
HAL Id: hal-01418123
https://hal.science/hal-01418123v1

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bio-Inspired Incremental Learning Architecture for
Applied Perceptual Problems

Alexander Gepperth, Cem Karaoguz

To cite this version:
Alexander Gepperth, Cem Karaoguz. A Bio-Inspired Incremental Learning Architecture for Applied
Perceptual Problems. Cognitive Computation, 2016, 8, pp.924 - 934. �10.1007/s12559-016-9389-5�.
�hal-01418123�

https://hal.science/hal-01418123v1
https://hal.archives-ouvertes.fr

A bio-inspired incremental learning architecture for applied
perceptual problems

Alexander Gepperth1 and Cem Karaoguz1∗

Abstract
We present a biologically inspired architecture

for incremental learning that remains resource-efficient
even in the face of very high data dimensionalities
(>1000) that are typically associated with perceptual
problems. In particular, we investigate how a new per-
ceptual (object) class can be added to a trained ar-
chitecture without retraining, while avoiding the well-
known catastrophic forgetting effects typically associ-
ated with such scenarios. At the heart of the presented
architecture lies a generative description of the percep-
tual space by a self-organized approach which at the
same time approximates the neighbourhood relations in
this space on a two-dimensional plane. This approxima-
tion, which closely imitates the topographic organiza-
tion of the visual cortex, allows an efficient local update
rule for incremental learning even in the face of very
high dimensionalities, which we demonstrate by tests
on the well-known MNIST benchmark. We complement
the model by adding a biologically plausible short-term
memory system, allowing it to retain excellent classi-
fication accuracy even under incremental learning in
progress. The short-term memory is additionally used
to reinforce new data statistics by replaying previously
stored samples during dedicated ”sleep” phases.

1. INTRODUCTION

This contribution addresses the issue of incremen-
tal learning for applied robotic scenarios. In particu-
lar, we target perceptual learning scenarios where data
dimensionalities are typically higher (>1000) than cur-
rent incremental learning algorithms are able to handle.
Incremental learning itself is a notoriously ill-defined
term, referring to methods that relax some of the classi-
cal assumption of machine learning, namely the avail-
∗1Alexander Gepperth and Cem Karaoguz are with ENSTA

ParisTech, UIIS Lab University of Paris-Saclay, 91762 Palaiseau,
France and INRIA FLOWERS, 200 avenue de la vielle tour, 33405
Talence, France alexander.gepperth@ensta.fr,
cem.karaoguz@ensta.fr

A B C D

training retraining retrainingretraining evaluation

Figure 1. Incremental learning scenario tar-
geted in this study. A) Initial training leaving
out a subset of classes (in this paper always
just one class). B) optional: incremental re-
training with the ”missing” classes (for sys-
tem without short-term memory) C) Re-training
with all classes. D) Evaluation of overall clas-
sification performance (for all classes) on an
independent test set.

ability of training and test data obtained from sampling
the same unknown distribution. Instead, incremental
learning algorithms may be trained on a set of train-
ing data, and then retrained with data sampled from a
(more or less) different distribution, potentially multi-
ple times. Incremental learning may also refer to learn-
ing algorithms that receive their training samples one by
one without knowing their number in advance, instead
of processing all examples at the same time, which ef-
fectively amounts to changing data distributions as well.

In this contribution, we investigate an even stronger
form of incremental learning that often occurs in robotic
perception problems: the addition of new perceptual
classes (e.g., object classes) to a trained classifier. This
can happen, for example, by showing a new object to a
robot, or a whole set of new objects. This procedure is
depicted in Figure 1.

1.1. Problem setting and goals of the study

In perceptual problems, the input dimension I is of-
ten quite high, and it is not uncommon for the product
IO to exceed 10000 where O denotes output dimension-

SOM

projection

Linear

regression

pattern
vectors (I)

topology-preserving
representation (H)

category
vector (P)

ground-truth
vector (T)

performance
evaluationgating

signalsquality
evaluation

Figure 2. Architecture overview

ality. Furthermore, not only execution but also train-
ing time is strongly constrained in a robotics applica-
tion. Imagine a user teaching a new visual percept to
a robot; in this setting, training data must be processed
sufficiently quickly to allow interaction, apart from the
fact that execution of a trained model must be efficient.
Furthermore, the amount of available memory is often
severely limited as well if an algorithm is to run on a
real robot, potentially on an embedded computer. In ad-
dition, in a human-robot interaction scenario, training
samples are usually provided sequentially and must be
reacted upon immediately, and there is no knowing how
many other samples a human might yet provide. Lastly,
perceptual problems in robotics are often very challeng-
ing ones, so any approach needs to be benchmarked on
problems of sufficient complexity.

