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HOLOMORPHIC MOTIONS AND

COMPLEX GEOMETRY

HERVÉ GAUSSIER AND HARISH SESHADRI

Abstract. We show that the graph of a holomorphic motion of the unit disc cannot be biholo-
morphic to a strongly pseudoconvex domain in C

n.

1. Introduction and Main Result

Let B be a connected complex (n − 1)-manifold with a basepoint z0 ∈ B. A holomorphic
motion of the unit disc ∆ ⊂ C parametrized by B is a continuous map f : B × ∆ → CP

1 =
C ∪ {∞} satisfying the following conditions:

(1) f(z0, w) = w for all w ∈ ∆,
(2) the map f(z, .) : ∆ → CP

1 is injective for each z ∈ B,
(3) the map f(., w) : B → CP

1 is holomorphic for each w ∈ ∆.

Holomorphic motions were introduced by R. Mãne, P. Sad and D. Sullivan [11] and have
been intensively studied since then (see, for instance, [13, 4, 5, 1]). In this note we study the
complex-analytic structure of the graph D of f :

D = {(z, f(z, w)), z ∈ B,w ∈ ∆} ⊂ B ×CP
1.

Our main result is the following

Theorem 1.1. The graph D of a holomorphic motion of the unit disc cannot be biholomorphic
to a strongly pseudoconvex domain in C

n.

Denoting the unit ball in C
n by B

n, Theorem 1.1 will be a consequence of the following

Theorem 1.2. Let S ⊂ C be a bounded domain. If A(Cn) denotes the set of complex affine
(n− 1)-dimensional subspaces of Cn, then there does not exist a map f : S → A(Cn) satisfying
the following conditions:

(1) For t ∈ S, if Wt = f(t) ∩ B
n, then B

n = ∪t∈SWt.

(2) Either Wt ∩Ws = φ or Ws = Wt for s, t ∈ S.

(3) There is a holomorphic map π : Bn → B
n−1 such that π : Wt → B

n−1 is bijective for all
t ∈ S.

To derive Theorem 1.1 from Theorem 1.2, we use a rescaling argument based on a recent
result of K. T. Kim and L. Zhang [8].

To put these results in context, we recall the following result of K. Liu [10] and V. Koziarz-N.
Mok [9] :

Theorem 1.3. ([10], [9]) Let n > m ≥ 1 and let Γ1 ⊂ SU(n, 1), Γ2 ⊂ SU(m, 1) be torsion-free
cocompact lattices. Then there does not exist a holomorphic submersion from B

n/Γ1 to B
m/Γ2.
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2 HERVÉ GAUSSIER AND HARISH SESHADRI

This was proved for n = 2,m = 1 by K. Liu [10] and for all n > m ≥ 1 by V. Koziarz and
N. Mok [9]. This result is natural from various points of view. In particular, it is related to the
following well-known question in the study of negatively curved Riemannian manifolds:

Let f : Mn → Nm be a smooth fibre bundle where M and N are smooth compact manifolds of
dimensions n > m ≥ 2. Can M admit a Riemannian metric with negative sectional curvature ?

If the bundle above is trivial then Preissman’s theorem implies that the answer to the above
question is in the negative. Also, it is essential that m ≥ 2: a theorem of W. Thurston states
that certain 3-manifolds fibering over a circle admit hyperbolic metrics.

Theorem 1.2 implies the Liu-Koziarz-Mok result when n = m + 1 by the Bers-Griffiths uni-
formization theorem as explained later in the paper. The compactness of the manifolds is essen-
tial in the question above and the result of Liu-Koziarz-Mok. In other words, cocompact group
actions on universal covers are needed. Our point of view is that given the Bers-Griffiths theo-
rem, the cocompact actions are not necessary. The proof we present involves some elementary
facts about the Kobayashi metric and Riemannian geometric techniques.

Note that an equivalent formulation of Theorem 1.2 is that the graph of a holomorphic motion
cannot admit a complete Kähler metric with constant negative holomorphic sectional curvature.
Hence the following question is natural:

Can the graph of a holomorphic motion of the unit disc admit a complete Kähler metric with
variable negative sectional curvature?

