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ABSTRACT. This work addresses the solvability and solution of volume integrodifferential
equations (VIEs) associated with 3D free-space transmission problems (FSTPs) involving
elastic or conductive inhomogeneities. A modified version of the singular volume integral
equation (SVIE) associated with the VIE is introduced and shown to be of second kind
involving a contraction operator, i.e. solvable by Neumann series, implying the well-
posedness of the initial VIE. Then, the solvability of VIEs for frequency-domain FSTPs
(modelling the scattering of waves by compactly-supported inhomogeneities) follows by a
compact perturbation argument. This approach extends work by Potthast (1999) on 2D
electromagnetic problems (transverse-electric polarization conditions) involving orthotropic
inhomogeneities in a isotropic background, and contains recent results on the solvability of
Eshelby’s equivalent inclusion problem as special cases. The proposed modified SVIE is also
useful for iterative solution methods, as Neumannn series converge (i) unconditionally for
static problems and (ii) on some inhomogeneity configurations for which divergence occurs
with the usual SVIE for wave scattering problems.

1. Introduction. Volume integral equations (VIEs), also known as Lippmann-Schwinger
integral equations, arise naturally when considering penetrable inhomogeneities embedded in
a homogeneous background medium (for which a fundamental solution is explicitly known).
Their derivation and use in e.g. acoustics, elastodynamics or electromagnetism goes back
several decades. Since their geometrical support is confined to the spatial region where material
properties differ from the background, VIEs are in particular useful for deriving asymptotic or
homogenized models. By directly linking remote measurements to unknown inhomogeneities,
they also provide a convenient forward modeling approach for medium imaging inverse problems.
However, whereas the theory of boundary integral equations is extensively documented, the
mathematical properties of VIEs have undergone a comparatively modest coverage, much of it
pertaining to electromagnetic scattering problems.

In a previous work [1], to which we refer the reader for bibliography related to the above open-
ing remarks, we established the solvability of a VIE formulation for anisotropic elastodynamic
scattering. Therein the VIE problem for an imaginary frequency was shown to be coercive, the
real-frequency scattering problems of interest then being found to be compact perturbations of
the former.

This work also addresses the solvability and solution of VIEs associated with free-space trans-
mission problems (FSTPs) involving elastic or conductive inhomogeneities, but from a quite
different viewpoint. Here, we focus on the singular volume integral equation (SVIE) governing
(in the elastic equilibrium case) the unknown initial stress that produces a displacement field
identical to that solving the FSTP (Eshelby’s equivalent inclusion method, see [3, 12]). We
introduce a simple transformation of the SVIE and show the resulting modified SVIE to be
of second kind involving a contraction operator, i.e. solvable by Neumann series, which im-
plies the well-posedness of the initial VIE formulation of the static FSTP. Then, the VIEs for
frequency-domain FSTPs (modelling the scattering of waves by compactly-supported inhomo-
geneities) involve integral operators that are compact perturbations of those in corresponding
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zero-frequency VIEs, so their solvability follows from uniqueness results on the scattering prob-
lem. This approach was initially proposed by Potthast [16] for 2D electromagnetic problems
(transverse-electric polarization conditions) involving orthotropic inhomogeneities in a isotropic
background. The purpose of this work is to extend Potthast’s approach to 3D anisotropic elas-
ticity and potential transmission problems. A similar but distinct transformation of VIEs have
been proposed in [15] and companion papers for electromagnetic wave scattering by lossy in-
homogeneities, with Neumann series shown to be always convergent; that treatment however is
inoperative for lossless materials such as those considered here.

In addition to providing a direct means for establishing the well-posedness of VIE formulations
for zero-frequency problems involving inhomogeneities (and the induced well-posedness of VIEs
for wave scattering problems), the proposed approach has bearing on iterative solution methods:
the underlying restructuration of the VIE formulation makes convergence of Neumann series
guaranteed for static problems, and improved for wave scattering problems. Regarding the
latter point, we show that there exist inhomogeneity configurations for which Neumann series
are convergent for the modified SVIE while diverging for the original SVIE.

This work also extends results in recent investigations on Eshelby’s equivalent inclusion
method [3], in particular [4, 9] (addressing the existence of solutions for Eshelby’s method
in the case of ellipsoidal inhomogeneities) and [5] (where the solvability of the singular VIE
for isotropic inhomogeneity and background materials is established using Mikhlin’s theory of
singular integral operators [11]).

This article is organised as follows. The 3D elastostatic FSTP is recast in Section 2 as a
second-kind SVIE involving a (singular) contraction operator, leading to the main solvability
result (Theorem 1). The corresponding result for 3D potential problems involving anisotropic
conductivities (Theorem 2) is (more concisely) established in Sec. 3. The induced well-posedness
of VIE formulations for the scattering of waves is then briefly discussed in Sec. 4. The existence of
scatterer configurations such that fixed-point iterations are convergent if applied to the modified
SVIEs but divergent for the standard version of the SVIE (Prop. 1) is then shown in Sec. 5.
Finally, Section 6 collects auxiliary proofs.

2. Elastostatic free-space transmission problem. An inhomogeneity occupying a bounded
domain B ⊂ R3 is embedded in an unbounded homogeneous background medium, with the
unbounded complement R3 \B of B assumed to be connected. The background and inhomo-
geneity materials are both assumed to be linearly elastic. Their possibly-anisotropic elastic
properties are characterized by their respective fourth-order elasticity tensors C ∈R3×3×3×3 and
C? ∈ L∞(B;R3×3×3×3). They satisfy the usual symmetry properties (i.e. Cijk` = Cij`k = Ck`ij and
likewise for C?) and the strong ellipticity condition (i.e. ξ :C :ξ> 0 and ξ :C?(x) :ξ > c0|ξ|2 > 0
for almost all x∈B and all ξ ∈R3×3

sym). The boundedness and positivity assumptions exclude the
cases of (a) incompressible materials and (b) B being a void. We also let ∆C := C?−C denote
the elasticity tensor perturbation in B.

