
Continuous top-k queries in social networks

Abdulhafiz Alkhouli, Dan Vodislav, and Boris Borzic

ETIS - ENSEA / Univ. of Cergy-Pontoise / CNRS - France
{abdulhafiz.alkhouli,dan.vodislav,boris.borzic}@ensea.fr

Abstract. Information streams provide today a prevalent way of pub-
lishing and consuming content on the Web, especially due to the great
success of social networks. Top-k queries over the streams of interest allow
limiting results to the most relevant content, while continuous process-
ing of such queries is the most effective approach in large scale systems.
However, current systems fail in combining continuous top-k processing
with rich scoring models including social network criteria. We present
here the SANTA algorithm, able to handle scoring functions including
content similarity, but also social network criteria and events in a con-
tinuous processing of top-k queries. We propose a variant (SANTA+)
that accelerates the processing of interaction events in social networks.
We compare SANTA/SANTA+ with an extension of a state-of-the-art
algorithm and report a rich experimental study of our approach.

Keywords: information streams, social networks, continuous top-k query
processing, publish/subscribe systems

1 Introduction

Publishing and consuming content through information streams is today at the
heart of the new Web. Information streams consist of flows of items, usually short
semi-structured text messages, possibly containing links to some Web resources
(images, videos, pages, etc.), and continuously published through specific diffu-
sion channels, e.g. RSS feeds from media, blogs, discussion forums, social net-
works, etc. Users may be both producers and consumers; as consumers, they sub-
scribe to information channels of interest and continuously receive on it, in real-
time, new published content. Yet, this new dynamic publishing/consumption
mode may lead to huge amounts of received items, overwhelming for human pro-
cessing. Thus, there is a vital need to develop filtering and ranking techniques
which allow users to efficiently be updated with the most interesting items.

Ranking models for information streams proposed so far mainly focus on the
item content and/or publication time, by laying on scoring functions based on
two categories of factors: (1) content-based, measuring the adequacy of the item
content with the subscription query, and (2) time-based, measuring the decrease
of the importance of an item as time goes by.

However, the cooperative dimension of such environments has been neglected
in the ranking models. The importance of an item depends not only on its content
or publication time, but also on the users, on the relationships between them
and on their actions. The relationship between publishers of information streams

and subscribers introduces a social network dimension in this publish-subscribe
(pub-sub) framework. This dimension includes not only explicit relationships
between users in a social network, but also implicit ones, through the interaction
of users with items published by other users (e.g. likes, shares, etc.). This social
network dimension provides new criteria to measure the interest of items for
users, in addition to those mentioned above: (3) user-based, measuring e.g. the
importance of the publisher and of the relationship between the subscriber and
the publisher in the social network graph, and (4) interaction-based, measuring
the importance of items by the reaction they provoked, expressed through actions
of other users on that item. As many studies show, including these criteria into
the scoring function improves the quality of the ranking [21][10].

We address here the problem of filtering the large amount of items through
top-k continuous queries, where the ranking model is based on a scoring function
that includes social network criteria. An important challenge in this context is
the design and implementation of efficient processing models at a very large
scale. The main difficulty comes from the need of continuously computing (or
re-computing) the score of every item relative to every subscription query and
of subsequently maintaining the lists of subscription results. The complexity of
this task depends not only on the number of items and queries, but also on the
form of the scoring function.

We distinguish two main categories of processing models proposed to date.
The static approach is based on periodic snapshot queries over the set of pub-
lished items to get the top-k list for each user. The continuous approach handles
subscriptions as continuous queries reacting to new messages and to other events,
in order to incrementally maintain the lists of important messages. If the contin-
uous approach is more efficient, it also has more difficulties to handle complex
scoring functions. The continuous methods proposed so far only explored simple
scoring functions [8][14], most of the time based on the textual content, possibly
combined with time factors, while more complex scoring models, including social
network factors are only handled through the static approach.

Our purpose is to go beyond the state-of-the-art methods for continuous pro-
cessing of top-k queries over information streams, by considering complex scoring
functions that include various factors related to the social network environment.
Also, unlike existing continuous approaches [8][11][16] that only handle new item
publication events, we aim at extending continuous processing to interaction with
items (action events). In this paper we propose the following main contributions:

– An algorithm, SANTA (Social and Action Network Threshold Algorithm),
for continuous top-k processing of information streams, using a scoring func-
tion that includes all the social network factors identified above, and able to
handle both publication and action events - to the best of our knowledge,
SANTA is the first algorithm of this type. SANTA adopts a simple sorted-
lists index that provides flexibility for the extension to new score criteria in
a social network context, and for parallel processing.

– A variant of SANTA, called SANTA+, that significantly accelerates the pro-
cessing of action events.

– A rich set of experiments over a real dataset extracted from Twitter, illus-
trating the properties of our algorithms and demonstrating their efficiency
compared to an extension of a state-of-the-art algorithm.

2 Related Work

Ranking models for information streams. In ranking models for docu-
ments, the importance of a document for a subscription query has been generally
considered in the context of text documents and queries, based on information
retrieval (IR) text relevance models such as tf-idf [15] or Okapi BM25 [9]. To
this query-dependent score model, some approaches have also added a global,
query independent importance of messages, based on the PageRank score [12]
when messages refer web pages, on information novelty [7], on source authority
[5] or on user attention [19].

The social network context has been considered in the scoring models, in order
to improve the relevance of subscription query results by taking into account the
relationships between publishers and subscribers. Social network components are
included in the score model in several approaches, such as the distance in the
social graph [1] [21], user actions [10] or location information [20].