A related question, mentioned to the authors by Benoit Claudon and Pierre Py, is:

Can the graph of a holomorphic motion of the unit disc be Gromov hyperbolic with respect to
the Kobayashi metric ?

The method in this paper appears to hold some promise for tackling these questions. In this
connection, it is important to point out that metrics with weaker negative curvature conditions
can exist on such domains: a result of S. K. Yeung [15] asserts that the universal cover of a
Kodaira fibration, which is necessarily the graph of a holomorphic motion by the Bers-Griffiths
theorem, admits complete Kähler metrics with negative holomorphic bisectional curvature.

2. Proof of Theorem 1.2

2.1. The Kobayashi metric on D. Let
• B be a connected complex (n− 1)-manifold with a basepoint z0 ∈ B,
• f : B ×∆ → CP

1 a holomorphic motion,
• D = {(z, f(z, w)) : z ∈ B,w ∈ ∆} ⊂ B ×∆,
• F : B ×∆ → D be defined by F (z, w) = (z, f(z, w)),
• π : D → B denote the first projection,
• for p ∈ D, let Sp = π−1(π(p)),
• for w ∈ ∆, let

Fw : B → D be Fw(z) = f(z, w) and Σw = Fw(B).

Note that π−1(z) = F ({z} ×∆) for every z ∈ B.

Lemma 2.1. For every w ∈ ∆, the map F : B × {w} → D is a holomorphic embedding which
is totally geodesic for the Kobayashi metrics on B and D.

Proof: Since

dK∆(z1, z2) ≥ dKD(F (z1, w), F (z2, w)) ≥ dK∆(π ◦ F (z1, w), π ◦ F (z2, w)) = dK∆(z1, z2)
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by the distance decreasing property of the Kobayashi metric the result follows.

2.2. Proof of Theorem 1.2. Let S ⊂ C be a bounded domain and f : S → A(Cn) be a map,
where A(Cn) is the set of complex affine (n− 1)-dimensional subspaces of Cn. Suppose that we
have

(1) a partition B
n = ∪t∈SWt where Wt = f(t) ∩ B

n and

(2) a holomorphic map π : Bn → B
n−1 such that π|Wt : Wt → B

n−1 is bijective.

Before stating the next lemma, we recall that the Kobayashi metric on B
n coincides with the

Bergman metric and is, in particular, a C2 Riemannian metric.

Lemma 2.2. (1) For every t ∈ S and z ∈ B
n−1, Wt ∩ π−1(z) consists of a single point and the

intersection is orthogonal.

(2) The fibers of π are equidistant, i.e., for any z1, z2 ∈ B
n−1 and p ∈ π−1(z1) we have

dKD (p, π−1(z2)) = dKD(π−1(z1), π−1(z2))

Proof: Let t ∈ S and z1 ∈ B
n−1. It is clear that Wt ∩ π−1(z1) is a singleton since π|Wt :

Wt → B
n−1 is bijective. Fix p ∈ π−1(z1). Since B

n = ∪t∈SWt, p ∈ Wt for some t ∈ S. Let
γ : [0, 1] → D be a unit-speed geodesic with γ(0) = p and γ′(0) ∈ TpWt. By Lemma 2.1 we can
assume that γ([0, 1]) ⊂ Wt. Let γ(1) = q ∈ π−1(z) ∩Wt.

We claim that γ is the shortest geodesic between π−1(z1) and π−1(z). This is because

dKD (p, q)) ≥ dK
Bn−1(z0, z) = l(γ) ≥ dKD (p, q)

for any w1, w2 ∈ ∆. The equality above comes from the assumption that π|Wt : Wt → B
n−1 is

bijective and hence an isometry. Since k is a Riemannian metric, the first variation for arc-length
implies that γ meets π−1(z1) and π−1(z) orthogonally. Hence γ′(0) is orthogonal to Tpπ

−1(z1).
�

In what follows we use the following notation: for any p ∈ D

Sp := π−1(π(p)).

Corollary 2.3. Let γ : [0, L] → D be a geodesic with γ(0) = p, γ′(0) ∈ (TpSp)
⊥. If Ps denotes

the parallel transport of TpSp along γ, then

Ps = Tγ(s)Sγ(s).

