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Introduction

For all integers k ≥ 2, a k-power is a repetition of k consecutive and identical sequences. A square and a cube respectively correspond to the special cases of k = 2 and k = 3. An overlap is a word of the form xuxux where x is a letter and u is a word. An infinite word without squares over a three-symbol alphabet and an infinite word without overlaps over a two-symbol alphabet were given by Thue [START_REF] Thue | Uber unendliche zeichenreihen[END_REF][START_REF] Thue | Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen[END_REF] (see also the translation of Berstel [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF]). These words are obtained by iterating morphisms.

To find morphisms that generate k-power-free words, a method is to consider k-power-free morphisms. By definition, a k-power-free morphism maps a k-power-free word to a k-power-free word. Starting with a letter (so k-power-free), the word generated by the iteration of a k-power-free morphism is thus k-power-free. But non-k-power-free morphisms can generate k-power-free words. For instance, the Fibonacci morphism ϕ : {a, b} → {a, b}; a → ab; b → a generates the word abaababaabaababaababa..., which is 4-power-free [START_REF] Karhumäki | On cube-free ω-words generated by binary morphisms[END_REF]. But ϕ is not 4-power-free since ϕ(b 3 a) = a 4 b.

Even if we know different ways to verify whether a morphism generates a k-power-free word [START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF][START_REF] Crochemore | Régularités évitables (thèse d'état)[END_REF][START_REF] Karhumäki | On cube-free ω-words generated by binary morphisms[END_REF][START_REF] Richomme | Conjectures and results on morphisms generating k-power-free words[END_REF] but also whether a morphism is k-power-free [START_REF] Crochemore | Sharp characterizations of squarefree morphisms[END_REF][START_REF] Leconte | A characterization of power-free morphisms[END_REF][START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Richomme | About cube-free morphisms[END_REF][START_REF] Wlazinski | A test-set for k-power-free binary morphisms[END_REF], a simple question remains unanswered; is a k-power-free morphism also a (k + 1)-power-free morphism?

In [START_REF] Bean | Avoidable patterns in strings of symbols[END_REF], Bean, Ehrenfeucht, and McNulty gave a partial result; the morphism h defined by h(a) = abacbab, h(b) = cdabcabd, h(c) = cdacabcbd and h(d) = cdacbcacbd is square-free but not cube-free. Another partial result exists for the Thue-Morse morphism µ : {a, b} → {a, b}; a → ab; b → ba. It is k-power-free for every integer k > 2 [START_REF] Brandenburg | Uniformly growing k-th power-free homomorphisms[END_REF].

When k ≥ 4, we proved in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF] that a k-power-free uniform morphism is (k + 1)-power-free. But one of the properties required to prove this result (Lemma 3.1 in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF]) does not hold for k = 3. We give a new one (Lemma 3.4) that allows us to conclude for cube-free uniform morphisms (Theorem 4.1 and Proposition 4.2).

Preliminaries

We assume the reader is familiar (if not, see for instance [START_REF] Lothaire | Algebraic Combinatorics on words[END_REF][START_REF] Lothaire | Applied Combinatorics on Words[END_REF]) with basic notions on words and morphisms. We use notations that largely come from [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF].

Words

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i -1 ≤ j ≤ |w|. We denote by w[i..j] the factor of w such that |w[i..j]| = j -i + 1 and w = pw[i..j]s for two words s and p verifying |p| = i -1. When i = j, we also denote by w[i] the factor w[i..i], which is the i th letter of w. In particular, w [START_REF] Bean | Avoidable patterns in strings of symbols[END_REF] and w[|w|] are respectively the first and the last letter of w. We denote Fcts (w) the set of all factors of the word w.

Powers of a word u are defined inductively by u 0 = ε and u n = uu n-1 for all integers n ≥ 1. Given an integer k ≥ 2, since the case ε k is of little interest, we called a k-power any word u k with u = ε. Given an integer k ≥ 2, a word is k-power-free if it does not contain any k-power as factor. A primitive word is a word that is not a k-power of an another word whatever the integer k ≥ 2. A (non-empty) k-power v k is called pure if any proper factor of v k is k-power-free.

The following proposition gives the well-known solutions (see [START_REF] Lothaire | Combinatorics on words[END_REF]) to an elementary equation in words and will be widely used in the following sections: Proposition 2.1 Let A be an alphabet and u, v, w three words over A.

1. If vu = uw and v = ε then there exist two words r and s over A, and an integer n such that u = r(sr) n , v = rs and w = sr.

2. If vu = uv, then there exist a word w over A and two integers n and p such that u = w n and v = w p .

We also need a property on words that is an immediate consequence of Proposition 2.1(2).

Lemma 2.2 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If a non-empty word v is an internal factor of vv, i.e., if there exist two non-empty words x and y such that vv = xvy then there exist a non-empty word t and two integers i, j ≥ 1 such that x = t i , y = t j , and v = t i+j .

