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Performances of Chaos Coded Modulation concatenated with Space-Time Coding extended version

. The strength of our study consists in the fact that we do not only study the case of block fading channels but we propose new insights for the case of time selective channels. Our n

closed form expressions are based on the recent work of Jun He and Pooi Yuen Kam [START_REF] He | Bit Error Performance of Orthogonal Space-Time Block Codes over Time-Selective Channel[END_REF] who have studied the behaviour of the Alamouti's scheme in highly time selective channels. In all cases, we derive accurate BER bounds and we show that the use of classical Maximum Ratio Combining (MRC) equalizer makes the receiver lose all diversity gain at high SNR's. To save some diversity gain, we propose a Zero Forcing (ZF) scheme [START_REF] He | Bit Error Performance of Orthogonal Space-Time Block Codes over Time-Selective Channel[END_REF] and we quantify its performances for various Doppler effects. The contributions of this technical note are thus the following ones: -Detailed study of the distance spectra of the chaos based encoders and characterization of their distribution.

-Derivation of accurate BER bounds for quasi-static block fading channels and time selective fading channels. The rest of the note is organized as follows. In Section II, we give new insights for the chaos coded modulation schemes proposed by S. Kozic. We propose to approximate the distance distribution with some usual laws such as the Rayleigh one. In section III, we study the performances of the concatenation of the Chaos Coded Modulation (CCM) together with the Alamouti's STBC code for quasi static block fading channels. We do the same in Section IV for the case of time-selective channels considering MRC and ZF equalization. The concluding remarks are eventually given in Section V.

II. Chaos Coded Modulation Scheme, Distance Spectrum Study:

Chaotic coder structure:

We consider the Chaos-Coded modulation scheme of Fig. 1. This scheme was originally given by S. Kozic in his PhD works [START_REF] Kozic | Channel coding and modulation based on chaotic systems[END_REF]. The scheme of Fig. 1 2 . mod(1)
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where A is some matrix which optimizes the distance spectrum of the code. This mapping, due to the modulus operation, is a highly non-linear operation and serves as a chaos generator. Henceforth, we have a system which combines a convolutional coder with a high dimensional mapping in the same way as Multi-level Trellis Coded Modulation (M-TCM). The corresponding convolutional coder is classically described by: , ,
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Before transmitting x k on the channel propagation medium, we modulate each of its components in NRZ-BPSK in order to obtain a average zero mean value to better interface with a zero mean additive noise such as for AWGN channel i.e:
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. One can see that the optimization of such multi-dimensional Chaos Coded Modulation is very complicated due to the number of parameters: matrices , ij T , matrix A, parameters Q, Q a … Rather than a global optimization algorithm which should optimize the convolutional coder together with the mapping process, we choose to fix a convolutional coder structure and then we optimize the mapping process by using a particular form of matrix A. We found that the choice , i j shift  TT for i = j and , i j tent  TT for i ≠ j enables to obtain a large set of performing non-linear mapping with A. For example, in the case n = 2, using this choice for matrices T, we are looking for matrices A with the following structure: 21 [START_REF] Chen | Analog Error Correcting Codes based on Chaotical Dynamical Systems[END_REF] 1 a
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and we optimize the choice of 21 a using the distance spectrum. In the case, n = 3, we use matrix structure 

A

. The choice of the remaining parameters , ij a is done using the distance spectrum of the code. 
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The state of the coder is defined by vector S k :
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(3) Concerning the choice of Q, it's clear that the Viterbi decoding algorithm is rapidly limited by the complexity in the number of states which is equal to . ( 1) 2 nQ  . Practically, the number . ( 1) nQ  should not exceed 12 which correspond to 4096 states. For n = 2, this gives a maximum value of Q equal to 5, and for n = 3, this gives a maximum value of Q equal to 3. The choice of Q a , is related to the chaotic behaviour of the coder. Although it is beyond the scope of this paper to characterize the chaotic behaviour of the coder, we can illustrate it on simple examples with the phase trajectories of the encoder outputs as functions of the encoder inputs. In fact, generally speaking and depending on the choice of matrix A, varying parameter Q a reduces or increases the chaotic behaviour of the encoder. For example, we illustrate the case n = 2, with matrix
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. The output of the encoder
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x is a vector of two samples. To illustrate the chaotic behaviour of the decoder, we plot on Fig. 
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and the chaotic behaviour of the coder is characterized by the parameter:
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The smaller is C and the more chaotic the system behaves since the perfect chaotic system is a white noise with C = 0. On Fig 