Proof: Let {e1, e2, ..., e2n} be an orthonormal basis of TpD with e1, e2 ∈ TpSp and let Ei(s)
be the parallel translate of ei, i = 1, ..., 2n, along γ. By Lemma 2.1 for i ≥ 2, γ lies in Wt for
some t ∈ S. By Lemma (1) of 2.2, ei ∈ TpWt for 3 ≤ i ≤ 2n. Since Wt is totally geodesic, Ei(s)

is tangent to Wt for all s ∈ [0, L] and 3 ≤ i ≤ 2n. Hence E1(s), E2(s) ∈ (Tγ(s)Wt)
⊥ = Tγ(s)Sγ(s).

�.

2.3. Distance between complex submanifolds. Fix z0, z1 ∈ B
n−1. Let p0 ∈ π−1(z0), p1 ∈

π−1(z1) be points satisfying

dKD (p0, p1) = dKD (π−1(z0), π−1(z1)).

Let γ : [0, L] → D be the unit speed geodesic with γ(0) = p0, γ(L) = p1 which realizes
the distance between π−1(z0) and π−1(z1). Since γ′(0) is orthogonal to Tpπ

−1(z0), Lemma 2.1
implies that γ′(0) ∈ TpWt and γ([0,∞)) ⊂ Wt for some t ∈ S.
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By considering the normal exponential map to π−1(z0), we can find a unit normal vector field
X to π−1(z0) in a neighbourhood U (in π−1(z0)) of p0 such that the holds: for any q ∈ U ,
the geodesic γq : [0, L] → D with γq(0) = q, γ′q(0) = Xq satisfies γq(L) ∈ π−1(z1). Note that
Xp0 = γ′(0).

Let u ∈ Tp0π
−1(z0) and σ : [−a, a] → π−1(z0) ⊂ D a curve with σ(0) = p0 and σ′(0) = u.

Define a geodesic variation H : [0, L] × [−a, a] → D of γ by

(2.1) H(s, t) = Expσ(t)(sXσ(t)).

Let Y (s, t) = ∂H
∂t

(s, t) be the variation vector field and, for each t ∈ [−a, a], let γt be the

geodesic given by γt(s) = H(s, t). Let T (s, t) = γ′t(s) =
∂H
∂s

(s, t).

Lemma 2.4. For any (s, t) ∈ [0, L] × [−a, a] we have

(i) Y (s, t) ∈ Tγt(s)Sγt(s).

(ii) Y ′(s, t) := ∇TY (s, t) ∈ Tγt(s)Sγt(s).

Proof: (i) This follows if we can show that for each s ∈ [0, L] the curve t 7→ H(s, t) lies in a
fiber of π. To see this consider the curves, for t1, t2 ∈ (−a, a), s 7→ (π◦γt0)(s) and s 7→ (π◦γt1)(s).
These curves are unit-speed geodesics in B

n−1 connecting π(z0) and π(z1) by Lemma 2.1. Since
B
n−1 has negative curvature, uniqueness of geodesics forces π(H(s, t0)) = π(H(s, t1)).
(ii) We show this for t = 0 for notational simplicity. Let {e1, e2} be an orthonormal basis of

Tp0Sp0 . Let E1(s), E2(s) be the parallel vector fields along γ with Ei(0) = ei. We then have,
by (i) and Corollary 2.3,

Y (s, 0) = f1(s)E1(s) + f2(s)E2(s)

for some functions f1, f2 : [0, L] → R. Hence

Y ′(s, 0) = f ′
1(s)E1(s) + f ′

2(s)E2(s) ∈ Tγ(s)Sγ(s). �

We continue to denote p = F (z0, w0) in what follows. We recall the notation and constructions
above:

• X denotes a local unit normal vector field on Sp such that the geodesics starting in the
direction X pass through the same fibers subsequently,

• γ : [0,∞) → D is a geodesic with γ(0) = p, γ′(0) = Xp,
• for u ∈ Tp Sp, Hu(s, t) = γut (s) denotes a geodesic variation of γ such that

(a) ∂Hu

∂s
(0, t) = XH(0,t)

(b) the variation vector field Yu(s, t) =
∂Hu

∂t
(s, t) satisfies Yu(0, 0) = u,

• Tu(s, t) =
∂Hu

∂s
(s, t) denotes the tangent vector (γut )

′(s) to the variation geodesic γut (s). Note
that Tu(s, 0) = γ′(s) for all s and Tu(0, t) = XHu(0,t) for all t.

