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Abstract: To better understand the energetic status of proliferating cells, we have measured the
intracellular pH (pHi) and concentrations of key metabolites, such as adenosine triphosphate
(ATP), nicotinamide adenine dinucleotide (NAD), and nicotinamide adenine dinucleotide phosphate
(NADP) in normal and cancer cells, extracted from fresh human colon tissues. Cells were sorted by
elutriation and segregated in different phases of the cell cycle (G0/G1/S/G2/M) in order to study
their redox (NAD, NADP) and bioenergetic (ATP, pHi) status. Our results show that the average ATP
concentration over the cell cycle is higher and the pHi is globally more acidic in normal proliferating
cells. The NAD+/NADH and NADP+/NADPH redox ratios are, respectively, five times and ten
times higher in cancer cells compared to the normal cell population. These energetic differences
in normal and cancer cells may explain the well-described mechanisms behind the Warburg effect.
Oscillations in ATP concentration, pHi, NAD+/NADH, and NADP+/NADPH ratios over one cell
cycle are reported and the hypothesis addressed. We also investigated the mitochondrial membrane
potential (MMP) of human and mice normal and cancer cell lines. A drastic decrease of the MMP is
reported in cancer cell lines compared to their normal counterparts. Altogether, these results strongly
support the high throughput aerobic glycolysis, or Warburg effect, observed in cancer cells.

Keywords: redox oscillators; Warburg effect; cancer disease; mitochondria; central carbon metabolism

1. Introduction

The central carbon metabolism (CCM) is a metabolic blueprint shared by almost all living
organisms. It consists of a complex series of enzymatic reactions that convert carbon sources
(carbohydrates, proteins, lipids) into biomass and energy [1]. The core of the CCM is composed
of glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid cycle (TCA), and the
fatty-acid pathway (Figure 1). The shift either from oxidative catabolism (energy production) to
reductive anabolism (biomass synthesis), or from anabolism to catabolism, appears to be controlled by
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bio-oscillators, playing the role of co-enzymes [2]. These bio-oscillators include reductive and oxidative
(redox) couples, such as nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine
dinucleotide phosphate (NADP+/NADPH), the universal energy carrier, adenosine triphosphate (ATP),
the transmembrane potential (TMP), and, finallyeast, the intracellular pH (pHi). The dynamics of
these internal biological rhythms are shown to oscillate when eukaryotic cells enter proliferation [2–4].
These orchestrated oscillations ensure genome duplication and cell membrane synthesis prior to cell
division [5,6].
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ratio measures the glycolytic flux (glycolysis, PPP, and oxidative phosphorylation (OXPHOS). A high 
NADP+/NADPH ratio rewires glucose oxidation to the pentose phosphate pathway, whereas a low 
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cell and may lead to metabolic switches in the CCM. 
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CoA obtained from beta-oxidation of fatty acids are degraded by the TCA cycle (Figure 1) [11]. The 
oxidative phosphorylation of acetyl-CoA into mitochondria yields large amounts of ATP and releases 
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Figure 1. The central carbon metabolism (CCM). The CCM combines enzymatic reactions that convert
carbon sources into biomass precursors. This figure shows the five main pathways forming the
CCM: glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle (TCA), lipogenesis, and
beta-oxidation. Two opposite metabolic demands are at the core of the CCM: anabolic reactions, which
consist in biomass synthesis, and catabolic reactions, leading to the breakdown of macromolecules for
energetic use. These two aspects of cell metabolism are managed by biochemical oscillators, including
redox couples, such as nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine
dinucleotide phosphate (NADP+/NADPH), and the universal energy carrier, adenine triphosphate
(ATP/ADP). Transitions in CCM are reported to depend on these bio-oscillators. The NAD+/NADH
ratio measures the glycolytic flux (glycolysis, PPP, and oxidative phosphorylation (OXPHOS). A high
NADP+/NADPH ratio rewires glucose oxidation to the pentose phosphate pathway, whereas a low
NADP+/NADPH ratio triggers lipogenesis. The ATP/(ADP + Pi) ratio senses the metabolic state of
the cell and may lead to metabolic switches in the CCM.

