i) is the

latter behaviour observed in various flows or is it restricted to some class of

flows? and ii) how are local stirring properties of the flow determined by this

tracer gradient dynamics?

The present study deals with these questions by analysing the kinematics

of the tracer gradient in two model mixing flows. We more specifically fo-

cus on the conditions in which local stirring may be enhanced by unsteady

forcing. This is done in Section 3 in which the tracer gradient behaviour is

investigated numerically starting from the analytical definition of the flow.

Theoretical bases on the dynamics of the gradient of a non-diffusive tracer in

two-dimensional flows are given in Section 2. Section 4 is devoted to conclu-

sion.

2 Stirring properties considered through the behaviour of the tracer

gradient

We address the mechanisms of local stirring, that is, the advective part of

mixing during which fine structures form in the mixing pattern. Since small-

scale structures such as thin filaments imply high gradients, this process also

finds expression in enhancement of the gradient of a non-diffusive scalar or

tracer convected by the flow. The analysis is relevant to the mixing of high-

Schmidt number quantities as well as to the large-Péclet-number regime in

which a significant stage of the mixing process is filled by production of small
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scales by stretching before diffusive homogenization takes place.

In two-dimensional flows, then, the behaviour of the tracer gradient can be

rigorously analysed from the velocity gradient properties [7,15]. In this ap-

proach the tracer gradient, G, is determined through its orientation and norm

which are given by Eqs. (1) and (2) [7]:

dζ

dt
= σ(r − cos ζ), (1)

2

|G|

d|G|

dt
= −σ sin ζ, (2)

in whichG = |G|(cos θ, sin θ) and ζ = 2(θ+Φ) gives the gradient orientation in

the local strain basis (Fig. 1). Orientation of strain principal axes, Φ, is defined

by tan(2Φ) = σn/σs where σn = ∂u/∂x − ∂v/∂y and σs = ∂v/∂x + ∂u/∂y

respectively denote the normal and shear components of strain; u and v are

the velocity components. Strain rate, σ, is given by σ = (σ2
n + σ2

s)
1/2

. In Eq.

(1) r is the strain persistence parameter which measures the respective effects

of effective rotation – vorticity plus rotation rate of strain principal axes – and

strain and is defined as:

r =
ω + 2dΦ/dt

σ
, (3)

where ω = ∂v/∂x − ∂u/∂y is vorticity.

As shown by Lapeyre et al. [7], the strain persistence parameter, r, defines a

criterion to partition the flow in regions with different stirring properties. In

strain-dominated regions, r2 < 1, the tracer gradient tends to align with a local

equilibrium orientation given by ζeq = − arccos(r); the gradient norm grows

exponentially at the rate σ(1− r2)
1/2

/2 in terms of the strain-normalised time,
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τ =
∫ t
0 σ(t

′)dt′. The maximum growth rate is reached for r = 0, in the pure

hyperbolic regime, if the equilibrium orientation coincides with the strain

compressional direction given by ζc = −π/2. In rotation-dominated regions,

r2 > 1, there is no equilibrium orientation for the tracer gradient; instead,

the gradient has a most probable orientation, namely ζprob = [1− sign(r)]π/2

and its norm does not grow. Balance between strain and effective rotation,

r2 = 1, drives the tracer gradient to align with a bisector of strain principal

axes defined by ζs = 0 or ζs = −π and its norm grows linearly with τ . This

partition may depart from the one given by the widely used Okubo-Weiss cri-

terion [18,19]; because r includes the strain basis rotation rate – while in the

Okubo-Weiss criterion the rotation term is limited to vorticity –, the criterion

based on strain persistence is more general and has been shown to give a bet-

ter estimate of local stirring properties [7]. Note that accounting for rotation

rate of strain principal axes had been proposed by Dresselhaus and Tabor [20]

and that a strain persistence parameter based on effective rotation had also

been defined by Tabor and Klapper [21].