Lemma 2.5. For any u ∈ TpSp and s ∈ [0,∞), we have
(i) 〈∇YuYu(s, 0), γ

′(s)〉 = −1
2(|Yu|

2)′(s, 0).
(ii) ∇uX ∈ TpSp.

Proof:

〈∇YuYu, γ
′〉 = Yu〈Yu, γ

′〉 − 〈Yu,∇Yuγ
′〉

= −〈Yu,∇γ′Yu〉

= −
1

2
(|Yu|

2)′

where we have used 〈Tu, Yu〉 = 0 and ∇YuTu = ∇TuYu. This proves (i). For (ii), [Yu, Tu] = 0
and (ii) of Lemma 2.4 imply that ∇uX = ∇γ′(0)Yu ∈ TpSp. �
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By (ii) above, the shape operator L : TpSp → TpSp of Sp along the normal vector field X is
given by

L(v) = ∇vX.

As L is a symmetric operator we can find an orthonormal basis {e1, e2} of TpSp consisting
of eigenvectors of L. Since Sp is a minimal submanifold (being a complex subvariety), the
corresponding eigenvalues are given by α,−α for some α ≥ 0. As before we denote the parallel
transports of e1, e2 along γ by E1(s), E2(s).

Next we observe that if Y1(s) := Ye1(s, 0), Y2(s) := Ye2(s, 0) are Jacobi fields constructed as
earlier with Y1(0) = e1, Y2(0) = e2 then

Y ′
1(0) = ∇γ′(0)Y1 = ∇e1X = L(e1) = αe1.

Similarly

Y ′
2(0) = −αe2.

Hence if K1 : [0, L] → R denotes the function

K1(s) = R(E1(s), γ
′(s), γ′(s), E1(s))

and f1 : [0, L] → is the solution to

y′′ +K1y = 0, y(0) = 1, y′(0) = α

then

Y1 = f1E1.

Similarly Y2 = f2E2 where f2 satisfies y′′ + K2y = 0, y(0) = 1, y′(0) = −α with K2(s) =
R(E2(s), γ

′(s), γ′(s), E2(s)).

2.4. The case of CHn. In case D is biholomorphic to the unit ball in C
n, the Kobayashi metric

on D has constant holomorphic sectional curvature −1 and the curvature tensor has the property
that

〈R(X,Y )Y,X〉 = −
1

4
whenever {X,Y } is an orthonormal pair spanning a totally real 2-plane, i.e., whenever 〈X,Y 〉 =
〈X,JY 〉 = 0. Hence f1 and f2 satisfy

y′′ −
y

4
= 0.

It follows that

f1(s) = cosh(
s

2
) + 2α sinh(

s

2
), f2(s) = cosh(

s

2
)− 2α sinh(

s

2
).

Case 1: α 6= 1
2 .

In this case, (i) of Lemma 2.5 implies that

〈∇Yi
Yi, γ

′〉(s) = −
1

2
(f2

i )
′(s) < 0

for i = 1, 2 and s large enough. On the other hand, Lemma 2.4 and the fact that Sγ(s) is a
minimal submanifold implies that

0 =
2

∑

i=1

〈∇Ei
Ei, γ

′〉(s) =
2

∑

i=1

f−2
i 〈∇Yi

Yi, γ
′〉(s).

This contradiction completes the proof.

Case 2: α = 1
2 for all p ∈ D, all q ∈ Sp and all T0 ∈ (TqSp)

⊥. In this case, one can check that
the second fundamental form of Sp in every normal direction is parallel. O’Neill’s formula [12]
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(Page 465, 2. of Corollary 1) for the curvature of a Riemannian submersion then shows that the
sectional curvature of the 2-plane {u, v} is zero where u ∈ TpSp and v ∈ (TpSp)

⊥.