We also use the following result which is a corollary of a result of Fine and Wilf [START_REF] Lothaire | Combinatorics on words[END_REF][START_REF] Lothaire | Algebraic Combinatorics on words[END_REF].

Corollary 2.3 (Keränen) [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF] Let x and y be two words. If a power of x and a power of y have a common factor of length at least equal to |x| + |y| -gcd(|x|, |y|) then there exist two words t 1 and t 2 such that x is a power of t 1 t 2 and y is a power of t 2 t 1 with t 1 t 2 and t 2 t 1 primitive words. Furthermore, if |x| > |y| then x is not primitive.

Morphisms

Let A and B be two alphabets. A morphism f from A * to B * is a mapping from A * to B * such that f (uv) = f (u)f (v) for all words u, v over A.

Let k ≥ 2 be an integer. A morphism f on A is k-power-free if and only if f (w) is k-power-free for all k-power-free words w over A.

A morphism f on A is called prefix (resp. suffix ) if, for all letters a and b in A, the word f (a) is not a prefix (resp. not a suffix) of f (b). A prefix (resp. suffix) morphism f is non-erasing that is f (a) = ε for all letters a. A morphism is bifix if it is prefix and suffix.

A morphism f from A * to B * is a ps-morphism if and only if the equalities f Let us recall some definitions and properties that will be used in the sequel. Lemma 2.4 derives directly from the definitions of a prefix or a suffix morphism. A detailed proof is left to the reader. Lemma 2.4 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be words over A. The equality f (u) = f (v)p with p be a prefix of f (w) implies u = vw for a prefix w of w such that f (w ) = p. And the equality f (u) = sf (v) with s a suffix of f (t) implies u = t v for a suffix t of t such that f (t ) = s. Lemma 2.5 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If f is not a ps-morphism then f is not a k-power-free morphism for all integers k ≥ 2.

Lemma 2.6 [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF] Let f be a ps-morphism from A * to B * and let u, v and w be words over A such that f (u) = δβ, f (v) = αβ, and f (w) = αγ for some non-empty words α, β, γ, and δ over B. Then it implies v = v 1 av 2 , u = u 1 bv 2 , and w = v 1 cw 2 for some words v 1 , v 2 , u 1 , and w 2 , and some letters a, b, and c. Moreover, we have either

b = a or c = a. Furthermore, if |δ| < |f (u[1])| then u 1 = ε and if |γ| < |f (w[|w|])| then w 2 = ε.
Assuming that f (w) = pu k s for a factor w of a word w and a non-empty word u, and assuming that w contains a factor w 0 such that |f (w 0 )| = |u|, Lemma 2.8 states that w necessarily contains a k-power w k such that f (w ) is a conjugate of u. We will say that f (w) contains a synchronised k-power u k . More precisely: Definition 2.7 Let k ≥ 2 be an integer. Let f be a morphism from A * to B * , w be a word over A, and u be a non-empty word over B such that f (w) contains the k-power u k . Let w be a shortest factor of w whose image by

f contains u k , i.e., f (w) = pu k s with |p| < |f (w[1])| and |s| < |f (w[|w|])|.
We say that f (w) and u k are synchronised if there exist three words w 0 , w 1 , and w 2 such that |f (w 0 )| = |u| and w = w 1 w 0 w 2 with p = ε if w 1 = ε, and s = ε if w 2 = ε.

The three following results, which will be used in this paper, were proved in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF].

Lemma 2.8 Let k ≥ 2 be an integer, let f be a ps-morphism, and let w be a word such that f (w) = pu k s with |p| < |f (w [START_REF] Bean | Avoidable patterns in strings of symbols[END_REF])| and |p| < |f (w [START_REF] Bean | Avoidable patterns in strings of symbols[END_REF])|. If f (w) contains a synchronised k-power then w starts or ends with a k-power w k 0 such that f (w 0 ) and u are conjugated.

Lemma 2.9 Let k ≥ 3 be an integer and let κ ∈ {k; k + 1}. Let f be a morphism from A * to B * and let ω be a word over A such that f (ω) = pU κ S for some words p, S and

U = ε over B such that |p| < |f (ω[1])|. Moreover, we assume that |S| < |f (ω[|ω|])| when κ = k + 1 and v 3 is a chosen factor of a pure k-power v k .
When one of the four following situations holds, there exist a word ω such that f (ω) = p (U ) κ S for some words p , S , and

U = ε over B satisfying |p | < |f (ω[1])|, 0 < |U | < |U |, and f (ω) and (U ) κ are synchronised only if f (ω) and U κ are synchronised. 1. d v = 1, |D v f (v) 2 | < |U |, and L j,v ∪ R j,v = ∅ for every integer j ∈ [2, κ]. 2. d v = 1, L j,v ∪R j,v = ∅ for every integer j ∈ [2, κ-1],
and there exists a positive integer φ such that ω

[n v ..|ω|] starts with v φ+2 and sup 2|f (v)|; |D v f (v) φ | ≤ |U | < |D v f (v) φ+1 |. 3. d v = 0, |D v f (v) 2 | ≤ |U |, and L j,v ∪ R j,v = ∅ for every integer j ∈ [1, κ]. 4. d v = 0, |U | < |D v f (v) 2 | < |D v U |, and L j,v ∪ R j,v = ∅ for every integer j ∈ [1, κ -1].
Proposition 2.10 Let A and B be two alphabets and let k ≥ 4 be an integer. A k-power-free uniform morphism is a (k + 1)-power-free morphism.