However, the complexity of these scoring models prevented their use for con-
tinuous top-k processing. Either they are only proposed to provide a better
relevance estimation in social network environments, or, at best, they come with
efficient algorithms for some score components computation (e.g. distance in
graph) and with static, snapshot-based algorithms for top-k evaluation [20] [21].
To the best of our knowledge, the only work on continuous top-k processing for
information streams including a social network component in its score model is
[18], but this is limited to the simplest component, a global, query independent
importance of each message. Very recently, [17] reported an extension of this
work including user feedback in the score model, which can be assimilated to
our interaction-based score components.

In this context, our work aims at proposing a rich score model, including so-
cial network components, providing a good compromise between expressiveness
and a complexity suitable for continuous top-k processing.

Continuous top-k processing of information streams. The large ma-
jority of the methods proposed for continuous top-k processing consider text
information streams, with text subscription queries, IR relevance models (tf-idf,
BM25) and no social network scoring elements.

Part of them consider the time-based aspects by using a time-sliding window
w (top-k/w pub-sub), where items exiting the window become irrelevant. Among
them, [13] is an early work on probabilistic models for continuous top-k process-
ing, while [11] considers classical tf-idf cosine similarity, using two inverted text
indexes, one for the most recent messages (in the sliding window) and the sec-
ond one for the subscription queries. Top-k processing is based on the Threshold
Algorithm (TA) [6] exploiting the text indexes. However, since messages are
indexed, a high arrival rate results here in expensive index updates.

A well known work in this category is [8], which proposes the COL-Filter
algorithm and an improved variant POL-Filter. COL-Filter only indexes sub-
scription queries but uses a score-oriented order for the inverted lists instead
of query-oriented order in [11]. More precisely, an index list for a query term τ
contains queries q that include τ , ordered by the ratio between the importance
of τ in q and the current k-th best score for q. This allows efficient top-k pro-
cessing by using the Threshold Algorithm (TA) [6] on the index lists, but suffers
from a relatively high number of updates subsequent to k-th best score changes
provoked by new messages or by message exit from the time sliding window.

In a similar context, [14] proposes a strategy for sharing effort among queries
in the top-k computation process, based on a covering relationship between
subscription queries and an associated graph index. However, their covering re-
lationship is not adapted to the extension with social network criteria.

Other approaches replace the time sliding window with a continuous order-
preserving decay function to handle time-dependent scoring, which eliminates
the problem of top-k re-computation upon message expiration. In this category,
[16] proposes an adaptation of two IR top-k retrieval strategies to information
streams: the document-at-a-time (DAAT) algorithm WAND [2] and the term-
at-a-time (TAAT) algorithm of Buckley and Lewit [3]. However, the approach
looks difficult to extend with social network scoring criteria.

Unlike the above approaches considering text information streams with mono-
tonic and homogeneous scoring functions, [18] introduces a global importance of
each message in scoring, that may be computed on social network criteria. They
use a two-dimensional inverted query indexing scheme and use decay functions
for time-dependent scoring, like [16]. As mentioned above, this work has been
extended [17] with the inclusion of user feedback in the score model and in event
processing, but user relationships in the social network are not considered.

All these continuous top-k techniques are not extensible to include social
network criteria, excepting COL-Filter [8] and [18]. Even for them, a major
drawback is the need of many index updates, since they include the value of the
k-th score (having frequent changes) into each index dimension. Moreover, they
consider short queries (a few terms), while social network environments come
with implicit subscription queries based on user profiles (long queries). Since
the number of updates grows with the size of the query and with the number
of dimensions (that increases when introducing social network criteria), these
techniques are not adapted to the social network context. Our method separates
the k-th score from the other dimensions in the index, thus minimizing impact
of updates and facilitating the extension with new social network dimensions.

The rest of the paper is organized as follows: the next section describes
the data model, the scoring function and the processing model, then Section 4
presents the SANTA and SANTA+ algorithms. Finally, Section 5 presents the
experimental study, before concluding.

3 Data and processing models
Data model. We consider information streams produced by the users of a social
network. Streams are composed of messages (items), each message being char-

acterized by a content descriptor that allows evaluating content similarity. We
focus here on text-only messages, where content similarity is evaluated through
vector models like tf-idf, and content descriptors may be represented as a vector
of terms with a tf-idf weight associated to each term.

We model the social network as a pub-sub environment, where users publish
messages and subscribe to information streams produced by other users in the
network. The subscription queries are implicit, based on the user profile. A profile
expresses the elements of interest for the user in messages and is also represented
as a content descriptor, e.g. a vector of terms with their weights. Therefore, the
importance of the content of a message m for a user u can be computed as the
similarity between the content descriptors of m and of u’s profile.

Users can also interact with messages, e.g. through likes, comments, forward-
ing, tagging as favorite, etc. We call user actions such interaction events; each
message has a (possibly empty) set of associated user actions.

We consider social networks with asymmetric directed relations between users
(such as for Twitter), which also cover the case of symmetric social networks
(such as Facebook) by representing a two-way relation by two directed ones.

Definition 1. An information stream social network (ISSN) S is a tuple
S = (U,R, p, sim, f, s), where:

– U is a set of users.
– R={(u1, u2)|u1, u2 ∈ U, u1 6= u2} is a set of non-symmetric relations between

users; (u1, u2) ∈ R means that u1 “follows” the messages published by u2.
– p : U → D is a function associating a profile to each user. User profiles and

message contents are both modeled as content descriptors in D.
– sim : D2 → [0, 1] measures the similarity between two content descriptors.
– f : U2 → [0, 1] is a function associating to each couple of users (u1, u2) the

importance of u2 for u1 in the social network.
– s : U → I is a function associating to each user the information stream

generated by that user.

For text messages, with tf-idf based cosine similarity, a content descriptor
d ∈ D is a vector of weights d = [wt|t ∈ T], where T is a fixed dictionary of
terms appearing in messages and wt ∈ R+ is the weight of term t, with wt = 0 for
t not appearing in the message. By considering normalized weights, the cosine
similarity function becomes sim(d1, d2) =

∑
t∈T w1tw2t.