The primary field variable is the vector-valued displacement. For a given displacement field
w, we denote for convenience its restrictions to B and R3\B by w− and w+, respectively. The
stress tensor σ[w] is then given by σ[w] = C? :ε[w−] in B and by σ[w] = C :ε[w+] in R3 \B,
where ε[w] := 1

2
(∇w + ∇wT) is the linearized strain tensor associated with w. The tractions

t[w] and t?[w] exerted by the background and inhomogeneity on the interface ∂B, respectively,
are then defined (with n denoting the unit normal to ∂B pointing outwards of B and (·)

∣∣
±

indicating limiting values) by

t[w+](x) =
(
C :ε[w]

∣∣
+

)
·n(x), t?[w−](x) =

(
C? :ε[w]

∣∣
−

)
·n(x), x∈ ∂B. (1)
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In (1) and hereinafter, symbols ’ · ’ and ’ : ’ denote single and double inner products, e.g.
(σ ·n)i = σijnj and (C? :ε)ij = C?ijk`εk`, with Einstein’s convention of summation over repeated
indices implicitly used throughout and component indices always referring to an orthonormal
frame.

We consider FSTPs defined as follows: given a background displacement field u ∈ H1
loc(R3;R3),

find the displacement field uB such that

div
(
C :ε[u+

B]
)

= div
(
C :ε[u]

)
in R3 \B, (2a)

div
(
C? :ε[u−B]

)
= div

(
C :ε[u]

)
in B, (2b)

u+
B(ξ)− u(ξ) = O(|ξ|−2) |ξ| → ∞, (2c)

u+
B = u−B, t[u+

B] = t?[u−B] on ∂B. (2d)

Note that no assumption other than local H1 regularity is made on the background field u; in
particular it is not assumed to verify div

(
C :ε[u]

)
= 0.

2.1. VIE formulation of the elastostatic FSTP. Let G = ek ⊗Gk be the elastostatic
fundamental tensor for the unbounded background medium, with each vector Gk defined as the
decaying displacement field solving

− div
(
C :ε[Gk]

)
= δek (3)

(δ being the Dirac distribution supported at the origin). G is given in inverse Fourier integral
form (see [10, Thm. 6.8] and [12]) by

G(r) =
1

4π2
lim
R→∞

∫
BR

N (ρ)ei2πr·ρ dV (ρ), r ∈R3 \{0}, (4)

whereN (ρ) = K(ρ)−1 (K(ρ) being the (symmetric, positive definite) acoustic tensor defined by
Kik(ρ) = Cijk`ρjρ` [12]) and BR is the ball of radius R centered at the coordinate origin. With
these definitions and conventions, and in view of the translational invariance of the homogeneous
full space, Gij(y−x) is the j-th component of the displacement at y resulting from a unit point
force applied at x along the i-th direction. The fundamental tensor G and its gradients have
the well-known property of being positively homogeneous functions: for any r ∈ R3\{0} and
λ> 0, we have

G(λr) = λ−1G(r), ∇G(λr) = λ−2∇G(λr), ∇2G(λr) = λ−3∇2G(λr). (5)

In particular, G(r) and ∇G(r), having respectively O(r−1) and O(r−2) singularities at the ori-
gin, are both locally summable (tensor-valued) functions. For an isotropic material characterized
by its shear modulus µ and Poisson’s ratio ν, we have

C = 2µ
( ν

1−2ν
I⊗I + I

)
(6)

(where I and I are the second-order identity and the fourth-order identity for symmetric tensors,
respectively), and G is the well-known Kelvin solution given by:

G(r) =
1

16πµ(1− ν)r
[(3− 4ν)I + r̂⊗ r̂] , with r = |r| and r̂ =

r

r
. (7)

Volume potential. Define the volume vector potential W with density h ∈ L2
comp(R3;R3×3

sym)
by

W [h](x) = div

∫
R3

G(x−y)·h(y) dV (y) =

∫
R3

∇G(x−y)·h(y) dV (y). (8)
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By virtue of known mapping properties of integrodifferential operators treated as pseudodif-
ferential operators [7, Thm. 6.1.12], W is well defined as a L2

comp(R3;R3×3
sym) → H1

loc(R3;R3)

operator. Moreover, setting D := supp(h), the displacement w = W [h] is a solution in R3 of

(a) − div
(
C :ε[w]

)
=

{
divh in D,

0 in R3 \D, (b)

{
w+ = w−,

t[w+] = t[w−] + h·n on ∂D,

(c) w(x) = O(|x|−2), |x| → ∞.
(9)

(see e.g. [1] for a proof of the same result in the more general case of anisotropic elastodynamics).
In passing, eqs. (9a,b) show that W [h] can be interpreted as the elastostatic field created in
an homogeneous unbounded elastic medium by an initial stress field h supported in a compact
region D.

Volume integrodifferential equation. Using (9), it is easy to check that a displacement field
w satisfying the equation w = u + W

[
∆C : ε(w)

]
solves the FSTP (2a–d). This suggests to

reformulate the FSTP as the volume integrodifferential equation (VIE)

u−B −LB[u−B] = u in B, (10a)

with the integrodifferential operator LB defined by

LB[w] := W
[
∆C :ε(w)

]
, (10b)

supplemented with the representation formula

u+
B = u+ W

[
∆C :ε(u−B)

]
in R3 \B. (10c)

Conversely, any solution of the FSTP (2a–d) satisfies the VIE (10a) and the representation
formula (10c), so that problems (2a–d) and (10a,c) are equivalent (a proof of this statement,
similar to that given in [1] for the elastodynamic scattering case, is provided for completeness
in Sec. 6.1).