About cube-free-morphisms

As mentioned in the introduction, Lemma 3.1 in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF] is no longer valid for k = 3. Even if parts of its proof can be extended to this case, some new problems appear. The following lemma is one of the situations we can obtain:

Lemma 3.1 Let f be a ps-morphism from A * to B * . Let us assume that there exist ρ, µ, α, β, and θ words over B and q 1 , q 2 , and q words over A such that q = ε, ρ = αβ is not the image of a word by f , θ = µρρµρρµ, f (q) = ρµρ, f (q 1 ) ends with βθ, f (q 2 ) starts with θα, and the words q 1 [2..|q 1 |] q and q q 2 [1..|q 2 | -1] are cube-free. Then f is not cube-free.

Proof of Lemma 3.1 is simply done using iteratively Lemma 3.2. By induction, if f was not cube-free, we could find an infinite sequence (χ i ) i≥0 of non-empty words starting with χ 0 = q such that |f

(χ i )| > |f (χ i+1 )| > 0; it is impossible.
Lemma 3.2 Let f be a ps-morphism from A * to B * . Let us assume that there exist ρ, µ, α, β, and θ words over B and q 1 , q 2 , and q words over A such that q = ε, ρ = αβ is not the image of a word by f , θ = µρρµρρµ, f (q) = ρµρ, f (q 1 ) ends with βθ, f (q 2 ) starts with θα, and the words q 1 [2..|q 1 |] q and q q 2 [1..|q 2 | -1] are cube-free.

Then either f is not cube-free or there exist ρ , µ , α , β , and θ words over B and q 1 , q 2 , and q words over A such that q = ε, ρ = α β is not the image of a word by f , θ = µ ρ ρ µ ρ ρ µ , f (q ) = ρ µ ρ , f (q 1 ) ends with β θ , f (q 2 ) starts with θ α , and the words q 1 [2..|q 1 |] q and q q 2 [1..|q 2 | -1] are cube-free.

And more particularly, we have |f (q )| < |f (q)|.

Proof.

Let us first remark that the condition q = ε is simply a consequence that ρ is not the image of a word by f . Indeed, it implies ρ = f (ε) = ε. Therefore, f (q) = ρµρ = ε and so q = ε. Moreover, the fact that f is a ps-morphism implies that f is bifix and non-erasing.

We can write f (q 1 ) = π 1 βθ and f (q 2 ) = θασ 2 for two words π 1 and σ 2 over B. Let us denote ϕ = µρ and ψ = ρµ so θ = ϕf (q)ψ.

Let Q 1 be the smallest suffix of q 1 whose image by f ends with ψ and Q 2 be the smallest prefix of q 2 whose image by f starts with ϕ. Since ρ = ε, it implies that Q 1 and Q 2 are not empty. There exist two words Π 1 and

Σ 2 such that f (Q 1 ) = Π 1 ψ, f (Q 2 ) = ϕΣ 2 , |Π 1 | < |f (Q 1 [1])| and |Σ 2 | < |f (Q 2 [|Q 2 |])|.
We have Q 1 qQ 2 factor of q 1 qq 2 and f (Q

1 qQ 2 ) = Π 1 ψf (q)ϕΣ 2 = Π 1 (ρµ) 3 ρΣ 2 .
If Q 1 qQ 2 is cube-free, it ends the proof; f is not cube-free. Hence, Q 1 qQ 2 contains a shortest cube q 3 ; any proper factor of q 3 is cube-free, i.e., q 3 is a pure cube. So we can write Q 1 qQ 2 = q 1 q 3 q 2 for some words q 1 and q 2 .

Let us remark that Q 1 q is necessarily cube-free. Indeed, if

Q 1 = q 1 then Q 1 q is a suffix of q 1 [2..|q 1 |]q which is cube-free by assumption. If Q 1 = q 1 , by definition of Q 1 , it means that ψ is not a suffix of f (q 1 [2..|q 1 |]) and so |f (q 1 [2..|q 1 |])| < |ρµ|. It implies that |f (Q 1 [1])| = |f (q 1 [1])| > |π 1 βϕf (q)| ≥ |f (q 1 [2..|q 1 |]q)|.
In particular, it means that the first letter of q 1 , i.e., q 1 [1] = Q 1 [START_REF] Bean | Avoidable patterns in strings of symbols[END_REF] is not a letter of q 1 [2..|q 1 |]q. Since no cube appears in q 1 [2..|q 1 |]q, it follows that q 1 q = Q 1 q is cube-free.