The eukaryotic cell cycle has been shown to be a redox cycle [7–10]. When resting cells are
committed to division, it enters the first growth phase (G1). Then follows genome duplication in
the S phase and the second growth phase (G2), prior to mitosis (M). As opposed to proliferating
cells, differentiated cells have a basal oxidative metabolism. Pyruvate converted from glucose or
acetyl-CoA obtained from beta-oxidation of fatty acids are degraded by the TCA cycle (Figure 1) [11].
The oxidative phosphorylation of acetyl-CoA into mitochondria yields large amounts of ATP and
releases carbon dioxide and water as waste products [2]. Thus, contrary to differentiated cells, rapidly
proliferating cells, such as stem cells or cancer cells, use the aerobic glycolysis for ATP synthesis, even
in the presence of oxygen. This is known as the “Warburg effect”, in reference to the Nobel laureate
Otto Heinrich Warburg who first reported the high glycolytic flux in proliferating tumors [12–14].
In G1 of the cell cycle, the shift from pyruvate to lactate may be conditioned by the NAD+/NADH
ratio and is thought to support the high glycolytic demand in cancer cells [5,12]. Thus, the Warburg
effect may also be characterized by a high NAD+/NADH ratio. In the S phase, the CCM may
shift to the PPP, the main route to nucleotide synthesis [4,5]. High metabolic flux through the PPP
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supplies enough NADPH to protect proliferating cells against oxidative stresses and triggers lipid
synthesis in G2 [15–17]. Moreover, mitochondria activity is key to cell decision-making and cell cycle
progression [18]. These organelles were first considered as a mere “powerhouse” of the eukaryotic
cell, before the pioneering studies that deciphered their key role in such processes as cell development,
cell survival, cell division, and cell death [18]. Regarding cell division, investigations support and
highlight the idea of intertwined relationships between morphological changes in mitochondria and
their signaling activity [18–20]. Subsequently, it has been demonstrated that energetic transitions
occurring in the cell cycle are intrinsically related to mitochondrial ability to sense state parameters,
such as pHi and the ATP/ADP ratio [21–23].

These measurements of pHi, ATP/ADP, and redox species are reported in several species,
in different environmental conditions, but lack consistencies (pHi variations are contradictory [3,4,22])
and comprehensive overview of bio-oscillators variation (in yeast or human cancer cells [4,11,22]).
Therefore, there is a need for a comprehensive analysis of changes in pHi, ATP/ADP, NAD+/NADH,
and NADP+/NADPH during the proliferating cell cycle for healthy and cancerous human cells.
Such analysis is a first step towards a holistic understanding of the coupling between electrochemistry
and metabolism, and could ultimately lead to a better understanding of the principles operating
current metabolic therapies and to identify new ones [24]. In this work, we studied the redox and
energetic variations in freshly isolated normal and cancer cells extracted from human patients and
controls (n = 8).

