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A uniform cube-free morphism is k-power-free for all integers k ≥ 4

Francis Wlazinski ∗

December 15, 2016

Abstract

The fact that the image of a word by a morphism contains a cube implies some relations. Under some
assumptions, we show that these relations lead to more precise results. This allows us to establish that a
cube-free uniform morphism is a k-power-free morphism for all integers k ≥ 4.

1 Introduction

For all integers k ≥ 2, a k-power is a repetition of k consecutive and identical sequences. A square and a cube
respectively correspond to the special cases of k = 2 and k = 3. An overlap is a word of the form xuxux where x
is a letter and u is a word. An infinite word without squares over a three-symbol alphabet and an infinite word
without overlaps over a two-symbol alphabet were given by Thue [16, 17] (see also the translation of Berstel [3]).
These words are obtained by iterating morphisms.

To find morphisms that generate k-power-free words, a method is to consider k-power-free morphisms. By
definition, a k-power-free morphism maps a k-power-free word to a k-power-free word. Starting with a letter
(so k-power-free), the word generated by the iteration of a k-power-free morphism is thus k-power-free. But
non-k-power-free morphisms can generate k-power-free words. For instance, the Fibonacci morphism ϕ : {a, b} →
{a, b}; a 7→ ab; b 7→ a generates the word abaababaabaababaababa..., which is 4-power-free [7]. But ϕ is not
4-power-free since ϕ(b3a) = a4b.

Even if we know different ways to verify whether a morphism generates a k-power-free word [2, 6, 7, 14] but
also whether a morphism is k-power-free [5, 9, 8, 15, 18], a simple question remains unanswered; is a k-power-free
morphism also a (k + 1)-power-free morphism?

In [1], Bean, Ehrenfeucht, and McNulty gave a partial result; the morphism h defined by h(a) = abacbab,
h(b) = cdabcabd, h(c) = cdacabcbd and h(d) = cdacbcacbd is square-free but not cube-free. Another partial result
exists for the Thue-Morse morphism µ : {a, b} → {a, b}; a 7→ ab; b 7→ ba. It is k-power-free for every integer
k > 2 [4].

When k ≥ 4, we proved in [19] that a k-power-free uniform morphism is (k + 1)-power-free. But one of
the properties required to prove this result (Lemma 3.1 in [19]) does not hold for k = 3. We give a new one
(Lemma 3.4) that allows us to conclude for cube-free uniform morphisms (Theorem 4.1 and Proposition 4.2).

2 Preliminaries

We assume the reader is familiar (if not, see for instance [12, 13]) with basic notions on words and morphisms.
We use notations that largely come from [19].
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2.1 Words

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i− 1 ≤ j ≤ |w|. We denote by w[i..j] the
factor of w such that |w[i..j]| = j − i + 1 and w = pw[i..j]s for two words s and p verifying |p| = i − 1. When
i = j, we also denote by w[i] the factor w[i..i], which is the ith letter of w. In particular, w[1] and w[|w|] are
respectively the first and the last letter of w. We denote Fcts (w) the set of all factors of the word w.

Powers of a word u are defined inductively by u0 = ε and un = uun−1 for all integers n ≥ 1. Given an integer
k ≥ 2, since the case εk is of little interest, we called a k-power any word uk with u 6= ε. Given an integer k ≥ 2,
a word is k-power-free if it does not contain any k-power as factor. A primitive word is a word that is not a
k-power of an another word whatever the integer k ≥ 2. A (non-empty) k-power vk is called pure if any proper
factor of vk is k-power-free.

The following proposition gives the well-known solutions (see [11]) to an elementary equation in words and
will be widely used in the following sections:

Proposition 2.1 Let A be an alphabet and u, v, w three words over A.

1. If vu = uw and v 6= ε then there exist two words r and s over A, and an integer n such that u = r(sr)n,
v = rs and w = sr.

2. If vu = uv, then there exist a word w over A and two integers n and p such that u = wn and v = wp.

We also need a property on words that is an immediate consequence of Proposition 2.1(2).

Lemma 2.2 [8, 10] If a non-empty word v is an internal factor of vv, i.e., if there exist two non-empty words x
and y such that vv = xvy then there exist a non-empty word t and two integers i, j ≥ 1 such that x = ti, y = tj,
and v = ti+j.

We also use the following result which is a corollary of a result of Fine and Wilf [11, 12].

Corollary 2.3 (Keränen) [8] Let x and y be two words. If a power of x and a power of y have a common factor
of length at least equal to |x|+ |y| − gcd(|x|, |y|) then there exist two words t1 and t2 such that x is a power of t1t2
and y is a power of t2t1 with t1t2 and t2t1 primitive words. Furthermore, if |x| > |y| then x is not primitive.

2.2 Morphisms

Let A and B be two alphabets. A morphism f from A∗ to B∗ is a mapping from A∗ to B∗ such that f(uv) =
f(u)f(v) for all words u, v over A.

Let k ≥ 2 be an integer. A morphism f on A is k-power-free if and only if f(w) is k-power-free for all
k-power-free words w over A.

A morphism f on A is called prefix (resp. suffix ) if, for all letters a and b in A, the word f(a) is not a prefix
(resp. not a suffix) of f(b). A prefix (resp. suffix) morphism f is non-erasing that is f(a) 6= ε for all letters a. A
morphism is bifix if it is prefix and suffix.

A morphism f from A∗ to B∗ is a ps-morphism if and only if the equalities f(a) = ps, f(b) = ps′, and
f(c) = p′s with a, b, c ∈ A (possibly c = b) and p, s, p′, and s′ ∈ B∗ imply b = a or c = a.