In the same way, we obtain that qQ 2 is cube-free. So q 3 is neither a factor of Q 1 q nor a factor of qQ 2 . It follows that

|q 1 q 3 | > |Q 1 q| and |q 3 q 2 | > |qQ 2 | that is |q 2 | < |Q 2 | and |q 1 | < |Q 1 |.
Let ϕ be the greatest prefix of ϕ = µρ such that f (Q 1 q)ϕ is a prefix of f (q 1 q 3 ). Let ψ be the greatest suffix of ψ = ρµ such that ψ f (qQ 2 ) is a suffix of f (q 3 q 2 ).

By these definitions, the word ψ f (q)ϕ = ψ ρµρϕ is a common factor (not necessarily the greatest) of f (q ) 3 and (ρµ) 4 .

Note that the inequality

|ψ f (q)ϕ | ≥ |f (q )| + |ρµ| is equivalent to |f (q )| ≤ |ψ | + |ϕ | + |ρ|. Case 1: |f (q )| ≤ |ψ | + |ϕ | + |ρ|.
By Corollary 2.3, there exist two words t 1 and t 2 , and two integers i and j such that f (q ) = (t 1 t 2 ) i and ψ = ρµ = (t 2 t 1 ) j with t 1 t 2 and t 2 t 1 primitive words. If j ≥ 2, f (Q 1 q) ends with ψf (q) = (ρµ) 2 ρ = (t 2 t 1 ) 2j ρ where 2j > 3. If i ≥ 2, f (q 2 ) = (t 1 t 2 ) 2i with q 2 a proper prefix of q 3 and 2i > 3. In this two cases, the image by f of a cube-free word contains a cube; f is not cube-free. So i = j = 1.

We have f (Q

1 qQ 2 ) = Π 1 (t 2 t 1 ) 3 ρΣ 2 = f (q 1 q 3 q 2 ) = f (q 1 )(t 1 t 2 ) 3 f (q 2
). Since t 1 t 2 is not an internal factor of (t 1 t 2 ) 2 (otherwise, by Lemma 2.2, t 1 t 2 would not be primitive), |f (q

1 )| < |f (Q 1 )| = |Π 1 t 2 t 1 | and |f (q 2 )| < |f (Q 2 )| = |t 2 t 1 Σ 2 |, we have either Π 1 = f (q 1 )t 1 and f (q 2 ) = t 1 ρΣ 2 , or Π 1 t 2 = f (q 1 ) and t 2 f (q 2 ) = ρΣ 2 . Case 1.1: Π 1 = f (q 1 )t 1 . Since |Π 1 | < |f (Q 1 [1])| = |f ((q 1 q)[1])| and f bifix, it means that q 1 = ε, Π 1 = t 1 , and f (Q 1 ) = Π 1 ψ = t 1 t 2 t 1 = f (q )t 1 with t 1 a prefix of f (q ).
Since f is a ps-morphism so a bifix morphism, by Lemma 2.4, we obtain that there exists a prefix x (possibly empty) of q such that f (x) = t 1 . From f (q ) = t 1 t 2 = f (x)t 2 with t 2 a prefix of f (q) and f bifix, we obtain that there exists a prefix y of q such that f (y) = t 2 .

From f (q) = ρµρ = f (yx)ρ and f bifix, we obtain that ρ is the image of a word; a contradiction with the definition of ρ in the hypotheses of this lemma.

Case 1.2:

Π 1 t 2 = f (q 1 ).
This case is solved in the same way as Case 1.1, From f (Q 1 ) = Π 1 t 2 t 1 = f (q 1 )t 1 , we obtain that t 1 is the image of a word. From f (q ) = t 1 t 2 , we obtain that t 2 is the image of a word. It follows that ρ is the image of a word; a contradiction with the definition of ρ.

Case 2: |f (q )| > |ψ | + |ϕ | + |ρ|. If q 1 = ε, i.e., Q 1 qQ 2 = q 3 q 2 then, by definition of ψ , it means that ψ = ψ = ρµ. It follows that |f (q )| > |ψ | + |ϕ | + |ρ| = |f (q)| + |ϕ |. Furthermore, |f (q ) 3 | > |Π 1 | + 2|f (q)| + 2|ϕ | = |Π 1 ϕ| + |f (q)| + |ρ| + 2|ϕ | = |f (Q 1 q)| + |ρ| + 2|ϕ |. Since |ρ| = 0, we have |ρ| + 2|ϕ | > |ϕ |. If q 2 = ε then |f (q 2 )| > |Σ 2 |
and, by definition of ϕ , we obtain |f (q