2. Results

Human normal and cancer cells have been extracted from their respective tissues and isolated
in five populations by the method of elutriation. This segregation, based on cell density, resulted
in suspensions of cells in G0, G1, G1/S transition, S and G2/M transition phase of the cell cycle.
By applying fluorometric measurements in each cell suspension, both in the normal and cancerous
population, we managed to quantify the amount of ATP, NAD+, NADH, NADP+, NADPH, as well as
the intracellular pH (pHi). Figures 2 and 3 show experimental results obtained from eight patients
(n = 8) for both the normal and the cancerous region of the colon.
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Figure 2. Comparison of the energetic status of normal and cancer cells. These histograms represent the
average of ATP, pHi, NAD+/NADH, NADP+/NADPH cancer/normal ratios over the cell cycle. Raw
data for all experiments are reported in the Appendix Section. (A) In normal cells, the average ATP
concentration over the cell cycle is higher compared to the cancer cell population (ratio = 0.60 ± 0.19).
The intracellular pH (pHi) of cancer cells is slightly higher than normal cells (ratio = 1.05 ± 0.04); and
(B) the redox ratios (NAD+/NADH and NADP+/NADPH) are five and ten time higher in cancer cells
compared to the normal cell population (5.31 ± 3.76 and 11.15 ± 11.71, respectively).
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Figure 3. Redox signatures of normal and cancer cells during cell cycle progression. (A) In normal
cells, the ATP concentration oscillates during the cell cycle: it is high in G0 (9.25 ± 0.40 pmoles/µg
of protein) and S (8.29 ± 0.62 pmoles/µg of protein) and lower in G1/S (5.85 ± 0.57 pmoles/µg
of protein) and G2/M (4.18 ± 0.29 pmoles/µg of protein). In cancer cells, ATP concentration is
about twice lower in G0 (3.49 ± 0.25 pmoles/µg of protein), slightly increases from G0 to G1/S
(4.6 ± 0.19 pmoles/µg of protein), and decreases from G1/S to G2/M (3.25 ± 0.11 pmoles/µg of
protein); (B) in normal cells, the NAD+/NADH ratio oscillates between 5 and 10. For the cancerous
cell line, the ratio increases from G0 (31.03 ± 1.54) and reaches a maximum value of 55 in S. Then,
it declines at the G2/M transition (14); (C) the NADP+/NADPH ratio slightly increases from G0
(0.13 ± 0.05) to G1 (0.32 ± 0.04) in the normal cell population and stays stable. For the cancer cell
population, a major peak is observed in S (5.68 ± 2.68); and (D) the intracellular pH (pHi) of cancer
cells is alkaline and globally more acidic for normal cells. It oscillates from G0 (pH = 6.87 ± 0.10) to
G1/S (pH = 7.29 ± 0.13), and then shows a marked decrease in S (pH = 6.78 ± 0.10). The cancerous
cell population loses the pHi drop in the S phase and is much more alkaline (pH = 7.50 ± 0.12).

2.1. ATP Concentration Is Reduced in Colon Cancer Cells

The average ATP concentration (averaging over the various cell cycle phases) is about twice lower
in colon cancer cells than in normal cells (Figure 2). This low energetic state characterizing cancer
cells is already known from the literature where Otto Warburg first reported that rapidly-proliferating
cells preferentially use the aerobic glycolysis/fermentation for ATP synthesis instead of oxidative
phosphorylation [12–14]. Nevertheless, much less is known about the ATP concentration at the
scale of one cell cycle. Thus, we report an oscillatory ATP concentration through all phases of a
normal cell cycle (Figure 3A). Its concentration is found to be higher in G0 (9.25 ± 0.40 pmoles/µg
of protein). Then, follows a decrease in G1 (6.63 ± 0.30 pmoles/µg of protein), and reaches a
value of 5.85 ± 0.57 pmoles/µg of protein in G1/S. The ATP concentration increases from the G1/S
transition to the S (8.29 ± 0.62 pmoles/µg of protein) phase, prior to a drop at the G2/M transition
(4.18 ± 0.29 pmoles/µg of protein). In the colon cancer cell population the oscillatory phenotype
of ATP concentration observed in their normal counterpart is lost. It slightly increases from G0
(3.49 ± 0.25 pmoles/µg of protein) to G1/S (4.6 ± 0.19 pmoles/µg of protein) and decreases through
the S phase, until reaching a lower value in G2/M (3.25 ± 0.11 pmoles/µg of protein). These results,
reported at the scale of one cell cycle, may suggest a global shift in ATP turnover in the cancer cell
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population compared to normal cells. Using the same method we also investigated the reductive and
the oxidative (redox) status of the colonic normal and cancer cells.