A key assumption underlying the analysis by Lapeyre et al. [7] is that r varies

“slowly” along Lagrangian trajectories. It has been more specifically shown

[16,17] that this approach remains valid as long as the response time scale of

the tracer gradient – which, as suggested by Eq. (1), is of the order of 1/σ

– is short enough compared to the time scale of the Lagrangian variations of

r which force the gradient through its orientation, ζ . Indeed perfect response

of the tracer gradient brings about preferential alignment with a direction

determined by the local value of strain persistence, r, in agreement with the

analysis of Lapeyre et al. [7]. Poor response, by contrast, has been found

to make the tracer gradient statistically align with an orientation given by
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the mean value of strain persistence, 〈r〉, which indicates whether the flow

is, on an average, either strain- or effective-rotation dominated. Garcia et al.

[16,17] have shown the existence of the latter regimes in a laminar Bénard -

von Kármán street and checked corresponding alignment with either ζ〈r〉 =

− arccos〈r〉 or ζ〈r〉 = [1 − sign〈r〉]π/2. Interestingly, numerical simulations of

two-dimensional turbulence [7] show preferential alignment of tracer gradient

with the direction determined by the local value of strain persistence thus

suggesting a possible essential feature of scalar gradient dynamics in turbulent

flows. A condition especially relevant to stirring is defined by zero average

strain persistence, 〈r〉 ≃ 0; in this case, fast variations of r – as compared to

the tracer gradient response – drives the gradient orientation to remain close to

the local compressional direction for which the norm growth rate is maximum

[17]. In order to assess further the connection of local stirring properties with

the unsteady behaviour of the tracer gradient, we investigate two different

basic mixing flows.

3 Local stirring and tracer gradient behaviour in two model mixing

flows

3.1 Blinking vortex flow

We consider the mixing device based on the blinking vortex flow [22] regular-

ized as proposed by Kin and Sakajo [23]. The system is made of two agitators,

namely P1 and P2; their rotation is controlled in terms of direction and dura-

tion. It is assumed that the fluid motion starts as soon as one of the agitators

begins to rotate and stops as soon as rotation is switched off. The velocity field
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resulting from rotation of one agitator Pi (i = 1, 2) is defined by analytical

velocity components:

ui = −
Γi

2π

y − qi

(x− pi)
2 + (y − qi)

2 + δ2
, (4)

vi =
Γi

2π

x− pi

(x− pi)
2 + (y − qi)

2 + δ2
, (5)

where (pi, qi) defines the location of Pi in the (x, y) system of reference and

Γi is the strength of the vortex blob generated by rotation of agitator Pi.

The velocity field is regularized through parameter δ; with δ = 0, the flowfield

would correspond to the one resulting from a vortex point in an incompressible,

inviscid fluid which diverges for (x, y) tending to (pi, qi).

The conditions of the study are the same as those chosen by Kin and Sakajo

[23]: (p1, q1) = (−1/2, 0), (p2, q2) = (1/2, 0) and Γi = ±1. Clockwise rotation

corresponds to Γi = −1 and counterclockwise rotation to Γi = 1. The device

is operated by switching the agitators on and off each one in its turn. During

a basic operation P1 rotates during a given time interval, T , then is switched

off and P2 rotates during the same time interval. A mixing operation consists

of N basic operations. Rotation duration, T , is given by T = 2π2(δ2 + 1/4).

The influence of δ has been checked by Kin and Sakajo [23]; in this study

δ = 0.6, a value they specifically used. Clockwise rotation of Pi is denoted by

n(i) and counterclockwise rotation by p(i). We analyse two different mixing

processes: the first one consists of N p(1)p(2) forcing periods – both agitators

rotate counterclockwise –, while in the second one the basic operations are of

p(1)n(2) type – P1 and P2 respectively rotate counterclockwise and clockwise

–. Differences in stirring properties of p(1)p(2) and p(1)n(2) processes are

scrutinized through the behaviour of the tracer gradient.
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The approach needs the velocity gradient. The latter is easily derived from

Eqs. (4) and (5) and used to analytically express strain components, vorticity

and strain basis rotation rate:

σn =
2Γi

π

x′y′

ρ4
, (6)

σs = −
Γi

π

x′2 − y′2

ρ4
, (7)

ω =
Γi

π

δ2

ρ4
, (8)

2
dΦ

dt
= −

Γi

πρ2
, (9)

with x′ = x − pi, y
′ = y − qi and ρ2 = x′2 + y′2 + δ2. The strain persistence

parameter is derived from Eq. (3) and Eqs. (6)-(9):

r = −
Γi

|Γi|
. (10)

This is a significant result which means that in the blinking vortex system the

strain persistence parameter is constant all over the flowfield during rotation

of either P1 or P2. More precisely, r = 1 for clockwise rotation of Pi and

r = −1 for counterclockwise rotation. These special values of r indicate that

effective rotation – not just vorticity – and strain balance each other, a result

already mentioned for the single point vortex [24]. Moreover, p(1)p(2) and

p(1)n(2) processes respectively correspond to two different kinds of forcing

of the tracer gradient through strain persistence; the former induces steady

forcing (r = −1) of the tracer gradient orientation, while the latter results in

unsteady forcing (r periodically takes values -1 and 1).

Figure 2 displays the positions – computed using Eqs. (4) and (5) – of 20000

particles, initially set on line [−2 ≤ x ≤ 2, y = 0], after 16 period times, a
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test case already studied by Kin and Sakajo [23]. As suggested by the fig-

ure, p(1)n(2) most likely spreads material out much better than p(1)p(2) does

which is confirmed in more details by Kin and Sakajo [23]. Actually, p(1)p(2)

accomodates unmixed regions, while p(1)n(2) ensures chaotic conditions and

thus better global mixing. From a practical point of view, local stirring prop-

erties of process p(1)p(2) may therefore be a question of minor importance.

All the same we consider p(1)p(2) to clearly show the difference in stirring

properties resulting from forcing via either steady – p(1)p(2) – or unsteady –

p(1)n(2) – strain persistence. As shown in the following, p(1)n(2) process is

more efficient than p(1)p(2) in this respect as well.

Lagrangian Eqs. (1) and (2) for the orientation and norm of the tracer gra-

dient are numerically solved for both p(1)p(2) and p(1)n(2) processes. The

integration time step is ∆t = 0.001 T and the total number of forcing peri-

ods is N = 16. The differences between both processes are first illustrated

by tracking the evolution of the tracer gradient along the trajectory of a test

particle initially located at x(0) = −2 and y(0) = −1.3 10−7. The trajectory

is integrated using the velocity field given by Eqs. (4) and (5). The initial

orientation of the gradient is ζ(0) = π/4 and its initial norm, |G|(0) = 1.

The normalised strain rate, σ⋆ = σ/σm, experienced by the tracer gradient

along the Lagrangian trajectory of the test particle – where σm = (Γi/4πδ
2)

2

is the maximum strain rate caused by the device – is displayed in Fig. 3. The

respective evolutions in p(1)p(2) and p(1)n(2) processes are different, but the

gradient undergoes, on an average, a comparable strain rate. The difference in

the evolution of the tracer gradient orientation is more striking. As shown in

Fig. 4, in the p(1)p(2) process the steady value of strain persistence, r = −1,

drives the tracer gradient to align with the bisector of strain principal axes
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defined by ζs = −π, in agreement with the analysis of Lapeyre et al [7]. During

the p(1)n(2) process, by contrast, the alternating behaviour of strain persis-

tence, r = ±1, prevents alignment from constantly tending to either ζs = −π

or ζs = 0; the tracer gradient orientation remains close to the compressional

direction given by ζc = −π/2 which corresponds to alignment determined

by the mean strain persistence, 〈r〉 = 0 in the present case. Alignment of

the tracer gradient has a big effect on the norm growth rate. As shown in

Fig. 5, the normalised growth rate, η⋆ = η/ηm – with η = −(σ sin ζ)/2 and

ηm = σm/2 –, tends to vanish along the Lagrangian trajectory in the p(1)p(2)

process, while it is sustained in the p(1)n(2) process. As a result, the p(1)n(2)

process causes a much larger rise of the gradient norm (Fig. 6).