Note that the user relative importance function f is defined for any couple of
users in the network graph, not only for those directly related through R. Like
R, f is asymmetric. Depending on the design choices, the values of f(u1, u2) may
depend on many factors, such as the paths connecting u1 to u2 in the graph, the
actions of u1 on the messages of u2, etc. and may change in time. In practice,
each user has only a limited number of users of interest (with f>0), which results
into reasonable effort to manage this information.

Definition 2. An information stream I ∈ I is a couple I = (M,A), where:

– M = {(ts, d)|ts ∈ TS, d ∈ D} is a set of messages, where ts is the timestamp
of the message and d is the content descriptor of the message.

– A = {(ts, u,m)|ts ∈ TS, u ∈ U,m ∈ M is a set of user actions (e.g. likes,
shares, etc.) on the stream messages. ts is the action’s timestamp, u the user
that realized it, m the target message of the action.

Note that even if user actions may be of several types, we only focus here on
actions as a proof of the interest of users for messages.

Scoring function. We consider here a scoring function that expresses score(m,u),
the importance of a message m for a user u, by combining content-based and
social network factors. For simplicity, we consider here a linear combination of
factors, but any monotonic function is compatible with our algorithm.

score(m,u) = α sim(m, p(u)) + (1− α) social(m,u)

social(m,u) = β global(m) + (1− β) f(u, um)

global(m) = γ UI(um) + (1− γ) AI(m)

(1)

Parameters α, β, γ ∈ [0, 1] express the relative importance of the scoring
function components. α expresses the balance between content-based similarity
sim(m, p(u)) and social network based criteria. Inside social(m,u), β gives the
balance between global, user-independent factors (UI(um), AI(m)) and user-
dependent ones, expressed here by f(u, um), the importance of the message
emitter um for the user in the social network. Finally γ measures the balance
between UI(um) ∈ [0, 1], the global importance of the emitter um in the network,
and AI(m) ∈ [0, 1], the importance of the message given by the reactions it
provoked, i.e. the actions realized on the message. We consider that new actions
increase the value of AI(m), i.e. AI(m) is monotonically increasing with the
number of actions on message m.

We also explore the introduction of a time dependent factor, expressing the
loss of importance of messages in time. We consider a decay function [18][16],
TD : R+ → [0, 1], monotonically decreasing and with TD(0) = 1. For a message
m published at time tm, the variation in time of the importance of message m
for user u is expressed by the time-dependent scoring function tscore :M×U ×
TS → R+ such that for any moment t ≥ tm:

tscore(m,u, t) = score(m,u) · TD(t− tm) (2)

Here score(m,u) is the scoring function from (1) and expresses the initial
importance of message m for user u at moment tm.

Generally, only order-preserving decay functions are considered, i.e. functions
that preserve in time the relative order of message scores. But even if this simpli-
fies the continuous processing of top-k queries by preventing message reordering
because of decay, maintaining time-dependent scores is unfeasible in practice.

Instead, we adopt the dual approach of time-bonus functions inspired from
[4]. The idea is to give a score bonus to newer messages, instead of degrading
scores in time. This produces the same effect as decay (penalizing older mes-
sages), with the advantage of fixed scores and of relative order preservation. A
time bonus function TB : R+ → [1,∞) is monotonically increasing and has
TB(0) = 1. Given a fixed origin moment to ∈ TS, the time-dependent scoring
function becomes time-independent:

tscore(m,u, t) = score(m,u) · TB(tm − to) (3)

Fig. 1. Model of continuous top-k processing in an ISSN

Problem statement. Given an ISSN and a scoring function such as (1) or
(3), design an algorithm that efficiently computes and maintains the lists of best
k messages for each user, as new messages are published and new actions on the
existing messages are registered.

Processing model We consider the ISSN essentially as an event-based system
in which continuous top-k processing is realized through event handling. We
focus here on two main event types that impact top-k results: the publishing of
new messages and user actions on the messages.

Other events produce changes in the social network (e.g. new edge, new user,
profile changes) and consequently impact the scoring parameters. Such events
may have both a local impact on some users and a global impact on the ISSN, e.g.
adding an edge from u1 to u2 locally impacts u1 and u2, but may also slightly
change values for f in the ISSN. If the local impact may need continuous pro-
cessing, the small global impact can be handled through periodic updates of the
ISSN. Such changes are considered in the following time consistency setting : the
scoring parameters for a message are those at publishing/action time, changes
to the ISSN do not modify the score of previous messages.

In this work we focus on the continuous processing of the main events only.
For space reasons, no exhaustive study of handling the local impact of social
network changes is presented, but only a brief discussion in Section 4.

Figure 1 presents our model for continuous top-k processing. New message
publishing and actions on messages are continuously processed. They provoke
a lookup in the index structures, composed of a content-based index, a social
index and a k-th score index. The result of this lookup is a set of candidate users
for the top-k update. The role of the index is to drop from this set as many
users not impacted by the event as possible, in order to enable efficient top-k
processing. The update of the top-k lists provokes in return an update of the
k-th score index. Social network changes are handled through periodic updates
of the ISSN parameters, producing changes in the data and index structures.
For simplicity, the local impact of these events is not represented here.

4 The SANTA algorithm

The Social and Action Network Threshold Algorithm (SANTA) provides efficient
continuous top-k processing based on a simple index structure, composed of
sorted lists, traversed with threshold-based techniques to prune the search space.

Existing algorithms for continuous top-k processing can be hardly extended
with social network criteria in the scoring function and face the problem of heavy
index updates when the top-k scores change. Unlike them, SANTA minimizes

Fig. 2. The SANTA index structure

index updates by isolating changes into a single dimension, while its simple
index structure facilitates the extension to new social network dimensions. We
illustrate this difference here, by comparing SANTA with an extension of the
closest approach in the state of the art, the COL-Filter algorithm [8].