Spectrum distance analysis and performances over AWGN channels:

In order to optimize the coders, we study their distance spectrum. To do this, we have to determine the trajectories in the trellis which start with a common state 

S S  not

necessarily equal to i S . This kind of trajectory in the trellis defines a loop and the loop is characterized by its initial state i S , its final state k S and its length L. The distance of corresponding codewords belonging to the two competing paths in the loop is: The problem of the computation of ( 5) is that, unlike linear codes when we can choose a reference path equal to a all zero sequence, due to the non-linear mapping, we have to test all the possible transmitted sequence for a given loop length together with all the possible starting states. Hence, the distance spectrum computation problem is of non polynomial complexity and in straightforward manner requires the inspection of all possible initial conditions and all possible controlled trajectories. For example, there are
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In order to compute the distance spectrum with a reasonable complexity while keeping a sufficient accuracy, we form all the possible pair of sequences starting from a given state and both converging towards an other state after L steps with L belonging to the interval [Qn+1, .( ) n Q m  ], i.e. the length of the loop varies from Qn+1 (the constraint length of the code plus one) to .( ) n Q m  (we limit practically the search to m = 2 or 3 in our case due to the computation burden). We have partitioned the distance spectrum into subsets by distinguishing error events which entail one error bit, error events which entail two error bits, error events which entail three error bits and so on... In practice, we limit our search to error events which entail five maximum error bits since simulation results evidenced that it was sufficient to obtain accurate upper bounds for the BER on nonselective Rayleigh fading channels.

We obtain for example with matrices:

         1 0 0 1 , j i T for i = j and          1 1 0 1 i,j T (i.e. n = 2) for j i  and matrix           1 8 1 1 A , Q = Q a = 3
, the distance spectrum illustrated on Fig. 3.

Fig. 3: Distance spectrum of the chaos coded modulation

In fact, we found that, in a majority of cases, the shape of the distance spectrum is close to a Rayleigh distribution with the following probability density function: . The comparison between the Rayleigh distribution and the obtained normalized distance spectrum is illustrated on Fig. 4, it is clear that the two curves feet well. However, for some cases with small free distances, we obtain a much more complicated shape for the distance distribution. For example, in the case In these cases, we model the probability density function by a mixture of Gaussian or Rayleigh laws [START_REF] Lu | Performance analysis and design optimization of LDPCcoded MIMO OFDM systems[END_REF][36].
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-Gaussian mixture:
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In the following, unlike [START_REF] Lu | Performance analysis and design optimization of LDPCcoded MIMO OFDM systems[END_REF], we will not assume that 2 
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The EM algorithm is an iterative procedure for solving this ML estimation problem. In the EM algorithm, the observation  is termed as incomplete data. Starting from some initial estimate ) 0 (  , the EM algorithm solves the ML estimation problem (8) by the following iterative procedure:

-E-step: Compute    ) ( log ) ( ) ( ) ( X     p E Q i i  (9) 
-M-step: Solve
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The log-likelihood function of the complete data is then given by:
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Where C is some constant. The E-step can then be calculated as follows:
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In addition, the M-step is calculated as follows. To obtain   j  , we have:
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To obtain   j m , we have:
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Once,   j m have been obtained, we can obtain j  as: 
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Finally, the EM algorithm for calculating the Gaussian mixture parameters for the pdf of the distance spectrum is summarized as follows.

-Given the initial set of values For i = 1, …, I, do the following:

- [START_REF] Barbulescu | Chaotic turbo codes[END_REF][START_REF] Zhou | Chaotic turbo codes in secure communications[END_REF]. Set:
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In the above EM algorithm, the number of mixture components J is fixed. Note that when J increases, ) ( log
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decreases. The minimum description length (MDL) principle can be used to determine J.
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Where, in the MDL criterion, a penalty term ) log( 2 / n J is introduced. Hence, we can first set an upper bound of the number of mixture components, max J . In addition, for each max J J  , we run the above EM algorithm and calculate the corresponding MDL value. Finally, we choose the optimal J with the minimum MDL. For example, for the distribution of Fig. 5, we find a mixture of two Gaussian laws with parameters,  
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We denote here 2 ( ; , ) x    as the pdf of a 2 ( , )  R random variable. We obtain:
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The M-step is calculated as follows. To obtain   j  , we have:
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To obtain j  we have the set of equations: In the case n = 3, we have optimized the non-linear mapping with matrix A in the same way, using , i j shift  TT for i = j and , i j tent  TT for i ≠ j. We obtain the following results.