) 3 | = |f (Q 1 q)ϕ |; this is impossible. Hence, q 2 = ε and ϕ = ϕ = µρ. It follows that |f (q ) 2 | = |f (Q 1 qQ 2 )| -|f (q )| = |Π 1 ρµf (q)µρΣ 2 | -|f (q )| < |Π 1 ρµΣ 2 |. If |q | ≥ 2 then |f (q )f (q )| > |Π 1 Σ 2 | + |f (q )| > |Π 1 Σ 2 | + |ψ| + |ϕ| + |ρ| = |Π 1 Σ 2 | + |ρµρµρ|
with |ρ| = 0; this conflicts with previous inequality. Consequently, we have |q | = 1 and q 3 = Q 1 qQ 2 with Q 1 , q, and Q 2 non-empty words. Therefore, Q 1 = q = Q 2 = q with ρµρ = f (q) = f (Q 1 ) = Π 1 ρµ, i.e., µρ = ρµ. By Proposition 2.1(2), there exist a non-empty word ω over A and two integers n, and p such that ρ = ω n and µ = ω p . Since ρ = ε, we obtain that n ≥ 1. It follows that f (Q 1 q) contains ω 3n+2p with Q 1 q cube-free and 3n + 2p ≥ 3; f is not cube-free.

In the same way, we obtain that q 2 = ε.

Since Q 1 qQ 2 = q 1 q 3 q 2 , we have |f (q 1 [1])| = |f (Q 1 [1])| > |Π 1 | and |f (q 2 [|q 2 |])| = |f (Q 2 [|Q 2 |])| > |Σ 2 |. Hence, |ψ | < |ψ| and |ϕ | < |ϕ|.
By definition of ψ and ϕ , it implies that f (q ) 3 = ψ f (q)ϕ .

We have

|ψ | + 2|ρ| + |µ| + |ϕ | = |ψ f (q)ϕ | = |f (q ) 3 | > 3(|ψ | + |ϕ | + |ρ|) that is |µ| > 2|ψ | + 2|ϕ | + |ρ|.
It means that µ starts with ϕ and ends with ψ .

The word f (q ) starts with ψ ρ and ends with ρϕ . There exist two words X and Y such that f (q ) = ψ ρX = Y ρϕ . Since |f (q )| > |ψ | + |ϕ | + |ρ|, we have |X| > |ϕ | and |Y | > |ψ |. Therefore, there exist two non-empty words X and Y such that X = X ϕ , Y = ψ Y , and f (q ) = ψ ρX ϕ = ψ Y ρϕ . It follows that ρX = Y ρ. By proposition 2.1(1), there exist two words r and s and an integer i such that ρ = r(sr) i , X = sr, and Y = rs. Let us also note that µ ends with Y and starts with X .

If i ≥ 1 then f (Q 1 q) contains µρµ that itself contains Y ρX = (rs) 2+i r with Q 1 q cube-free and 2 + i ≥ 3; f is not cube-free.

Let us now consider the case i = 0. We have ρ = r, Y = ρs, X = sρ, and f (q ) = ψ ρsρϕ . From f (q ) 3 = ψ f (q)ϕ = ψ ρµρϕ , we also obtain that µ = sρϕ f (q )ψ ρs. Let us remark that µ starts and ends with s. But the word µ also starts with ϕ and also ends with ψ .

In particular, the word f (Q 1 q) contains µ(ρ)µ that itself contains ψ ρs(ρ)sρϕ . 3 . In these three cases, f (Q 1 q) contains a cube with Q 1 q cube-free; f is not cube-free.

The remaining case is |s| > |ϕ |, |s| > |ψ |, and |s| > |ϕ | + |ψ |; there exists a non-empty word µ such that s = ϕ µ ψ and we have f (q ) = ψ ρϕ µ ψ ρϕ .

Let us denote α = ψ ρ, β = ϕ , ρ = ψ ρϕ = α β , and θ = µ ρ ρ µ ρ ρ µ . We have f (q ) = ρ µ ρ and µ = sρϕ f (q )ψ ρs = ϕ µ ρ f (q )ρ µ ψ = ϕ θ ψ .

Since f (Q 1 ) = f (q 1 )ψ ends with µ, we obtain that f (q 1 ) ends with ϕ θ = β θ . And, since f (Q 2 ) = ϕ f (q 2 ) starts with µρ, we obtain that f (q 2 ) starts with θ ψ ρ = θ α . Moreover, by Lemma 2.4, it means that ψ and ϕ are images of words by f . Since f is bifix, if ρ = ψ ρϕ is the image of a word by f , it is the same for ρ; a contradiction with the hypotheses. So ρ is not the image of a word by f . Since q 1 q is a prefix of Q 1 q and q q 2 is a suffix of qQ 2 , the words q 1 q and q q 2 are cube-free.