Index and other data structures. The SANTA index structure (Figure 2) is
composed of a text index, a social index and the list µ of the current k-th score
for each user. The text index is composed of lists for each term ti, containing the
users u that have ti in the profile, sorted in descending order of the term’s weight
wiu. The social index is composed of lists for each user uj , containing users u
for which uj is important (f(u, uj)>0), sorted by decreasing f(u, uj). The µ list
is sorted in descending order of -µu (i.e. increasing µu). Note that µ is the only
part of the index that needs updates during continuous top-k processing.

SANTA also manages a user table (Figure 1) to keep information about each
user in the social network. The entry for user u in the table contains:
– the current top-k list for u;
– u’s profile, as a list of (term, weight) couples;
– the list of users u′ of interest for u, with the value f(u, u′) > 0 for each one;
– the user importance UI(u) in the social network.

The first component contains the current query results, while the other ones
are necessary to evaluate score(m,u) for any given message m.

Note an important scalability issue: SANTA processes messages on the spot
and does not store them in the system. To get a previous message addressed
by a new user action, we consider that the action event also provides the target
message, which is the case in practice. Note also that in practice each user
has only a limited number of users of interest (with f(u, u′) > 0), requiring
reasonable memory space for these lists and for the social index.

Scoring function. We consider the case of a scoring function such as (1) or (3),
with cosine similarity for the textual content, but any content similarity function
monotonic in the index dimensions is compatible with SANTA. For simplicity, let
us consider first the time-independent case. Scoring function (1) can be written:

score(m,u) = a
∑
ti∈m

wimwiu + b f(u, um) + c G(m) (4)

Here G(m) = global(m) = γUI(um) + (1 − γ)AI(m) is the global, user-
independent part of the score, a = α, b = (1− α)(1− β) and c = (1− α)β.

If we note F (m,u) = score(m,u)−µu, a message m will enter the top-k of u
iff F (m,u) > 0. Given the form of score(m,u) in (4), it is easy to remark that for

a given m, F (m,u) is a constant (c G(m)) plus a positive weighted sum in the
index dimensions wiu, f(u, um) and −µu. Consequently, F is monotonic in the
index dimensions, which allows threshold strategies such as TA [6] to traverse
the index lists in order to get candidates u for top-k change.

In the case of the time-dependent scoring function (3), we have
F (m,u) = score(m,u)TB(tm− to)−µu, i.e. all the components of the score are
multiplied by the same positive factor. This does not change the monotony of F
and the same algorithm as for time-independent scores can be applied.

The algorithm. Figure 3 presents the SANTA algorithm, as a set of two event
handlers, newMessage and newAction. Both use the same approach, expressed
by the getCandAndUpdate method: for each candidate user extracted from the
index, check if the message enters the top-k for that user; if so, update its top-k
and the corresponding entry of µ. The difference is that newMessage already
has the incoming message, while newAction retrieves it from the action. For
newAction, the new action will increase the value of AI(m), so G(m) grows and
the F (m,u) > 0 condition will produce more candidates from the index.

Note also a subtle difference between newAction and newMessage. Since pro-
cessed messages are not stored in the system, retrieving the message from the
actions means a new processing of the message to extract terms and their weights.
This may add a quite significant extra processing time for actions.

getCandAndUpdate checks each candidate c returned by the index traversal
(getCandidates), where c contains both the user c.user and an upper bound
estimation c.upperBound for score(m, c.user). The entry ue of c.user in the user
table is necessary to compute the real score(m, c.user) with computeScore(m,ue)
and to get the k-th score of c.user. To avoid systematic computation of the real
score (costly operation), c.upperBound is first checked against the k-th score;
the computation is not necessary if c.upperBound is not greater. If the real score
s exceeds the k-th score, then m enters the top-k of c.user. Both the entries for
c.user in the user table (for the top-k list) and in the µ list are updated; c.user
goes downward in µ since its k-th score increases.

The threshold strategy for limiting the number of candidates is implemented
by the getCandidates method. For message m, initTraversal selects the related
lists from the index and computes the coefficients of F (m,u). The index lists
traversal may follow any threshold algorithm strategy through the call to nex-
tIndexUser, which returns the next user in some of the lists. The best known one
is the TA strategy [6], which considers lists in a round-robin order, but other
strategies are possible. We define F (m) as being F (m,u) applied to the last
visited value in each index list (or to its maximum value if not yet accessed).
Since F (m,u) is monotonic and index lists are traversed in descending order of
scores, F (m) gives the threshold (decreasing during index lists traversal) that
F (m,u) cannot exceed for any new candidate u to be found in the index.

Any new candidate found while threshold > 0 may have m in its top-k; it is
added to the list together with its upper bound score score(m), computed like
F (m) but excluding the µ list. The traversal stops when threshold ≤ 0.