Therefore, the goal of this study is to present a clas-
sification architecture capable of being trained with new
classes incrementally as depicted in Figure 1, while be-
ing compatible with the following constraints:

• training samples are received one by one

• total number of training samples is unknown

• data dimensionality is high

• execution and training time is limited

• memory is limited

• newly added information should be taken into ac-
count immediately

• should work well on challenging and representa-
tive real-world tasks

1.2. Related work and taxonomy of incremen-
tal learning approaches

Incremental learning comes in various forms in the
literature, and the use of the term is not always consis-

tent: first of all, there are approaches while are capa-
ble of what we here denote online learning, meaning
that they take their training samples one by one with-
out knowing their number in advance. Most notably,
this is achieved by multilayer perceptrons (MLPs) but
there are also extensions of the support vector machine
(SVM) model [1, 2] that have this capacity. Online
learning is necessary for what we consider to be incre-
mental learning (see list of requirements in the previous
section) but not sufficient, as we require as well the ca-
pacity to adapt to limited changes (often termed ”con-
cept drift” and/or ”concept shift” [3]) in data statistics
while modifying existing models as little as possible.
In the neural network literature, it is well-known that
such scenarios lead to what is termed ”catastrophic for-
getting” [4], the sudden overall deterioration of model
performance. To perform true incremental learning in
the aforementioned sense, most approaches perform a
local partitioning of the input space and train a sep-
arate classification/regression model for each partition
[5, 6, 7, 8, 9]. The manner of performing this par-
titioning is very diverse, ranging from kd-trees [9] to
genetic algorithms [8] and adaptive Gaussian receptive
fields [5]. Equally, the choice of local models varies
between linear models [5], Gaussian mixture regression
[9] or Gaussian Processes [6]. Since this article is con-
cerned with high-dimensional perceptual problems, it
can be stated for all cited approaches that it is really the
partitioning of the input space that is costly in terms of
memory. Most notably, covariance matrices used in [5]
are quadratic in the number of input dimensions which
makes their use prohibitive in our problem setting.

1.3. Bio-inspired approach to incremental
learning

As biological incremental learning has reached a
high degree of perfection, we explicitly investigated the
biological literature for hints as how to this might be
achieved. Basing ourselves on observations from the
basic sensory cortices, we noted that sensory represen-
tations seem to be prototype-based, where prototype-
sensitive neurons are topologically arranged by similar-
ity [10, 11, 12, 13]. Learning seems to act on these
representations in a task-specific way, where more pro-
totypes are allocated to sensory regions where finer
discrimination is necessary [14], i.e., where more er-
rors occur during learning. Learning is conceivably
enhanced through acetylcholine release in case of task
failures [15, 16], leading to higher ”prototype density”
in difficult regions of the sensory space. In particular,
learning seems to respect and even generate topological
layout of prototypes by changing only a small subset of

Figure 3. Illustration of how incremental learn-
ing is made possible through a topologically
ordered prototype representation. Due to topo-
logical ordering, neighbouring prototypes are
almost always situated in nearby regions of in-
put space. Therefore, local updates of proto-
types will almost always be local in input space
as well, thus effectively enabling efficient in-
cremental learning. This is shown here for
a subset of prototypes trained on the MNIST
database, the best-matching unit (BMU) for a
”5” input being indicated by a small red cir-
cle. It is obvious that the local 2D update re-
gion, indicated by a larger red circle, is indeed
local in the input space. The yellow circle in-
dicates a region where this property does not
hold (structural defect) but the reader can con-
vince himself that this occurs but rarely.

neural selectivities [17] at each learning event, namely
around those neurons that best matched the presented
stimulus [13].

We model these findings by using a self-organizing
map (SOM) learning to shape the feature preferences
of hidden layer neurons in our architecture. SOM is
a prototype-based algorithm in the sense that the hid-
den layer weight vectors ”live” in the space of inputs
and aim to approximate the probability density in that
space. We model the global, task-related error signal
by the current classification error that activates SOM
learning in case of mismatch or ambiguity. As SOM
learning attributes more prototypes to regions where
many learning events occur, this will ensure that pro-
totype density increases in difficult regions of the in-
put space. Furthermore, SOM adaptation is stably self-
terminating since no more learning will occur when no
more errors are made. Inversely, when error rates in-
crease due to the presentation of new input statistics, the
hidden layer representation will become plastic until er-
ror rates subside again, when a sufficient re-adaptation
has been achieved. Lastly, SOM produces a topologi-
cally organized representation of the input space, which

was the reason to formulate the model in the first place,
and modifies weights only locally in case of learning
(as observed in biology). It is above all this localized
adaption property that makes us choose the SOM algo-
rithm, as this is an essential prerequisite for incremental
learning as will be detailed later in this section. On may
speculate that the observed topological organization of
selectivities in biological neurons serve just for that: to
facilitate incremental learning.

Concretely, we created a three-layer neural net-
work, see Figure 2, that learns a set of plastic, topolog-
ically organized prototypes in its hidden layer, imple-
menting the approximation scheme for neighbourhood
relations. Consequently, a learning scheme that mod-
ifies the best-matching prototype and its (2D) neigh-
bours will be strictly local in input space as well, see
Fig. 3. A read-out mechanism between hidden and out-
put layer maps local input space regions (i.e., sets of
prototypes) to class memberships using simple linear
regression learning. Update of hidden layer prototypes
is strictly controlled and occurs only when output layer
activity is incorrect or ambiguous, on the grounds that
prototypes that allow satisfactory classification need not
be adapted. Inversely, the mapping from hidden to out-
put layer is adapted only when there are sufficiently
similar prototypes in the hidden layer, since excessive
dissimilarity means that unknown data is being fed to
the network, and appropriate prototypes must be formed
before meaningful readout can occur.

