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Congested transport at microscopic and macroscopic

scales

B. Maury∗

Abstract. This note addresses mathematical issues raised by congestion constraints
in transport equations that arise in the modeling of crowd motion or more general ac-
tive entities. We address in particular the differences between the microscopic and the
macroscopic settings.
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1. Introduction

We are interested here in the role played by congestion constraints in some evo-
lution processes of active entities, and in the way it modifies the mathematical
properties of the associated equations. By congestion we mean the following: at
the microscopic level, entities are represented by moving geometrical objects (like
discs, or spheres), and congestion simply means that two entities may not oc-
cupy the same space at the same time; at the macroscopic level, the population is
represented by a density that cannot increase above a prescribed maximal value.
Most part of the approach presented here has been developped in the context of
human crowd motions, but it may as well apply to other entities like swimming
cells (we refer to [25] for experiments on bacteria), insects ([21]), or larger animals
like sheeps ([11]). Strategies to account for congestion can be classified according
to criteria that are standard in particle physics or granular flow modeling: Soft
Sphere / Hard Sphere approaches or, similarly, Molecular Dynamics / Contact
Dynamics. In the first (soft) approach, congestion is treated in a smooth way,
typically by adding a repulsion force that acts whenever entities become close to
each other. If properly tuned, this force prevents a full overlapping of entities (see
e.g. [13], or [12] for an application of this strategy in the context of crowd motion
modeling). In the macroscopic setting it may take different forms. The one that
corresponds to short-range repulsion forces consists in adding some sort of pressure
within the population, seen here as a compressible fluid (see [7]). Depending on
the context and on the underlying physical reality, other choices are possible and
justified. It may for example consist in directly inhibiting the mechanism that is
identified as the cause of concentration (see [8], where the chemotactic velocity is
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assumed to decrease where local density increases), reducing the desired velocity
in crowded areas, in the context of crowd motion ([14, 15]), adding nonlinear diffu-
sion terms (see e.g. [2]), or incorporating correction terms that nonlocally depend
on the crowd distribution, in order to deviate the trajectory of people to avoid
overcrowded areas ([22]).

Let us also mention higher order models that incorporate inertial or delay
effects, leading to an evolution equation for velocities, see [5] or [27].

The present text focuses on the alternative approach, that is accounting for
congestion constraints in a hard way. At the microscopic level, it consists in strictly
forbidding the overlapping of entities (identified as rigid objects), whereas at the
macroscopic level, a set a feasible densities will be defined by prescribing a maximal
value for the density. We shall investigate here how these constraints are likely to
affect the evolution process that is considered, in the framework of very crude
modeling assumptions: entity tendencies correspond to a pure transport process
(by the velocity that each of them would like to have if it were alone) that is
prevented and modified by congestion.

The present paper puts in perspective different works that have been carried
out by the author and various collaborators, it aims in particular at identifying
the similarities between the microscopic and macroscopic settings, and more im-
portantly to highlight their deep discrepancies. It focuses on the hard congestion
problem, but most remarks that we make here to distinguish the two scales of de-
scription are applicabled to soft congestion. Sections 2 and 3 present in parallel the
models at both scales, and highlight their formal analogies, while Section 4 asserts
their differences, and details how those differences at the mathematical level affect
the very behavior of the associated evolution models.

2. Congested transport at both scales

2.1. Microscopic model. The first problem we shall consider consists in finding
a trajectory t 7−→ q(t) in a euclidean space, starting from a given initial value,
verifying

dq

dt
= PCq

U(q), (2.1)

where U(q) is a “spontaneous” velocity field, and Cq is a set of feasible velocities.
The instantaneous projection on Cq is intended to force q to remain in a given set
K of feasible configurations.