Finally, since 3|f (q )| = |ψ f (q)ϕ | < |ψf (q)ϕ| ≤ 3|f (q)|, we have |f (q )| < |f (q)|.

Lemma 3.3 Let f be a ps-morphism from A * to B * . Let q 1 , q 2 , and q be non-empty words over A and let w = q 1 q 3 q 2 . Let us assume that f (w

) = π 1 f (z) 3 σ 2 , |π 1 | < |f (q 1 [1])|, |σ 2 | < |f (q 2 [|q 2 |])|,
and z is a non-empty word over A such that z 3 is a pure cube.

If |q| ≤ 2, if |z| ≥ 2, or if 2|f (q)| ≥ |f (z)| then f is not cube-free.
Otherwise, either f is not cube-free or there exist two words X and Y such that

|Y | ≤ 1, 2|f (q)| < |f (X)| = |f (z)| < 3|f (q)|
, and q 1 q 3 q 2 = X 3 Y with q 1 a prefix of X, q 2 a suffix of XY , and

|f (Y )| < |σ 2 f (z)| or q 1 q 3 q 2 = Y X 3 with q 1 a prefix of Y X, q 2 a suffix of X, and |f (Y )| < |π 1 f (z)|.

Proof.

Let us first remark that we can assume that the image by f of any proper factor of z 3 is cube-free. Otherwise, it ends the proof; f is not cube-free.

The hypotheses imply |f (z)| > |f (q)|. Furthermore, there exist a suffix σ 1 of f (q 1 ) and a prefix π 2 of f (q 2 ) such that f (q 1 ) = π 1 σ 1 and f (q

2 ) = π 2 σ 2 . It means that f (z) 3 = σ 1 f (q) 3 π 2 .
If

|σ 1 f (q 3 )| ≤ |f (z) 2 f (z[1..|z| -1])| then f (z) 2 f (z[1..|z| -1]) contains the cube f (q) 3 with z 2 (z[1..|z| -1]
) a proper factor of z 3 and so cube-free. It ends the proof;

f is not cube-free. Identically, if |f (q 3 )π 2 | ≤ |f (z[2..|z|])f (z) 2 | then f is not cube-free. Consequently, we obtain that |π 2 | < |f (z[|z|])| and |σ 1 | < |f (z[1])|;
there exist two non-empty words α and β such that f (z) = σ 1 α = βπ 2 and f (q

) 3 = αf (z)β. Let us note that α = ε or β = ε. Otherwise, f (z 2 ) contains f (q) 3 . It ends the proof; f is not cube-free. If |f (q 2 )| ≥ |f (z)| then |α|+|β| = |f (q 3 )|-|f (z)| ≥ |f (q)| and the length of αf (z)β ∈ Fcts f (z) 3 ∩Fcts f (q) 3 is at least |f (z)| + |f (q)|.
Let us note that this situation particularly happens when |z| ≥ 2 because in this case

|α| + |β| ≥ |f (z[2..|z|])| + |f (z[1..|z| -1])| ≥ |f (z)| > |f (q)|
. By Corollary 2.3, there exist two words z 1 and z 2 , and two integers i and j such that f (z) = (z 1 z 2 ) i and f (q) = (z 2 z 1 ) j . The inequality |f (z)| > |f (q)|(> 0) implies i > j ≥ 1. It follows that f (z) 2 = (z 1 z 2 ) 2i with 2i > 3 that is f (z) 2 contains a cube; f is not cube-free.

From now on, z is a letter and |f (q 2 )| < |f (z)|, i.e., 0 < |α| + |β| < |f (q)|. We obtain that f (q) 3 = αf (z)β starts and ends with αβ, i.e., αβ is a prefix and a suffix of f (q). There exist two non-empty words ϕ and ψ such that f (q) = (αβ)ϕ = ψ(αβ) and f (z) = βϕf (q)ψα. By Proposition 2.1(1), there exist two words ρ and µ, and an integer j such that αβ = ρ(µρ) j , ϕ = µρ, and ψ = ρµ.

Since f (z) 2 contains (ψα)(βϕ) = ρµρ(µρ) j µρ = ρ(µρ) j+2 and f (z) 2 cube-free, we necessarily have j = 0.

In this case, if we denote θ = ϕf (q)ψ, we have

αβ = ρ, f (q) = ρµρ, f (z) = βµρf (q)ρµα. θ = µρρµρρµ, f (z) = βθα, f (q 1 ) = π 1 βθ and f (q 2 ) = θασ 2 .
Since f is a ps-morphism so is non-erasing and since q = ε, we have ρµ = ε. Since f (z) is cube-free, we necessarily have µ = ε and ρ = ε. Otherwise, the factor θ = µρρµρρµ of f (z) would be equal to ρ 4 or µ 3 .