n ij ij i j j j nn j i j i j i j ii m Q z j J z z m j J                        (26) 
With             1 8 2 1 1 2 1 1 1 A
, we have the following distance spectrum :

Fig. 7: Distance spectrum for             1 8 2 1 1 2 1 1 1 A , n = 3
The best results we found in our optimization is given on Fig. 8 with matrix

            1 2 6 1 1 4 1 1 1

A

, we obtain the following spectrum :

Fig. 8: Distance spectrum for             1 2 6 1 1 4 1 1 1 A , n = 3
The minimum distance in this case is nearly equal to: 13 free  d . To end this part, we give some BER results on AWGN channels, using the optimization obtained by the distance spectrum computation. Due to a lack of place we only give simulation results. The use of accurate upper bounds with the approximate pdf of the distance spectrum will be illustrated in the next part when the chaotic coder will be serially concatenated with a Space Time Block code (STBC). For n = 2, we obtain the following result: The chaotic coder outperforms uncoded BPSK at high SNR's due to good asymptotic properties with a moderate high free distance. The weakness of this kind of code is their poor coding rate. There are several solutions to improve this. The first is to make input bits enter the coder by groups of k bits. In this case, the coding rate becomes equal to:
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However, this considerably reduces the correlation degree between consecutive states and renders the trellis non-binary. We found that the penalty encountered by this method too much important (using k = 2 results in 4 dB losses compared to k = 1) so we prefer using puncturing to increase the coding rate of our proposed coders. We added the case of punctured codes on Fig. 9 with the best puncturing patterns we found for rate 8/7 and 4/3. The performances of punctured codes are improved at low or medium SNR's and they outperform the optimized 1/8 chaotic coder whilst at high SNR's they exhibit a smaller free distance and their diversity gain (i.e. the slope of the BER curb) is worse than those of the optimized 1/8 chaotic coder.

As predicted by the spectrum distance, the performances of the code with mapping matrix

        1 5 1 1 A are degraded when compared to the case         1 8 1 1 A .
The conclusions are nearly the same, considering the case n = 3 as it is illustrated on Fig. 10. The number of states for n = 3 and Q = 2 is 2 9 = 512. Due to a better free distance than for the case n = 2, the BER performances are improved and the chaotic coder outperforms uncoded BPSK at a threshold SNR level equal to 8.5 dB. The best punctured codes with puncturing rates 9/7 and 3/2 are unable to outperform the uncoded BPSK even at high SNR's due to a rapid decrease of the free distance value.

The best performances of chaotic coders for n = 3, Q = 2 are illustrated on Fig. 11. This time, with a free distance equal to 13 for the optimized code with rate 1/9, the punctured codes (9/7) are able to outperform uncoded BPSK at high SNR's. To complete this overview of BER performances over AWGN channels, it is important to say that using the approximate pdf's of the distance spectrum, we are able to accurately predict the BER at high's SNR's. To complete the results, we give on Fig. 12 the best performances we found with n = 3, Q = 3 (i.e. the number of states is 4096). In fact, as it is expected, increasing the quantization level for a given dimensionality n, entails some losses. Compared to Fig. 11, the loss in terms of SNR for a BER of 10 -4 , 10 -5 is approximately 1 dB and, once again, punctured codes are nable to outperform uncoded BPSK. . 

III. Chaos Coded Modulation Scheme concatenated with STBC, performances over quasi-static block fading channels:

The purpose of this report is to study the behaviour of the chaotic coder on a more general and complex context, when it is concatenated with a STBC (Space-Time Block Code) for a MIMO system. This coder is concatenated with a (Space Time Block Code) STBC as the well known Alamouti's scheme as illustrated on Fig. 13.

Fig. 13: Concatenation of the chaos coded modulation encoder and a STBC code

We consider to simplify the case where n = 2; i.e k x is a vector of two transmitted analog symbols:

         ) ( ) ( 2 1 k x k x k x
. These two symbols are transmitted using the well known Alamouti's

scheme           ) ( ) ( ) ( ) ( * 1 2 * 2 1 k x k x k x k x S
or, in the case of real transmitted symbols,
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3.1-Computation of the Pairwise Error Probability (PEP):