On the computational side, all major approaches
to incremental learning, (see Section 1.2), perform a
partitioning of the input space and learn independent
models in each partition. In this way, learning is al-
ways localized in the input space, in the sense that a
change of statistics in one part of that space will not af-
fect learning in other, distant parts. It is this property
that avoids ”crosstalk” and therefore catastrophic for-
getting that is observed in many connectionist models
[4]. The presented architecture follows this approach
using an approximation scheme that strongly simpli-
fies the definition of local regions which is very costly
in spaces of high dimensionality I, for example when
using a covariance matrix that will contain I2 entries.
To avoid this, local regions are coarsely approximated
by hyperspheres whose centers are defined by support
points (or prototypes). The quality of this approxima-
tion can be controlled by controlling the overall number
of prototypes. As such a prototype-based representa-
tion approximates the distribution of data points in in-
put space as a whole, it is a generative model [18] as
it could be used for sampling purposes. As a local re-
gion will usually be defined by more than one proto-
type, and learning should act on all or at least many

prototypes of a region, a way needs to be found to adapt
”nearby” prototypes together, amounting to the need
of an efficient neighbourhood relation between proto-
types. We approximate this by placing prototypes onto a
two-dimensional lattice where lattice distance expresses
closeness in input space, this property being assured by
the learning rule for prototype adaptation. This approx-
imation scheme (which is conveniently and implicitly
generated by the SOM learning algorithm), which leads
to drastically reduced memory requirements for high-
dimensional problems, is explained in Figure 3.

We also incorporate the interplay between short-
term and long-term memory in our model. There is
a large body of literature investigating the roles of
the hippocampal and neocortical areas of the brain in
learning. Generally speaking, the hippocampus em-
ploys a rapid learning rate with separated represen-
tations whereas the neocortex learns slowly, building
overlapping representations of the learned task [19]. A
well-established model of the interplay between the hip-
pocampus and the neocortex suggests that recent mem-
ories are first stored in the hippocampal system and they
are played back to the neocortex over time [20]. This
accommodates the execution of new tasks that have not
been recently performed as well as the transfer of new
task representations from the hippocampus (short-term
memory) to the neocortical areas (long-term memory)
through slow synaptic changes. Inspired from these bi-
ological findings, we investigated the effects of such a
setup on our model.

Summarizing, we have tried to incorporate as many
facts about incremental learning in biology as possi-
ble while keeping the model as simple and efficient as
possible. Our modeling takes place at the architectural
level, leaving aside the finer details of neural modeling
(rate/spike code, dynamic neuron models etc.).

2. METHODS

As stated in Section 1.3, we implement our ap-
proach to incremental learning as a three-layer neural
network architecture depicted in Figure 2. To train the
hidden layer H of topologically organized prototypes,
we use a learning scheme adapted from the well-known
self-organizing map (SOM) algorithm [21] which is de-
scribed in Section 2.1, whereas the readout from hidden
to output layer O is performed by linear regression (LR)
explained in Section 2.2. A particular point are the mod-
ulation influences within the architecture, which control
and restrict learning in hidden and output layers, see
Section 2.3.

We denote neural activity vector in a 2D represen-
tation X by zX (~y, t), and weight matrices for SOM and

LR, represented by their line vectors attached to target
position y = (a,b), by wSOM

~y . For reasons of readabil-
ity, we often skip the dependencies on space and time
and include them only where ambiguity would other-
wise occur. Thus we write zX instead of zX (~y, t) and
wSOM instead of wSOM

~y (t).

2.1. Activity generation and prototype training
in the hidden layer

The hidden layer H is not intended to reduce the
dimensionality of the input but rather to re-encode it
in a way that enables incremental learning, see Fig-
ure 3, while preserving information. Therefore, in-
stead of reducing the output of the hidden layer to the
best-matching unit (as it is usually done for the SOM
model), we calculate the (graded) activations of all hid-
den layer units for performing the following linear re-
gression. Hidden layer activations zH are meant to mea-
sure a sparse similarity between input and the proto-
type associated to a particular unit and are normalized
in the [0,1] interval. They are obtained by first pass-
ing all input-prototype distances z̄H through a Gaussian
function with standard deviation κ , and then applying
a transfer function TF(·) that sparsifies these similari-
ties. Here, there is a technical point to be observed:
since there is no way of knowing a priori the typical
input-prototype distances, κ must be adapted to the data
during the learning process, making it a dynamic, time-
dependent quantity:κ ≡ κ(t).

In order not to trigger the adaptation of too many
linear regression weights, the transfer function thresh-
olds these similarities, thus ensuring that only those
units whose prototypes are very close to the input are
active and take part in linear regression training.