Let us recall some definitions and properties that will be used in the sequel. Lemma 2.4 derives directly from
the definitions of a prefix or a suffix morphism. A detailed proof is left to the reader.

Lemma 2.4 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be words over A.
The equality f(u) = f(v)p with p be a prefix of f(w) implies u = vw′ for a prefix w′ of w such that f(w′) = p.
And the equality f(u) = sf(v) with s a suffix of f(t) implies u = t′v for a suffix t′ of t such that f(t′) = s.

Lemma 2.5 [8, 10] If f is not a ps-morphism then f is not a k-power-free morphism for all integers k ≥ 2.
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Lemma 2.6 [19] Let f be a ps-morphism from A∗ to B∗ and let u, v and w be words over A such that f(u) = δβ,
f(v) = αβ, and f(w) = αγ for some non-empty words α, β, γ, and δ over B. Then it implies v = v1av2,
u = u1bv2, and w = v1cw2 for some words v1, v2, u1, and w2, and some letters a, b, and c. Moreover, we have
either b = a or c = a.

Furthermore, if |δ| < |f(u[1])| then u1 = ε and if |γ| < |f(w[|w|])| then w2 = ε.

Assuming that f(w) = puks for a factor w of a word w and a non-empty word u, and assuming that w contains
a factor w0 such that |f(w0)| = |u|, Lemma 2.8 states that w necessarily contains a k-power w′k such that f(w′)
is a conjugate of u. We will say that f(w) contains a synchronised k-power uk. More precisely:

Definition 2.7 Let k ≥ 2 be an integer. Let f be a morphism from A∗ to B∗, w be a word over A, and u be a
non-empty word over B such that f(w) contains the k-power uk. Let w be a shortest factor of w whose image by
f contains uk, i.e., f(w) = puks with |p| < |f(w[1])| and |s| < |f(w[|w|])|.

We say that f(w) and uk are synchronised if there exist three words w0, w1, and w2 such that |f(w0)| = |u|
and w = w1w0w2 with p = ε if w1 = ε, and s = ε if w2 = ε.

The three following results, which will be used in this paper, were proved in [19].

Lemma 2.8 Let k ≥ 2 be an integer, let f be a ps-morphism, and let w be a word such that f(w) = puks with
|p| < |f(w[1])| and |p| < |f(w[1])|. If f(w) contains a synchronised k-power then w starts or ends with a k-power
wk0 such that f(w0) and u are conjugated.

Lemma 2.9 Let k ≥ 3 be an integer and let κ ∈ {k; k + 1}. Let f be a morphism from A∗ to B∗ and let ω be a
word over A such that f(ω) = pUκS for some words p, S and U 6= ε over B such that |p| < |f(ω[1])|. Moreover,
we assume that |S| < |f(ω[|ω|])| when κ = k + 1 and v3 is a chosen factor of a pure k-power vk.

When one of the four following situations holds, there exist a word ω̌ such that f(ω̌) = p′(U ′)κS′ for some
words p′, S′, and U ′ 6= ε over B satisfying |p′| < |f(ω̌[1])|, 0 < |U ′| < |U |, and f(ω̌) and (U ′)κ are synchronised
only if f(ω) and Uκ are synchronised.

1. dv = 1, |Dvf(v)2| < |U |, and Lj,v ∪Rj,v 6= ∅ for every integer j ∈ [2, κ].

2. dv = 1, Lj,v∪Rj,v 6= ∅ for every integer j ∈ [2, κ−1], and there exists a positive integer φ such that ω[nv..|ω|]
starts with vφ+2 and sup

{
2|f(v)|; |Dvf(v)φ|

}
≤ |U | < |Dvf(v)φ+1|.

3. dv = 0, |Dvf(v)2| ≤ |U |, and Lj,v ∪Rj,v 6= ∅ for every integer j ∈ [1, κ].

4. dv = 0, |U | < |Dvf(v)2| < |DvU |, and Lj,v ∪Rj,v 6= ∅ for every integer j ∈ [1, κ− 1].

Proposition 2.10 Let A and B be two alphabets and let k ≥ 4 be an integer. A k-power-free uniform morphism
is a (k + 1)-power-free morphism.

3 About cube-free-morphisms

As mentioned in the introduction, Lemma 3.1 in [19] is no longer valid for k = 3. Even if parts of its proof can be
extended to this case, some new problems appear. The following lemma is one of the situations we can obtain:

Lemma 3.1 Let f be a ps-morphism from A∗ to B∗. Let us assume that there exist ρ, µ, α, β, and θ words
over B and q1, q2, and q words over A such that q 6= ε, ρ = αβ is not the image of a word by f , θ = µρρµρρµ,
f(q) = ρµρ, f(q1) ends with βθ, f(q2) starts with θα, and the words q1[2..|q1|] q and q q2[1..|q2| − 1] are cube-free.
Then f is not cube-free.
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Proof of Lemma 3.1 is simply done using iteratively Lemma 3.2. By induction, if f was not cube-free, we
could find an infinite sequence (χi)i≥0 of non-empty words starting with χ0 = q such that |f(χi)| > |f(χi+1)| > 0;
it is impossible.

Lemma 3.2 Let f be a ps-morphism from A∗ to B∗. Let us assume that there exist ρ, µ, α, β, and θ words
over B and q1, q2, and q words over A such that q 6= ε, ρ = αβ is not the image of a word by f , θ = µρρµρρµ,
f(q) = ρµρ, f(q1) ends with βθ, f(q2) starts with θα, and the words q1[2..|q1|] q and q q2[1..|q2| − 1] are cube-free.