In the case of quasi-static block fading channels, channel remains constant over the duration of a transmitted packet but changes from packet to packet and there is no need to use an interleaver between the chaos-based channel encoder and the STBC. The received signal within two consecutive time slots can be written in the following way:
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11 h and 21 h are two complex random variables with mean zero and variance 2. 
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, each time the decoder chooses x x  ' , both sequences starting in the same state and merging again in possibly other state after L steps, when the decision metric implying x' will be inferior to those with x. Assuming 
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Transforming (31), we obtain the following result:
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We obtain the following rule: 
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(Note that, for the moment, we consider 11 h and 21 h as constant i.e. not as random variables). We suppose also that: [START_REF] He | Bit Error Performance of Orthogonal Space-Time Block Codes over Time-Selective Channel[END_REF] and:

0 )) ( ). ( ( )) ( ). ( ( )) ( ). ( ( 
)) ( ). ( ( )) ( ). ( ( )) ( ). ( ( 2 2 2 1 2 1 2 1 2 1 1 1       n n n n E n n n n E n n n n E n n n n E n n n n E n n n n E I R I I R I I R R R I R
2 2 2 2 2 1 1 1 1 )) ( ). ( ( )) ( ). ( ( ... ... )) ( ). ( ( )) ( ). ( (       n n n n E n n n n E n n n n E n n n n E R R I I R R I I
We deduce: 

. ) ( )) ( ( . )) ( ( . ) ) ( (   B h h n n E h n n E h n N E R      (35) 2 2 1 2 2 . ) ) ( ( ) ) ( (  B n N E n N E R R   The random variable     ) ( ) ( ). ( ) ( ) ( ). ( . . 2 ' 2 2 2 ' 1 1 1 1 n x n x n N n x n x n N B D R m L m n R         for given sequences x, '
x is a Gaussian random variable as linear combination of random variables with mean zero and variance:

    2 ' 2 2 1 2 ' 1 1 2 2 ) ( ) ( ) ( ) ( . . . 4 n x n x n x n x B B m L m n           (36) 2 2 3 . . 4  C B   with     2 ' 2 2 1 2 ' 1 1 2 ) ( ) ( ) ( ) ( n x n x n x n x C m L m n        
We can now compute the PEP Pairwise Error Probability of detecting x' instead of x. (41) To derive e P , the complete probability of error event, we need to average (41) over the distribution of ) ( 2 

( ) , , ' ( 21 11 P h h P e   x x x D > A) (37) with     2 2 2 ' 2 2 1 2 ' 1 1 2 . ) ( ) ( ) ( ) ( . C B n x n x n x n x B A m L m n          This yields to: dx e C B h h P C B C B x e . . . . . 2 2 
    ) . 2 . 2 ) ( ) ( ) ( ) ( . ) ( ( . 2 1 ) , , ' ( 2 / 1 2 ' 2 2 1 2 ' 1 1 2 / 1 2 21 2 11 21 11                    n x n x n x n x h h erfc h h P m L m n e x x x
        x x x ( 43 
)
Where we used the equality:

)! 1 ( ) (    n n .
To 

                                                          ( 
                                 h h u h h C
                                  h h u h h C du e u C J ( 46 
)
Using the well known equalities for  function: 1) sin( . )

            dt e t z t z . . ) ( 0 1 ( 1) . ( ) ( ). (
z z z zz z           (47) 
We obtain:

   ) 2 / 1 ( and 2 / ) 2 / 3 (    (48) 
Then, putting these results into H in (44), we find: 

                 2 /
                 h h h h h h h C C C C H               2 / 1 2 2 2 4 2 / 3 2 2 2 2 2 2 4 . 4 . . 8 . . 2 . 2 2 / . 4 . . 8 . . 2 . 4                      h h h h h h h C C C C H ( 49 
)
We obtain eventually the probability of error event for a given error length sequence: 

                                             x x x x x x
At high SNR's, it is interesting to compute the diversity gain, we have: 

C C C C C P C                                             x x x x x x x x x 1) With 2 0 1 6.( 1). .( / ) b Q n E N    , ( see 
e hb P C n Q E N    x x x ( 52 
)
That is, at high SNR's, we have a diversity gain of two.