2.2. Colon Cancer Cells Have a Reductive Energetic Status

The nicotinamide adenine dinucleotide redox couple (NAD+/NADH) is a marker of catabolism,
whereas its phosphorylated counterpart (NADP+/NADPH) is responsible for anabolism and
antioxidant stress. Here, we aimed at describing the redox signature of the cancer cell population,
compared to normal cells, both isolated from fresh human colon. These results show a divergent
redox profile in cancer and normal cell populations. (Figures 2B and 3B,C). Figure 2B shows
the average of NAD+/NADH and NADP+/NADPH cancer/normal ratios for all phases of the
cell cycle. NAD+/NADH ratio is higher in the cancer cell population (mean ratio = 5.31 ± 3.76)
(Figure 2B). Considering these redox species individually, we note that NAD+ concentration is
higher in cancer cells (Appendix Figure A1C), whereas its reductive counterpart has a lower
concentration in the same cell population (Appendix Figure A1D). NAD+/NADH ratio oscillates
throughout the cell cycle in these normal colon cell populations (Figure 3B). In normal cells, the
catabolic ratio (NAD+/NADH) slightly increases from G0 (mean ratio = 5.59 ± 1.56) to the G1/S
transition phase (mean ratio = 9.28 ± 2.54) prior to a drop in S (mean ratio = 5.44 ± 1.43), and
another increasing phase in G2/M (mean ratio = 9.25 ± 1.09). The anabolic couple (NADP+

and NADPH) quantification is also reported. The NADP+/NADPH profiling ratio over the
cell cycle is similar to the NAD+/NADH couple. The anabolic ratio is higher in cancer cells
compared to the normal cell population (mean ratio = 11.15 ± 11.71) (Figure 2B). Thus, the cancer
cell population shows anabolic ratio variations with more pronounced amplitudes (Figure 3C).
It decreases from G0 (mean ratio = 2.91 ± 3.60) to G1 (mean ratio = 2.08 ± 0.48) and the G1/S
transition phase (mean ratio = 1.16 ± 0.27). A major spike on the anabolic ratio is observed in S
(mean ratio = 5.68 ± 2.68) followed by a second drop in G2/M (mean ratio 1.37 ± 0.60). An increased
NADP+/NADPH ratio in cancer cells compared to normal ones may be related to the increased demand
for nucleotide synthesis, lipogenesis, or/and reduction in oxidative stress. This is consistent with higher
NADP+ and a decreased NADPH concentrations reported in cancer cells (Appendix Figure A1E,F).
All taken together, these results are consistent with higher metabolic fluxes reported in the cancer
population where a high NAD+/NADH ratio may sustain the aerobic glycolysis and an elevated
NADP+/NADPH ratio would meet the anabolic demand for building blocks synthesis. Nevertheless,
additional experiments, such as lactate quantification and oxidative stress measurements, are needed
to fully confirm these assumptions.

2.3. The Intracellular pH of Cancer Cells Is Alkaline

In normal cell population, the pHi is slightly acidic, whereas the cancer cell population has an
alkaline pHi (mean ratio = 1.05 ± 0.04) (Figure 2A). Thus, the pHi exhibits an oscillatory phenotype
at the scale of one normal cell cycle, contrary to the cancer cell population where the pHi oscillation
is reduced and plateaued at an alkaline value (Figure 3D). More precisely, normal cells have an
acidic pHi in G0 (pH = 6.87 ± 0.10), which increases through G1 (pH = 7.19 ± 0.09) and G1/S G0
(pH = 7.29 ± 0.13). The intracellular pH drops in the S phase (pH = 6.78 ± 0.10). Then, it increases
from the S phase to the G2/M transition (pH = 7.09 ± 0.08), prior to another drop during mitosis.
These observations are in line with data from the literature [25,26].

2.4. Reduced Mitochondrial Membrane Potential in Immortal Cancer Cell Lines

Here, the goal was to depict possible correlations between alkaline pHi, low ATP concentration, the
reductive metabolism (increased redox ratios), and lower mitochondria activity already hypothesized
in cancer cells [13,14]. Indeed, mitochondria is often considered as the “powerhouse” of the cell since
ATP is synthesized through the oxidative phosphorylation. Misregulations in this organelle may lead
to cell death or metabolic diseases, such as cancer [12,19,22,27–29]. We did not manage to carry out
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these experiments in colon cells for lack of fresh colon cancer cells from patients. Instead, we used
well-known human and mouse cell lines. Results are reported in Appendix Figuer A2A. What is clear
from these results is the low mitochondrial membrane potential (MMP) reported in cancer cell lines
compared to the normal primary cells. Thus, decreased MMP in cancer cells may explain the low ATP
concentration observed in colon cancer cells, as well as in cancer cell lines.