The crowd motion microscopic model (firstly introduced in [17]) fits in this
framework: individual are identified with rigid discs of radius r > 0 evolving in
a two-dimensional space, so that the position vector q = (q1, . . . , qN) ∈ R

2N is
subject to remain in

K =
{
q ∈ R

2N , Dij(q) = |qj − qi| − 2r ≥ 0 ∀i < j
}
. (2.2)

Feasible velocities are such that, when there is a contact (Dij = 0), the distance
may not be further reduced. Thus, the set of feasible velocities is straightforwardly
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defined as
Cq =

{
v ∈ R

2N , Dij(q) = 0 ⇒ Gij · v ≥ 0
}
, (2.3)

where Gij = ∇Dij . Given a vector of desired velocities U = (U1, . . . , UN ) ∈ R
2N

(where Ui is the velocity that individual i would like to have), the model takes the
form (2.1). In the present case, the projection on Cq can be put in a saddle-point
form ∣∣∣∣∣∣∣∣∣∣∣∣

u−
∑

i∼j

pij Gij = U,

−Gij · u ≤ 0 ∀i ∼ j,

p ≥ 0,
∑

pij (Gij · u) = 0.

(2.4)

where each pij accounts for the constraints between i and j, and can be seen as an
interaction repulsive force that acts against overlapping. Introducing the matrix
B, each line of which expresses a constraint pertaining to a couple in contact, we
obtain ∣∣∣∣∣∣∣∣∣∣

u+B⋆p = U,

Bu ≤ 0,

p ≥ 0,

p ·Bu = 0.

(2.5)

It formally takes the form of a unilateral Darcy problem (see (2.8) below, which
corresponds to a standard Darcy problem in a PDE setting). The fact that B⋆

can be seen as a discrete gradient is clear from the one dimensional case, with
N persons in a row (like in Fig. 2a). Applied to a pressure vector, it computes
the (opposite of the) resultant force on i, that is pi,i+1 − pi−1,i. We shall see in
Section 4.2 that the interpretation of B⋆ as a gradient is more tedious in the two-
dimensional setting, and that the richness of the model actually lies in this very
discrepancy between B⋆ and a proper discrete gradient operator, like the ones that
are obtained by consistent space discretization.

2.2. Macroscopic model. The very same principles can be applied at the macro-
scopic level, as initially proposed in [18]. The population is described by a measure
density ρ supported in a domain Ω, that aims at being transported according to a
given velocity field U (desired velocity), yet subject to remain in a set of feasible
densities

K̂ =

{
ρ ∈ L1(Ω) , 0 ≤ ρ ≤ 1 a.e. ,

∫

Ω

ρ(x) dx = 1

}
. (2.6)

A velocity is considered feasible if it does not lead to a violation of the constraint
above, therefore it consists in velocities that do not overconcentrate the density in
zones that are already saturated. Unformally said, it requires ∇ · u ≥ 0 wherever
ρ = 1. This can be formalized in a dual way :

Cρ =

{
v ∈ L2

ρ(Ω) ,

∫

Ω

v · ∇p ≤ 0 ∀p ∈ H1
ρ , p ≥ 0 a.e.

}
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where the set H1
ρ of pressure test functions is defined as

H1
ρ =

{
p ∈ H1(Ω) , p(1− ρ) = 0 a.e.

}
.

The macroscopic problem (macroscopic counterpart of (2.1)) simply writes

∣∣∣∣∣
∂ρ

∂t
+∇ · (ρu) = 0

u = PCq
U,

(2.7)

where the continuity equation is meant in a weak sense (see e.g. [23]), and the
projection on Cq corresponds to the L2 norm. The formal similarity with the mi-
croscopic approach is underlined by the saddle-point formulation of the projection
problem. Let us define the essential saturated zone as the largest open set ω ⊂ Ω
such that ρ(x) = 1 for a.e. x ∈ ω. The projection problem takes the form: Find
(u, p) ∈ L2(ω)×H1

0 (ω) such that

∣∣∣∣∣∣∣∣∣∣∣

u+∇p = U in ω,

−∇ · u ≤ 0 in ω,

p ≥ 0 in ω,
∫

ω

u · ∇p = 0,

(2.8)

that is the macroscopic counterpart of system (2.5). It takes the form of a Darcy
problem, that is commonly used to describe the flow of an incompressible fluid in
a porous medium (see e.g. [4]). The latter problem provides the effective velocity
in ω only. The overall velocity u is obtained by extending u|ω with U (the actual
velocity is obviously the desired one outside the saturated zone).