2.2. Reformulation of VIE using a contraction operator, solvability. Investigating the
solvability of the VIE (10a) is facilitated by reformulating it as a singular volume integral
equation (SVIE) for the unknown ∆C : ε[u−B], as done recently for studying the equivalent
inclusion problem in [5]. To this aim, we first note that the background elasticity tensor admits
the decomposition

C = B :B, (11)

where the fourth-order tensor B has the same major and minor symmetries as C and is, like C,
positive definite as a R3×3

sym×R3×3
sym → R quadratic form (B can for example be found by computing

the positive definite square root of the 6×6 matrix associated with C using e.g. the Voigt-Mandel
notation [6]). For the isotropic case (see (6)), we have

B =
√

2µ
[ 1

3

(√ 1+ν

1−2ν
− 1

)
I⊗I + I

]
.

Then, applying the operator B−1 :∆C :ε to the integro-differential equation (10a), the FSTP is
reformulated as a second-kind SVIE for the new unknown density h? := B−1 :∆C :ε[u−B]:

A[h?] = B−1 :∆C :ε[u] in B. (12a)

The displacement uB solving the FSTP is then given explicitly in terms of h? by the represen-
tation formula

uB = u+ W [B :h?] in B ∪ (R3 \B). (12b)
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The operator A : L2(B;R3×3
sym)→ L2(B;R3×3

sym) in (12a) is defined by

A[h] = B−1 :
(
I −∆C :H

)
[B :h], (13)

where the singular integral operator H is given in terms of the potential W by

H = ε[W ].

The tensor-valued kernel function H associated with H, whose singularity at the origin is not
integrable, is the symmetrized version of ∇∇G (see (8)), consistently with the symmetry of h?

(by assumption) and of H[h?] as second-order tensors. It is given using component notation by

Hijk`(r) =
1

4

[
Gik,j`(r)+Gi`,jk(r)+Gjk,i`(r)+Gj`,ik(r)

]
(r ∈R3 \{0}). (14)

Then, the following factorization holds for the operator A, and will play a crucial role:

Lemma 1. The singular integral operator A defined by (13) admits the factorization

A =
1

2

(
C̃? + I

)
:
(
I −Q

)
with C̃? := B−1 :C? :B−1 and Q = Q1 :Q2, where the multiplication operator Q1 and the integral
operator Q2 are defined by

Q1 =
(
C̃? + I

)−1
:
(
C̃? − I

)
, Q2 = I + 2B :H :B.

Proof. We begin by recasting the integral operator I −∆C :H in the form

I −∆C :H =
(
I + 1

2
∆C :C−1

)(
I −K

)
= 1

2

(
I + C? :C−1

)(
I −K

)
, (15)

with
K =

(
I + C? :C−1

)−1
:∆C :

(
C−1 + 2H

)
(16)

(which is possible since the positive definiteness of C and C? ensure the invertibility of the tensor

I + C?(x) :C−1 for any x∈B). Using C? = B : C̃? :B and ∆C = B : (C̃?−I) :B, we then have(
I + C? :C−1

)−1
:∆C = B :

(
C̃? + I

)−1
:
(
C̃? − I

)
:B

which, substituted into (16), gives

K = B :
(
C̃? + I

)−1
:
(
C̃? − I

)
:
(
I + 2B :H :B

)
:B−1 = B :Q1 :Q2 :B−1. (17)

Finally, substituting the above value of K into (15) and recalling the definition (13) of A yields,
after some manipulations, the claimed factorization of A. �

Using Lemma 1 then yields the following modified version of the singular volume integral
equation (12a): (

I −Q
)
h? = 2

(
C̃? + I

)−1
:B−1 :∆C :ε[u], (18)

wherein the operator Q is a contraction:

Lemma 2. The operators Q1 and Q2 introduced in Lemma 1 are bounded L2(R3;R3×3
sym) →

L2(R3;R3×3
sym) operators. Moreover:

(i) ‖Q1‖ < 1, (ii) ‖Q2‖ = 1.

Consequently, the L2(B;R3×3
sym)→ L2(B;R3×3

sym) operator Q = Q1 :Q2 is a contraction: ‖Q‖< 1.
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Proof. See Sec. 2.3 �

By a standard Neumann series argument, I−Q is therefore invertible with bounded inverse.

The multiplication operator 1
2
(C̃? + I) clearly having the same property (C̃? being positive

definite), the governing integral operator A : L2(B;R3×3
sym) → L2(B;R3×3

sym) is also boundedly
invertible, implying unique solvability of the SVIE (12a). Finally, uB is given explicitly by (12b),
and moreover the known boundedness of W : L2

comp(R3;R3×3
sym) → H1

loc(R3;R3) shows that the

solution mapping u 7→ u−B is continuous as a H1(B) → H1(B) operator. This analysis yields
our main result:

Theorem 1. Assume that the background and inhomogeneity elasticity tensors C and C? are
both strongly elliptic and bounded. Then:

(a) The integral operator I−LB : H1(B;R3) → H1(B;R3) of the VIE (10a) is invertible with
bounded inverse. In particular, (10a) can be solved in two steps:

1. Solve
(
I−Q

)
h? = 2

(
C̃?+I

)−1
:B−1 :∆C :ε[u], where Q : L2(B;R3×3

sym)→ L2(B;R3×3
sym),

defined in Lemma 1, is a contraction;
2. Evaluate u−B using the representation formula (12b)

(b) the transmission problem (2a–d) has a unique solution uB ∈ H1
loc(R3;R3);

(c) The unique solution u−B ∈H1(B;R3) of the VIE (10a) is the restriction of uB to B;
(d) The field u+

B outside B is given by the integral representation formula (10c).

Proof. Item (a) results from the analysis of this section, in particular Lemmas 1 and 2. Items
(b), (c) and (d) are then direct consequences of (a) and the equivalence between the transmission
problem and the VIE formulation (see Sec. 2.1). �

Remark 1. Transforming the original singular integral equation (12a) using the factorization of
Lemma 1 was necessary for the unconditional validity of the Neumann series argument. Indeed,
the integral operator ∆C :H involved in (12a) is not always a contraction: since H is independent
on ∆C, the condition ‖∆C :H‖ < 1 is violated by sufficiently large stiffness perturbations ∆C
whereas ‖Q‖ < 1 for any ∆C.