3. Discussion

One of the main metabolic divergences between quiescent and proliferating cells is the pathway
responsible for adenosine triphosphate (ATP) synthesis (Figure 1). In quiescent cells, ATP is synthesized
during the oxidative phosphorylation (OXPHOS). Proliferating cells, such as stem cells, preferentially
use the fermentative pathway for ATP synthesis in a “transient high throughput” manner, defined as
the Warburg effect [13,14,25]. In the same manner as normal proliferating cells, cancer cells use the
aerobic glycolysis (Warburg effect) for ATP synthesis in a “sustained high throughput” manner [30].
Here we hypothesized that the sustained fermentative character of cancer cell population may be
correlated with shifts in redox potential and poor mitochondrial activity. As such, we quantified
redox couples (NAD+/NADH, NADP+/NADPH) and ATP concentration at different phases of
the cell cycle (G0, G1, G1/S, S, and G2/M) in normal and cancer colon cell populations. We also
quantified the intracellular pH (pHi), which is a marker of high metabolic activity and measured
the mitochondrial membrane potential (MMP) in the cell lines. These results bring a comprehensive
understanding which needs additional study to fully support our hypothesis: we confirmed the
general assumption of less effective ATP turnover in cancer cells. The redox ratios NAD+/NADH
and NADP+/NADPH found in cancer cells support an enhanced glycolytic demand for sustained cell
proliferation. Although the high NADP+/NADPH ratio in cancer cells is consistent with nucleotide
demand for biomass synthesis, such a higher ratio may also imply a lower rate of synthesis for fatty
acids, which are required for membrane synthesis. While a lower membrane synthesis may, at first
sight, appear incompatible with a higher rate of biomass synthesis, such an incompatibility might
actually be resolved by a change in cell shape. Moreover, both alkaline pHi and low mitochondrial
membrane potential (MMP) in cancer cells may explain the Warburg effect. Different hypotheses
could be addressed. Considering the generation of ATP by the movement of hydrogen ions across
the inner mitochondrial membrane during cellular respiration, one would conclude that alkaline pHi
may lead to a reduced ATP synthesis. Indeed, reduced oxidative phosphorylation and lower CO2

release may lead to less cytosolic acidification. Figure 3 showed ATP concentration, NAD+/NADH,
NADP+/NADPH ratios, and pHi oscillation in normal and cancer colon cell populations (n = 8)
throughout the cell cycle. ATP concentration is shown to be low in cancer cells compared to normal
ones. On the contrary, the redox couple ratios (NAD+/NADH, NADP+/NADPH) are both very high in
cancer cell populations. Indeed, a high catabolic ratio (NAD+/NADH) showed in Figures 2B and 3B,
especially in the S phase for the cancer cell population, which may explain a high glycolytic flux for
building blocks synthesis [12]. Similarly, the anabolic ratio (NADP+/NADPH) is found to be high
in cancer cells. Thus, lower ATP concentration in cancer cells, compared to normal cells and the
hybrid metabolism (high catabolism and anabolism) materialized by both high NAD+/NADH and
NADP+/NADPH ratios, may explain the already reported metabolic advantage of cancer cells [31].
We also tried to capture the intracellular pH (pHi) dynamics in both normal and cancer colon cell
population. Indeed, as described above, the pHi of normal proliferating cells is globally acidic,
whereas it is alkaline in cancer cells. Moreover, the pHi exhibits an oscillatory phenotype in normal
cells and is flat in cancer cells. In order to explain these oscillations, additional experiments in pHi
variation and a dynamic model of the central carbon metabolism is needed. Nevertheless, evidence
has been reported [30], and recent findings highlighted, the relationship between pHi, chromatin
remodeling, and the transcriptional activity in proliferating cells. Indeed, McBrian (2013), showed that
pHi regulates histone acetylation which, in turn, conditions gene transcription [32–34]. He showed
that alkaline pHi induces histone acetylation, whereas acidic pHi is linked to a deacetylated histone
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and, by extension, to a silenced transcription. Interestingly, deacetylation of histone is known to be a
NAD-dependent mechanism [35]. Thus, it is likely that pHi and NAD+ regulate cell transcriptional
activity and cell fate decision. Puysségur (1985) showed the existence of a pHi threshold of 7.2, which
conditions entry into the S phase. Moreover, Aerts (1985) demonstrated that an increase in pHi results
in both increased protein synthesis and DNA replication [26]. He reported the optimal protein and
DNA synthesis being correlated with an alkaline pHi of 7.4. Busa [36] showed that pHi oscillations
are master regulators of the embryonic cells’ decision-making to stay in dormancy or to enter the
cell cycle [36]. He reported that an acidic pHi is linked to dormancy, whereas an alkaline pHi is a
characteristic of rapidly proliferating cells—a hallmark of cancerous tissues. All of these data taken
together, we propose a swaddling between the metabolic blueprint of the central carbon metabolism
(CCM) (Figure 1) and the energetic demand for cell proliferation. These bio-oscillators, including
ATP, pHi, and redox couples (NAD+/NADH, NADP+/NADPH) seem to coordinate switches in the
CCM during normal cell proliferation. Misregulations on these balances could have a drastic impact
on the integrity of the eukaryotic cell cycle, which could result in uncontrolled growth, such as in
cancer. Results obtained with different normal and cancer cell lines reported lower MMP in cancer cells
compared to normal cells (Appendix Figure A1A). To our knowledge, this is the first time experimental
results have characterized the redox status of cancer cells by considering oscillations in the central
carbon metabolism, where the energetic markers (ATP, pHi, and TMP) and, more importantly, the
redox species (NAD+/NADH and NADP+/NADPH), may explain the Warburg effect mechanisms.