Algorithm SANTA Algorithm SANTA+
Input: message m, action a, Input: message m, action a, index I, user table U, window W

index I, user table U newMessage (m, I, U, W)
newMessage (m, I, U) me ← storeMessage(m,W)

getCandAndUpdate(m, I, U) initPos ← initTraversalPos(m,I)
end getCandAndUpdatePos(initPos, me, I, U, W)
newAction (a, I, U) end
m ← getMessage(a) newAction (a, I, U, W)
getCandAndUpdate(m, I, U) me ← getMessageEntry(a, W)

end if me exists then //use the stored message entry
getCandAndUpdate (m, I, U) increase ← updateDelta(me, a)

foreach c in getCandidates(I,m) do foreach ce in me.candidates do
ue ← getUserEntry(U,c.user) ue ← getUserEntry(U,ce.user)
if c.upperBound > ue.kthScore then ce.score ← ce.score + increase

//compute real score if ce.score > ue.kthScore then update ue and I.µ
s ← computeScore(m,ue) elsif me.delta ≤ ue.kthScore − ce.score then
if s > ue.kthScore then remove ce from me.candidates

update ue and I.µ end if
end if end foreach

end foreach getCandAndUpdatePos(me.indexPos,me,I,U,W)
end else //use the SANTA algorithm
getCandidates (I, m) getCandAndUpdate(getMessage(a), I, U)

initTraversal(I,m) end if

result ← ∅; threshold ← F (m) end
while threshold > 0 do getCandAndUpdatePos (pos, me, I, U, W)
u ← nextIndexUser(I) (newPos,cand) ← getCandidatesPos(I,me.msg,pos)
result ← result ∪ (u, score(m)) foreach c in cand do

threshold ← F (m) ue ← getUserEntry(U,c.user)
end while s ← computeScore(me.msg, ue) //compute real score
return result if s > ue.kthScore then update ue and I.µ

end if me.delta > ue.kthScore − s then add(me,c.user,s)
end foreach
me.indexPos ← newPos

end

Fig. 3. The SANTA and SANTA+ algorithms

Fig. 4. Execution example for SANTA and SANTA+

Figure 4 illustrates an example of execution of getCandidates with a TA
strategy. We consider a new message m, published by user u1, containing two
terms, t1 of weight 0.6 and t2 of weight 0.4. Hence, only lists for t1 and t2 in the
text index, for u1 in the social index and µ are concerned. We consider a scoring
function with a=0.5, b=0.3, c=0.2 and G(m)=0.1. The TA strategy considers
candidates and computes the threshold line-by-line; for the first line candidates
are u8, u3, u4 and u2, and threshold F (m)=a·(0.6·0.5 +0.4·0.4)+b·0.4 +c·0.1-
0.25 = 0.12 > 0. The four candidates are added to the result list, with an
upper bound score(m)=0.12+0.25=0.37. For the next line in the index lists,
F (m)=a·(0.6·0.4 +0.4·0.3)+b·0.3 +c·0.1-0.3 = -0.01 < 0. The traversal stops
since for all the other u in the index F (m,u)<F (m)<0; only the previous four
candidates are returned. Consider now the processing of an action on m. For
simplicity, we consider the same values for µ, even if they changed since the
arrival of m. Since AI(m) increases, G(m) also, and score(m,u) augments for
any u. If, e.g. now G(m)=0.2, the index traversal will find threshold values that
increase with c·∆G(m)=0.02 for every line. The traversal will accept also candi-
dates from the second line (u11, u5, u6 and u7), since now F (m)=-0.01+0.02>0.
Their upper bound is score(m)=0.01+0.3=0.31. For the third line however,
F (m)=a·(0.6·0.3 +0.4·0.3) + b·0.1 +c·0.2-0.31 = -0.09 < 0.

SANTA+: improving action processing. Action handling with SANTA im-
plies message re-processing and index re-traversal. We propose an improvement
with the SANTA+ variant, which stores processed messages and keeps for each
of them the list of candidates (with the real score) found at message publishing,
that may be interested by the message if an action increases its score.

When an action occurs, the stored candidates are first checked; this is fast,
since their real scores are already computed. Then the index traversal can con-
tinue to discover new candidates, but starting from the previous position, not
from the beginning. Since we do not want to store all the messages, we consider
a fixed size message window. Most actions are close in time to the message pub-
lication, so the message has great chances to be in the window when the action
occurs. If not, the action is processed with the basic SANTA algorithm.

Each message m in the window keeps the following information:
– content descriptor of the message;
– previous position in the index, after last action or after message arrival; since

the µ list is dynamic, the position in µ is kept as the last read µ value;
– number of actions on m and maximum increase of the AI score ∆AI(m);
– set of candidates represented as (user, score) couples.

As mentioned in Section 3, AI(m) ∈ [0, 1] is monotonically increasing with
the number of actions on m. If AI(m)max is the upper bound of AI(m), then
∆AI(m) = AI(m)max − AI(m) is the (decreasing) maximum bonus m can get
with new actions.

Figure 3 also presents the SANTA+ algorithm. Unlike SANTA, here the
index traversal and candidate processing are realized by getCandAndUpdatePos
from a given position in the index. The newMessage handler stores the message
in the message window, gets the initial index position with initTraversalPos
and handles candidates through getCandAndUpdatePos. Two main differences
distinguish getCandAndUpdatePos from SANTA’s getCandAndUpdate. First, we
manage the index position: getCandidatesPos traverses the index like SANTA,
but from a given starting position and get candidates together with the new
index position. Also, the final position is stored in the message entry me. Next,
candidates are also inserted into the message’s candidate list if they have chances
to have m in their top-k. Note that here the real score is always computed,
because needed for the message’s candidate list.

The newAction handler distinguishes two cases. If the message is still in the
window, updateDelta computes the score increase given by the action and de-
creases ∆AI(m). Then each candidate in m’s list augments its score and is tested
for top-k. Also, if the candidate has no chances to enter the top-k (because the
current k-th score is high), it is removed from the list. Finally, new candidates
are extracted from the index, by continuing the traversal from the stored posi-
tion, by using getCandAndUpdatePos. In the case where the message has exited
the window, it uses the SANTA algorithm through getCandAndUpdate.