To compute the probability ) ' (

x x  e P
, it is then necessary to study the distance spectrum of the channel coder, i.e, we need to average (50) over the distribution of the quantity C. As we showed in part 2.2, a Rayleigh distribution or mixtures of Rayleigh or Gaussian distributions can be used with good accuracy. However, before doing this, and in order to obtain a closed form expression of e P in terms of a series expansions of 2  , we develop ( ' ) e P  x x x using the following rules. 

           n x n n x x x 1 1 1 1 ( ' ) . . 2 
C n C                    x x x
We obtain: 

P m C n C                        x x x 2( 1) 1 2 ( 1) 2 2( 1) 1 
( 1) .2 . .( 1).( 2 

                 xx ( 54 
)
We have: Using the classical expansion for x < 1:

                          
1 1 . ! ) 1 ( ! . ) 1 ( ). 2 )...( 1 .( ) 1 ( ) 1 ( 1                      k n k n n k n k n n k x k n n x k n n n x
We obtain: 

. . ) / ( ) 2 ) 1 ( )...( 1 ( . . ) 1 ( . 1 ) ( . 2 2 min min 2 2 . 2 / 1 ) 1 ( 1 1 1 . 2 /                          du e u
                             
And, for the second integral form, we have: 

                               22 / 2. 1 1 0 ' 1 1 1! ( 1) 
                      xx (56)
Remark:

1-The integral expressions involved in the computation of (54-56) can be computed recursively. We have: 

. ) ( 1                                 1 1 0 1 1 ! . . ) 1 (



).

For J 0 , we have: p I the computation is straightforward using the expansion series of function 

. 2 / 1 . ! . 2 ) 1 ( ) . 2 ( 1 . ! ) 1 ( 2 2                
, we obtain: 

) 1 2 ( ) ( . . ! . 2 1 . ) 1 ( . . . . ! . 2 1 . ) 1 ( 1 2 2 0 0 2 2 0 '                  p
1 . ). 1 .( 6 
1 ) ). 1 .( /( / 0 2 2 0 0 0 N E n Q n Q N n Q N Q n E N E b s b           (57) 3 / 1  s E 3 
corresponds to the average energy per transmitted symbol. The derivation of the complete Pairwise Error Probability in (54, 56) is useful to obtain an accurate upper-bound of the Bit Error Probability (BEP) for the STBC based chaos coded modulation system.

Bit Error Probability:

We consider at first a trellis section between time m and m+1 and we assume that a particular sequence x starting from a given state S has been transmitted. We have an overall number of states equal to N S . Let ) , , w ( l d E be the event that an other incoming sequence x d , starting from the same state S, with Hamming distance w between x and x d (error weight sequence is equal to w ), with Euclidean distance between G(x) and G(x d ) equal to d (G is the encoding function) and length l is active, i.e., has the smallest path metric in the interval (m, m+1). Also, denote with is the probability of an error event produced by an incorrect path x d with Hamming distance w from x, Euclidean distance d between G(x) and G(x d ), and length l; To obtain b P we have to average formula (61) over all the possible departure states and over all the possible reference transmitted sequences. Assuming uniform density probability for each probability distribution (the probability to be in a given state and the probability to send a given reference sequence), this yields to: In the case of the studied chaotic encoder, we can replace, due to the richness of the distance spectrum, the summation over d and l by continuous integration since we found that, for a given error event length w, the probability density distribution of d follows either a Rayleigh function similar as in ( 6) or a mixture of Gaussian or Rayleigh distributions. We obtain the following result: e P  xx , has been given in (54, 56) since we suppose that, for a given value w, the distance spectrum follows either a Rayleigh function or a mixture of Gaussian or Rayleigh distributions.

Simulation results:

We checked formula (63) using the chaotic coder of Fig. 1 (a = 8, n =2, Q = 3) and the coder optimized for n 3, = 2. We compare the upper bound of (63) with simulation results on Fig. 14. One can see that the two curves are very close to each other in the two cases (n = 2 and n = 3) showing the accuracy of the formulas ( 56) and (63). The system for n = 3, Q = 2 has a high diversity gain at high SNR's since its slope is much more important that those for the case n = 2, Q = 3. This is due to a better free distance. 

IV. Chaos Coded Modulation Scheme concatenated with STBC, performances over time selective fading channels:

We start from the classical Alamouti's model, but this time we consider that channel parameters may vary from sample to sample. We have the following equation: 

) 1 2 ( ) 1 2 ( ). 1 2 ( ) 2 ( ). 1 ( ) 1 2 ( ) 2 ( ) 1 2 ( ). 2 ( ) 2 
            n n n x n h n x n h n y n n n x n h n x n h n y ( 64 
)
We can write these equations in equivalent matrix form:

                                        ) 1 2 ( ) 2 ( ) 1 2 ( ) 2 ( ) 1 2 ( ) 1 2 ( ) 2 ( ) 2 ( ) 1 2 ( ) 2 ( * * 11 * 21 21 11 * n n n n n x n x n h n h n h n h n y n y ) ( ) ( . ) ( ) ( n n n n N X H Y   (65)

Classical MRC use:

Using the classical MRC equalization is equivalent to multiplying the received vector Y by ) (n

H H that is: ) ( ). ( ) ( . ) ( ). ( ) ( ). ( n N n n n n n n H H H H X H H Y H  
(66) We have: 

                                         
(

n h n h n h n h n h n h n h n h n h n h n h n h n n n h n h n h n h n h n h n h n h n n H H

H H H H

Similarly as in [START_REF] Lu | Performance analysis and design optimization of LDPCcoded MIMO OFDM systems[END_REF], we use the following notations: 

) 1 2 ( ). 1 2 ( ) 2 ( ). 2 ( ) ( ) 1 2 ( ) 2 ( ) ( ) 1 2 ( ) 2 ( ) ( 21 
          n h n h n h n h n n h n h n n h n h n    The off-diagonal elements of ) ( ). ( n n H H H
are non-zero and therefore they cause ISI. Consequently, the interferences are introduced into the decision metrics of x(2n) and x(2n+1). 

                            ) 1 2 ( ). 1 2 ( ) 2 ( ). 2 ( ) 2 ( ). ( ) 1 2 ( . ) 1 2 ( ) 2 ( ) 1 2 ( ) 1 2 ( ). 1 2 ( ) 2 ( ). 2 ( ) 1 2 ( ). ( ) 2 ( . ) 1 2 ( ) 2 ( ) 2 ( 11 
) 1 ( 1 h R  (see 77-79) ) ) 1 ( 1 ), 2 ). 1 ( ( ) 1 2 ( 2 11 ) 2 ( 11 11 h h n h R n h R n h    
Similarly, one could demonstrate that:

) ) 1 ( 1 ), 1 2 ( ). 1 ( ( ) 2 ( 2 21 ) 1 2 ( 21 21 h h n h R n h R n h     
Using these two characteristics, it is easy to demonstrate that the interference term ) (n



is a conditional complex Gaussian random variable, which is given by:

)) ) 1 ( 1 ).( ) 1 2 ( ) 2 ( ( , 0 ( ) ( 2 2 21 2 11 ) 1 2 ( ), 2 ( 21 11 h n h n h R n h n h n        (67) Conditioning on the channel parameters ) 1 ) 1 ( 2 ( ),..., 1 2 ( ), 2 ( 21 11 11 
    m L h m h m h
, one can compute the Pairwise Error Probability:

2 2 1 2 1 2 2 1 2 1 1 : ), ( ) 1 2 ( ' ). ( ) 1 2 ( ) 2 ( ' ). ( ) 2 ( ) 1 2 ( ). ( ) 1 2 ( ) 2 ( ). ( ) 2 ( Proba ) , ' (  
                             n x n n Z n x n n Z n x n n Z n x n n Z P m L m n m L m n m L m n n e     x x x H
We then replace: 

) ( ) 1 2 ( ). ( ) 1 2 ( ) ( ) 2 ( ). ( ) 2 ( 2 2 1 1 n N n x n n Z n N n x n n Z         With: ) 1 2 ( ). 1 2 ( ) 2 ( ). 2 ( ) 2 ( ). ( ) ( ) 1 2 ( ). 1 2 ( ) 2 ( ). 2 ( ) 1 2 ( ). ( ) ( 11 
           n n n h n n n h n x n n N n n n h n n n h n x n n N  
We obtain the PEP:

1 * ( ), : 1 1 1 * 22 1 2 2 2 2 12 ( ' , ) Proba 2.Re( ( ).[ ( ).( (2 ) 
'( 2))] ...

2.Re( ( ).[ ( ).( (2 1) '

(2 1))] ( ) '(2 ) (2 ) ( ) '(2 1) (2 1) (68) Lm e n n m L m nm Lm nm P n N n x n x n n N n x n x n n x n x n n x n x n                                         H x x x
The random variable: 

1 ** 1 1 2 2

2.Re[ ( ).[ ( ).( (2 ) '(2 ))] ( ).[ ( ).( (2 1) '(2 1))]]

Lm nm X n N n x n x n n N n x n x n           X,
) mL h X h n h n nm h n x x n n R x n n n x n x n n R x n n                         
Then, the probability (68) is equal to:

( ), : 1

1 22 22 
1 2 2 2 1 1/ 2 1 22 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 1 2 ( ' , ) ( ) . ( ) . 1 . ( ) 2 2. 2. 