4. Materials and Methods

4.1. Cell Suspension Preparation and Centrifugal Elutriation

Normal and cancerous segments of 12 to 18 cm of the upper colon from eight 57–62 year-old
female patients with tumors (adenocarcinoma) were obtained from the internal ward of the
gastroenterology-surgical unit at the Teheran Medical Sciences University Imam Khomeini Hospital
in Iran (Nosco Pharmaceuticals’ partnership, Paris, France). The epithelial and intraepithelial
lymphocytes (IEL) were detached, as described previously [37]. The normal and cancerous colon
segments from each patient were quickly made into a loop, inverted, and then incubated in a saline
solution with 5 mM EDTA (Sigma-Aldrich, St. Louis, MO, USA) at 4 ◦C, while shaking gently to
dislodge the colon crypts. The isolated crypts were then collected and incubated for 30 min at 37 ◦C in
phosphate-buffered saline (PBS) solution without calcium containing 10% trypsin-EDTA (Gibco-Life
Technologies, Cergy Pontoise, France). The cells were used for fresh culture. The isolated cell
suspension of the colon epithelium (colonocytes) was distributed into 15-mL Falcon tubes containing
3 mL of cold fetal calf serum (Eurobio, Montpellier, France) and centrifuged for 5 min at 750 rpm.
Percoll (Sigma-Aldrich, St. Louis, MO, USA) solutions (70% and 44%) were prepared for the isolation
of human IEL and enterocytes. Up to 40 million epithelial cell-IEL suspensions were loaded per
15-mL tube by resuspending with 8 mL of 44% isotonic Percoll. This cell suspension was underplayed
with 4 mL 70% isotonic Percoll. The gradients were centrifuged at 1500 rpm for 20 min (without
breaks) at room temperature. Upon centrifugation, cells were collected in five fractions. Isolated
cells of the epithelial cell layer of human colonocytes were centrifuged in a 50-mL Falcon tube for
5 min at 750 rpm and resuspended in 50 mL of MEM-alpha modification with L-glutamine medium
(Sigma-Aldrich, St. Louis, MO, USA). After passing through the double chamber, the cell sample
was transferred to the elutriation chamber with the elutriation buffer at a flow rate of 10 mL/min.
A Beckmann Coulter centrifuge (Villepinte, France, model J-6M) with two JE-6B and E-10M rotors
containing the 40 and 50-mL elutriation chamber and a Masterflex L/S digital pump (Cole-Parmer
Instrument Co., Barrington, IL, USA) was used. Before each elutriation run, 200 mL of 70% ethanol
was run though the elutriation chamber at about 60 mL/min (washing flow rate) to sterilize the system.
This was sequentially followed by a wash with 500 mL of water, with 500 mL of PBS at approximately
60 mL/min and 2000 rpm to check for leaks and bubbles in the system. The loading/washing buffers
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are contained in the buffer reservoir connected to the Masterflex pump via a T-valve. After a pressure
check, the fluid is reversed into a bubble chamber to avoid air bubbles in the rotor. Subsequently, the
sample with the cell suspension and the elutriation buffer was forced into the elutriation chamber.