2.5. Holomorphic motions and Bers-Griffiths uniformization. The following fundamen-
tal theorem allows us to deduce (when n = m+ 1) Theorem 1.3 from Theorem 1.2:

Theorem 2.6. ([2], [6]) Let M and N be compact complex manifolds and φ : M → N a
holomorphic submersion. Suppose that dim(M) = dim(N) + 1 and the fibers of φ are compact
Riemann surfaces of genus ≥ 2. Then the universal cover of M is biholomorphic to the graph
of a holomorphic motion over Ñ .

For a detailed account of holomorphic motions and uniformization we refer the reader to [4].

3. Proof of Theorem 1.1.

We assume, to get a contradiction, that the graph D of some holomorphic motion is biholo-
morphic to some bounded strictly pseudoconvex domain Ω. We denote by Φ a biholomorphism
from D to Ω.

For every ν ≥ 1, let Fν : B → D be the totally geodesic holomorphic embedding defined by
Fν(z) := F (z, 1 − 1

ν
).

For every ν, the map Φ◦Fν is holomorphic from B to Ω. Let z0 ∈ B. We may assume, taking
a subsequence if necessary, that limν→∞ zν := Φ ◦ Fν(z0) = p ∈ ∂Ω.

According to [8, Theorem 4.1] it holds limz→p σΩ(z) = 1, where σΩ is the squeezing function
of Ω (see Definition in [8]). This means that for every ν ≥ 1 there exists a biholomorphism
ϕν from Ω to some strongly pseudoconvex domain Ων and there exists a sequence (rν)ν with
limν→∞ rν = 1 such that for every ν ≥ 1:

(3.1) ϕν(z
ν) = 0 and B(0, rν) ⊂ Ων ⊂ B

n.

Here B(0, rν) denotes the ball in C
n centered at the origin with radius rν .

For every ν ≥ 1, let Σν := {Fν(z), z ∈ B} and let Σ̃ν
0 := (ϕν ◦ Φ)(Σν).

Lemma 3.1. For every ν ≥ 1, the set Σ̃ν
0 is a totally geodesic complex submanifold of Ων.

Proof of Lemma 3.1. This follows from Lemma 2.1 and the fact that biholomorphisms are
isometries for the Kobayashi metric. �

Moreover, we get:

Lemma 3.2. The sequence (Σ̃ν
0)ν converges, for the local Hausdorff convergence of sets, to some

totally geodesic complex submanifold of Bn.

Proof of Lemma 3.2. Let, for every ν ≥ 1, Ψν := ϕν ◦ Φ ◦ Fν . Then Ψν is a holomorphic
isometric embedding of (B, dKB ) into (Ων , d

K
Ων

) satisfying Ψν(z0) = 0. Since for every ν ≥ 1
we have the inclusion Ων ⊂ B

n, the sequence (Ψν)ν is normal and extracting a subsequence if
necessary, we may assume that (Ψν)ν converges, uniformly on compact subsets of B, to some
holomorphic map Ψ∞ : B → B

n satisfying Ψ∞(z0) = 0. Finally, let 0 ∈ L ⊂⊂ B
n. Since Ψν is

an isometry for the Kobayashi distances, there exists K ⊂⊂ B such that for every ν ≥ 1 we get:
L∩ Σ̃ν

0 ⊂ Ψν(K). Now the uniform cnvergence of (Ψν)ν on K implies that the sets Σ̃ν
0 converge

to Σ̃∞
0 for the Hausdorff convergence on L.

Let Σ̃∞
0 := Ψ∞(B) and let z, z′ ∈ B. There exist qν , q

′
ν ∈ Σ̃ν

0 , converging respectively to
Ψ∞(z) and Ψ∞(z′) and we have by Lemma 3.1:

dK
Σ̃∞

0

(Ψ∞(z),Ψ∞(z′)) = limν→∞ dK
Σ̃ν

0

(Ψν(z),Ψν(z
′)) = limν→∞ dKΩν

(Ψν(z),Ψν(z
′))

= dK
Bn(Ψ∞(z),Ψ∞(z′)).
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�

In particular, since totally geodesic complex submanifolds of Bn, of complex dimension (n−1),
are intersections of Bn with complex affine subspaces of complex dimension (n − 1), we may

assume that Σ̃∞
0 = Bn−1 × {0}.