Prototype adaptation is performed using the con-
ventional SOM update step except that it takes into ac-
count a control signal λ (t) coming from the output level
of the hierarchy, which will be described in Section 2.3.
In precise terms, the equations for activity generation in
the hidden layer in response to input activity zI are as
follows:

z̄H(~y) = ||wSOM
~y − zI || (1)

z̃H = gκ

(
z̄H) (2)

zH = TFθ ,p
(
z̃H) (3)

The adaptation steps for the weights and the dis-
tance metric κ(t) are as follows:

wSOM
~y (t +1) = wSOM

~y +λ (t)εSOMgσ (||~y−~y∗||)(zI−wSOM
~y)

(4)

κ(t +1) = (1− τ) κ(t)+ τ max~yz̄H(~y) (5)

range meaning
∈ [−1,−0.5] certain, incorrect
∈ [−0.5,−0.1] uncertain, incorrect
∈ [0.1,0.5] uncertain, correct
∈ [0.5,1] certain, correct

Table 1. Significance of various value ranges
of the confidence measure m(zP).

where gσ (x) is a zero-mean Gaussian function with
standard deviation s and ~y∗ denotes the position of
the best-matching unit (i.e., the one with the highest
similarity-to-input) in H. In accordance with standard
SOM training practices, the SOM learning rate and ra-
dius, εSOM and σ , are maintained at ε0,σ0 for t < T1
and are exponentially decreased afterwards in order to
attain their long-term values ε∞,σ∞ at t = Tconv. TF
represents a monotonous non-linear transfer function,
TF : [0,1]→ [0,1] which we model as follows with the
goal of maintaining the BMU value unchanged while
non-linearly suppressing smaller values:

TFθ ,p(z̃H) =

{
T̃Fp(z̃H) if T̃F(z̃H)> θ

0 otherwise (6)

where

T̃Fp(z̃H) =

(
z̃H
)p

max~y (z̃H(~y, t))p−1 (7)

2.2. Decision making and learning in the out-
put layer

Generation of output layer activities is performed
by a simple linear transformation of thresholded hidden
layer activities zH , using the linear regression weights
wLR. Learning is subsequently modifying these weights
to optimize the mapping of hidden layer activities zH to
the target representation zT containing the ”true” class
of a sample.

zP(~y) = wLR
~y · z

H (8)

wLR
~y (t +1) = wLR

~y (t)+2ε
LRzH (zP(~y)− zT (~y)

)
(9)

In contrast to the hidden layer learning rate, the learn-
ing rate of linear regression, εLR remains constant at all
times.

2.3. Feedback control of learning and detection
of novelty

Hidden layer and output layer neurons do not adapt
their weights all the time, only when it is deemed ap-
propriate. Here, there are two distinct cases to be dis-
tinguished: first, when the hidden layer has low overall

activity, maybe because the input belongs to a newly
added class, then linear regression should not adapt its
weights because hidden layer activity is probably not
meaningful and it will impair performance for already
represented classes. This is achieved automatically by
thresholding hidden layer activities in the transfer func-
tion T Fθ ,p by θ as specified in Equation(3), leading to
zero activity if activity is too low. In this case, linear
regression weights will not be updated as this requires
non-zero activities in the hidden layer H. Secondly, hid-
den layer weights wSOM will only be updated when the
current estimate of class membership, i.e. the output
layer activities zP, is either uncertain or wrong. To mea-
sure uncertainty, we first define an uncertainty measure
based on the output layer activities, whose basic idea is
that a certain estimate of class membership has a clear
activity maximum, so a good measure is just to use the
bounded difference between first and second maximum:

u(zP) = max~y zP−max2~y zP (10)

This measure, u(zP), can be combined with the fact
whether the activity maximum of zP is in the right place,
i.e., in accordance with ground-truth information zT :

m(zP,zT) =

{
u(zP), if arg max~yzP = arg max~yzT

−u(zP), otherwise
(11)

Finally, we obtain the modulation measure λ (t)
that decides whether hidden layer weights should
be trained, by thresholding the confidence measure
m(zP,zT):

λ (t) =

{
0, m(zP,zT)> θm

1, otherwise
(12)

Table 1 gives an overview over the intuitive meaning
of various values of the confidence measure m. By
thresholding m(zP) we thus allow hidden layer weights
to be trained only when the current class estimate is of
less-than-perfect quality, either outright incorrect (for
θm ≤ 0) or correct but of significant uncertainty (for
θm > 0).

2.4. Incremental learning with short-term
memory

We employ a short-term memory mechanism in the
form of a simple queue where novel experiences are
stored. The novelty of an experience is determined via
the comparison of the supervision signal to the predic-
tion zP of the model which we rename here for conve-
nience to zP-SOM: if the model cannot correctly classify

the input (corresponding to m(zP-SOM,zT)< 0), the fea-
ture vector zI and its label vector zT are stored in the
short-term memory. The short-term memory has lim-
ited capacity, hence a new experience overwrites the
oldest entry if the short-term memory is full.

In accordance with biological findings, the short-
term memory structure is used in both prediction and
learning phases. In the prediction phase, response of
the short-term memory representation S, z̄S to an input
zI is computed based on a distance measure, similar to
the hidden layer of the model (see Equation 1):

z̄S(i) = ||wSTM
i − zI || (13)

where wSTM
i is the prototype i stored in the short-term

memory. The decision whether the model or the short-
term memory should be used for final prediction zP is
done by comparing the activities z̄H and z̄S:

zP =

{
zP-STM, if min z̄S < min z̄H

zP-SOM, otherwise
(14)

where zP-STM is the label stored in the short-term mem-
ory along with prototype i∗ = arg miniz̄

S. In this way,
the short-term memory shall assist the classification
task when the system is exposed to samples from a new
class of object (i.e. the incremental learning stage).