Then either f is not cube-free or there exist ρ′, µ′, α′, β′, and θ′ words over B and q′1, q′2, and q′ words over
A such that q′ 6= ε, ρ′ = α′β′ is not the image of a word by f , θ′ = µ′ρ′ρ′µ′ρ′ρ′µ′, f(q′) = ρ′µ′ρ′, f(q′1) ends with
β′θ′, f(q′2) starts with θ′α′, and the words q′1[2..|q′1|] q′ and q′ q′2[1..|q′2| − 1] are cube-free.

And more particularly, we have |f(q′)| < |f(q)|.

Proof.
Let us first remark that the condition q 6= ε is simply a consequence that ρ is not the image of a word by

f . Indeed, it implies ρ 6= f(ε) = ε. Therefore, f(q) = ρµρ 6= ε and so q 6= ε. Moreover, the fact that f is a
ps-morphism implies that f is bifix and non-erasing.

We can write f(q1) = π1βθ and f(q2) = θασ2 for two words π1 and σ2 over B. Let us denote ϕ = µρ and
ψ = ρµ so θ = ϕf(q)ψ.

Let Q1 be the smallest suffix of q1 whose image by f ends with ψ and Q2 be the smallest prefix of q2 whose
image by f starts with ϕ. Since ρ 6= ε, it implies that Q1 and Q2 are not empty. There exist two words Π1 and
Σ2 such that f(Q1) = Π1ψ, f(Q2) = ϕΣ2, |Π1| < |f(Q1[1])| and |Σ2| < |f(Q2[|Q2|])|.

We have Q1qQ2 factor of q1qq2 and f(Q1qQ2) = Π1ψf(q)ϕΣ2 = Π1(ρµ)3ρΣ2.
If Q1qQ2 is cube-free, it ends the proof; f is not cube-free. Hence, Q1qQ2 contains a shortest cube q′3; any

proper factor of q′3 is cube-free, i.e., q′3 is a pure cube. So we can write Q1qQ2 = q′1q
′3q′2 for some words q′1 and

q′2.
Let us remark that Q1q is necessarily cube-free. Indeed, if Q1 6= q1 then Q1q is a suffix of q1[2..|q1|]q which

is cube-free by assumption. If Q1 = q1, by definition of Q1, it means that ψ is not a suffix of f(q1[2..|q1|]) and
so |f(q1[2..|q1|])| < |ρµ|. It implies that |f(Q1[1])| = |f(q1[1])| > |π1βϕf(q)| ≥ |f(q1[2..|q1|]q)|. In particular,
it means that the first letter of q1, i.e., q1[1] = Q1[1] is not a letter of q1[2..|q1|]q. Since no cube appears in
q1[2..|q1|]q, it follows that q1q = Q1q is cube-free.

In the same way, we obtain that qQ2 is cube-free.
So q′3 is neither a factor of Q1q nor a factor of qQ2. It follows that |q′1q′3| > |Q1q| and |q′3q′2| > |qQ2| that is

|q′2| < |Q2| and |q′1| < |Q1|.
Let ϕ′ be the greatest prefix of ϕ = µρ such that f(Q1q)ϕ

′ is a prefix of f(q′1q
′3). Let ψ′ be the greatest suffix

of ψ = ρµ such that ψ′f(qQ2) is a suffix of f(q′3q′2).
By these definitions, the word ψ′f(q)ϕ′ = ψ′ρµρϕ′ is a common factor (not necessarily the greatest) of f(q′)3

and (ρµ)4.
Note that the inequality |ψ′f(q)ϕ′| ≥ |f(q′)|+ |ρµ| is equivalent to |f(q′)| ≤ |ψ′|+ |ϕ′|+ |ρ|.

Case 1: |f(q′)| ≤ |ψ′|+ |ϕ′|+ |ρ|.

By Corollary 2.3, there exist two words t1 and t2, and two integers i and j such that f(q′) = (t1t2)
i and

ψ = ρµ = (t2t1)
j with t1t2 and t2t1 primitive words. If j ≥ 2, f(Q1q) ends with ψf(q) = (ρµ)2ρ = (t2t1)

2jρ where
2j > 3. If i ≥ 2, f(q′2) = (t1t2)

2i with q′2 a proper prefix of q′3 and 2i > 3. In this two cases, the image by f of a
cube-free word contains a cube; f is not cube-free. So i = j = 1.

We have f(Q1qQ2) = Π1(t2t1)
3ρΣ2 = f(q′1q

′3q′2) = f(q′1)(t1t2)
3f(q′2). Since t1t2 is not an internal factor

of (t1t2)
2 (otherwise, by Lemma 2.2, t1t2 would not be primitive), |f(q′1)| < |f(Q1)| = |Π1t2t1| and |f(q′2)| <

|f(Q2)| = |t2t1Σ2|, we have either Π1 = f(q′1)t1 and f(q′2) = t1ρΣ2, or Π1t2 = f(q′1) and t2f(q′2) = ρΣ2.

Case 1.1: Π1 = f(q′1)t1.
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Since |Π1| < |f(Q1[1])| = |f((q′1q)[1])| and f bifix, it means that q′1 = ε, Π1 = t1, and f(Q1) = Π1ψ = t1t2t1 =
f(q′)t1 with t1 a prefix of f(q′). Since f is a ps-morphism so a bifix morphism, by Lemma 2.4, we obtain that
there exists a prefix x (possibly empty) of q′ such that f(x) = t1. From f(q′) = t1t2 = f(x)t2 with t2 a prefix of
f(q) and f bifix, we obtain that there exists a prefix y of q such that f(y) = t2.