Let ζ ∈ ∆ and let q := (0, ζ) ∈ B
n. Then q ∈ Ων for sufficiently large ν and there exists

(bν , ζν) ∈ B×∆ such that q = ϕν ◦Φ◦Fζν (bν). We set Σ̃ν
q := ϕν ◦Φ◦Fζν (B). We prove, exactly

as for Σ̃ν
0 , that Σ̃

ν
q is a totally geodesic complex submanifold of Ων .

Lemma 3.3. The sequence (bν)ν is relatively compact in B.

Proof of Lemma 3.3. SinceD is complete hyperbolic by assumption, it follows from Lemma 2.1
that B is complete hyperbolic. Assume to get a contradiction that (bν)ν is not relatively compact
in B. We recall that π : D → B is holomorphic. Hence we get for every sufficiently large ν:

dKD

(

F

(

z0, 1−
1

ν

)

, F (bν , ζν)

)

≥ lim
ν→∞

dKB (z0, bν).

Consequently, extracting a subsequence if necessary, we may assume that:

lim
ν→∞

dKD

(

F

(

z0, 1−
1

ν

)

, F (bν , ζν)

)

= ∞.

Hence

(3.2) lim
ν→∞

dKΩν

(

ϕν ◦Φ

(

F

(

z0, 1−
1

ν

))

, ϕν ◦Φ(F (bν , ζν))

)

= ∞.

However, since ϕν ◦ Φ
(

F
(

z0, 1−
1
ν

))

= 0 and ϕν ◦ Φ(F (bν , ζν)) = q for every ν we get:

lim
ν→∞

dKΩν

(

ϕν ◦Φ

(

F

(

z0, 1−
1

ν

))

, ϕν ◦ Φ(F (bν , ζν))

)

= dKBn(0, q) < ∞.

This contradicts Condition (3.2). �

It follows now from Lemma 3.3 that we may extract from (bν)ν) a subsequence, still denoted
(bν)ν , that converges to some point b∞ ∈ B. Hence, extracting a subsequence if necessary, we
may assume that the sequence (ϕν ◦Φ ◦Fζν )ν converges uniformly on compact subsets of B to a

holomorphic map Ψq
∞ : B → B

n satisfying Ψq
∞(b∞) = q. This implies that Σ̃ν

q = ϕν ◦Φ ◦Fζν (B)

converges to Σ̃∞
q := Ψq

∞(B) and Σ̃∞
q is a totally geodesic complex submanifold of Bn.

We finally prove

Proposition 3.4. For every q ∈ B
n∩ ({0′}×∆) there exists a totally geodesic complex subman-

ifold Σ̃∞
q of Bn passing through q.

For every ν, let πν : D → Σν be given by

∀(z, ζ) ∈ B ×∆, πν(F (z, ζ)) = F

(

z, 1 −
1

ν

)

and let
π̃ν : Ων → Σν

0

z 7→ ϕν ◦ Φ ◦ πν ◦ Φ
−1 ◦ ϕ−1

ν
.

Since ϕν ◦ Φ(F (z0, 1 − 1
ν
)) = 0 according to (3.1), we have π̃ν(0) = 0 for every ν. Hence we

may extract from (π̃ν)ν a subsequence, still denoted (π̃ν)ν , that converges to a holomorphic map
π̃∞ : Bn → B

n−1 × {0}.
Moreover we have:
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Proposition 3.5. For every q ∈ {0} × ∆, the restriction of π̃∞ to Σ̃∞
q is a biholomorphism

from Σ̃∞
q to B

n−1 × {0}.

Proof of Proposition 3.5. By the very definition of π̃ν , the restriction of π̃ν to Σ̃ν
q is a

biholomorphism from Σ̃ν
q to B

n−1 × {0} for every ν. Moreover, Σ̃ν
q converges to Σ̃∞

q for the
Hausdorff distance. Finally, we have for every ν ≥ 1:

πν ◦Φ
−1 ◦ ϕ−1

ν (q) =

(

bν , 1−
1

ν

)

= Fν(bν).