Figure 4 also illustrates SANTA+ execution. When m arrives, it enters the
message window and the index traversal returns the same four candidates. In
the example only three of them enter the candidate list of m, but not u3, e.g.
because score(m,u3) is too low compared to µu3 and actions cannot compensate

the difference. When the action on m occurs, the message entry is updated with
incremented n and decreased ∆AI(m). Then m’s candidates (u8, u4, u2) are
checked for top-k considering the score increase produced by the action. Some
of them may exit the list if their their decreased ∆AI(m) is not enough to reach
the current (increased) top-k. Then, index traversal is continued from the last
position (line 2 for t1, t2, u1 and µ=-0.3) and returns new candidates (u11, u5,
u6, u7, as for SANTA) that are checked for top-k. The message entry is then
updated with the new index position and the new index candidates with chances
to get m in their top-k.

Remarks.
– The SANTA index allows a simple and efficient parallelization of the SANTA

and SANTA+ algorithms. By partitioning the set of users on N machines,
each one can build its own index and user table on that subset of users. Each
incoming message or action is processed in parallel by all the machines, on
their local index and/or message window, with no dependencies between
them. Results are distributed in the various user tables on the N machines.

– With the time consistency setting adopted in our processing model (Section
3), the SANTA algorithm is not impacted by periodic changes of the ISSN,
since the index is traversed from the beginning for each event. For SANTA+,
a periodic change requires emptying the message window to ensure consis-
tency. The local impact of ISSN changes is also easy to handle, e.g. a new
user u requires a new entry in the user table and the insertion of u in the
text index given the profile terms, a new edge (u1,u2) requires the insertion
of u1 into the social index of u2 with some default importance, etc.

CF+: an extended version of COL-Filter. As mentioned above, the closest
approach to ours is the COL-Filter algorithm [8], that also uses an index based
on sorted lists, but for scoring functions limited to textual similarity. The COL-
Filter index is similar to the SANTA text index, with the difference that µ is
incorporated into the index by dividing each wiu score by µu. Similarly to the
SANTA condition for entering the top-k (F (m,u) = score(m,u) − µu > 0),
the condition for COL-Filter is F ′(m,u) = score(m,u)/µu > 1. This strategy
reduces the number of dimensions to accelerate index traversal, but extends the
need for updates to all the dimensions.

To compare SANTA and COL-Filter strategies, we propose CF+, an exten-
sion of COL-Filter to our scoring function, as follows. In CF+, the condition
to enter the top-k becomes F ′(m,u) = a

∑
ti∈m wimwiu/µu + b f(u, um)/µu +

c G(m)/µu > 1. Since F ′ is a positive weighted sum of wiu/µu, f(u, um)/µu and
1/µu, CF+ can use an index structure very similar to SANTA: textual index
lists for each term ti with wiu/µu values (like COL-Filter), social index lists
for each user um with values f(u, um)/µu and a k-th score list with the val-
ues of 1/µu. Based on this index, CF+ handles messages and actions exactly
like SANTA, and uses the same threshold strategy for index traversal, with the
specific difference of the stop condition: F ′(m,u) ≤ 1.

In the next section we experimentally compare CF+ with SANTA variants
and show that the number of updates required by the COL-Filter strategy is
prohibitive when adding social network criteria.

5 Experimental evaluation

Dataset and scoring function The graph. The ISSN used in the exper-
iments is a subgraph extracted from Twitter. It contains almost |U |=104 000
users with around |R|=18 million direct links between them. The community was
built starting from around 200 accounts of known French politicians and journal-
ists, by adding part of their followers, more precisely those having a number of
followees within the community, above a given threshold. This method resulted
into a coherent social network, with a good density of links.

Messages and actions. For each user the last 200 tweets were extracted
(or all, if less) with the corresponding user actions (retweet, reply and mark as
favorite). The terms extracted from tweets are the hashtags, but also common
nouns and proper nouns, using the TreeTagger1 tool. We only kept non-empty
messages (with at least one term) and their actions, which results in around 1.25
million messages and 180,000 actions. Each message contains only a few terms,
between 1 and about 10 in our corpus, with an average between 3 and 4 terms.

Terms and user profiles. A dictionary of around 187,000 terms was built
with message terms that are used by at least 5 users. For each user, the profile
contains all the dictionary terms that occur in his messages. The profile size goes
from 1 to around 1000 terms, with an average size of 125 terms. The weights of
the profile terms, based on the tf and idf values, are computed by considering
that the messages of each user form a single document.

Social relations. For the values of the f(u1, u2) function in the ISSN, we
combined only two factors: the existence of a direct link (u1, u2) and the number
of actions made by u1 in relation with u2. Besides the 18 million direct links, we
obtained almost 1 million extra non zero values for f . These 19 million relations
of interest are retrieved in the 104,000 social index lists.

Scoring function. The scoring function uses as default coefficient values
α=0.5 (equal weight for content and social criteria), β=0.25 (25% weight for
the global, user-independent criteria and 75% for the local relations of interest
expressed by the f function) and γ=0.4 (40% weight for the user importance
UI and 60% for the action impact AI). For UI(um) we use the Klout2 score,
which expresses the influence of users in the main social networks, normalized
to the [0, 1] interval. For AI(m) we consider only the influence of the number n
of actions on the message m: AI(m) = 1− e−λan, with λa = 0.5.

For the time bonus we use a linear function TB(tm− to) = 1 + (tm− to)/Tb,
where Tb is the period of time after which an extra bonus equal to the time-
independent score(m,u) is earned.

Experimental protocol. If not specified, the default values used in the ex-
periments are: k=10, α=0.5, β=0.25, γ=0.4 and no time bonus. The message
window size for SANTA+ is not bounded in the experiments, but, as illustrated
below, the impact of a reasonably large bounded window is small, with no con-

1 http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger
2 https://klout.com

Fig. 5. Comparison between CF+, SANTA and SANTA+

sequence on the conclusions. For most experiments we use the whole dataset,
with messages and actions processed in timestamp order.

For space reasons we do not study here the variation of α, β and γ. Measures
confirm a good choice for the default values and show a good stability of the
processing time with α and γ, while increasing β values produce a significant
speedup, but favor too much messages from important users in the network.

