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Note: Physical mechanisms for the bulk melting of stable glasses
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In Ref. 1, we discussed recent work on rejuvenating
glasses®?3 but we incorrectly stated that these papers do
not discuss the bulk transformation dynamics of stable
glasses. It has been pointed out to us by Peter Wolynes
that the nucleation-and-growth scenario that we anal-
yse is related to a discussion in Refs. 2 and 3. Here,
we explain this relationship, focussing on the connection
between section II.C.2 of Ref. 1 and the “Rejuvenating
glasses” section of Ref. 2.

Both works consider transformation via propagating
fronts that move with velocity v. In our work, these
fronts are initiated by nucleation events that occur with
rate knpue per unit volume. If we imagine for a moment
that there are no propagating fronts and that each nu-
cleation event leads to transformation of a region of fixed
volume R?, then the fraction f of material that is trans-
formed after time ¢t would satisfy 0f/0t = —knucR>f
leading to f(t) = ®(t) with ®(¢) = e F=R*t In the pres-
ence of propagating fronts, the transformation is much
faster because mobility propagates outwards from each
nucleation event. Let us define the transformation time
tavr 88 f(fayr) = 1/e: this occurs when the typical spac-
ing between nucleation events, (kyuct) /%, is of the same
order as the distance that the fronts have propagated, vt.
Hence

(]<711Ut:tawr)_1 ~ (7)taw)d. (1)

Rearranging yields our Eq. (8). To make the connection
with Egs. (8-10) of Ref. 2, we should identify .., —
tR, knuc — Mo, q)(t) — (D(T, TF,t), and R — fo. This
recovers the special case 8 = 1 of that work, due to our
assumption of simple exponential nucleation kinetics.
The more general case § < 1 considered in Ref. 2
accounts for effects of disorder on the nucleation pro-
cess of the stable glass. The idea is to replace ®(t)
by ®g(t) = = *D°R* with 0 < B < 1, in which
case 0@g/0t = —ptP1kPR3®5.  We may interpret
@5 (0p/0t) as a nucleation rate, and note that this
rate depends strongly on time. This assumption encap-
sulates the fact that the least stable regions of the glass
nucleate quickly (large initial rate) after which only the
more stable regions are left, and the rate reduces. As
noted in Ref. 2, this stretched exponential form for @ (¢)
is motivated by fitting to empirical data, so the diverg-

ing nucleation rate at small time and the details of the
functional form are not physically significant, although
the exponent 8 can be rclated to material propertics?®.

This approach yields a generalisation of Eq. (6) of
Ref. 1, which is

0
A e f ) e, @
leading to
— Tetr d+p
£(t) = &=t/ (3)
with
Taty ™ (kﬁvd)fl/(dw). (4)

These results generalise Egs. (7, 8) of our work. This for-
mula for 7y, mirrors Eq. (10) of Ref. 2, so our nucleation
rate k is inversely proportional to the time scale 7(T, Tr)
defined in that work. As anticipated in our article, the
effect of the disordered initial glass state leads to a reduc-
tion in the Avrami exponent appearing in Eq. (3) above,
in this case from (d+ 1) to (d + f).

It is also interesting to contrast the two approaches.
Our identification of a first-order phase transition to in-
terpret the melting of stable glasses® allows us to put a
different perspective on several issues. (1) The approach
to front propagation in Ref. 2 is based on an analogy
with combustion, whereas we have discussed it in terms
of a nucleation-and-growth picture. (2) The existence of
a phase transition clarifies the status of the two phases
on either side of the propagating front. (3) By varying
the coupling field €, we can control the nucleation rate
of these stable glassy states, allowing the relevant phase
transition to be investigated directly by numerical simu-
lations.
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