Proposition 2.1. Problem (2.8) has a unique solution (u, p) ∈ L2(ω)2 ×H1
0 (ω).

Proof. This is a straightforward consequence on the fact that the operator

B̂ : v ∈ L2(ω)2 7−→ −∇ · u ∈ H−1(ω) ,
〈
B̂v, p

〉
=

∫
v · ∇p,

is surjective, thanks to Poincaré inequality in H1
0 (Ω), so that B̂⋆ is one-to-one and

has closed range. As a consequence, the polar cone to the set of feasible velocities
Cq can be written

C◦
q =

{
w ∈ L2(ω)2 ,

∫

Ω

w · v ≤ 0 ∀v ∈ Cq

}
=

{
∇p , p ∈ H1

0 (ω) , p ≥ 0
}
,

hence the existence and uniqueness of a saddle-point (u, p).

Whether this macroscopic model could be properly obtained through a micro-
macro limit from the first will be addressed, and in some way answered, in a
negative way in Section 4.
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3. Well posedness of the time evolution problems

3.1. Microscopic model. The evolution problem (2.1) consists in finding a con-
tinuous path t 7→ q(t) ∈ R

2N

dq

dt
+ ∂IK(q) ∋ U(q) a.e. in [0, T ] , q(0) = q0, (3.1)

where IK(q) = 0 as soon as q ∈ K (equal to +∞ otherwise), and ∂IK is the Fréchet
subdifferential, defined for q ∈ K by

∂IK(q) = {w , IK(q) + h · w ≤ IK(q + h) + o(h) ∀h}
= {w , h · w ≤ o(h) ∀h s.t. q + h ∈ K} . (3.2)

Proposition 3.1. Let the set of feasible configuration K be defined by (2.2), and
let the desired velocity q 7→ U(q) be defined as a Lipschtitz function of q. Equa-
tion (3.1) admits a unique continuous solution over [0, T ].

Proof. The proof mainly relies on a time-discretization scheme, inspired by the so-
called catchin-up algorithm initially introduced in [20] to build discrete solutions of
sweeping processes. Let τ > 0 be a time step, the sequence (qnτ ) is built according
to ∣∣∣∣∣

q̃n+1 = qn + τU(qn),

qn+1 = PK q̃n+1,
(3.3)

Although the set K of feasible configurations is not convex, it can be shown to
be prox-regular, which essentially means that projection on it is well-defined in
a neighborhood of its boundary (see [17, 19] and the next section). Thus, for τ
sufficiently small, the projection of q̃n+1 on K is well defined. The collection of
discrete solutions can be interpolated, which forms a piecewise affine path t 7−→ qτ .
This approximate solution uniformly converges to a solution of (3.1) (see [17] for
details).

3.2. Macroscopic model. The macroscopic problem (2.7) has the general form

∂ρ

∂t
+∇ · (ρu(ρ)) = 0

where u(ρ) is a velocity field, the values of which depend on the density ρ overall
the domain, and not only at the considered point. The mapping ρ 7→ u(ρ) is far
from being smooth, and the native regularity of the velocity itself is simply L2,
so that standard theory is not applicable. An alternative approach was proposed
in [18, 19], based on optimal transportation. It consists in extending Moreau’s
approach, that was initially dedicated to Hilbert spaces, to measures. The scheme
reads as follows: ∣∣∣∣∣

ρ̃n+1 = (Id + τU) ρn,

ρn+1 = PK̂ ρ̃n+1,
(3.4)
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where the projection is meant in the square Wasserstein sense, i.e. according to
the distance defined by

W2(µ, ν)
2 = argmin

Λµ,ν

∫

Ω

|T (x)− y|2 dµ(x),

where Λµ,ν is the set of all those measurable maps that push µ forward to ν. The
minimum above is attained whenever µ does not charge zero-measure sets (which
holds in the situation we consider here), see [28] or [24].