Mimicking simulated experiences that occur dur-
ing sleep [22], contents of the short-term memory are
additionally replayed to the model in certain intervals M
which are referred to as sleep phases, where the whole
content of the STM is replayed to the system, thus train-
ing hidden and output layer weights. In this way, novel
experiences do not directly cause synaptic changes in
the system, they are rather exposed to the model over
the short-term memory. This may help the model to
quickly build representations for new classes and enable
the use of different dynamics for learning new classes.

2.5. Training and testing schedules and dedi-
cated incremental learning measures

The hidden layer training algorithm requires an ini-
tialization phase (until Tconv, see Section 2.1) and, af-
ter that, needs to be trained on P− 1 classes for a
while to provide a starting point for incremental learn-
ing. The initial global prototype ordering is terminated
at T1, and hidden layer initialization is performed un-
til Tconv without modulation (λ (t) ≡ 1) as modulation
information can only be obtained from a converged hid-
den layer via the subsequent linear regression stage.
Non-incremental training is conducted until Tinc1 with
modulation switched on.

When learning without short-term memory, a first
incremental training stage from Tinc1 to Tinc2, and a sec-
ond stage from then on until the end of the experi-
ment at Teval. For the first incremental training stage,
the threshold parameter θm, see Section 2.1, is set to
a high value: θm = θ inc

m , whereas it is set to zero for
all other training or testing stages: θm = 0. This is
done to ”protect” the classes that are not in the in-
put data, as a new class would initially lead to quasi-
random, weakly localized hidden layer activity which
could quickly unlearn previously learned linear regres-
sion models. Similarly, the neighbourhood radius σ(t),
see Section 2.1, is multiplied by a factor of 10 during
the first incremental stage, and slowly decreased (back)
to its long-term stable value σ∞ during the second in-
cremental stage. This allows it to perform incremental
learning, which requires a large σ for connected regions
sensitive to the new class to form in the hidden network
layer, while keeping high precision which requires that
the final neighbourhood radius σ∞ be very small.

When learning with short-term memory, a single
incremental training stage is conducted from Tinc1 to
Teval, maintaining θm = 0 and σ(t) = σ∞. Temporal
sequence of initialization, training and evaluation steps
for the setup without short-term memory are given in
Figure 4. For the setup with short-term memory, tem-
poral organization of training and test phases is shown
in Figure 5 where the exposition of novel examples is
embedded in sleep phases (shown as green periods) and
done implicitly. While the scheme illustrated in Figure

 initialization incremental learning

Global
ordering

0 T1 Tinc2

start of
modulation

P-1 classes class P all classesP-1 classes

Tinc1 Tconv Teval

evaluation

iterations

Figure 4. Temporal organization of training and
testing phases without short-term memory (x
axis not to scale).

 initialization incremental learning

Global
ordering

0 T1

start of
modulation

Tinc1 Tconv Teval

evaluation

iterations

P-1 classes P-1 classes all classes

Sleep phases

Figure 5. Temporal organization of training and
testing phases for the setup with short-term
memory (x axis not to scale).

data set dimensions # train # test preproc. # classes

MNIST 784 50.000 16.000 none 10

Table 2. Data set used in this study and its prin-
cipal properties.

Figure 6. Representative examples from the
MNIST data set used in this study.

4 is still viable for the system with short-term memory,
blending the incremental learning phase into the whole
learning process as in Figure 5 may be more plausible
for life-long autonomous learning. All other factors of
temporal schedules of training and testing are identical
to the setup without short-term memory.

3. EXPERIMENTS

The experiments in this article were conducted on
the well-known MNIST handwritten digit recognition
benchmark [23], representing a task of moderate diffi-
culty and real-world relevance problem with however
a large number (10) of categories. We evaluate per-
formance as indicated by Figure 1: training out model
in a leave-one-out fashion on all but one class and the
adding the remaining class. We also conduct a final
training phase with all classes included before evalu-
ation on the independent test set to draw conclusions
about the efficacy of each approach and possible com-
binations. For a classification task with P classes, this
gives essentially P experiments. Please see Table 2 for
relevant properties of the used data set, and Fig. 6 for
representative data samples.

3.1. Global parameter settings

We use the following fixed parameters for our sys-
tem, where the total number of neurons in the hidden
layer is n× n: n = 30, εLR = 0.001, ε0 = 0.1, σ0 =
0.3n, T1 = 50000, Tconv = 150000, Tinc1 = 800.000,
Tinc2 = 820.000, Teval = 900.000 ε∞ = 0.001, σ∞ = 0.05,
p = 20, θm = 0.0, θ inc

m = 0.75, θ = 0.75 and τ = 0.001.
SOM, STM and LR weight matrices are initialized
to random uniform values between -0.001 and 0.001.

Training examples are always randomly and uniformly
drawn from the current training set. The capacity of the
short-term memory is set to C = 300, the system is go-
ing into a sleep-phase in every 5000 iterations, replay-
ing all examples stored in the STM.