From f(q) = ρµρ = f(yx)ρ and f bifix, we obtain that ρ is the image of a word; a contradiction with the
definition of ρ in the hypotheses of this lemma.

Case 1.2: Π1t2 = f(q′1).

This case is solved in the same way as Case 1.1,

From f(Q1) = Π1t2t1 = f(q′1)t1, we obtain that t1 is the image of a word. From f(q′) = t1t2, we obtain that
t2 is the image of a word. It follows that ρ is the image of a word; a contradiction with the definition of ρ.

Case 2: |f(q′)| > |ψ′|+ |ϕ′|+ |ρ|.

If q′1 = ε, i.e., Q1qQ2 = q′3q′2 then, by definition of ψ′, it means that ψ′ = ψ = ρµ. It follows that
|f(q′)| > |ψ′| + |ϕ′| + |ρ| = |f(q)| + |ϕ′|. Furthermore, |f(q′)3| > |Π1| + 2|f(q)| + 2|ϕ′| = |Π1ϕ| + |f(q)| +
|ρ| + 2|ϕ′| = |f(Q1q)| + |ρ| + 2|ϕ′|. Since |ρ| 6= 0, we have |ρ| + 2|ϕ′| > |ϕ′|. If q′2 6= ε then |f(q′2)| > |Σ2|
and, by definition of ϕ′, we obtain |f(q′)3| = |f(Q1q)ϕ

′|; this is impossible. Hence, q′2 = ε and ϕ′ = ϕ =
µρ. It follows that |f(q′)2| = |f(Q1qQ2)| − |f(q′)| = |Π1ρµf(q)µρΣ2| − |f(q′)| < |Π1ρµΣ2|. If |q′| ≥ 2 then
|f(q′)f(q′)| > |Π1Σ2| + |f(q′)| > |Π1Σ2| + |ψ| + |ϕ| + |ρ| = |Π1Σ2| + |ρµρµρ| with |ρ| 6= 0; this conflicts with
previous inequality. Consequently, we have |q′| = 1 and q′3 = Q1qQ2 with Q1, q, and Q2 non-empty words.
Therefore, Q1 = q = Q2 = q′ with ρµρ = f(q) = f(Q1) = Π1ρµ, i.e., µρ = ρµ. By Proposition 2.1(2), there exist
a non-empty word ω over A and two integers n, and p such that ρ = ωn and µ = ωp. Since ρ 6= ε, we obtain that
n ≥ 1. It follows that f(Q1q) contains ω3n+2p with Q1q cube-free and 3n+ 2p ≥ 3; f is not cube-free.

In the same way, we obtain that q′2 6= ε.
Since Q1qQ2 = q′1q

′3q′2, we have |f(q′1[1])| = |f(Q1[1])| > |Π1| and |f(q′2[|q′2|])| = |f(Q2[|Q2|])| > |Σ2|. Hence,
|ψ′| < |ψ| and |ϕ′| < |ϕ|. By definition of ψ′ and ϕ′, it implies that f(q′)3 = ψ′f(q)ϕ′.

We have |ψ′|+ 2|ρ|+ |µ|+ |ϕ′| = |ψ′f(q)ϕ′| = |f(q′)3| > 3(|ψ′|+ |ϕ′|+ |ρ|) that is |µ| > 2|ψ′|+ 2|ϕ′|+ |ρ|. It
means that µ starts with ϕ′ and ends with ψ′.

The word f(q′) starts with ψ′ρ and ends with ρϕ′. There exist two words X and Y such that f(q′) = ψ′ρX =
Y ρϕ′. Since |f(q′)| > |ψ′| + |ϕ′| + |ρ|, we have |X| > |ϕ′| and |Y | > |ψ′|. Therefore, there exist two non-empty
words X ′ and Y ′ such that X = X ′ϕ′, Y = ψ′Y ′, and f(q′) = ψ′ρX ′ϕ′ = ψ′Y ′ρϕ′. It follows that ρX ′ = Y ′ρ. By
proposition 2.1(1), there exist two words r and s and an integer i such that ρ = r(sr)i, X ′ = sr, and Y ′ = rs.
Let us also note that µ ends with Y ′ and starts with X ′.

If i ≥ 1 then f(Q1q) contains µρµ that itself contains Y ′ρX ′ = (rs)2+ir with Q1q cube-free and 2 + i ≥ 3; f
is not cube-free.

Let us now consider the case i = 0. We have ρ = r, Y ′ = ρs, X ′ = sρ, and f(q′) = ψ′ρsρϕ′. From
f(q′)3 = ψ′f(q)ϕ′ = ψ′ρµρϕ′, we also obtain that µ = sρϕ′f(q′)ψ′ρs. Let us remark that µ starts and ends with
s. But the word µ also starts with ϕ′ and also ends with ψ′.

In particular, the word f(Q1q) contains µ(ρ)µ that itself contains ψ′ρs(ρ)sρϕ′.
If |s| ≤ |ϕ′| then s is a prefix of ϕ′ and ψ′ρs ρ sρϕ′ contains the cube (ρs)3. If |s| ≤ |ψ′| then s is a suffix of ψ′

and ψ′ρs ρ sρϕ′ contains the cube (sρ)3. If |s| > |ϕ′|, |s| > |ψ′|, and |s| ≤ |ϕ′|+ |ψ′| then there exist three words
a, b, and c such that s = abc, ϕ′ = ab, and ψ′ = bc. It follows that ψ′ρs ρ sρϕ′ contains the cube (bcρa)3. In these
three cases, f(Q1q) contains a cube with Q1q cube-free; f is not cube-free.