( ). .[ ( ).(1 (1) ). (2 1) . ( )] ( ). .[ ( ).(1 (1) ). (2 ) . ( )]

e n n m L m mL nn nm mL n h n h nm P n C n C erfc n C n R x n n n C n R x n n                                 H x x x
With:

2 2 2 )) 2 ( ' ) 2 ( ( n x n x C n   and 2 2 1 2 )) 1 2 ( ' ) 1 2 ( (      n x n x C n
We use the following approximations: ] 

            L m m n m h m h n h n h n h n h i.e.: 1 2 1 ( ) ( ) ( ), [ , 1] n 
n m n m m L          , we obtain : 11 21 
(2 1), (2 )

1 1/ 2 2 2 1 2 2 1 1/ 2 1 2 2 2 2 2 2 2 2 2 2 1 ( ' , ) ( ) ( ) 1 . 
(

) 2 2. 2. .[(1 (1) ). ( 2 1) 
] .

[(1 (1) ). ( 2) ]

e h m h m mL n n nm mL n h n h nm P m C C erfc C R x n C R x n                            x x x (70)
To complete, the PEP computation, we have to average (70) over the distribution of 1 () m

 . 1 () m  follows a chi-squared distribution: 1 () 42 1 . .exp( ) 4. . (2) 2. m hh x px     . 11 21 2 
(2 1), ( 2) 

1 1/ 2 2 2 2 2 1 / 2. 4 1/ 2 1 22 0 2 2 2 2 2 2 2 2 1 ( ' , ) () 1 ( 
P x C C erfc x e dx C R x n C R x n                            x x x
Setting: 

mL n h n h nm C R x n C R x n              which is independent of 2 
and thus the expression (72) shows that we obtain an irreductible error floor at high SNR's, that is the MRC equalizer completely loses diversity gain. Therefore, the time selectivity of the channel makes the conventional (MRC) linear equalizer lose all the diversity. It is necessary to suppress the interfering terms in the expressions of ( 2), (2 1) Z n Z n  to restore some diversity gain. To obtain the BER, we still have to average (69) over the distance spectrum distribution. Once again, using a Rayleigh distribution approximation, we are able to derive a closed form expression of a lower bound in a form of a series expansion in terms of where our hypothesis which consists in considering channel parameters constant over the length of the diverging sequences is too much optimistic. The difference between simulation results and the lower bound in this case is 2 dB whilst it is less than 1 dB for the other Doppler rates. 

ZF equalization:

Since the irreductible error floor of the conventional MRC equalizer is caused by ISI arising from the off-diagonal elements () n  , it is of interest to construct a decision metric that mitigates () n  . In order to suppress ISI due to the temporal variations of the channel coefficients, one has to diagonalize ) (n H . A possible matrix which diagonalizes ) (n H is given by [START_REF] Lu | Performance analysis and design optimization of LDPCcoded MIMO OFDM systems[END_REF]:

            ) 2 ( ) 1 2 ( ) 2 ( ) 1 2 ( ) ( 11 * 21 21 * 11 n h n h n h n h Q (73)
Multiplying the two sides of (65) by ) (n Q , we obtain:

N Q H Q Y Q ). ( ). ( ). ( ). ( n X n n n   (74) 
The matrix 

) ( ). ( n n H Q is equal to:                ) 1 2 ( ). 2 ( ) 1 2 ( ). 2 ( 0 0 ) 1 2 ( ). 2 ( ) 2 
h h h h h h h h h h h h h h R R R R R R R h n h E R n h n h E R n h n h E n h R n h n h R n h E                       (79)
h h n h R n h R n h     (80) 
Similarly, one could demonstrate that:
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Using the equivalent model (74), we obtain, after diagonalization, the equivalent mathematical model: 
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We eventually obtain: 
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To further develop the computation of the error probability, one has to characterize the random variable:
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Conditioning on the channel parameters, X is a Gaussian random variable with mean zero and variance 2 X  .
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Reporting these expressions into (85), we obtain eventually: 
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Using this last expression, we obtain: 
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To obtain (88), we have used the fact that
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Hence, we obtain:
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Using the Gaussian distribution of X, we compute the Pairwise Error Probability: 
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remains constant over the block length L. This corresponds to a rather optimist case (as Fig. 15 showed it) and, to be more accurate, one has to choose a better approximation of 