3.2. Baseline evaluation

To establish a baseline to which we can compare in-
cremental learning performance, we train the proposed
architecture on the MNIST data set as described in Sec-
tion 2, using all classes, while evaluating generalization
performance directly after the initialization phase, see
Figure 4, yielding a test error rate of 4.8% for MNIST.
This is a baseline performance that is quite competitive
when compared to other results on this popular bench-
mark, especially since we are using a rather small hid-
den layer size of 30x30 elements. With higher hidden
layer sizes, the error rate can be improved to < 2%.

3.3. Evaluation of incremental learning perfor-
mance without short-term memory

Incremental learning experiments on the MNIST
data set use the scheme explained in Figure 4. Ten ex-
periments are conducted in total each of which uses one
of the 10 classes as the excluded class, labeled Inc-0
through Inc-9. Along with the baseline experiment, Fig-
ure 7 shows the evolution of test errors.

As expected, overall error increases as soon as sam-
ples from the new class are introduced. The rapid de-
crease of classification error shows that system learns
the newly introduced class quickly. The final error val-
ues are usually higher than the values obtained right be-
fore the introduction of the new class. However, a slight
increase in the overall error should be expected since an
added class creates a more difficult classification prob-
lem. In addition, we find that the second incremen-
tal training step in Figure 1, with all classes included,
is unavoidable in almost all cases, a notable exception
being the Inc-1 experiment on MNIST shown in Fig-
ure 7. This is quite understandable, as a new class in
most cases resembles an existing one, thus partly occu-
pies the same volume in input data space and therefore
necessarily breaks readout models in this region. This
usually concerns just a few classes, as we can see in
experiment Inc-0 on MNIST from Figure 7: MNIST
classes ”5” and ”6”, which are very similar, are seri-
ously impacted by incremental training of class ”0” but
none of the other classes. The additional training step
with all classes essentially corrects the balance between
classes that are too similar, which is why it improves
performance strongly.

Figure 7. Results of incremental learning experiments Inc-0 through Inc-9 conducted on MNIST. Left:
development of overall classification performance for Inc-0 through Inc-9. Middle: development of
individual class errors for Inc-0. right: development of individual class errors for Inc-1.

3.4. Qualitative effects and biological analogy
of incremental learning

Fig. 8 qualitatively compares the impact incremen-
tal learning has on hidden layer prototypes for experi-
ment Inc-0 without short-term memory. We can observe
several things: first of all, prototypes of a class are not
always homogeneously arranged but can formed sev-
eral ”islands”, which is normal since prototypes are not
organized by class membership but by Euclidean dis-
tance. Furthermore, and more surprisingly, prototypes
of a class do not always vote most strongly for that class
in the linear regression. This is however just an expres-
sion of efficiency, as the linear regression uses all the
information at its disposal: if a prototype that encodes
the digit ”1” can be used for classifying the class ”7”
as well then it is natural that linear regression will try
to do this. And lastly, we can clearly see how class
”0” intrudes into what was previously a region covered
by prototypes of class ”6”. When observing the devel-
opment of classification errors for class ”6” in Fig. 7,
we find a corresponding increase for class ”6” during
the first phase of incremental learning, reflecting the de-
struction of many of is prototypes. However, classifica-
tion performance recovers, probably also because sev-
eral of the prototypes for ”0” actually help classifying
”6”, as we can plainly see from the color coding.

These results are meant to illustrate the global man-
ner in which incremental learning in the proposed archi-
tecture works in practice. They show that new classes
are smoothly and strictly locally embedded into exist-
ing structures, and always at positions where there is
the greatest similarity to existing prototypes, which en-
sures, as a side effect, that the ”invaded” classes may
still profit from the new prototypes as they remain very
similar.

3.5. Effects of short-term memory

Experiments with the short-term memory assisted
model were done similar to the previous ones. The
capacity of the short-term memory is set to C = 300,
the system is going into a sleep-phase in every 5000 it-
erations. All other parameters of the model were the
same as the previous experiments (see Sec. 3.1). Fig-
ure 9 shows the results from experiment Inc-6. The plot
on the left shows the frequency of short-term memory
usage for prediction throughout the whole experiment.
As expected, the system utilizes the short-term memory
more often when new experiences are presented: in the
beginning and at the start of the incremental learning
phase. The impact of the short-term memory in pre-
diction performance becomes apparent if the error plots
from experimental setups with and without short-term
memory are compared: high peaks of error that occur at
the start of the incremental learning phase with the sys-
tem without short-term memory (Figure 7, middle and
right) are suppressed by the utilization of the short-term
memory (Figure 9, right).

From the perspective of learning, in some experi-
ments with the system where short-term memory is not
utilized, the newly introduced class may cause disrup-
tions in another class that is already learned when the
classes share similar features. For example, in exper-
iment Inc-0, the newly added class 0 disrupts already
learned class 6 (Figure 7, middle). On the other hand,
from the experiments conducted with the model assisted
by a short-term memory it can be observed that after
the introduction of new samples, test errors per class re-
main consistent while the model gradually takes over
the prediction task from the short-term memory. This
suggests that the model successfully learns representa-
tions for the new class without breaking the old ones.

Figure 8. Qualitative effect of incremental learning on hidden layer prototypes for experiment Inc-0
without STM. Shown is a visual representation of prototypes for each of the n2 hidden layer units.
Left: prototypes just before incremental learning of class 0 at t = Tinc1. Right: prototypes at t = Tinc2.
The hue of each prototype corresponds to the class it votes for most strongly, which is read out
from the linear regression weights.