Remark 2. If the background medium occupies a bounded domain Ω and uB satisfies well-
posed boundary conditions on ∂Ω, the VIE (10a) still holds, with G(x− y) replaced with
the Green’s tensor GΩ(y,x) satisfying appropriate homogeneous boundary conditions on ∂Ω.
Its well-posedness then stems from the fact that WΩ −W (with WΩ denoting the volume
potential (8) with G replaced by GΩ) defines a compact L2(Ω;R3×3

sym)→ H1(Ω;R3) operator (its
kernel function being non-singular for y=x).

Remark 3. The solvability of the elastostatic SVIE is established in [5] for the less-general
case of isotropic inhomogeneity and background materials, by explicitly computing the symbolic
determinant of the singular integral operator and invoking Mikhlin’s theory of singular integral
operators [11]. Moreover, solvability results for the special case of ellipsoidal inhomogeneities
are given in [4, 9].

Remark 4. Lemma 2 provides an alternative proof of the previously-mentioned boundedness of
the volume potential W as a L2

comp(R3;R3×3
sym)→ H1

loc(R3;R3) operator.
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2.3. Proof of Lemma 2. The bound on ‖Q1‖ for Q1 : L2(R3;R3×3
sym) → L2(R3;R3×3

sym)

follows at once from Q1 = I − 2
(
C̃? + I

)−1
: the positive definiteness of C̃? implies that

0 <
(
C̃?(x) + I

)−1
< I, i.e. that ‖Q(x)‖ < 1 (as a R3×3

sym → R3×3
sym linear operator) at any

x∈B; moreover Q1(x) = 0 for x 6∈B.

Regarding the bound on ‖Q2‖, we begin by noting some useful properties of the singular
integral operator H. The kernel ∇G defines a tempered distribution (since ∇G is locally
summable and belongs to the class of slowly growing functions), making the convolution
W [h] = ε[G] ? h well defined for any h ∈ L2

comp(R3;R3×3
sym) (note that here the convolution

? entails an inner product, i.e. ε[G] ? h =
∫
R3 ε[G](· − y) : h(y) dV (y).). Therefore, we also

have that H[h] = H ? h in the sense of distributions. Moreover, under the present conditions,
the distributional version of the Fourier convolution theorem applies:

F
[
H(h)

]
(ρ) = F

[
H ? h

]
(ρ) = Ĥ(ρ) : ĥ(ρ),

with the Fourier transform F defined such that f̂(ρ) = F [f ](ρ) =
∫
R3 e

−2πix·ρf(x) dVx whenever

f ∈L1(R3). Moreover, using (14) and (4), Ĥ(ρ) is given for ρ 6= 0, in component form, by

Ĥijk`(ρ) = −1

4

[
Nj`(ρ)ρiρk +Ni`(ρ)ρjρk +Njk(ρ)ρiρ` +Nik(ρ)ρjρ`,

]
, (19)

where N (ρ) is again the inverse of the acoustic tensor, see (4). For any h ∈ L2(R3;R3×3
sym), we

therefore have
F
[
Q2(h)

]
(ρ) =

(
I + 2B :Ĥ(ρ̂) :B

)
: ĥ(ρ). (20)

Recalling decomposition (11) of C and defining the third-order tensor D(ρ) by Dabc(ρ) =
Babcdρd, the acoustic tensor components are given by Kik(ρ) = Dabi(ρ)Dabk(ρ). Using (19), we
then have

(B :Ĥ :B)ijk` = BijabĤabcdBcdk` = −Dija

[
DpqaDpqc

]−1
Dk`c (21)

(where the dependence of Ĥ andD in ρ is omitted for brevity and, by a slight abuse of notation,
[Eac]

−1 denotes the ac entry of the matrix E−1). Since Dijk =Djik, D can be set in 6×3 matrix
form (representing for given ρ a R3×3

sym → R3 linear operator), and (20) is equivalent to the matrix
equality: [

B :Ĥ :B
]

6×6
= −[D]6×3[DTD]−1

3×3[DT]3×6.

Let [D]6×3 = Y ΛZT denote the singular value decomposition of [D]6×3, where Y ∈ R6×6 and
Z ∈ R3×3 are unitary matrices while the matrix Λ ∈ R6×3 holding the singular values has the
form Λ = [λ 0]T, with λ ∈ R3×3 a diagonal matrix with real positive entries. The (positive

definite) acoustic tensor is then given by K = K(ρ) = [DTD]3×3 = Zλ2ZT, implying the
positive definiteness (and invertibility) of λ, and we find[

B :Ĥ :B
]

6×6
= −(Y ΛZT) (Zλ−2ZT) (ZΛTY T) = −Y (Λλ−2ΛT)Y T

= −Y
(

[λ 0]Tλ−2[λ 0]
)
Y T = −Y

[
I 0
0 0

]
Y T.

Consequently, we have [
I + 2B :Ĥ :B

]
6×6

= Y

[
−I 0
0 I

]
Y T,
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implying
∣∣(I + 2B :Ĥ(ρ) :B

)
·ĥ(ρ)

∣∣ = |ĥ(ρ)| for any ρ. With the help of Plancherel’s theorem,
this in turn yields

‖Q2[h]‖L2(R3;R3×3
sym) = ‖Q̂2[h]‖L2(R3;R3×3

sym) = ‖ĥ‖L2(R3;R3×3
sym) = ‖h‖L2(R3;R3×3

sym),

i.e. that ‖Q2‖ = 1 as a L2(R3;R3×3
sym) → L2(R3;R3×3

sym) linear operator. This implies the bound
(ii), and the proof of the Lemma is complete.

3. Conductivity transmission problem. The arguments developed in the previous section
for elastostatic FSTPs can also be applied to the simpler case of transmission problems involving
(e.g. electrostatic) scalar potentials in media characterized by second-order conductivity tensors.
This section thus aims at setting the relevant context and notation and concisely establishing
the counterpart of Theorem 1, which is a useful result in its own right.