The separation of the cell suspension in the elutriation chamber was controlled virtually through
the viewing point in the rotor. During the loading phase platelets and contaminating erythrocytes
were already eluted from the elutriation chamber (fraction 1). Once all the cells were loaded and
accumulated in the elutriation chamber (after approximately 10 min), the flow rate was increased
to 20 mL/min at a constant rotor speed of 2000 rpm. The elutriated lymphoid cells were collected
(fraction 2). Thereafter, the flow rate was increased to 40 mL/min (at a constant rotor speed of
2000 rpm) to elutriate the epithelial cell fraction (fraction 3, in three tubes of 45 mL each). At the end
of the procedure, we obtained about 500 million epithelial cells that must be resuspended in 4 L of
the medium. The median cell volumes for G1, S, and G2/M cells were respectively 620, 950, and
1260 µm3 and the corresponding rotor speeds (E-10M rotor containing the 50-mL elutriation chamber)
for cell separation were 1160–1050 rpm, 1000–950 rpm, and 900–850 rpm, respectively. We started
centrifugation at 2000 rpm and gradually reduced the speed against a 40 mL/min force of injection.
Prolonged centrifugation permits separation of cells from these three categories and we collected
five fractions of 12–15 million cells. For this study, informed consent was obtained from all subjects.
All of the methods involving human subjects were performed in accordance with the standard practice
procedures, regulations, and guidance, and were approved by the Teheran Imam Khomeini Hospital.

4.2. Fluorescence and Luminescence Measurements

All fluorescence and luminescence measurements have been made using a NOVOstar
multifunctional microplate reader from Isogen Life Science (Utrecht, The Netherlands) and were
analyzed using BMG Labtech software V1.30 R9 (Offenburg, Germany).

4.3. pHi Measurement

Intracellular calibration of the fluorescence response to total cytosolic pH indicators was
performed using K+/H+ ionophore nigericin (Invitrogen, Cergy Pontoise, France), which causes
equilibration of intracellular and extracellular pH in the presence of a depolarizing concentration of
extracellular K+. After dissolving nigericin in 354 µL anhydrous Dimethyl Sulfoxide (DMSO) to make
a 20 mM solution, it was mixed with 100 µL of Valinomycin (Sigma-Aldrich, St. Louis, MO, USA),
used as an ionophore, to make a 1000× stock solution (10 mM each) for cell loading dye components.
For cell acidification, we used the NH4

+/NH3 (20 mmol/L) prepulse technique. We used the Cell
Meter Fluorometric Intracellular pH (pHi) Assay KitTM (AAT Bioquest®, Sunnyvale, CA, USA). Cells
were dispatched overnight in MEM alpha medium at 80,000 cells/well/100 µL for a 96-well plate.
Stock solutions were made and the pH assay was run for 20 min by monitoring the fluorescence at
Ex/Em = 490/535 nm (cut-off at 515 nm).