Proposition 3.2. Let Ω be a bounded convex domain, ρ0 ∈ K̂ an initial density,
and let U be a Lipschitz velocity field, such that U points inward the domain on
∂Ω. We consider t ∈ [0, T ] 7−→ ρτ (t) ∈ K̂ (defined by (2.6)) the path obtained by
geodesic interpolation between the discrete densities obtained by application of the
scheme (3.4), and by uτ the associated velocity. Then the couple (ρτ , uτ ) converges
to a solution (ρ, u) of Problem (2.7).

Proof. We refer to [19] for a detailed proof of this convergence. Let us simply
address here a particular issue raised by the projection step (second line of (3.4)),
that enlight the fact that this macroscopic model is not a straight extension of the
microscopic model. Existence of a minimizer comes from standard compactness
arguments. As for uniqueness, K̂ is convex in the geodesical (or Mc Cann) sense:

for any two measures ρ0 and ρ1 in K̂, and T an optimal map from ρ0 to ρ1, then

ρt = ((1− t)Id + tT )♯ ρ0 ∈ K̂ ∀t ∈ [0, 1]. (3.5)

Yet, as pointed out in [3], the functional ρ 7→ W2(ρ̃, ρ)
2 is not geodesically convex.

Uniqueness can nevertheless be obtained by using the fact that the latter functional
is convex along generalized geodesics. In the present situation, such geodesics are
defined as follows: consider ρ0 and ρ1 in K̂, ρ̃ the measure that is to be projected,
and T0 and T1 optimal transport maps from ρ̃ to ρ0 and ρ1, respectively. The
generalized geodesic is obtained by interpolating the transport maps, i.e.

ρs = ((1− s)T0 + sT1)♯ ρ̃.

It can be checked that K̂ is still convex with respect to this new definition of
geodesics (see [18]), and uniqueness follows.

4. Micro-macro discrepancies

The microscopic and the macroscopic models express the very same principle at dif-
ferent levels of description: the actual velocity is the closest (in a least square sense)
to the desired velocity, among all feasible velocities. They futhermore present for-
mal analogies, up to the saddle-point formulations of the minimization problem
that defines the instantaneous velocities (Systems (2.5) and (2.8)). Yet, those
analogies covers deep discrepancies that are described in this section.
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4.1. Geometrical properties of the Wasserstein space. This section ad-
dresses some micro-macro issues linked with the geometrical properties of the sets
of feasible configurations: K defined by (2.2) for the microscopic situation, and its

macroscopic counterpart K̂ defined by (2.6). Although they obviously play and
equivalent role, they have very distinct properties from a geometrical standpoint.

At the microscopic level, K is the set of hard discs configurations without
overlapping. It is obviously non convex, and the euclidean projection on this
closed set is not uniquely defined outside a thin neighborhood. The notion of η-
prox regularity quantifies this property (see e.g. [26]): K is said to be uniformly
η-prox regular whenever

∀q ∈ ∂K , ∀v ∈ ∂Ik(q) with |v| = 1 , q = PK(q + ηv), (4.1)

where ∂IK is defined by (3.2). It can be proven (see [17]) that K (defined by (2.2))
is indeed η-prox regular, with a constant η that goes to 0 when N → +∞ together
with r → 0.