We also necessarily have q

1 [2..|q 1 |] q and q q 2 [1..|q 2 | -1] cube-free. Otherwise, f (q 1 [2..|q 1 |] q) or f (q q 2 [1..|q 2 | -1]) both factors of f (z) 2 would contain a cube.
By Lemma 3.1, if ρ is not the image of a word by f then f is not cube-free; it ends the proof.

Let us now assume that ρ is the image of a word and let q be the non-empty word such that f ( q) = ρ = αβ( = ε). Since f is bifix, f (q) = ρµρ and µ = ε, there exist a non-empty word q such that f (q) = µ. It follows that q = qq q and necessarily |q| ≥ 3. In particular, |f (qq qq)| = |f (z)| and qq qq is an internal factor of w; f (w) and f (z) 3 are synchronised.

Furthermore, if we denote x = q qq qq, we obtain that f (x) = θ, f (q 1 ) = π 1 βf (x), and f (q 2 ) = f (x)ασ 2 . Since f is bifix and by Lemma 2.4, it follows that q 1 = W 1 x for a non-empty word W 1 verifying f (W 1 ) = π 1 β( = ε) and [START_REF] Crochemore | Régularités évitables (thèse d'état)[END_REF], we obtain that q = a, W 1 = b, W 2 = c for some letters a, b, c. Moreover, we have b = a or c = a. It means that q 1 q 3 q 2 = bx( qq q) 3 xc = bxaxaxc.

q 2 = xW 2 for a non-empty word W 2 verifying f (W 2 ) = ασ 2 ( = ε). Since f ( q) = ρ = αβ, |π 1 | < |f (q 1 [1])| = |f (W 1 [1])|, and |σ 2 | < |f (q 2 [|q 2 |])| = |f (W 2 [|W 2 |])|, by Lemma 2.
If b = a, let X = ax. It follows that q 1 q 3 q 2 = X 3 c with |f

(X)| = |f (ax)| = |f ( qx)| = |βf (x)α| = |f (z)| = 3|f (q)| -|ρ| and |f (c)| -|σ 2 | = |α| < |f (q)| < |f (z)|.
In the same way, if c = a, let X = xa. We have q 1 q 3 q 2 = bX 3 

f (v 1 [1]) = π 1 π 1 and f (v 2 [|v 2 |]) = σ 2 σ 2 . • (P.4): f is not cube-free.

Proof.

If T is cube-free, it ends the proof; f is not cube-free. So T contains at least one cube. Among the cubes of T , we choose one whose image by f is a shortest; we can write T = t 1 t 3 t 2 where |f (t)| = min{|f (t )| where t 3 ∈ Fcts (T )}. By this definition, since f is bifix (as any ps-morphism) and so non-erasing, t 3 is a pure cube.

If t 1 = ε and t 2 = ε then, by Lemma 3.3, T verify (P.1) or (P.4).

As in the proof of Lemma 3.1 done in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF], if a power of f (t) and a power of f (v) have a common factor of length at least |f (t)| + |f (v)|, we obtain that T verify (P.1).

From now, let us assume the converse holds, i.e., any common factor of f (t) 3 and f (v) 3 is of length at most

|f (t)| + |f (v)|. It means that |f (t) 3 | -|σ 2 | < |f (t)| + |f (v)| when t 1 = ε and t 2 = ε, and that |f (t) 3 | -|π 1 | < |f (t)| + |f (v)| when t 1 = ε and t 2 = ε. That is T verify (P.2) with x = t.
Let us now treat the case where

t 1 = t 2 = ε. In this case, f (v) 3 is factor of f (t 3 ) = f (T ). Hence, 2|f (v)| < |f (t)| and |π 1 | + |σ 2 | = 3|f (t)| -3|f (v)| > 3|f (v)|. If π 1 = ε then f (t 2 ) contains the cube f (v) 3 with t 2 cube-free; f is not cube-free. In the same way, if σ 2 = ε then f is not cube-free. It follows that v 1 = ε and v 2 = ε; there exist a prefix π 1 of f (v 1 [1]) and a suffix σ 2 of f (v 2 [|v 2 |]) such that f (v 1 v 3 v 2 ) = π 1 π 1 f (v) 3 σ 2 σ 2 = π 1 f (t) 3 σ 2 .
By Lemma 3.3 with q = v, we obtain that either f is not cube-free (for instance if |v| ≤ 2 or if |t| ≥ 2) or T verify (P.3). By Lemma 2.8, we immediately obtain: Corollary 3.5 With hypotheses and notations of Lemma 3.4, if f (T ) and f (v) 3 are synchronised then either f is not cube-free or T verifies (P.1).

Special case of uniform morphisms

As a consequence of Lemma 3.4 and using Lemma 2.9, we can reduce a word whose image by a uniform morphism contains a cube. We can now state our main result. Theorem 4.1 Let A and B be two alphabets. A cube-free uniform morphism is k-power-free for all integers k ≥ 4.

