
HAL Id: hal-01417943
https://hal.science/hal-01417943v1

Submitted on 16 Dec 2016 (v1), last revised 20 Mar 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stable recovery of the factors from a deep matrix
product

François Malgouyres, Joseph Landsberg

To cite this version:
François Malgouyres, Joseph Landsberg. Stable recovery of the factors from a deep matrix product.
SPARS, 2017, Lisbonne, Portugal. �hal-01417943v1�

https://hal.science/hal-01417943v1
https://hal.archives-ouvertes.fr


Stable recovery of the factors from a deep matrix product
François Malgouyres
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Abstract—We study a deep matrix factorization problem. It takes
as input the matrix X obtained by multiplying K matrices (called
factors) and aims at recovering the factors. When K = 1, this is the
usual compressed sensing framework; K = 2: Examples of applications
are dictionary learning, blind deconvolution, self-calibration; K ≥ 3:
includes convolution network problems as well as many fast transforms.

Using a Lifting, we provide : a necessary and sufficient conditions
for the identifiability of the factors (up to a scale rearrangement); -
an analogue of the Null-Space-Property, called the Deep-Null-Space-
Property which is necessary and sufficient to guarantee the stable
recovery of the factors.

I. INTRODUCTION

Let K ∈ N∗, m1 . . .mK+1 ∈ N, write m1 = m, mK+1 = n. We
impose the factors to be structured matrices defined by a (typically
small) number S of unknown parameters. More precisely, for k =
1 . . .K, let

Mk : RS −→ Rmk×mk+1 ,

h 7−→ Mk(h)

be a linear map.
We assume that we know the matrix X ∈ Rm×n which is provided

by
X = M1(h1) · · ·MK(hK) + e, (1)

for an unknown error term e and parameters h = (hk)1≤k≤K ∈
ML ⊂ RS×K for some L, where we assume that we know a
collection of models M = (ML)L∈N such that, for every L,
ML ⊂ RS×K .

This work investigates models/constraints imposed on (1) for which
we can (up to obvious scale rearrangement) identify or stably recover
the parameters h from X . A preliminary version of this work is
presented in [1].

Set NK = {1, . . . ,K} and

RS×K
∗ = {h ∈ RS×K ,∀k ∈ NK , ‖hk‖ 6= 0}.

Define an equivalence relation in RS×K
∗ : for any h, g ∈ RS×K ,

h ∼ g if and only if there exists (λk)k∈NK ∈ RK such that

K∏
k=1

λk = 1 and ∀k ∈ NK ,hk = λkgk.

Denote the equivalence class of h ∈ RS×K
∗ by [h]. We consider a

metric denoted dp on RS×K
∗ / ∼. It is based on the lp norm.

We say that a tensor T ∈ RSK

is of rank 1 if and only if there
exists a collection of vectors h ∈ RS×K such that T is the outer
product of the vectors hk, for k ∈ NK , that is, for any i ∈ NK

S ,

Ti = h1,i1 . . .hK,iK .

The set of all the tensors of rank 1 is denoted by Σ1.

Moreover, we parametrize Σ1 ⊂ RSK

by the Segre embedding

P : RS×K −→ Σ1 ⊂ RSK

h 7−→ (h1,i1h2,i2 . . .hK,iK )i∈NK
S

Following [2], [3], [4], [5], [6], [7] where problems such that K =
2 are studied, we can lift the problem and show that the map

(h1, . . . ,hK) 7−→M1(h1)M2(h2) . . .MK(hK),

uniquely determines a linear map

A : RSK

−→ Rm×n,

such that for all h ∈ RS×K

M1(h1)M2(h2) . . .MK(hK) = AP (h).

When ‖e‖ = 0, we can prove that every element of h ∈ M is
identifiable (i.e. the elements of [h] are the only solutions of (1)) if
and only if for any L and L′ ∈ N

Ker (A) ∩
(
P (ML)− P (ML′)

)
= {0}.

When ‖e‖ ≤ δ, we further assume that we have a way to find L∗

and h∗ ∈ML∗ such that, for some parameter η > 0,

‖AP (h∗)−X‖2 ≤ η. (2)

Using the following definition we can prove Theorem 1.

Definition 1. Deep-Null Space Property
Let γ > 0, we say that Ker (A) satisfies the deep-Null Space

Property (deep-NSP ) with respect to the model collection M with
constant γ if there exists ε > 0 such that for any L and L′ ∈ N,
any T ∈ P (ML) − P (ML′) satisfying ‖AT‖ ≤ ε and any T ′ ∈
Ker (A), we have

‖T‖ ≤ γ‖T − T ′‖.

Theorem 1. Sufficient condition for stable recovery
Assume Ker (A) satisfies the deep-NSP with respect to the collec-

tion of models M and with the constant γ > 0. For any h∗ as in
(2) with η and δ sufficiently small, we have

‖P (h∗)− P (h)‖ ≤ γ

σmin
(δ + η),

where σmin is the smallest non-zero singular value of A. Moreover,
if h ∈ RS×K

∗

dp([h∗], [h]) ≤ 7(KS)
1
p γ

σmin
min

(
‖P (h)‖

1
K
−1

∞ , ‖P (h∗)‖
1
K
−1

∞

)
(δ+η).

We also prove that the deep-NSP condition is necessary for the
stable recovery of the factors. We study a variante of the deep-
NSP, dedicated to models M enforcing sparsity, and discuss the
applications of these results for the stable recovery of convolution
network.
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