Retaining the geometrical assumptions made in Sec. 2 for the inhomogeneity support B, the
inhomogeneity is now characterized by its conductivity tensor C? ∈ L∞(B;R3×3

sym) (such that

ξ ·C?(x) ·ξ > c0|ξ|2 > 0 for almost all x ∈ B and all ξ ∈ R3), and the background medium
by a constant, positive definite conductivity tensor C ∈ R3×3

sym. The case of isotropic properties
corresponds, of course, to scalar conductivities c, c? such that C = cI and C?(x) = c?(x)I.

We consider FSTPs defined as follows: given a background potential u ∈ H1
loc(R3), find the

potential uB such that

div (C ·∇u+
B) = div (C ·∇u) in R3 \B, (22a)

div (C? ·∇u−B) = div (C ·∇u) in B, (22b)

u+
B(ξ)− u(ξ) = O(|ξ|−2) |ξ| → ∞, (22c)

u+
B = u−B, n·C ·∇u+

B = n·C? ·∇u−B on ∂B. (22d)

Let G be the fundamental solution for the unbounded background medium, which solves

− div (C ·∇G) = δ. (23)

Using the decomposition C = B ·B, where B is the positive definite square root of C, G is
given by

G(x) =
1

4πdet(B)

1

|B−1 ·x|
. (24)

If C = cI (isotropic case), we recover of course the well-known expression G(x) = 1/(4πc|x|).
The volume potential W , acting on densities h ∈ L2

comp(R3;R3), is defined by

W [h](x) =

∫
R3

∇G(x−y)·h(y) dV (y), (25)

and is a bounded L2
comp(R3;R3)→ H1

loc(R) operator. Setting again D := supp(h), the potential
w =W [h] solves

(a) − div
(
C ·∇w

)
=

{
divh in D,

0 in R3 \D,

(b) w|+ = w|− and n·C ·∇w
∣∣
+

= n·C? ·∇w
∣∣
− + h·n on ∂D,

(c) w(x) = O(|x|−2), |x| → ∞.

(26)
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The FSTP then admits the VIE formulation

u−B − LB[u−B] = u, in B, (27a)

u+
B = u+W

[
∆C ·∇u−B

]
, in R3 \B, (27b)

where the integrodifferential operator LB is defined by LB[w] := W
[
∆C ·∇w

]
. Conversely,

transposing arguments given earlier for the elastic case, any solution of the FSTP (22a) satisfies
the VIE (27a).

Theorem 2. Assume that the background and inhomogeneity conductivity tensors C and C?

are both positive definite and bounded. Then:

(a) The integrodifferential operator I−LB : H1(B;R3) → H1(B;R3) is invertible with bounded
inverse;

(b) the transmission problem (22a) has a unique solution uB ∈ H1
loc(R3);

(c) The unique solution u−B ∈H1(B) of the integrodifferential equation (27a) is the restriction of
uB to B;

(d) The field u+
B outside B is given by the integral representation formula (27b).

Proof. As for Theorem 1, we only need to prove item (a). Applying the operator B−1·∆C ·∇
to the integro-differential equation (27a), we obtain the equivalent problem

(a) A[h?] = B−1 ·∆C ·∇u in B, (b) uB = u+W [B ·h?] in B ∪ (R3 \B) (28)

for the new unknown h? := B−1 ·∆C ·∇u−B, and with the singular integral operator A :
L2(B;R3)→ L2(B;R3) defined by

A[h] = B−1 ·
(
I −∆C ·∇W

)
[B ·h]. (29)

One readily checks, by inspection, that the factorization

A = 1
2

(
C̃? + I

)
·
(
I −Q1 ·Q2

)
(30)

holds, with C̃? := B−1 ·C? ·B−1 and where the multiplication operator Q1 and the integral
operator Q2 are defined by

Q1 =
(
C̃? + I

)−1 ·
(
C̃? − I

)
, Q2 = I + 2B ·∇W·B.

Moreover, Q1 and Q2 are bounded L2(B;R3)→ L2(B;R3) operators and verify

(i) ‖Q1‖ < 1, (ii) ‖Q2‖ = 1.

The bound (i) holds for the same reasons as in the elastic case (with fourth-order tensors
changed to 3 × 3 matrices), and a proof for (ii) is given thereafter. Consequently, the
L2(B;R3)→ L2(B;R3) operator Q1·Q2 is a contraction: ‖Q1·Q2‖< 1. The same arguments as
for the elastic case then allow to complete the proof of Theorem 2. �

Proof of ‖Q2‖ = 1. As before, the distributional version of the Fourier convolution theorem
applies:

F
[
∇W(h)

]
(ρ) = F

[
H ? h

]
(ρ) = Ĥ(ρ)·ĥ(ρ),

(having set H := ∇∇G) while Ĥ(ρ) is given (applying the Fourier transform to (23)) by

Ĥ(ρ) = −
(
ρ·C ·ρ

)−1
ρ⊗ρ.
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In particular, ρ 7→ Ĥ(ρ) is C∞(R3 \ {0}) and homogeneous with degree 0 in ρ. For any
h ∈ L2(R3;R3), we have

F
[
Q2(h)

]
(ρ) =

(
I + 2B ·Ĥ(ρ)·B

)
·ĥ(ρ) =

(
I − 2

B ·ρ
|B ·ρ|

⊗ B ·ρ
|B ·ρ|

)
·ĥ(ρ),

implying
∣∣(I − 2B·Ĥ(ρ)·B

)
·ĥ(ρ)

∣∣ = |ĥ(ρ)| for any ρ ∈ R3\{0}. Plancherel’s theorem finally
yields the desired bound ‖Q2‖ = 1 through

‖Q2[h]‖L2(R3;R3) = ‖h‖L2(R3;R3). �

4. Solvability of VIE formulations for elastic or acoustic wave scattering problems.
Consider the elastodynamic problem where an incident monochromatic wave u (with given
angular frequency ω, and with the time-harmonic factor e−iωt implicitly understood as usual) is
scattered by an inhomogeneity characterized by a perturbation ∆ρ = ρ?−ρ of the background
mass density ρ in addition to the perturbation ∆C of elastic moduli. The elastodynamic
fundamental tensorGω = ek⊗Gk