Since limν→∞ bν = b∞ ∈ B and since the sequence (ϕν◦Φ◦Fν )ν converges, uniformly on compact
subsets of B to Ψ∞ (see the proof of Lemma 3.2) we obtain that:

π̃∞(q) = lim
ν→∞

ϕν ◦Φ ◦ πν ◦ Φ
−1 ◦ ϕ−1

ν (q) = Ψ∞(b∞) ∈ B
n−1 × {0}.

Hence if gν denotes the inverse of the restriction of π̃ν to Σ̃∞
q then gν is defined on B

n−1×{0} and

the sequence (gν)ν converges, uniformly on compact subsets of Bn−1×{0}, to some holomorphic

map g∞ : Bn−1 × {0} → Σ̃∞
q such that g∞ ◦ π̃∞ = idΣ̃∞

q
and π̃∞ ◦ g∞ = id|Bn−1×{0}. �

Finally, let q 6= q′ be two points in B
n. By construction, for every ν ≥ 1, the intersection

between the totally geodesics submanifolds Σ̃ν
q and Σ̃ν

q′ is empty. Since (Σ̃ν
q )ν converges to Σ̃∞

q

and Σ̃ν
q′ converges to Σ̃∞

q′ , it follows from the positivity of intersection that:

Σ̃∞
q ∩ Σ̃∞

q′ = ∅.

Now Proposition 3.4 and Proposition 3.5 give a contradiction, according to Theorem 1.2. �

We end the note by studying some metric properties of D. We assume that B is complete
hyperbolic and that B admits an exhaustion (Bk)k∈N: Bk ⊂⊂ Bk+1 for every k and B =
supk∈NBk, such that Bk is complete (Kobayashi) hyperbolic for every k.

Proposition 3.6. The domain D is complete (Kobayashi) hyperbolic.

Proof of Proposition 3.6. It is proved in [3] that for every k, Dk := F (Bk ×∆) is complete
hyperbolic.

Let Z0 = (z0, w0), Zν = (zν , wν) ∈ B ×∆ be such that limν→∞ dKB (z0, zν) = ∞. Then:

(3.3) ∀ν ≥ 1, dKD (F (Z0), F (Zν)) = dKB (z0, zν) −→ν→∞ ∞.

Hence, to prove that D is complete hyperbolic, it is sufficient to prove that if (zν)ν ⊂⊂ Bk0

for some k0 ∈ N and |wν | −→ν→∞ 1, then dKD (F (Z0), F (Zν)) −→ν→∞ ∞. Assume, to get a con-

tradiction, that there exists c > 0 such that dKD (F (Z0), F (Zν)) ≤ c for every k ∈ N (extracting a
subsequence if necessary). There exists k1 ≥ k0 such that the set {y ∈ D/ dKD (y, F (Z0)) < c+1}
is contained in Dk1 according to (3.3). Moreover, it follows from Lamma 5.1 in [7] that:

dKDk1
(F (Z0), F (Zν)) ≤

1

tanh(1)
dKD(F (Z0), F (Zν)).

This contradicts the fact that Dk1 is complete hyperbolic. �
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[6] Griffiths, P. Complex-Analytic Properties of Certain Zariski Open Sets on Algebraic Varieties, Ann. of

Math. 94 (1971), 21-51.
[7] Kim, K.T.; Ma,D. Characterization of the Hilbert ball by its automorphisms, J. Korean Math. Soc. 40

(2003), 503-516.
[8] Kim, K.T., Zhang,L. On the uniform squeezing property of bounded convex domains in C

n, Pacific Math.
Journal 282 (2016), 341-358.

[9] Koziarz, V., Mok, N. Nonexistence of holomorphic submersions between complex unit balls equivariant
with respect to a lattice and their generalizations, American Journal of Math. 132 (2010), 1347-1363.

[10] Liu, K. Geometric height inequalities, Math. Res. Lett. 3 (1996), 693-702.
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