The behaviour pictured by the Lagrangian tracking of a single particle is

confirmed by statistics computed on 60501 particles initially located on a

regular mesh over the spatial domain defined by −4 ≤ x ≤ 4 and −6 ≤ y ≤ 6.

Particles are tracked all along 16 forcing periods of agitators P1 and P2. For

each particle, the initial norm of the tracer gradient is unity and the initial

gradient orientation is ζ(0) = 0. It has been checked that initial orientation

does not significantly affect the tracer gradient statistics.

Figure 7 displays the p.d.f of strain rate computed over all the Lagrangian

trajectories. This p.d.f is the same for both p(1)p(2) and p(1)n(2) processes.

Clearly, the most probable values of strain rate – in other words, the most

probable values of the frequency of tracer gradient response – lie below the

frequency, 1/T , of the periodical forcing imposed by the alternating strain per-

sistence in p(1)n(2) process. In the latter case the tracer gradient thus does

not keep up with strain persistence variations and, as shown in Fig. 8, statisti-

cally aligns with the direction defined by the mean strain persistence, 〈r〉 = 0,
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– hence with the compressional direction, ζc – rather than with direction ζs

corresponding to the instantaneous value, r = ±1. In the p(1)p(2) process, by

contrast, forcing resulting from the steady value of strain persistence drives

the tracer gradient to align with ζs (Fig. 9).

It is this special behaviour which explains the difference in the local stir-

ring properties of processes p(1)p(2) and p(1)n(2). This analysis is supported

by statistics derived from the tracking of the 60501 Lagrangian particles. As

shown in Table 1, the mean strain rate is the same for both p(1)p(2) and

p(1)n(2). However, the mean value of log |G| is much larger at the end of

the p(1)n(2) process which indicates better local stirring. This difference is

explained by the statistics of tracer gradient alignment; the gradient statis-

tically tends to align closer to the compressional direction in the p(1)n(2)

process which, through the orientation term, sin ζ , brings about a larger norm

growth rate, η⋆.

3.2 Sine flow

As a second mixing system, we consider the sine flow [25] defined by the

blinking of two nonlinear velocity fields, namely:

u0(x, y) = (sin 2πy, 0) ; u1(x, y) = (0, sin 2πx), (11)

which are alternately applied with half-period T . For both velocity fields,

σn = 0. When velocity is given by u0:

σs = 2π cos 2πy ; ω = −2π cos 2πy, (12)
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while when u1 is applied:

σs = 2π cos 2πx ; ω = 2π cos 2πx. (13)

Moreover, in both cases dΦ/dt = 0 and effective rotation is thus restricted

to vorticity. The strain persistence parameter, then, is r = ω/σ which leads

to r = −1 for u0 velocity field and r = 1 for u1. The protocol based on

alternating u0 and u1 velocity fields thus comes to unsteady forcing through

strain persistence which periodically takes values -1 and 1 all over the flow

field.

As in the case of the blinking vortex flow, Eqs. (1) and (2) are solved along

Lagrangian trajectories. The latter are integrated using velocity given by Eq.

(11) and assuming periodic conditions on the boundaries of the computa-

tional domain. The protocol conditions are the same as those considered by

Cortelezzi et al. [26]; the total duration of the process is Ttot = 8 and three

different half-periods are examined, namely T = 0.1, T = 0.4 and T = 0.8.