ω for the background medium is defined in terms of the radiating
solutions of

− div
(
C :ε[Gk]

)
− ρω2Gk = δek (31)

(referring the reader to [8] and [13] for details onGω and the meaning of “radiating” in the cases
of isotropic and anisotropic background, respectively). The (now complex-valued) displacement
field uB verifies the VIE

u−B −Lω
B[u−B] = u, in B (32a)

for the restriction of uB to B, with the integrodifferential operator Lω
B defined by

Lω
B[w] := Wω

[
∆C :ε(w)

]
+ ω2Vω

[
∆ρw

]
. (32b)

In (32b), Wω is the volume potential defined by (8) with G replaced by Gω, while the additional
volume potential V is given for any g ∈H1

loc(R3;R3) by

V [g](x) =

∫
R3

Gω(x−y)·g(y) dV (y), (33)

Since x 7→ Gω(x) and x 7→ ∇(Gω − G)(x) are known to be weakly singular and bounded,
respectively, at x= 0, V and Wω−W define compact H1(B;R3)→ H1(B;R3) operators. The
operator I −Lω

B is therefore Fredholm with index 0, and its bounded invertibility then follows
from known uniqueness results for scattering by inhomogeneities and the Fredholm alternative.
We thus recover the solvability result established for elastodynamic VIEs in [1] using other
arguments.

Essentially the same arguments apply to the VIE formulation of scattering problems governed
by the Helmholtz equation (or anisotropic versions thereof, investigated e.g. in [2]), as previously
done in [16] for 2D electromagnetic scattering by anisotropic inhomogeneities.

5. Fixed-point iterations. In addition to being the crucial ingredient for establishing the
well-posedness of the VIE formulation of elastostatic FSTPs, the modified SVIE (18), having
the form (I−Q)h? = f with ‖Q‖< 1, can be solved by fixed-point iterations, i.e. by arbitrarily
choosing an initial value h?0 and setting

h?n+1 = Q :h?n + f (n = 1, 2, . . .). (34)
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The above iterations amount to computing the sequence of partial sums of the Neumann series
(I−Q)−1f = f +Q : f +Q :Q : f + . . ., whose convergence is assured for any inhomogeneity
configuration (B,∆C), so that h?n → h? in L2(B;R3×3).

Fixed-point iterations of the form (34) are also commonly applied to the solution of wave
scattering problems; they are often referred to in this context as Born series or iterated Born
approximations. Fixed-point iterations may be applied to the frequency-domain counterpart of
the SVIE in either classical form (12a) or modified form (18), obtained by using the relevant
frequency-domain fundamental solution therein. Their convergence is subject to restrictions on
the scatterer characteristics and the frequency (the scatterer needing to be “sufficiently weak”).
In what follows, we show the existence of scatterer configurations such that fixed-point iterations
are convergent if applied to the modified SVIE but divergent if applied to the standard SVIE.

5.1. Scattering of acoustic waves. Consider the scattering of an incident monochromatic
acoustic wave u by a penetrable inhomogeneity, with the background and inhomogeneity
materials having the same bulk modulus µ but different mass densities ρ, ρ? (the background

wave velocity being c =
√
µ/ρ). The complex-valued total acoustic pressure uB then satisfies

the VIE
u−B − L

ω
B[u−B] = u in B, (35a)

with the integrodifferential operator LωB defined (with r := −1 + ρ/ρ? = −∆ρ/ρ?) by

LωB[w] :=Wω

[
r∇w

]
. (35b)

In (35b),Wω is the volume potential defined by (25) with G replaced by the fundamental solution
Gω of the Helmholtz equation, i.e.:

Gω(r) =
eik|r|

4π|r|
, with k = ω

√
ρ/µ. (36)

Note that the conductivity-like transmission problem in the zero-frequency limiting case is (22a–
c) with C = I and C? = (ρ/ρ?)I. The case of dissimilar values of µ would result in an additional,
weakly singular, volume integral operator in equation (35a), similar to Vω in (32b).

The scattering problem can then be recast in terms of the SVIE

h? − r∇Wω[h?] = r∇u in B (37)

for the new unknown h? := r∇u−B, obtained by applying the operator r∇ to (35a). In turn, the
operator r∇Wω can be recast in a factorized form similar to (30), which transforms the singular
integral equation (37) into

h? −Qω[h?] =
2r

r+2
∇u in B, with Qω :=

r

r+2
Qω

2 , Qω
2 := I + 2∇Wω. (38)

The following two lemmas, whose proofs are given in the Appendix, hold true for ∇Wω as a
(bounded) L2(B;R3)→ L2(B;R3) operator:

Lemma 3. There exists a constant C1 > 0, independent of ω and B, such that

‖∇Wω‖ ≥ C1.

Lemma 4. Assume that B ⊂ BR, where BR is the ball of radius R. We have

‖∇
(
Wω −W

)
‖ ≤ C2(kR)2,
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with C2 = 2πE, where E is the smallest constant satisfying inequality (44). The constant C2 is
independent on ω and B, and is approximately given by C2 ≈ 0.61577.

We then obtain the following result on the conditions for the convergence of fixed-point
iterations applied to the singular integral equation in either its classical form (37) or its modified
form 38:

Proposition 1. Set h(r) := 1/r if r > 0 and h(r) := −1−1/r if −1<r < 0. Then:

(a) Fixed-point iterations applied to the integral equation (37) diverge if rC1 > 1;
(b) Fixed-point iterations applied to the integral equation (38) converge if C2(kR)2 < h(r).

Proof. Case (a) follows directly from Lemma 3 and the convergence requirement ‖r∇Wω‖ < 1.