4.4. Reduced Mitochondrial Membrane Potential in Immortal Cancer Cell Lines

In all assays, we loaded the wells with 200,000 cells and the results were normalized using total
protein concentrations in eight independent experiments (n = 8) corresponding to eight patients.
All procedures followed the kit instructions: ENLITEN® ATP Assay System (Promega FF2000;
Charbonnières, France) for ATP quantification, NADP+/NADPH and NAD+/NADH assays were run
using the NADP/NADPH-Glo Bioluminescent Assay kit (Promega G9082) and the NAD/NADH-Glo
Bioluminescent Assay kit (Promega G9072), respectively. The assay of total intracellular (cytosol
and organelles) ATP quantification, luciferase is used as the catalyzing enzyme of the ATP reaction
with D-Luciferin. ATP being the limiting component of the reaction, the intensity of the emitted light
is proportional to the amount of ATP. ATP extraction from cells is primordial and each step must
limit ATP degradation. Briefly, ATP extraction is carried out with trichloroacetic acid reagent which
releases ATP from the cell population and prevents ATP degradation by potential enzymes. After
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addition of the enzyme regent to the intracellular extract, light emission is detected by a luminometer
at 560 nm. The assay of total intracellular (cytosol and organelles) NAD(P) and NAD(P)H were
performed individually following the Promega protocol. For both couples, cells are lysed with
dodecyltrimethyl ammonium bromide (DTAB) and treated to neutralize their counterparts. To measure
the oxidized forms (NAD+ and NADP+) the extract is treated with 25 µL of 0.4 N HCl and heated at
60 ◦C for 15 min. Then follows a 10 min incubation at room temperature and the addition of 25 µL
of Trizma® (Sigma-Aldrich, St. Louis, MO, USA) base. NAD+ and NADP+ are measured using a
NAD/NADH-Glo™ (Charbonnières, France) assay and NADP/NADPH-Glo™ assay, respectively.
To quantify the reduced forms (NADH and NADPH), the extract is incubated at 60 ◦C for 15 min
and then another 10 min incubation at room temperature. Fifty microliters of HCl/Trizma® solution
is added to the extract. Similarly to the oxidized forms, NADH and NADPH are measured using a
NAD/NADH-Glo™ assay and a NADP/NADPH-Glo™ assay, respectively. The specificity of each
assay (NAD or NADP) is related to the cycling enzymes used. In the presence of each species, a
reductase reduces a proluciferin reductase to luciferin. The intensity of light detected by a luminometer
is proportional to the amount of each metabolite.

5. Conclusions

The metabolic description of the cancer phenotype introduced by Otto Warburg has been
supported by numerous studies focusing on the fermentative aspect of it. Far fewer studies have
examined the reductive and oxidative status of cancer cells in order to explain their metabolic
reprogramming and the resulting hybrid metabolism where catabolism and anabolism occur at
the same time. Consequently, we reported low ATP concentration, high NAD+/NADH and
NADP+/NADPH ratios, and low mitochondrial membrane potential in cancer cells, compared to
normal proliferating cells. These results give new perspectives on aerobic glycolysis, or the Warburg
effect. Therapies should focus on improving the oxidative phosphorylation in cancer cells. Drugs
such as dichloroacetate [38,39], hydroxycitrate, and lipoic acid [24,40] have been used to increase
mitochondrial yield for ATP and decrease cancer growth in rodents and humans.
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maximal respiration for the sample; (B) The ATP concentration is lower in HT-29 compared to normal 
primary cells; (C) The intracellular pH (pHi) is alkaline in HT-29; (D) The NAD+/NADH ratio is higher 
in HT-29 cancerous line compared to normal primary cells; (E) The NADP+/NADPH ratio is higher in 
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Figure A2. MMP, ATP, pHi and redox species concentrations in normal and cancer cell lines. (A) MMP
are measured in human and mouse normal and cancer cell lines. FCCP is a compound that carries
protons across the IMM and dissipates the electrochemical gradient (membrane potential). In order
to maintain the membrane potential, the mitochondria need to increase the flow of electrons and
thus oxygen consumption. Optimizing the concentration of the uncoupler (FCCP) reveals the
maximal respiration for the sample; (B) The ATP concentration is lower in HT-29 compared to normal
primary cells; (C) The intracellular pH (pHi) is alkaline in HT-29; (D) The NAD+/NADH ratio is
higher in HT-29 cancerous line compared to normal primary cells; (E) The NADP+/NADPH ratio
is higher in HT-29 cancerous line. Abbreviations: MMP (mitochondrial membrane potential); FCCP
(carbonyl cyanide-p-trifluoromethoxyphenylhydrazone); IMM (internal mitochondrial membrane);
HPC (Hematopoietic progenitor cells), LL/2 (mouse Lewis lung cancer cell line); MPC (mouse normal
pheochromocytoma cell line).
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