This degeneracy suggests a singular behavior in the micro-macro limit. Indeed,
the macroscopic set of feasible density K̂ does not present the characteristic of a
prox-regular set. Let us first remark that it has empty interior (for the Wasserstein

metric), so that any density ρ that never saturates the constraints belongs to ∂K̂,

while it is obviously the projection on K̂ of itself only. Even when one considers
densities that saturate the constraint on their support, uniform η-prox regularity
is immediately ruled out. Consider for example a density that is the indicator
function of a collection of non-overlapping discs of common radius 1/

√
N :

ρN =
1

π

N∑

i=1

1B(xi,1/
√
N).

Among all those measures that projects on K̂ at ρN , the most remote is a sum
of Dirac masses supported by the collection of disc centers, and the corresponding
distance scales like 1/

√
N , which goes to 0 as N goes to +∞.

In the Hilbertian setting, the projection on such a set (that rules out any uni-
form prox-regularity) would not be properly defined, even in a close neighborhood
of the set. Yet, as mentioned in the proof of Proposition 3.2, the distance from a
measure ρ to K̂ is always attained at a unique point in K̂, no matter how far ρ
is from K̂. The apparent contradiction between the properties of PK and PK̂ are
actually due to the fact that the Wasserstein setting corresponds to a Lagrangian
description of particles up to permutations. It leads to a puzzling property, that
we will illustrate by a simple example: in some cases, considering a density ρ ∈ K̂,
and a vector field that belong to the subdifferential (in the wasserstein sense) of IK̂
(such a velocity field can be seen as directed along the “outward normal direction”

of K̂), the curve ρt = (Id+ tv)♯ρ starts indeed moving straight away from K̂, then

turns back toward ρ, and re-enters K̂ at ρ. Let us make it straight that (Id+ tv)♯ρ
does not represent a solution to the transport equation with the Eulerian velocity
field v and initial density ρ, but rather the one-shot push-forward (image measure)



8 B. Maury

0

1/4

1/2

3/4

1

5/4

Figure 1. Crossing of entities, Lagrangian and Wasserstein viewpoints

of ρ by the map
x 7−→ (Id + tv)(x) = x+ tv(x).

The example is the following: in the one-dimensional setting, one considers two
individuals identified to rigid segments of length one, initially in contact, we con-
sider a velocity field (1,−1) that belongs to ∂K (see (5.1) below), and we consider
the microscopic path qt = q + tv. For t ∈ [0, 1/2[, the projection of qt on K is
q0 = q. For t = 1/2 the two segments coincide, and the projection is not unique
(the distance is attained for q and for the configuration obtained by interchanging
1 and 2, that are distinct since the description is fully Lagrangian). For larger t,
the projection is well defined, but it is not the starting point q. The right-hand
side of the figure represents the Wasserstein version of this situation, with the very
same velocity field. Segments are represented in the same way, since “particles” are
indistinguishable. For t ∈ [0, 1], the projection of ρt = (Id + tv)♯ρ is well-defined,
with a unique projection that is the initial configuration. The path ρt, that follows
a velocity field that point outward of K, actually moves away from ρ in a first
phase, but then returns back to its very initial position, unlike in the microscopic
situation.

4.2. Discrete counterparts of the differential operators. We describe here
the discrepancies between B, B⋆, and BB⋆, discrete analogs of gradient, diver-
gence, and Laplacian operators, respectively, and their macroscopic counterparts.

Discrete divergence. As already mentioned, the matrix B that expresses the
non overlapping constraints (see Equation (2.5)) is the discrete counterpart of the
opposite of the divergence operator in the macroscopic Darcy equation (2.8). Let
us denote by Nc the number of contacts. Each row of B ∈ MNc,2N (R) corresponds
to a contact between two discs i and j:

(0, . . . , 0, eij, 0, . . . , 0,−eij, 0, . . . , 0) ∈ R
2N ,

where eij = (qj − qi)/|qj − qi| is the unit vector between centers. In the one-
dimensional setting, Bu ≤ 0 prevents inter-center distances to decrease, thus it is
a straight counterpart of divergence non-negativity. In the two-dimensional set-
ting, the constraint highly depends on the disc arrangement. In the cartesian case
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a b c d e