Regarding case (b), we write Qω
2 = Q2 + 2∇

(
Wω −W

)
. Since Q2 : L2(R3;R3)→ L2(R3;R3)

has been shown in Sec. 3 to satisfy ‖Q2‖ = 1 and using Lemma 4, we have

‖Qω
2 ‖ ≤ 1 + 2‖∇

(
Wω −W

)
‖ ≤ 1 + 2C2(kR)2.

Therefore, the convergence condition ‖Qω‖ < 1 for fixed-point iterations is satisfied if

|r|
r+2

(
1 + 2C2(kR)2

)
< 1 i.e. C2r(kR)2 < h(r).

(note that r >−1 and r 6= 0, implying r+2> 0 and 0<h(r)<∞ in all cases). �

Since the subset
{

(r, s) | r >−1, r 6= 0, s > 0, rC1 > 1, C2s
2 <h(r)

}
of the real (r, s)-plane is

non-empty, Prop. 1 implies that there are inhomogeneity configurations (characterized by B, ρ?

and ω) for which fixed-point iterations converge for the modified SVIE (38) even though they
diverge for the classical SVIE (37). Applying factorizations provided by (30), or by Lemma 1
in elasticity, to the frequency-domain singular integral operator therefore extends the range of
applicability (in terms of frequency and scatterer characteristics) of fixed-point computational
iterative methods.

5.2. Scattering of elastic waves. The analysis of Sec. 5.2 can be transposed in a straight-
forward way to the scattering of elastic waves by inhomogeneities such that ∆C 6= 0 and ∆ρ= 0
and embedded in isotropic media, yielding the elastodynamic counterpart of Prop. 1. This relies
mainly on proving the counterparts of lemmas 3 and 4. The elastodynamic version of the analyt-
ical solution used in Sec. 6.3 for the proof of Lemma 3 can be obtained using similar separation
of variable methods and at the expense of heavier algebra. The counterpart of Lemma 4 (setting

e.g. k = ω
√
ρ/µ) follows using the method of Sec. 6.3, since the asymptotic behavior at the

origin and at infinity of the elastodynamic fundamental tensor and its derivatives is similar to
that of the acoustic fundamental solution.

6. Auxiliary proofs.

6.1. Proof of satisfaction of VIE by FSTP solutions. Consider a bounded domain
X ⊂ R3, and let the partial differential operator P ′ be defined (in the distributional sense)
by P ′w = −div

(
C′ : ε[w]

)
for some elasticity tensor C′. Let w ∈ H1(X;R3), and define the

distribution w̃ as the extension ofw by zero in R3\X. For any test function ϕ∈D :=C∞0 (R3;R3),
one has (

Pw̃,ϕ
)

=
(
w̃, (P−P ′)ϕ

)
+
(
w̃,P ′ϕ

)
=
(
w, (P−P ′)ϕ

)
X

+
(
w,P ′ϕ

)
X
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(with
(
·, ·
)

and
(
·, ·
)
X

respectively denoting the distributional duality product and the L2(X)
scalar product), since P involves only even-order derivatives. Next, using the definition of
operators P ′ and P , applying the first and second Green identities [10, Thm. 4.4] for the
domain X to

(
w, (P −P ′)ϕ

)
X

and
(
w,P ′ϕ

)
X

, respectively, and combining the resulting
expressions, one finds(

Pw̃,ϕ
)

= −
(
w, t[ϕ]

)
∂X

+
(
t′[w],ϕ

)
∂X
−
(

(C′−C) :ε[w] , ε[ϕ]
)
X

+
(
P ′w,ϕ

)
X

(39)

(where ϕ → t′[ϕ] denotes the surface traction operator relative to elastic properties C′, and
having used the formal self-adjointness of P ′ in the last term).

Equality (39) holds for arbitrarily chosen bounded domain X ⊂ R3 and admissible elasticity
tensor C′. It is now applied (i) for X = B with w = u−B and P = P?, (ii) for X = BR \B with
w = u+

B and P ′ = P , and (iii) for X = BR with w = u and P ′ = P (where BR is the ball of
radius R centered at the origin, bounded by the sphere SR), yielding the identities(

Pũ−B,ϕ
)

= −
(
u−B, t[ϕ]

)
Γ

+
(
t?[u−B],ϕ

)
Γ
−
(

∆C :ε[u−B] , ε[ϕ]
)
B

+
(
P?u−B,ϕ

)
B
,(

Pũ+
B,ϕ

)
=
(
u+
B, t[ϕ]

)
Γ
−
(
t[u+

B],ϕ
)

Γ
−
(
u+
B, t[ϕ]

)
SR

+
(
t[u+

B],ϕ
)
SR

+
(
Pu+

B,ϕ
)
BR\B

−
(
Pũ,ϕ

)
=
(
u, t[ϕ]

)
SR
−
(
t[u],ϕ

)
SR
−
(
Pu,ϕ

)
BR

(the sign inversion for integrals over Γ in the second equality being caused by the unit normal
to Γ conventionally pointing inwards of R3 \B). Summing those equalities, noting that (2a,b)
imply

(
Pu,ϕ

)
BR
−
(
P?u−B,ϕ

)
B
−
(
Pu+

B,ϕ
)
BR\B

= 0 for any test function, and invoking the

transmission conditions (2d) gives(
P(ũ+

B + ũ−B − ũ),ϕ
)

= −
(

∆C :ε[u−B] , ε[ϕ]
)
B
−
(
vB, t[ϕ]

)
SR

+
(
t[vB],ϕ

)
SR

(40)

(with vB := u+
B−u). Equality (40) holds for any test function ϕ∈D, so is an equality between

two distributions, whose supports are compact. One can then take the distributional convolution
of both members by the fundamental tensor G, which satisfies PG = δI, to obtain(
ũ+
B + ũ−B − ũ,ϕ

)
= −

(
∆C :ε[G ? uB] , ε[ϕ]

)
B
−
(
vB, t[G ?ϕ]

)
SR

+
(
t[vB],G ?ϕ

)
SR

(41)

where the left-hand side results from G ? Pw = PG ? w = w, and the right-hand side from(
G ?w,ϕ

)
=
(
w,G ?ϕ

)
, for any compactly supported distribution w ∈D′(R3;R3).