V. Conclusion:

Based on the former work of Kozic & al, we have proposed new insights for the stud of performing Chaos Coded Modulation (CCM) schemes. We have studied in detail the distance spectrum of some CCM schemes and we have approximated their pdf's with some well known laws. Using these approximations, we have been able to study the performances of these CCM schemes when they are concatenated with a Space Time Block Code (STBC). We obtained accurate bounds even in the case of time selective channels. In the case of time selective channels, we showed that the MRC classical equalizer makes the lose all the diversity gain at high SNR's exhibiting BER floor while the zero-forcing equalizer structure loses only one order of diversity. The provided simulation results, together with the computation of the BER bounds, illustrate the accuracy of our closed form expressions except in the case of highly time selective channels.

  can be represented by means of a convolutional coder of rate 1/( .(1)) nQ   , where at each time step k, one bit

S

  choice of the matrix A, we can write the transmitted vector at the output of the modulator:
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 1 Fig 1: Trellis chaos coded modulation encoder
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 2 Fig. 2: Phase trajectory of the chaotic encoder for different values of Q a .

6 )and 2 j

 62 For example, with the distance spectrum plotted on Fig 3, we calculate parameters j m to obtain the best fitting between the pdf of the distance spectrum and )

Fig. 4 :Fig. 5 :

 45 Fig. 4: Distance spectrum v.s. Rayleigh distribution

-

  Given the initial set of values j  -Given the distance values   i  , the number of mixture components J, and the total number of EM iterations I, starting from the initial parameters ) 0 (  .

  equations[START_REF] Escribano | Iteratively decoding chaos encoded binary signals[END_REF][START_REF] Kozic | Controlled One-and Multidimensional Modulations Using Chaotic Maps[END_REF] is a set of coupled non-linear equations and we use the optimization toolbox with the function fsolve to solve[START_REF] Escribano | Iteratively decoding chaos encoded binary signals[END_REF][START_REF] Kozic | Controlled One-and Multidimensional Modulations Using Chaotic Maps[END_REF] at each maximization step.
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 6 Fig. 6: Normalized Probability Density Distribution (pdf) approximation with Gaussian mixture for Fig. 5.
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 9 Fig. 9: Performances of Trellis Chaos-Coded Modulation over AWGN channels for n = 2, Q = 3
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 10 Fig. 10: Performances of Trellis Chaos-Coded Modulation over AWGN channels for n = 3, Q = 2
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 11 Fig. 11: Performances of optimized Trellis Chaos-Coded Modulation over AWGN channels for n = 3, Q = 2
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 12 Fig. 12: Performances of optimized Trellis Chaos-Coded Modulation over AWGN channels for n = 3, Q = 3 (4096 states)
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  We suppose that:

2 - 2 

 22 The expressions of the Pairwise Error Probability (54, 56) are serial expansions in terms of , the variance of the additive white Gaussian noise on the link. It can also expressed in terms of E b

  the multiplicity of such incorrect paths. The inequality in (58) relies on the fact that, to be active in the interval (m, m+1), the error event ) l must have started at a node between m-l+1 and m.The bit error probability conditioned on x and S, is in error in the interval (m, m+1), is given by: fact w is the number of information digits which differ between x and x d and l is the overall number of transmitted digits in x x d (incoming bits are encoded one after one). Substituting (60) into (59), we obtain:

  Pairwise Error Probability (PEP) for pair of sequences which having w error length weight. ,w ( ')

Fig. 14 :

 14 Fig. 14: Performance comparison between simulation results and the Upper-Bound results

  results clearly highlight the BER floor phenomenon at high SNR's as it is plotted on Fig. 15. Depending on the Doppler rate, the simulation results and the lower bounds feet quite well except for the case . 0.01 ds fT

Fig. 15 :

 15 Fig. 15: MRC Simulation results and lower bounds for various Doppler effects

  Applying the above lemma, we can obtain:

  shows a diversity order of one. Therefore, the time selectivity of the channel makes the conventional linear decoder lose one order of diversity, compared with the full diversity order of two in the quasi-static fading channel case. To obtain the BER bounds, we have to average (98) over the distance spectrum distribution. We obtain the curves of Fig.16. It is clear from Fig. 16 that the BER floor has been avoided. The BER performances have been considerably improved for the high rates Doppler . 0.01 ds fT , since we obtain a BER of 4 7.10  at E b /N 0 = 20 dB whilst the BER saturates at 3 1.7.10  on Fig. 15.
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 16 Fig. 16: ZF Simulation results and lower bounds for various Doppler effects

  

  

  2. 

								nn m  	, i.e. that the variance is twice
	the mean. Finding J,												
	Fortunately, the EM (Expectation Maximization) algorithm enables to reduce considerably the
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At the output of the Maximum Ratio Combiner (MRC) we form the two decision

  Using the definitions of B and C, we obtain the conditional probability of error:
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