Figure 2. Typical disc arrangments

(Fig. 2b), Bu ≤ 0 imposes the same kind of constraint along x and y directions, in-
dependently, which is much stronger that imposing a local non-negative divergence
like in the macroscopic situation. The constraints are even stronger for the trian-
gular lattice (Fig. 2c): the monotone character of the velocity is imposed in three
different directions. In the general case (unstructured cluster like in (Fig. 2d)), the
contraints are imposed along directions that depend on the local arrangement on
discs. Those examples show that the discrete constraint Bu ≤ 0 is much stronger
than its macroscopic counterpart −∇ · u ≤ 0.

Discrete gradient. Such a discrepancy can be formulated in a dual way by con-
sidering the matrix B⋆ defined in Section 2, whose role is to transfer Lagrange mul-
tipliers (interaction repulsive forces) onto velocity corrections (see Equation (2.5)).
This matrix plays the role of the gradient in the macroscopic Darcy equation (2.8).
This analogy is fully relevant in the one-dimensional setting. In particular, if one
considers a cluster of aligned discs (see Fig. 2a), a uniform pressure fields induces
no effect on the discs (except at both ends of the row). This remains true in the
two-dimensional setting in very particular, structured situations, like the ones rep-
resented in Fig. 2b and Fig. 2c (cartesian and triangular lattice), but this property
is lost for clusters with no symmetries (like in Fig. 2d). In the particular configu-
ration represented in Fig. 2e, a uniform pressure field induces a centrifugal force
field. In case all discs tend to reach the center of the circle, this allows for a static
state to exist, with a exact balance between the desired velocity field and −B⋆p.
This example can be interpreted as a static jam, and we shall see than such jams
have no equivalent in the macroscopic setting.

The fact that discs generically have more than 4 neighbors in congested situa-
tions induces a mathematical degeneracy that has deep consequences from the
modeling standpoint. Consider a large population of N discs arranged according to
the triangular lattice (Fig. 2c). The number of primal degrees of freedom (centers
of discs) is 2N , whereas the number Nc of contacts is of the order 3N , so that
B⋆ = M2N,Nc

(R) is highly singular: the pressure is not defined in a unique way.
Let us note though that, in spite of this degeneracy in terms of pressure uniqueness,
the solution set is bounded, as expressed by Proposition 4.2. The core of this
property relies on the following lemma, which asserts that non trivial degenerate
pressure fields (i.e. such that B⋆p = 0) always contain pressures with opposite
signs.

Lemma 4.1. Let q ∈ K be given, B ∈ MNc,2N(R) the associated constraint
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Figure 3. Primal and dual networks

matrix, then kerB⋆ ∩ R
Nc

+ = {0}.

Proof. Let p be such that B⋆p = 0, with p ≥ 0. Consider a connected sub-cluster
of q (a connected maximal subset of discs in contact), like the one represented
in Fig. 2d. We denote by J the corresponding set of indices. Consider now the
convex-hull of centers (qi)i∈J , and pick one qi that is an extremal point of the
convex hull. By Hahn Banach’s Theorem, qi can be separated from the convex
hull of the remaing centers, by an hyperplane normal to some vector w. Now write
the force balance for qi along direction w:

∑

j∼i

pijeji · w = 0.

By construction eji ·w > 0 for all j in contact with i, so that all pressures involving
i are equal to zero. Applying the same approach recursively makes it possible to
eliminate extremal points one after the other, thus the pressure is identically 0.

Proposition 4.2. Let q ∈ K and U ∈ R
2N be given, u = PCq

U . Then the solution

set for pressure, i.e. the set Λ of all those pressure fields p ∈ R
Nc

+ such that (u, p)
is a solution to (2.5), is bounded.