The effect of period time, T , on the Lagrangian evolution of the tracer gradient

is illustrated by tracking a test particle starting from coordinates x(0) = 0 and

y(0) = 0.15; the initial orientation of the gradient is ζ(0) = π/4 and its initial

norm is |G|(0) = 1. Figure 9 displays the strain rate history along the particle

trajectory for T = 0.1 and T = 0.8 with σ⋆ = σ/2π. On an average, the strain

rate experienced by the tracer gradient is larger in the latter case. However,

through its action on gradient orientation, unsteady forcing resulting from

the periodical variations of r has a significant influence on the growth rate

of the gradient norm. As shown in Fig. 10, fast unsteady forcing – T = 0.1

– precludes alignment of the tracer gradient with directions given by either
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r = 1 (ζs = 0) or r = −1 (ζs = −π) and promotes alignment close to the

compressional direction, ζc = −π/2, corresponding to 〈r〉 = 0. For T = 0.8,

though, the tracer gradient rather reveals a tendency to align with directions

defined by r = ±1. This difference in alignment results in a comparable norm

growth rate, η⋆ – with η⋆ = η/2π –, for T = 0.8 and T = 0.1 (Fig 11), despite

an overall lower strain rate in the latter case.

More general statistics are computed over the trajectories of 40401 particles

initially set on a regular mesh covering the spatial domain corresponding to

0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The initial norm of tracer gradient is unity and

its initial orientation is ζ(0) = 0. As in the blinking vortex flow, the gradient

statistics weakly depend on initial orientation.

Figure 12 shows the strain rate p.d.f computed over the set of Lagrangian

trajectories. The p.d.f clearly peaks near the maximum strain rate, σm = 2π.

In fact, as shown by Eqs. (11) - (13), maximum strain rate coincides with the

minimum value of velocity; Lagrangian particles thus spend most of residence

time in high-strain-rate regions. From Fig. 12, it is clear that for the smallest

value of period time, T = 0.1, variations of strain persistence are too fast for

the tracer gradient to respond. The larger period times, T = 0.4 and T = 0.8,

by contrast, correspond to frequencies of strain persistence variations smaller

than the most probable strain rate and must lead to better response of the

tracer gradient. This is confirmed by orientation p.d.f’s displayed in Fig. 13.

As in the case of the blinking vortex flow, fast variations of strain persistence

preclude alignment with equilibrium orientation, ζs. This alignment is much

better for T = 0.4 and T = 0.8 than for T = 0.1. For the latter period time, the

tracer gradient orientation does not keep up with strain persistence variations

and remains close to the direction determined by mean strain persistence,
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〈r〉 = 0, namely, the local compressional direction, ζc.

As a result, the smaller the period time, the better the conditions for local

stirring. Table 2 shows that the mean strain rate is the same for the three

values of T . However, the growth rate of tracer gradient norm is improved

as T is decreased. This is clearly due to better alignment with compressional

direction which, through directional term, sin ζ , results in larger norm growth

rate, η⋆.

3.3 Distribution of stirring properties

Local growth rate of tracer gradient norm is relevant to local stirring – or

stretching –, but diagnosis of the whole flow field needs the distribution of

stirring properties over the domain. This question has already been discussed

[27,28]. The non-dimensional integral Iη(x0, y0) =
∫ Ttot

0 η(x0, y0; t)dt – where

Ttot is the total duration of the protocol – computed along Lagrangian trajec-

tories and plotted in function of initial coordinates, (x0, y0), of each trajectory

gives information about distribution of stirring properties [29].

Maps of Iη(x0, y0) for the blinking vortex flow are shown in Fig. 14. In com-

parison to protocol p(1)p(2), p(1)n(2) ensures both large local growth rate of

tracer gradient norm and chaotic conditions causing uniform distribution of

stirring properties over a significant part of the domain. However, the latter

ideal conditions are not always fulfilled. Chaotic regime in the sine flow, for

instance, is reached for large enough period time, T [26]. As is clear from Fig.

15, a small value of T – rapid forcing –, then, does lead to significant increase

of tracer gradient norm as explained in Section 3.2, but does not ensure that
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stirring properties are uniformly distributed. Interestingly, Iη(x0, y0) fields co-

incide with Poincaré maps for the sine flow [26]. For the blinking vortex flow

[23], they are symmetrical to Poincaré maps. Through the integrated norm

growth rate they thus include information on both global mixing and stirring

– or stretching – flow properties. Their close analogy with Poincaré maps con-

firms the above-mentioned connection (Section 1) between the tracer gradient

properties and the structure of mixing patterns.