Since we aim at measuring performance in a stable status, we consider an
initialization phase, followed by the measure phase. The stream of messages and
actions in split in two almost equal parts, initialization considers the first 600,000
messages and 90,000 actions, then measures are realized on the remaining 650,000
messages and around 90,000 actions. In experiments considering a subset of these
messages and actions, we specify the balance between initialization and measure.
Algorithms are programmed in Java and run on a multi-core server. Memory
requirements are here of about 1 GB for the index and 0.5 GB for the user table.

Comparing CF+ and SANTA variants. We compare the CF+ and SANTA
algorithms by measuring the average processing time for new messages and new
actions. To illustrate the drawback of the COL-Filter approach, we measured
separately the time needed for index search and for index/result updates. Besides
SANTA and SANTA+, we considered a variant of SANTA called SANTACF ,
which handles index updates in the same way as CF+, in a separate phase, while
SANTA and SANTA+ realize them during search. This allows measuring in a
reliable way the update time for CF+ and SANTACF , while for SANTA and
SANTA+ we only can measure the aggregate time.

The left part of Figure 5 presents this comparison. Measures for the aver-
age processing time per message show that CF+ is faster than SANTACF for
search (0.11 vs 0.3 ms), but much worse for update (5.09 vs 0.76 ms); globally
SANTACF is almost 5 times faster. The mix of search and update realized by
SANTA is beneficial, the global time for SANTA being comparable with the
search time only for SANTACF . SANTA+ needs slightly more processing time
than SANTA because of the message window management.

Measures for action processing show that CF+ is not adapted for action
handling, the update time (101 ms) is two orders of magnitude larger than
for SANTA. We notice the effectiveness of SANTA+ for dealing with actions,
materialized by an execution time almost 10 times faster than for SANTA.

In conclusion, SANTA algorithms provide an effective solution for message
and action processing when the scoring function includes new, social network

criteria. Their simple index structure favors fast index updates, which is not
the case for the COL-Filter approach, which obtains strongly degraded update
times. Note that POL-Filter, the improved variant of COL-Filter presented in
[8] only reduces the update time with about 11%, which does not change the
conclusions of this comparison.

SANTA and SANTA+. We follow the comparison between SANTA and the
SANTA+ variant with an in-depth analysis of their behavior. We measure be-
sides the execution time also the number of candidates whose score is computed
and the number of top-k lists updates. To evaluate the impact of the time-
dependent factor in the score, we consider two cases: without time bonus and
with moderate time bonus, corresponding to Tb=15 days.

To compare with the time bonus case, we use here a dataset restricted to
a period of about 10 months and better adapted to time-dependent score anal-
ysis. It contains about 500,000 messages and 75,000 actions, of which 300,000
messages and 40,000 actions are used in the initialization phase.

The measures, in the table on the right side of Figure 5, correspond to an
average over the test dataset. In the no time bonus case measures are similar
to those from the comparison with CF+. For message processing, SANTA+ is
slower than SANTA, which is explained by the message window management,
but also by the higher number of candidate score evaluations. Indeed, SANTA
avoids computing the real score for part of the candidates (only 250 up to 518 in
average per message), which is not possible for SANTA+. In average, less than
one top-k list is impacted for each message.

Since not all messages receive user actions, in parenthesis are reported mea-
sures for the subset of messages with actions, for a better comparison with the
action processing case. All the values significantly increase in this case. This
suggests that messages provoking actions are in a great measure published by
influential users, which results into higher social and global scores, longer index
traversals, more candidates and more chances to enter the top-k. In this light,
the strong difference in processing time for messages and actions in SANTA (0.35
vs 3.15 ms) is highly reduced (2.21 vs 3.15 ms).

For actions, SANTA+ behaves much better than SANTA. We separately
measured the time spent to search the message’s candidate list in the message
window and the retrieval of new candidates from the index. SANTA+ is up to
an order of magnitude faster, by taking advantage of the preprocessed candidate
list in the window, already pruned and with computed scores. This leaves only
210 candidates to evaluate, instead of 2100 for SANTA.

In the case of scoring with time bonus, new messages have more chances
to enter the top-k and the action impact is amplified for recent messages. For
message processing, this results in an increase of the number of candidates and
thus of the execution time (with about 50% here). This also explains the strong
increase of the ratio of updated top-k lists compared to the no bonus case.

For actions, the impact is stronger, especially because of the increase of the
number of candidates given by the index, both for SANTA and for the index-

(a) (b)

Fig. 6. (a) The impact of a bounded message window; (b) Variation with k

based part of SANTA+. The extent of this impact is also measured by the strong
increase of the number of updated top-k lists.

Remark : the comparison for actions does not measure the time needed to
re-process the message in SANTA. This time is difficult to evaluate and hardly
depends on the access time to the message and on the processing method. In
our context, for instance, only the average processing time for the TreeTagger
tool is about 7 ms / message, but globally the extra-time may be much higher.

In conclusion, SANTA+ is much better than SANTA for action handling, but
needs a slightly longer time for message processing. In a context with many user
actions, the choice of SANTA+ is natural, while SANTA is more appropriate in
social networks with few user actions. Also a dynamic combination of SANTA
and SANTA+ is possible, by applying SANTA+ only on “important” messages,
with more chances to provoke interaction. The use of a time bonus increases the
probability of top-k updates and the number of candidates, especially for action
processing. A more detailed analysis of this impact is given below.

SANTA+ and the message window size. The previous comparison consid-
ered an unbounded message window for SANTA+, but for memory constraints,
a fixed size window is necessary in practice. The impact on SANTA+ is that
message lookups in the window upon a new action may fail if the message exited
the window; in this case SANTA+ uses SANTA. We measure here the impact
of the window size on SANTA+ as the success ratio of message lookups in the
window. The execution time can then be estimated as a linear combination of
those of SANTA+ and SANTA, with this success ratio.