The remaining case is |s| > |ϕ′|, |s| > |ψ′|, and |s| > |ϕ′| + |ψ′|; there exists a non-empty word µ′ such that
s = ϕ′µ′ψ′ and we have f(q′) = ψ′ρϕ′µ′ψ′ρϕ′.

Let us denote α′ = ψ′ρ, β′ = ϕ′, ρ′ = ψ′ρϕ′ = α′β′, and θ′ = µ′ρ′ρ′µ′ρ′ρ′µ′. We have f(q′) = ρ′µ′ρ′ and
µ = sρϕ′f(q′)ψ′ρs = ϕ′µ′ρ′f(q′)ρ′µ′ψ′ = ϕ′θ′ψ′.

Since f(Q1) = f(q′1)ψ
′ ends with µ, we obtain that f(q′1) ends with ϕ′θ′ = β′θ′. And, since f(Q2) = ϕ′f(q′2)

starts with µρ, we obtain that f(q′2) starts with θ′ψ′ρ = θ′α′. Moreover, by Lemma 2.4, it means that ψ′ and ϕ′
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are images of words by f .
Since f is bifix, if ρ′ = ψ′ρϕ′ is the image of a word by f , it is the same for ρ; a contradiction with the

hypotheses. So ρ′ is not the image of a word by f .
Since q′1q

′ is a prefix of Q1q and q′q′2 is a suffix of qQ2, the words q′1q
′ and q′q′2 are cube-free.

Finally, since 3|f(q′)| = |ψ′f(q)ϕ′| < |ψf(q)ϕ| ≤ 3|f(q)|, we have |f(q′)| < |f(q)|.

Lemma 3.3 Let f be a ps-morphism from A∗ to B∗. Let q1, q2, and q be non-empty words over A and let
w = q1q

3q2. Let us assume that f(w) = π1f(z)3σ2, |π1| < |f(q1[1])|, |σ2| < |f(q2[|q2|])|, and z is a non-empty
word over A such that z3 is a pure cube.

If |q| ≤ 2, if |z| ≥ 2, or if 2|f(q)| ≥ |f(z)| then f is not cube-free.
Otherwise, either f is not cube-free or there exist two words X and Y such that |Y | ≤ 1, 2|f(q)| < |f(X)| =

|f(z)| < 3|f(q)|, and q1q
3q2 = X3Y with q1 a prefix of X, q2 a suffix of XY , and |f(Y )| < |σ2f(z)| or q1q

3q2 =
Y X3 with q1 a prefix of Y X, q2 a suffix of X, and |f(Y )| < |π1f(z)|.

Proof.
Let us first remark that we can assume that the image by f of any proper factor of z3 is cube-free. Otherwise,

it ends the proof; f is not cube-free.
The hypotheses imply |f(z)| > |f(q)|. Furthermore, there exist a suffix σ1 of f(q1) and a prefix π2 of f(q2)

such that f(q1) = π1σ1 and f(q2) = π2σ2. It means that f(z)3 = σ1f(q)3π2.
If |σ1f(q3)| ≤ |f(z)2f(z[1..|z| − 1])| then f(z)2f(z[1..|z| − 1]) contains the cube f(q)3 with z2(z[1..|z| − 1])

a proper factor of z3 and so cube-free. It ends the proof; f is not cube-free. Identically, if |f(q3)π2| ≤
|f(z[2..|z|])f(z)2| then f is not cube-free. Consequently, we obtain that |π2| < |f(z[|z|])| and |σ1| < |f(z[1])|;
there exist two non-empty words α and β such that f(z) = σ1α = βπ2 and f(q)3 = αf(z)β.

Let us note that α 6= ε or β 6= ε. Otherwise, f(z2) contains f(q)3. It ends the proof; f is not cube-free.
If |f(q2)| ≥ |f(z)| then |α|+|β| = |f(q3)|−|f(z)| ≥ |f(q)| and the length of αf(z)β ∈ Fcts

(
f(z)3

)
∩Fcts

(
f(q)3

)
is at least |f(z)| + |f(q)|. Let us note that this situation particularly happens when |z| ≥ 2 because in this case
|α| + |β| ≥ |f(z[2..|z|])| + |f(z[1..|z| − 1])| ≥ |f(z)| > |f(q)|. By Corollary 2.3, there exist two words z1 and z2,
and two integers i and j such that f(z) = (z1z2)

i and f(q) = (z2z1)
j . The inequality |f(z)| > |f(q)|(> 0) implies

i > j ≥ 1. It follows that f(z)2 = (z1z2)
2i with 2i > 3 that is f(z)2 contains a cube; f is not cube-free.

From now on, z is a letter and |f(q2)| < |f(z)|, i.e., 0 < |α| + |β| < |f(q)|. We obtain that f(q)3 = αf(z)β
starts and ends with αβ, i.e., αβ is a prefix and a suffix of f(q). There exist two non-empty words ϕ and ψ such
that f(q) = (αβ)ϕ = ψ(αβ) and f(z) = βϕf(q)ψα. By Proposition 2.1(1), there exist two words ρ and µ, and
an integer j such that αβ = ρ(µρ)j , ϕ = µρ, and ψ = ρµ.