4 Conclusion

The behaviour of the gradient of a tracer has been investigated in two model

flows which often serve to mimic mixing systems, namely, the blinking vortex

flow and the sine flow. The velocity gradient tensor and related quantities

indicating local stirring properties have been exactly derived from the ana-

lytical definition of each velocity field. In particular, in both flows the strain

persistence parameter reveals a special behaviour. In the blinking vortex flow

rotation of agitators in the same direction leads to a constant strain persis-

tence – -1 or 1, depending on rotation direction –, while alternating clockwise

and counterclockwise rotation drives strain persistence to periodically take

values -1 and 1. In the sine flow strain persistence also undergoes the latter

periodical variations.

The numerical study has shown that: i) unsteady forcing resulting from strain

persistence variations experienced along Lagrangian trajectories significantly

affect the tracer gradient properties through local alignment. More specifically,

strain persistence variations occuring on a time scale shorter than the response

time scale of the tracer gradient drive the latter to stay aligned close to the
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direction – say, ζ〈r〉 – defined by the averaged strain persistence. This shows

that the dynamics of the tracer gradient already emphasized in the laminar

Bénard - von Kármán street [16,17] is also observed in model mixing flows and

is most likely not a feature peculiar to a given flow; ii) in both the blinking

vortex and the sine flows local stirring properties are deeply influenced by

unsteady forcing imposed by strain persistence variations. Indeed the special

alternating behaviour of strain persistence caused by flow operation makes ζ〈r〉

coincide with the local compressional strain direction which promotes increase

of the tracer gradient and thus local stirring.

Work in progress is addressing more complex mixing flows in which forcing is

caused by both time and space variations of strain persistence.
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FIGURE CAPTION

FIG. 1 Schematic of reference frames; S− and S+ respectively stand for com-

pressional and extensional strain axes.

FIG. 2 Positions of 20000 particles, initially located on line [−2 ≤ x ≤ 2, y =

0], after 16 period times; (a) p(1)p(2) process; (b) p(1)n(2) process.

FIG. 3 Lagrangian evolution of strain rate for the test particle; (a) p(1)p(2)

process; (b) p(1)n(2) process.

FIG. 4 Lagrangian evolution of tracer gradient orientation for the test particle;

dashed line: p(1)p(2) process; solid line: p(1)n(2) process.

FIG. 5 Lagrangian evolution of tracer gradient norm growth rate for the test

particle; dashed line: p(1)p(2) process; solid line: p(1)n(2) process.

FIG. 6 Lagrangian evolution of tracer gradient norm for the test particle;

dashed line: p(1)p(2) process; solid line: p(1)n(2) process.

FIG. 7 P.d.f of strain rate computed on 60501 Lagrangian trajectories in blink-

ing vortex flow.

FIG. 8 P.d.f of tracer gradient alignment computed on 60501 Lagrangian tra-

jectories in blinking vortex flow; (a) p(1)p(2) process; (b) p(1)n(2) process;

solid line: p.d.f of (ζ − ζc)/π; dashed line: p.d.f of (ζ − ζs)/π.
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FIG. 9 Lagrangian evolution of strain rate for the test particle in sine flow;

(a) T = 0.1; (b) T = 0.8.

FIG. 10 Lagrangian evolution of tracer gradient orientation for the test particle

in sine flow; (a) T = 0.1; (b) T = 0.8.

FIG. 11 Lagrangian evolution of tracer gradient norm growth rate for the test

particle in sine flow; (a) T = 0.1; (b) T = 0.8.

FIG. 12 P.d.f of strain rate computed on 40401 Lagrangian trajectories in sine

flow.

FIG. 13 P.d.f of tracer gradient alignment computed on 40401 Lagrangian

trajectories in sine flow; (a) p.d.f of (ζ − ζs)/π; (b) p.d.f of (ζ − ζc)/π; solid

line: T = 0.1; dashed line: T = 0.4; dashed-dotted line: T = 0.8.