Proof. The solution set writes

Λ =
{
p ∈ R

Nc , B⋆p = U − u , p ≥ 0
}
.

If a sequence (pn) of pressures in Λ goes to infinity, then, up to a subsequence,
pn/ |pn| converges to p ∈ kerB⋆ ∩ R

Nc

+ , that is necessarily 0.

Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem

−∆p = −∇ · U > 0, (4.2)
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with homogeneous Dirichlet boundary conditions on the upper free boundary, and
on the exit, and homogeneous neuman condition on the wall (no normal velocity).
By the maximum principle, the pressure is nonnegative in ω, so that

u · n = U · n− ∂p/∂n ≥ U · n,

where n is the outward normal on the exit boundary. As a consequence, the crowd
exits the room faster than it would if there were non congestion. This feature
contradicts experimental evidence, in particular the so-called capacity drop phe-
nomenon: beyond a certain threshold, congestion tends to decrease the evacuation
speed (see e.g. [6]). This model could be corrected by imposing a flux reduction in
case of upstream congestion, in the spirit of what is proposed in [1], to force the
capacity drop phenomenon, but such a ingredient does not really model, neither
explains, the considered phenomenon.

On the contrary, the microscopic model natively reproduces this behavior,
because of the aforementioned nonstandard character of the underlying discrete
operators. Indeed, there exist static configurations with all individuals pointing
toward a door that is significantly wider than the widest individual, where the
desired velocity is exactly balanced by the action of a positive pressure field. Such
a static jam is represented in Fig. 4 (right). In such a situation, the pressure field
p solves (2.5) with u = 0. The desired velocity field is concentrating, i.e. it tends
to reduce the distances, thus by definition BU > 0. The pressure is then solution
to a discrete Poisson-like problem, discrete counterpart of (4.2):

BB⋆p = BU, (4.3)

with a positive right hand side. In some structured situations, BB⋆ is a standard
discrete Laplacian. For a 1d row of individuals for example (Fig. 2a), it is the
one dimensional discrete Laplace operator with Dirichlet boundary conditions at
the ends. The Dirichlet character of boundary conditions expresses the fact that
individuals at the end of the row are free to move away from the cluster (i.e. the
outside pressure is zero). In the cartesian case (Fig. 2b), this matrix encodes two
1d Laplace operator (along x and y axes). Note the difference with the macroscopic
situation: the discrete pressure field does not correspond to a scalar pressure fields,
but to a collection of two scalar pressure fields, one for the horizontal direction,
one for the vertical one. When the configuration is unstructured, like in (Fig. 2d),
the situation is more complex. The operator BB⋆ is defined on the networks of
contact points, that is dual to the network of disc centers (see Fig. 3 (right)).

Considering a pressure field p = (pkℓ), where (k, ℓ) runs over active contacts,
the vector BB⋆p is defined on the dual network, and the value that corresponds
to the contact between i and j is

∑

(k,ℓ)∼(i,j)

pkℓGij ·Gkℓ,

where (k, ℓ) ∼ (i, j) means that the two contacts share a common disc. This
matrix shares some properties with matrices associated with a resistive network, or
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ω

Figure 4. Macroscopic and microscopic jams

i

j

k

Figure 5. Unstructured stencil

matrices resulting from the space discretization of the Laplace operator by a Finite
Difference / Finite Element method, in particular it is symmetric and its diagonal
elements are positive. Yet, some extradiagonal coefficients are positive, like in the
situation represented in Fig. 5. The element of BB⋆ that encodes the interaction
between (i, j) and (i, k) is eij · eik > 0. The resistive networks associated with this
matrix therefore admits negative resistances, so that the maximum principle does
no longer hold, ruling out the arguments that we used in the macroscopic situation,
to assert that individuals escape faster than they would if they were alone. Indeed,
the microscopic model reproduces static jams, like the one represented in Fig. 4. In
this situation, all individuals tend to reach the exit, but positive pressures create
upstream correction terms that exactly balance the desired velocities. One may
qualify this phenomenon as some sort of inverse surface tension: when the border
of the cluster presents a locally concave shape, a positive pressure field between
discs induces a force that points inward the cluster.