Since f(z)2 contains (ψα)(βϕ) = ρµρ(µρ)jµρ = ρ(µρ)j+2 and f(z)2 cube-free, we necessarily have j = 0.

In this case, if we denote θ = ϕf(q)ψ, we have αβ = ρ, f(q) = ρµρ, f(z) = βµρf(q)ρµα. θ = µρρµρρµ,
f(z) = βθα, f(q1) = π1βθ and f(q2) = θασ2.

Since f is a ps-morphism so is non-erasing and since q 6= ε, we have ρµ 6= ε. Since f(z) is cube-free, we
necessarily have µ 6= ε and ρ 6= ε. Otherwise, the factor θ = µρρµρρµ of f(z) would be equal to ρ4 or µ3.

We also necessarily have q1[2..|q1|] q and q q2[1..|q2| − 1] cube-free. Otherwise, f(q1[2..|q1|] q) or f(q q2[1..|q2| − 1])
both factors of f(z)2 would contain a cube.

By Lemma 3.1, if ρ is not the image of a word by f then f is not cube-free; it ends the proof.
Let us now assume that ρ is the image of a word and let q̇ be the non-empty word such that f(q̇) = ρ = αβ(6= ε).

Since f is bifix, f(q) = ρµρ and µ 6= ε, there exist a non-empty word q such that f(q) = µ. It follows that q = q̇qq̇
and necessarily |q| ≥ 3. In particular, |f(qqq̇q)| = |f(z)| and qqq̇q is an internal factor of w; f(w) and f(z)3 are
synchronised.

Furthermore, if we denote x = qq̇qq̇q, we obtain that f(x) = θ, f(q1) = π1βf(x), and f(q2) = f(x)ασ2. Since
f is bifix and by Lemma 2.4, it follows that q1 = W1x for a non-empty word W1 verifying f(W1) = π1β(6= ε) and
q2 = xW2 for a non-empty word W2 verifying f(W2) = ασ2(6= ε).
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Since f(q̇) = ρ = αβ, |π1| < |f(q1[1])| = |f(W1[1])|, and |σ2| < |f(q2[|q2|])| = |f(W2[|W2|])|, by Lemma 2.6,
we obtain that q̇ = a, W1 = b, W2 = c for some letters a, b, c. Moreover, we have b = a or c = a. It means that
q1q

3q2 = bx(q̇qq̇)3xc = bxaxaxc.
If b = a, let X = ax. It follows that q1q

3q2 = X3c with |f(X)| = |f(ax)| = |f(q̇x)| = |βf(x)α| = |f(z)| =
3|f(q)| − |ρ| and |f(c)| − |σ2| = |α| < |f(q)| < |f(z)|.

In the same way, if c = a, let X = xa. We have q1q
3q2 = bX3 with |f(xa)| = |f(z)| and |f(b)| < |π1f(z)|.

Lemma 3.4 Let f be a ps-morphism from A∗ to B∗. Let v and T be non-empty words over A such that v3 is a
pure cube. Let us assume that f(T ) = π1f(v)3σ2 with |π1| < |f(T [1])|, |σ2| < |f(T [|T |])|, π1 a suffix of the image
by f of a shortest word v1 and σ2 a prefix of the image by f of a shortest word v2.
Then one of the following holds:

• (P.1): There exist a cube x3, a word y over A, and a word Z over B such that
(P.1.1): T = x3y, |y| ≤ 1, f(y) = π1σ2, f(x) = π1Z, and f(v) = Zπ1
(P.1.2): or T = yx3, |y| = 1, f(y) = π1σ2, f(x) = Zσ2, and f(v) = σ2Z.

• (P.2): There exist a pure cube x3 and a non-empty word y over A such that
(P.2.1): T = x3y with |f(x2)| < |π1f(v)|
(P.2.2): or T = yx3 with |f(x2)| < |f(v)σ2|.

• (P.3): T = t3, |v| ≥ 3, |t| = 1 (i.e., t is a letter), 2|f(v)| < |f(t)| < 3|f(v)|, and there exist two words x 6= ε
and y such that |f(x)| = |f(t)| and

(P.3.1): v1v
3v2 = x3y with v1 a prefix of x, v2 a suffix of xy, and |f(y)| < |f(t)σ′2|

(P.3.2): or v1v
3v2 = yx3 with v1 a prefix of yx, v2 a suffix of x, and |f(y)| < |π′1f(t)|

where π′1 and σ′2 are the words such that f(v1[1]) = π′1π1 and f(v2[|v2|]) = σ2σ
′
2.

• (P.4): f is not cube-free.

Proof.
If T is cube-free, it ends the proof; f is not cube-free.
So T contains at least one cube. Among the cubes of T , we choose one whose image by f is a shortest; we

can write T = t1t
3t2 where |f(t)| = min{|f(t′)| where t′3 ∈ Fcts (T )}. By this definition, since f is bifix (as any

ps-morphism) and so non-erasing, t3 is a pure cube.
If t1 6= ε and t2 6= ε then, by Lemma 3.3, T verify (P.1) or (P.4).
As in the proof of Lemma 3.1 done in [19], if a power of f(t) and a power of f(v) have a common factor of

length at least |f(t)|+ |f(v)|, we obtain that T verify (P.1).

From now, let us assume the converse holds, i.e., any common factor of f(t)3 and f(v)3 is of length at most
|f(t)| + |f(v)|. It means that |f(t)3| − |σ2| < |f(t)| + |f(v)| when t1 6= ε and t2 = ε, and that |f(t)3| − |π1| <
|f(t)|+ |f(v)| when t1 = ε and t2 6= ε. That is T verify (P.2) with x = t.