The remaining task is to evaluate each term in the right-hand side of (41). We have

(
∆C :ε[G ? uB] , ε[ϕ]

)
B

= −
∫
R3

{∫
B

∇G(x− y) :∆C(y) :∇u−B(y) dV (y)
}
·ϕ(x) dV (x)

= −
(
W
[
∆C :ε[u−B]

]
,ϕ
)
. (42)

Moreover, the assumed decay conditions (2c) for vB, together with the boundedness of supp(ϕ)
and the known decay of x 7→ G(x−y) for y ∈ supp(ϕ), imply

lim
R→+∞

(
−
(
vB, t[G ?ϕ]

)
SR

+
(
t[vB],G ?ϕ

)
SR

)
= 0 (43)

for any test function ϕ∈D. Using (42) and (43) in (41), sending R to infinity and noting that
the resulting distributions are locally summable functions, we obtain

uB − u = W
[
∆C :ε[uB]

]
in
(
R3 \B

)
∪B.
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Concluding, any solution uB of the FSTP (2a–d) satisfies the volume integrodifferential equa-
tion (10a) and the associated integral representation formula (10c).

6.2. Proof of Lemma 3. Let B = BR :=
{
x∈R3, |x|<R

}
. We establish the claimed lower

bound of ‖∇Wω‖ for ∇Wω : L2(BR;R3)→ L2(BR;R3) by explicitly computing g := ∇Wω[h?]
for some given h? ∈L2(BR;R3). A simple choice is h? = e3 in B, for which divh? = 0 in B. We
then have g=∇v, where v is the radiating solution to the transmission problem

(∆ + k2)v = 0 in B ∪
(
R3 \B

)
, v+ = v− and ∂nv|+ = ∂nv|− + e3 ·n on ∂B,

which is the counterpart of problem (26) for the Helmholtz equation. This problem can easily
be solved analytically, using spherical coordinates, yielding

v(x) = k−1E(kR)j1(k|x|) (x/|x|)·e3 (x∈BR), with E(z) := −iz2h1(z)

(jm and hm denoting, respectively, the spherical Bessel and Hankel functions of first kind and
order m, see e.g. [14, Chap. 10]). The L2 norm of ∇v can then also be explicitly derived (with

the help of identity
(
zj2

1(z)
)′

= 2zj0(z)j1(z) − 3j2
1(z) and classical interrelations between the

jm), and we find

‖∇v‖2
L2(BR) =

4π

3k3
|E(kR)|2f(kR), with f(z) :=

1

2

(
z − cos z sin z − 4zj2

1(z)
)
.

Since ‖h?‖2
L2(BR) = 4πR3/3, we then have

‖∇Wω‖2 ≥
‖∇v‖2

L2(BR)

‖h?‖2
L2(BR)

= F (kR), with F (z) := z−3|E(z)|2f(z).

The well-known small-argument and large-argument asymptotic limiting forms of j1 and h1 (see
e.g. [14, Chap. 10]) allow to show that

lim
z→0

F (z) = 1/9, lim
z→∞

F (z) = 1/2.

Since F (z) > 0 for any z > 0, the above limits imply that z 7→ F (z) has a strictly positive
minimum Fmin (as |h1(z)| 6= 0 implies |E(z)|2 > 0, while f ′(z) = 2j2

1(z) + (zj0(z) − 2j1(z))2 > 0
and f(0) = 0 imply f(z)> 0 for z 6= 0), and Lemma 3 holds true with C1 :=

√
Fmin; moreover C1

is independent of ω and R since F depends only on the non-dimensional variable z. Numerical
evidence indicates that Fmin =F (0) = 1/9.

6.3. Proof of Lemma 4. The tensor-valued function r 7→∇∇
(
Gω−G

)
(r) is known to have

a O(|r|−1) singularity at the origin and to be C∞(R3\{0}); therefore (x,y) 7→∇∇
(
Gω−G

)
(y−

x) ∈ L2(BR×BR;R3×3). An upper bound of the norm of ∇
(
Wω−W

)
: L2(BR;R3)→ L2(BR;R3)

is thus provided by the Hilbert-Schmidt norm

‖∇
(
Wω−W

)
‖2

HS :=

∫
|x|<R

∫
|y|<R

∣∣∇∇
(
Gω −G

)
(y−x)

∣∣2 dV (x) dV (y).

Now, using definition (36) of Gω and the homogeneity properties (5) of G, it is straightforward
to check that ∇∇

(
Gω − G

)
(r) = k3∇∇

(
g − G

)
(kr), with the function g defined by

g(z) = ei|z|/(4π|z|). Setting x = k−1x̄ and y = k−1ȳ in the above double integral, we obtain

‖∇
(
Wω−W

)
‖2

HS =

∫
|x̄|<kR

∫
|ȳ|<kR

∣∣∇∇
(
g −G

)
(ȳ− x̄)

∣∣2 dV (x̄) dV (ȳ).
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Moreover, since r 7→ |r|∇∇
(
g − G

)
(r) is bounded at the origin and at infinity while being

C∞(R3 \{0}), there exists a constant E > 0 such that∣∣∇∇
(
g −G

)
(r)
∣∣ ≤ E|r|−1 for all r ∈R3 \{0}, (44)

with the best (i.e. smallest) value of 4πE found numerically to be approximately given by
4πE ≈ 1.23154. We therefore have

‖∇
(
Wω−W

)
‖2

HS ≤ E2

∫
|x̄|<kR

∫
|ȳ|<kR

|ȳ− x̄|−2 dV (x̄) dV (ȳ) = (kR)4E2D2,

with D2 :=

∫
|ξ|<1

∫
|η|<1

|ξ−η|−2 dV (ξ) dV (η) = 4π2

(where the value 2π of D is found by analytical evaluation of the double integral), implying that
Lemma 4 holds true with C2 := 2πE ≈ 0.61577.
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