5. Gradient flow structure of the evolution process

Both models may be formulated in a gradient flow framework, in case of evacuation
processes. As for the microscopic one, it is natural to define the desired velocity
of an individual centered at qi as −∇D(qi), where D(·) is the geodesic distance
to the exit. The latter quantity can be considered as an individual dissatisfaction.
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The global dissatisfaction can then be defined as the sum of individual ones, e.g.

Φ(q) =

N∑

i=1

D(qi).

Since the set K is pro-regular (i.e. it verifies (4.1) for some η > 0, and the sub-
differential of IK is well defined by (3.2)), it can be checked that the evolution
equation (2.1) can be written (see [17])

dq

dt
= −∇Φ(q)− ∂IK(q) = −∂ (Φ + IK) (q),

that is a gradient flow associated to the dissatisfaction functional Φ + IK .
In the macroscopic setting, the Wasserstein framework makes it possible to ex-

hibit a similar structure based on a macroscopic dissatisfaction function canonically
defined as

Φ̂(ρ) =

∫

Ω

D(x)ρ(x) dx.

Its subdifferential is defined as the set of all those fields w ∈ L2
ρ(Ω) such that

Φ̂(ρ) +

∫

Ω

w · v ρ(x) dx ≤ Φ̂(T♯ρ) + o(‖T − Id‖), (5.1)

for all transport maps T . As detailed in [18], the evolution takes the expected form
of a gradient flow in the Wasserstein space:

∂ρ

∂t
+∇ · (ρu) = 0 (5.2)

u ∈ −∂
(
Φ̂ + IK̂

)
(ρ). (5.3)

Again, the formal analogy hides deep differences in terms of behavior. In case of
an evacuation like in Fig. 4 (left), the functional Φ̂+IK̂ is geodesically convex, and

there is no density distribution such that 0 ∈ −∂
(
Φ̂ + IK̂

)
, i.e. no equilibrium

point that would correspond to a static jam. On the contrary, at the microscopic
level, a situation like in Fig. 4 (right) correspond to a critical point of the non-
smooth functional Φ+ IK . The latter dissatisfaction functional is not convex, and
it admits local minima that correspond to static jams. Because of the non smooth
character of the functional, stability of such jams cannot be asserted by standard
tools, but the generalized Hessian that is introduced in [10] makes it possible to
verify that some of those jams that spontaneously appear actually correspond to
local minima, and are therefore stable.

6. Conclusion

The previous considerations show that some features of the microscopic model are
not captured by the macroscopic one. This discrepancy between the two models
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is not a contradiction: the macroscopic model has not been obtained as a rigorous
limit of the microscopic one, but rather by simply expressing the same principles
at the macroscopic level : the actual velocity field is the closest to the desired
velocity field in the set of feasible fields. At the microscopic level, feasibility calls for
monotonicity constraints in various directions (e.g. 3 directions for the triangular
lattice, as detailed in Section 4.2), whereas, at the microscopic level, the divergence
free constraint is scalar. The constraints are much stronger for a hard-sphere
collection than for a continuous, deformable medium, solely based on local density.
A continuous model fully respectful of microscopic features would necessarily rely
on extra quantities reflecting the local arrangement of grains, as illustrated by the
several discrepancies listed in the previous section (we also refer to [19], Section 5,
for a further description of the obstacles that prevent from elaborating a rigorous
macroscopic limit of a hard sphere system in highly packed situations). Up to our
knowledge, there does not exist any micro-macro framework that allows to recover
at the macroscopic scale the features of the microscopic hard-sphere model, in
highly congested situations.
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