FIG. 14 Maps of Iη(x0, y0) in blinking vortex flow; (a) p(1)p(2) process; (b)

p(1)n(2) process.

FIG. 15 Maps of Iη(x0, y0) in sine flow; (a) T = 0.1; (b) T = 0.8.
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Fig. 1. Schematic of reference frames; S− and S+ respectively stand for compres-

sional and extensional strain axes.
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Fig. 2. Positions of 20000 particles, initially located on line [−2 ≤ x ≤ 2, y = 0],

after 16 period times; (a) p(1)p(2) process; (b) p(1)n(2) process.
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Fig. 3. Lagrangian evolution of strain rate for the test particle; (a) p(1)p(2) process;

(b) p(1)n(2) process.
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Fig. 4. Lagrangian evolution of tracer gradient orientation for the test particle;

dashed line: p(1)p(2) process; solid line: p(1)n(2) process.
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Fig. 5. Lagrangian evolution of tracer gradient norm growth rate for the test particle;

dashed line: p(1)p(2) process; solid line: p(1)n(2) process.
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Fig. 6. Lagrangian evolution of tracer gradient norm for the test particle; dashed

line: p(1)p(2) process; solid line: p(1)n(2) process.
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Fig. 7. P.d.f of strain rate computed on 60501 Lagrangian trajectories in blinking

vortex flow.
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Fig. 8. P.d.f of tracer gradient alignment computed on 60501 Lagrangian trajectories

in blinking vortex flow; (a) p(1)p(2) process; (b) p(1)n(2) process; solid line: p.d.f

of (ζ − ζc)/π; dashed line: p.d.f of (ζ − ζs)/π.
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Fig. 9. Lagrangian evolution of strain rate for the test particle in sine flow; (a)

T = 0.1; (b) T = 0.8.
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Fig. 10. Lagrangian evolution of tracer gradient orientation for the test particle in

sine flow; (a) T = 0.1; (b) T = 0.8.
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Fig. 11. Lagrangian evolution of tracer gradient norm growth rate for the test par-

ticle in sine flow; (a) T = 0.1; (b) T = 0.8.
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Fig. 12. P.d.f of strain rate computed on 40401 Lagrangian trajectories in sine flow.
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Fig. 13. P.d.f of tracer gradient alignment computed on 40401 Lagrangian trajecto-

ries in sine flow; (a) p.d.f of (ζ − ζs)/π; (b) p.d.f of (ζ − ζc)/π; solid line: T = 0.1;

dashed line: T = 0.4; dashed-dotted line: T = 0.8.
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Fig. 14. Maps of Iη(x0, y0) in blinking vortex flow; (a) p(1)p(2) process; (b) p(1)n(2)

process.
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Fig. 15. Maps of Iη(x0, y0) in sine flow; (a) T = 0.1; (b) T = 0.8.
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process 〈σ⋆〉 〈log |G|〉final 〈|ζ − ζc|/π〉 〈− sin ζ〉 〈η⋆〉

p(1)p(2) 0.16 0.96 0.31 0.51 0.052

p(1)n(2) 0.16 2.6 0.12 0.89 0.14

Table 1

Statistics computed on 60501 Lagrangian trajectories for processes p(1)p(2) and

p(1)n(2) of blinking vortex flow; 〈.〉final represents averaging over the 60501 final

values.

T 〈σ⋆〉 〈log |G|〉final 〈|ζ − ζc|/π〉 〈− sin ζ〉 〈η⋆〉

0.1 0.64 6.6 0.081 0.95 0.61

0.4 0.64 5.8 0.15 0.85 0.53

0.8 0.64 4.8 0.22 0.72 0.45

Table 2

Statistics computed on 40401 Lagrangian trajectories in sine flow for T = 0.1,

T = 0.4 and T = 0.8; 〈.〉final represents averaging over the 40401 final values.
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