Let us now treat the case where t1 = t2 = ε. In this case, f(v)3 is factor of f(t3) = f(T ). Hence, 2|f(v)| < |f(t)|
and |π1| + |σ2| = 3|f(t)| − 3|f(v)| > 3|f(v)|. If π1 = ε then f(t2) contains the cube f(v)3 with t2 cube-free; f
is not cube-free. In the same way, if σ2 = ε then f is not cube-free. It follows that v1 6= ε and v2 6= ε; there
exist a prefix π′1 of f(v1[1]) and a suffix σ′2 of f(v2[|v2|]) such that f(v1v

3v2) = π′1π1f(v)3σ2σ
′
2 = π′1f(t)3σ′2. By

Lemma 3.3 with q = v, we obtain that either f is not cube-free (for instance if |v| ≤ 2 or if |t| ≥ 2) or T verify
(P.3).

By Lemma 2.8, we immediately obtain:

Corollary 3.5 With hypotheses and notations of Lemma 3.4, if f(T ) and f(v)3 are synchronised then either f
is not cube-free or T verifies (P.1).
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4 Special case of uniform morphisms

As a consequence of Lemma 3.4 and using Lemma 2.9, we can reduce a word whose image by a uniform morphism
contains a cube. We can now state our main result.

Theorem 4.1 Let A and B be two alphabets. A cube-free uniform morphism is k-power-free for all integers
k ≥ 4.

It is a consequence of Proposition 2.10 and Proposition 4.2:

Proposition 4.2 Let A and B be two alphabets. A cube-free uniform morphism is 4-power-free.

Proof.
We follow the approach of the proof of Lemma 4.1 in [19]. We have to verify that all the steps are checked

for k = 3.
Let f be uniform morphism from A∗ to B∗. We assume that f is not 4-power-free and we want to show that

f is not cube-free. The morphism f must be a ps-morphism. Otherwise, by Lemma 2.5, f is not cube-free; it
ends the proof.

Let w a shortest 4-power-free word whose image by f contains a 4-power. That is f(w) = pu4s for a non-empty
word u and two words p and s over B. If f(w) and u4 are synchronised, by Lemma 2.8, w contains a 4-power; a
contradiction with the definition of w.

Now, let us assume that f is a ps-morphism and that f(w) and u4 are not synchronised. In particular, it
implies that f is bifix and injective.

The central point of this proof is that, starting with w and u, we use iteratively reduction of Lemma 2.6 in [19]
on the word whose image contains a 4-power in such a way that there is no reduction left. That is, no situation
of the hypotheses of this lemma can be founded after this procedure; we obtain new words W et U such that
f(W ) = pU4s with p a proper prefix of W [1], s a proper suffix of W [|W |], and f(W ) and U4 are not synchronised.

We will show that either f is not cube-free, or f(W ) and U can again be reduced using Lemma 2.6 in [19]; a
contradiction with their definitions.

Step 1: For any pure cube v3 of W , the words U4 and f(v)3 do not have any common factor of length at
least |U |+ |f(v)|.

By contradiction, let us assume that U4 and f(v)3 have a common factor of length at least |U | + |f(v)|. By
Corollary 2.3, there exist two words t1 and t2, and two integers r and q such that f(v) = (t1t2)

r and U = (t2t1)
q

with t1t2 and t2t1 primitive words.
If r ≥ 2 then f(v2) = (t1t2)

2r with 2r > 3 that is f(v2) contains a cube with v2 cube-free by definition of v;
f is not cube-free.

If r = 1 then it implies q ≥ 2. Otherwise, vq would be an internal factor of v3 that is of W with |f(v)q| = |U |;
f(W ) and U3 would be synchronised. Consequently, if W = v1v

3v2 for some words v1 and v2 then f(W ) =
f(v1)(t1t2)

3f(v2) = pU4s = p(t2t1)
4qs with q ≥ 2.

Let x be the greatest integer such that p(t2t1)
x is a prefix of f(v1v) and let y be the greatest integer such

that (t2t1)
ys is a suffix of f(vv2). There exist four words t′p, t

′′
p, t

′
s, and t′′s such that t2t1 = t′pt

′′
p = t′st

′′
s ,

f(v1v) = p(t2t1)
xt′p, f(vv2) = t′′s(t2t1)

ys, and f(v) = t′′p(t2t1)
4q−x−y−2t′s.

If x = 0 then |f(v1)| < p. It implies that v1 = ε. Therefore, we obtain that f(v1v
2) = pt′pf(v) = (t1t2)

2 starts
with a prefix of p(t2t1)

2. Since t2t1 is not a primitive word, by Lemma 2.2, (t2t1) is not an internal factor of
(t2t1)

2. It implies that p = t1 and t′p = t2. In the same way, if y = 0, we obtain that s = t2 and t′′s = t1.
Since f(v1v) ends with t1t2, since f(vv2) starts with t1t2, if x ≥ 1 and t′p 6= t2, or if y ≥ 1 and t′′s 6= t1 then

(t2t1) is an internal factor of (t2t1)
2. By Lemma 2.2, we obtain that t2t1 is not a primitive word; a contradiction

with the definition of t2t1.
Therefore, t′p = t2 = t′s, t

′′
p = t1 = t′′s , f(v1v) = pt2f(v)x, f(vv2) = f(v)yt1s, and x + y + 1 = 4q − 1. Since f

is bifix, it follows that f(v1v) ends with f(v)x and f(vv2) starts with f(v)y. Consequently, we obtain that v4q−1
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is an internal factor W with 4q − 1 ≥ q. It implies that vq is an internal factor W with |f(v)q| = |U |, i.e., f(W )
and u3 are synchronised; a contradiction with the hypotheses.