4. DISCUSSION

4.1. Significance of contribution

We consider the results of this study very signifi-
cant in the following sense:

• we present an incremental learning architecture
that stays resource-efficient at very high in-
put/output dimensionalities, especially w.r.t. mem-
ory consumption, which is not the case for any
other incremental learning algorithm we are aware
of. For a hidden layer with N2 elements and in-
put/output dimensionalities of I and P, the mem-
ory requirements scale roughly with N2(I+P) and
are thus linear in the sum of input and output di-
mensions. This means that memory consumption
is in no case limited by high problem dimensions
but rather by the amount of hidden layer units one
is willing to spend for better performance.

• the architecture is conceptually simple, efficient to
execute and highly parallelizable as we could show
in a previous publication[24]

• we present an intuitive way to benchmark incre-
mental learning and apply it to our architecture us-
ing two challenging perceptual problems, with ex-
cellent results regarding incremental learning per-

formance, which never degrades overall precision
by more than a few percents.

• we present a biologically plausible, efficient and
easy-to-implement way of simplifying incremental
learning even further using a short-term memory
system

4.2. Discussion of methodology

The architecture without short-term memory per-
forms incremental learning successfully but in a rather
complicated and ad hoc way. In particular, the system
has to know (i.e., be told) when incremental learning is
going to happen to that certain parameters (notable θm
and σin f) can be set properly for successful incremental
learning. While this is a valid approach (as in most ap-
plications of incremental learning, e.g., in robotics, it is
known when new things must be learned), it is neither
very elegant nor very easy-to-use: it would be much
more appealing if the system could detect conceptually
new samples autonomously, and perform incremental
learning on them without the user having to prepare
samples beforehand in order to appear exclusively (first
incremental training phase). The addition of the short-
term memory does just that! It is a very nice side effect
that it is in close analogy to biological memory architec-
tures, which may shed some light on the underlying rea-

Figure 9. Results of incremental learning experiment Inc-6 with short-term memory conducted on
MNIST. Left: frequency of short-term memory usage for prediction. Middle: development of indi-
vidual class errors for Inc-6. Right: test error of the same experiment zoomed in to the incremental
phase for better visualization. The noise in the curves after 800K iterations is due to higher sampling
rate of test error.

sons such memory architectures have evolved. From a
purely technical point of view, however, the short-term
memory solves a concrete need while leaving overall
classification performance completely unchanged.

4.3. Comparison to related work

It was attempted to compare our approach to ex-
isting prior art in the field of incremental learning, for
which we chose the LWPR algorithm[5] following the
best practices for choosing parameters as laid down in
[25]. However, when working on MNIST data having
756 dimensions and 10 classes, we found that

• performance was unsatisfactory (approximately
15% overall error) when using a single output vari-
able c expressing the class as c ∈ {1,2,3, . . .}

• performance improved when using a binary-coded
vector of 10 elements,~c, to express class member-
ship. However the number of receptive fields was
limited to approximately 15 before freezing the
computer (3GHz off-the-shelf PC running Linux,
4GB memory) due to lack of memory. In this
case, overall error rates of approximately 7% could
be achieved which is well above the error rates
achieved by our architecture.

For these reasons, we found that a fair comparison was
impossible due to the memory requirements of LWPR
when faced with high input and output dimensionalities.
As LWPR was not capable to create as many receptive
fields as it considered necessary, it could not achieve
the best possible performance. We suppose that, us-
ing computers with more memory, a fairer comparison
could be conducted which will be the subject of sub-
sequent experimental studies. For the time being, we
can conclude that LWPR performs much worse than out
model in terms of memory consumption when applied

to the MNIST dataset, and that its performance, as far
as it could be measured, is inferior. We believe that the
problem of memory complexity for large input/output
dimensionalities will manifest itself for most or all other
incremental learning algorithms listed in Sec. 1.2 as all
of them perform a partitioning of the input space, often
in a fashion that is comparable to the one LWPR uses.

4.4. Conclusion and future work

We have presented a neural architecture for incre-
mental learning that is novel in the sense that it can op-
erate in high-dimensional perceptual spaces. The func-
tionality and feasibility of this architecture has been
demonstrated on two real-world perceptual classifica-
tion benchmarks of sufficient difficulty, showing that
very high input/output dimensionalities are no obstacle
at all, and that the addition of a new perceptual class
to a trained model results in only a very small perfor-
mance impairment. Furthermore, we included a bio-
logically very plausible version of a short-term mem-
ory system, which fulfills very concrete functions: first
of all, it allows the system to use a much simpler in-
cremental learning scheme with just a single learning
phase. Secondly it permits much quicker ”reactions”
to new classes, giving correct classifications almost in-
stantly where otherwise thousands if iterations would
be needed for model convergence. And lastly, it en-
ables the system to concentrate learning on samples
from new classes that are embedded into samples of
known classes: as the new samples arrive relatively
rarely, model convergence would be very slow without
STM, which was the reason in the first place to split
incremental learning into two phases, with new exam-
ples submitted exclusively during the first incremental
phase.