Figure 6(a) presents the variation of the success ratio as a function of the
window size. We use two datasets, one with messages over about 10 months
(500,000 messages and 75,000 actions) and another one over about 18 months
(1,100,000 messages and 170,000 actions). The variation follows the same shape
in both cases, with about 80% of success for a window of 500 messages, 90% for
a size of 2000 and 95% for a size of about 8000.

In conclusion, a small amount of memory for the message window (several
MB here) is enough to keep the good performances of the SANTA+ algorithm.

Fig. 7. Varying the time bonus for message and action processing

Varying k. We measured the impact of k on the processing time for messages
and actions, by varying k between 10 and 100. The results in Figure 6(b) indicate
a small, quasi-linear increase of time with k for message processing for both
SANTA and SANTA+. The increase rate is clearly larger for action processing
for both algorithms, bur remains linear.

Time-dependent scoring. We noticed above the influence of a time bonus
on the processing time, given the greater scores of newer messages. Figure 7
presents a finer analysis of this phenomenon for message (on the left) and action
processing (on the right), when the bonus period Tb varies from 1 to 180 days.
The horizontal axis is graduated in 1/Tb with Tb expressed in days, the 0 value
corresponding to the no time bonus case, then points at Tb=180, 90, 45 and 15
days. To zoom on the most interesting values, since all the curves have the same
shape, with an initial increase followed by a stationary zone, the values for Tb=1
day are not shown - they are slightly greater than for 15 days. For SANTA+
action processing we also separately show the time spent with candidates from
the message window (SANTA+ window) and from the index (SANTA+ index).

In all the cases we observe a real impact of the time bonus on the processing
time, even for the smaller values of the time bonus. The increase, larger for action
processing, remains limited to reasonable values. Only SANTA becomes rather
expensive for action processing, but this only enforces the recommendation of
using SANTA+ in this case.

6 Conclusion

This paper presented SANTA, the first algorithm for continuous top-k processing
over information streams in a social network context, able to handle both mes-
sage publication and user actions on existing messages, with a rich scoring func-
tion mixing content-based, time-based, user-based and interaction-based com-
ponents. The experiments show that SANTA and its variant SANTA+, which
optimizes action processing, are an effective solution for extending continuous
top-k processing of information streams with various social network dimensions.
Future work will consider the extension to other events and other scoring com-
ponents, as well as results diversity.

References

1. B. Bahmani and A. Goel. Partitioned multi-indexing: Bringing order to social
search. In WWW ’12, pages 399–408, 2012.

2. A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query
evaluation using a two-level retrieval process. In CIKM ’03, pages 426–434, 2003.

3. C. Buckley and A. F. Lewit. Optimization of inverted vector searches. In SIGIR
’85, pages 97–110, 1985.

4. G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu. Forward decay: A practical
time decay model for streaming systems. In Proceedings of the 2009 IEEE Inter-
national Conference on Data Engineering, ICDE ’09, pages 138–149, Washington,
DC, USA, 2009. IEEE Computer Society.

5. G. M. Del Corso, A. Gulĺı, and F. Romani. Ranking a stream of news. In WWW
’05, pages 97–106, 2005.

6. R. Fagin. Combining fuzzy information: An overview. SIGMOD Rec., 31(2):109–
118, June 2002.

7. E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie: Providing personalized
newsfeeds via analysis of information novelty. In WWW ’04, pages 482–490, 2004.

8. P. Haghani, S. Michel, and K. Aberer. The gist of everything new: Personalized
top-k processing over web 2.0 streams. In CIKM ’10, pages 489–498, 2010.

9. K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of informa-
tion retrieval: Development and comparative experiments. Inf. Process. Manage.,
36(6):779–808, Nov. 2000.

10. A. Khodaei and C. Shahabi. Social-textual search and ranking. In Intl Workshop
on Crowdsourcing Web Search, Lyon, France, April 17, 2012, pages 3–8, 2012.

11. K. Mouratidis and H. Pang. Efficient evaluation of continuous text search queries.
IEEE Trans. on Knowl. and Data Eng., 23(10):1469–1482, Oct. 2011.

12. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford University, 1999.

13. K. Pripužić, I. P. Žarko, and K. Aberer. Top-k/w publish/subscribe: Finding k
most relevant publications in sliding time window w. In DEBS ’08, pages 127–138,
2008.

14. W. Rao, L. Chen, S. Chen, and S. Tarkoma. Evaluating continuous top-k queries
over document streams. World Wide Web, 17(1):59–83, Jan. 2014.

15. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage., 24(5):513–523, Aug. 1988.

16. A. Shraer, M. Gurevich, M. Fontoura, and V. Josifovski. Top-k publish-subscribe
for social annotation of news. Proc. VLDB Endow., 6(6):385–396, Apr. 2013.

17. N. Vouzoukidou. Continuous top-k queries over real-time web streams. PhD thesis,
University Pierre et Marie Curie, September 2015.

18. N. Vouzoukidou, B. Amann, and V. Christophides. Processing continuous text
queries featuring non-homogeneous scoring functions. In CIKM ’12, pages 1065–
1074, 2012.

19. C. Wang, M. Zhang, L. Ru, and S. Ma. Automatic online news topic ranking
using media focus and user attention based on aging theory. In CIKM ’08, pages
1033–1042, 2008.

20. D. Wu, Y. Li, B. Choi, and J. Xu. Social-aware top-k spatial keyword search. In
MDM ’14, pages 235–244, 2014.

21. P. Yin, W.-C. Lee, and K. C. K. Lee. On top-k social web search. In CIKM, pages
1313–1316. ACM, 2010.