Step 2: W [2..|W | − 1] contains a cube and so a pure-cube.
By contradiction, let us assume that W [2..|W | − 1] is cube-free. It implies that W starts or ends with

a pure cube. Let s1 and p5 be the words such that f(W [1]) = ps1 and f(W [|W |]) = p5s that is U4 =
s1f(W [2..|W | − 1])p5.

If |s1| ≤ |U3| then there exists a word Uc such that s1Uc is the prefix of U4 = s1f(W [2..|W | − 1])p5 of length
|s1U |. Trivially, the word Uc is a conjugated of U (and |Uc| = |U |).

If |s1| + |p5| ≤ |U |, we naturally have |s1| ≤ |U3|. Moreover |s1| + |U3
c | + |p5| ≤ |U4|. It means that

f(W [2..|W | − 1]) starts with U3
c . Since W [2..|W | − 1] is a cube-free word, it ends the proof; f is not cube-free.

Let us now study the case where |s1|+ |p5| > |U |.
Let us recall that, since we assume that W [2..|W | − 1] is cube-free, any pure cube of W = W [1..|W |] is

necessarily a prefix or a suffix of it.
If W starts with a pure cube v3, let Wcom be the greatest prefix of s1f(v[2..|v|])f(v2) that is factor of U4 so

a common factor of a power of f(v) and a power of U . Let us remark that, if W = v3 then Wcom = U4 else
Wcom = s1f(v[2..|v|])f(v2).

By Step 1, we have |Wcom| < |U | + |f(v)|. By definition of Wcom, if W = v3 then Wcom = U4 =
s1f(v[2..|v|])f(v)f(v[1..|v| − 1])p5 would be a common factor of f(v)3 and U3 with |Wcom| ≥ |s1|+ |f(v)|+ |p5| >
|f(v)|+ |U |; a contradiction. Hence, W 6= v3 and |Wcom| = |f(v)|+ |s1f(v[2..|v|])f(v)| > |f(v)|+ 2|s1|. It implies
that |s1| < |U |/2.

In the case where W ends with a cube v′3, we similarly obtain that |p5| < |U |/2.
If W starts with a cube then |s1| < |U |/2. Since |s1|+ |p5| > |U |, we obtain that |p5| > |U |/2. It implies that

W [2..|W |] is cube-free. But f(W [1..|W |]) starts with ps1U
3
c , i.e., f(W [2..|W |]) contains the cube U3

c ; f is not
cube-free.

In the same way, if W ends with a cube, we also obtain either a contradiction with the assumptions or that
f is not cube-free.

Step 3: For any pure cube v3 ∈ Fcts (W [2..|W | − 1]), the word f(v)3 is an internal factor of U3 and
|f(v2)| < |U |.

For any pure cube v3 ∈ Fcts (W [2..|W | − 1]), the word f(v)3 is an internal factor of U4. So |f(v)3| <
|U | + |f(v)|, i.e., |f(v)2| < |U | and |f(v)3| < 3

2 |U |. That is f(v)3 is an internal factor of U3. It implies that
cv = 1, 2 or 3.

Let us recall that, for all integers j ∈ [1; 5 − cv], f(v)3 is an internal factor of pjU
cvsj+cv . Consequently, if

v̂j is the shortest factor of W [ij ..ij+cv ] such that f(v̂j) contains f(v)3 then, by Corollary 3.5, v̂j verifies Property
(P.1) for all integers j ∈ [1; 5− cv].

We are going to see that it implies that W can be reduced; a final contradiction.
Case 3.1: cv = 3
We necessarily have dv = 1 and |Dvf(v)|(≤ |f(v2)|) < |U | ≤ |Dvf(v2)|. For all integers j ∈ [1; 2], if v̂j verifies

(P.1.1) then xj
3 ∈ Lj+1,v. And if v̂j verifies (P.1.2) then xj

3 ∈ Rj+1,v. In other words, we have Lj+1,v∪Rj+1,v 6= ∅
with j + 1 ∈ [2; 3]; by Lemma 2.9(2), we can reduce W .

Case 3.2: cv 6= 3 and dv = 1
We necessarily have cv = 2, i.e, 5 − cv = 3. For all integers j ∈ [1; 3], if v̂j verifies (P.1.1) then xj

3 ∈ Lj+1,v.
And if v̂j verifies (P.1.2) then xj

3 ∈ Rj+1,v. That is Lj,v ∪Rj,v 6= ∅ for all integers j ∈ [2; 4]; by Lemma 2.9(1), a
reduction can be done.

Case 3.3: cv 6= 3 and dv = 0
If cv = 1 then |Dvf(v)2| ≤ |U | and Lj,v ∪ Rj,v 6= ∅ for all integers j ∈ [1; 4]. By Lemma 2.9(3), a reduction

can be done.
If cv = 2 then |U | < |Dvf(v)2| and Lj,v ∪Rj,v 6= ∅ for all integers j ∈ [1; 3]; by Lemma 2.9(4), a reduction can

be done.

9



References

[1] D. R. Bean, A. Ehrenfeucht, and G. F. McNulty. Avoidable patterns in strings of symbols. Pacific J. of
Math, 85(2):261–294, 1979.
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