Future work will include a careful study of the
dynamic interplay between long-term and short-term

memory, aiming at simplifying the architecture and
making as many parameters as possible self-adaptive.
This is a prerequisite for doing extended benchmarks on
more challenging, real-world classification problems on
which the presented architecture should perform well in
as generic a fashion as possible.

5. Compliance with ethical standards

This article does not contain any studies with hu-
man participants or animals performed by any of the
authors. Cem Karaoguz has received a research grant
from MBDA Missile Systems. Alexander Gepperth and
Cem Karagouz declare that they have no conflict of in-
terest.

References

[1] A. Bordes and L. Bottou. The huller : a simple and effi-
cient online svm. In Proceedings of the 16th European
Conference on Machine Learning (ECML, 2005.

[2] A. Syed, H. Liu, and K.K. Sung. Incremental learning
with support vector machines. 1999.

[3] Pallavi Kulkarni and Roshani Ade. Incremental learning
from unbalanced data with concept class, concept drift
and missing features: a review. International Journal
of Data Mining and Knowledge Management Process,
4(6), 2014.

[4] I. Goodfellow, M. Mirza, D. Xiao, A. Courville, and
Y. Bengio. An empirical investigation of catastrophic
forgetting in gradient-based neural networks. In ICLR
2014, 2014.

[5] S. Vijayakumar and S. Schaal. Locally weighted projec-
tion regression: An o(n) algorithm for incremental real
time learning in high-dimensional spaces. In Interna-
tional Conference on Machine Learning, 2000.

[6] D. Nguyen-Tuong and J. Peters. Local gaussian pro-
cesses regression for real-time model-based robot con-
trol. In IEEE/RSJ International Conference on Intelli-
gent Robot Systems, 2008.

[7] O. Sigaud, C. Sagan, and V. Padois. On-line regression
algorithms for learning mechanical models of robots: A
survey. Robotics and Autonomous Systems, 2011.

[8] M. Butz, D. Goldberg, and P. Lanzi. Computational
complexity of the xcs classifier system. Foundations of
Learning Classifier Systems, 51, 2005.

[9] T. Cederborg, M. Li, A. Baranes, and P.-Y. Oudeyer. In-
cremental local online gaussian mixture regression for
imitation learning of multiple tasks. 2010.

[10] Keiji Tanaka. Inferotemporal cortex and object vision.
Annual review of neuroscience, 19(1):109–139, 1996.

[11] David A Leopold, Igor V Bondar, and Martin A Giese.
Norm-based face encoding by single neurons in the
monkey inferotemporal cortex. Nature, 442(7102):572–
575, 2006.

[12] David A Ross, Mickael Deroche, and Thomas J Palmeri.

Not just the norm: Exemplar-based models also pre-
dict face aftereffects. Psychonomic bulletin & review,
21(1):47–70, 2014.

[13] Cynthia A Erickson, Bharathi Jagadeesh, and Robert
Desimone. Clustering of perirhinal neurons with similar
properties following visual experience in adult monkeys.
Nature neuroscience, 3(11):1143–1148, 2000.

[14] Daniel B Polley, Elizabeth E Steinberg, and Michael M
Merzenich. Perceptual learning directs auditory cortical
map reorganization through top-down influences. The
journal of neuroscience, 26(18):4970–4982, 2006.

[15] Norman M Weinberger. The nucleus basalis and mem-
ory codes: Auditory cortical plasticity and the induction
of specific, associative behavioral memory. Neurobiol-
ogy of Learning and Memory, 80(3):268 – 284, 2003.
Acetylcholine: Cognitive and Brain Functions.

[16] Michael E Hasselmo. The role of acetylcholine in learn-
ing and memory. Current opinion in neurobiology,
16(6):710–715, 2006.

[17] Edmund T Rolls, GC Baylis, ME Hasselmo, and
V Nalwa. The effect of learning on the face selective
responses of neurons in the cortex in the superior tempo-
ral sulcus of the monkey. Experimental Brain Research,
76(1):153–164, 1989.

[18] CM Bishop. Pattern recognition and machine learning.
Springer-Verlag, New York, 2006.

[19] Randall C Oreilly. The division of labor between the
neocortex and hippocampus. Connectionist Models in
Cognitive Psychology, page 143, 2004.

[20] J. L. McClelland, B. L. McNaughton, and R. C.
O’Reilly. Why there are complementary learning sys-
tems in the hippocampus and neocortex: Insights from
the successes and failures of connectionist models of
learning and memory. Psychological Review, 102:419–
457, 1995.

[21] T Kohonen. Self-organized formation of topologically
correct feature maps. Biol. Cybernet., 43:59–69, 1982.

[22] Bin Shen and Bruce L McNaughton. Modeling the spon-
taneous reactivation of experience-specific hippocampal
cell assembles during sleep. Hippocampus, 6(6):685–
692, 1996.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. In Intelligent Signal Processing, pages 306–351.
IEEE Press, 2001.

[24] A Gepperth and M Lefort. Biologically inspired incre-
mental learning for high-dimensional spaces. In IEEE
International Conference on Development and Learning
(ICDL), 2015.

[25] Sethu Vijayakumar Stefan Klanke and Stefan Schaal. A
library for locally weighted projection regression. Jour-
nal of Machine Learning Research (JMLR), 9:623–626,
2008.