It is a consequence of Proposition 2.10 and Proposition 4.2: Proposition 4.2 Let A and B be two alphabets. A cube-free uniform morphism is 4-power-free.

Proof.

We follow the approach of the proof of Lemma 4.1 in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF]. We have to verify that all the steps are checked for k = 3.

Let f be uniform morphism from A * to B * . We assume that f is not 4-power-free and we want to show that f is not cube-free. The morphism f must be a ps-morphism. Otherwise, by Lemma 2.5, f is not cube-free; it ends the proof.

Let w a shortest 4-power-free word whose image by f contains a 4-power. That is f (w) = pu 4 s for a non-empty word u and two words p and s over B. If f (w) and u 4 are synchronised, by Lemma 2.8, w contains a 4-power; a contradiction with the definition of w. Now, let us assume that f is a ps-morphism and that f (w) and u 4 are not synchronised. In particular, it implies that f is bifix and injective.

The central point of this proof is that, starting with w and u, we use iteratively reduction of Lemma 2.6 in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF] on the word whose image contains a 4-power in such a way that there is no reduction left. That is, no situation of the hypotheses of this lemma can be founded after this procedure; we obtain new words W et U such that f (W ) = pU 4 s with p a proper prefix of W [START_REF] Bean | Avoidable patterns in strings of symbols[END_REF], s a proper suffix of W [|W |], and f (W ) and U 4 are not synchronised.

We will show that either f is not cube-free, or f (W ) and U can again be reduced using Lemma 2.6 in [START_REF] Wlazinski | Reduction in non-(k + 1)-power-free morphisms[END_REF]; a contradiction with their definitions.

Step 1: For any pure cube v 3 of W , the words U 4 and f (v) 3 By contradiction, let us assume that U 4 and f (v) 3 have a common factor of length at least |U | + |f (v)|. By Corollary 2.3, there exist two words t 1 and t 2 , and two integers r and q such that f (v) = (t 1 t 2 ) r and U = (t 2 t 1 ) q with t 1 t 2 and t 2 t 1 primitive words.

If r ≥ 2 then f (v 2 ) = (t 1 t 2 ) 2r with 2r > 3 that is f (v 2 ) contains a cube with v 2 cube-free by definition of v; f is not cube-free.

If r = 1 then it implies q ≥ 2. Otherwise, v q would be an internal factor of v 3 that is of W with |f (v) q | = |U |; f (W ) and U 3 would be synchronised. Consequently, if W = v 1 v 3 v 2 for some words v 1 and v 2 then f (W ) = f (v 1 )(t 1 t 2 ) 3 f (v 2 ) = pU 4 s = p(t 2 t 1 ) 4q s with q ≥ 2.

Let x be the greatest integer such that p(t 2 t 1 ) x is a prefix of f (v 1 v) and let y be the greatest integer such that (t 2 t 1 ) y s is a suffix of f (vv 2 ). There exist four words t p , t p , t s , and t s such that t 2 t 1 = t p t p = t s t s , f (v 1 v) = p(t 2 t 1 ) x t p , f (vv 2 ) = t s (t 2 t 1 ) y s, and f (v) = t p (t 2 t 1 ) 4q-x-y-2 t s .

If x = 0 then |f (v 1 )| < p. It implies that v 1 = ε. Therefore, we obtain that f (v 1 v 2 ) = pt p f (v) = (t 1 t 2 ) 2 starts with a prefix of p(t 2 t 1 ) 2 . Since t 2 t 1 is not a primitive word, by Lemma 2.2, (t 2 t 1 ) is not an internal factor of (t 2 t 1 ) 2 . It implies that p = t 1 and t p = t 2 . In the same way, if y = 0, we obtain that s = t 2 and t s = t 1 .

Since f (v 1 v) ends with t 1 t 2 , since f (vv 2 ) starts with t 1 t 2 , if x ≥ 1 and t p = t 2 , or if y ≥ 1 and t s = t 1 then (t 2 t 1 ) is an internal factor of (t 2 t 1 ) 2 . By Lemma 2.2, we obtain that t 2 t 1 is not a primitive word; a contradiction with the definition of t 2 t 1 .

Therefore, t p = t 2 = t s , t p = t 1 = t s , f (v 1 v) = pt 2 f (v) x , f (vv 2 ) = f (v) y t 1 s, and x + y + 1 = 4q -1. Since f is bifix, it follows that f (v 1 v) ends with f (v) x and f (vv 2 ) starts with f (v) y . Consequently, we obtain that v 4q-1

  (a) = ps, f (b) = ps , and f (c) = p s with a, b, c ∈ A (possibly c = b) and p, s, p , and s ∈ B * imply b = a or c = a.

  If |s| ≤ |ϕ | then s is a prefix of ϕ and ψ ρs ρ sρϕ contains the cube (ρs) 3 . If |s| ≤ |ψ | then s is a suffix of ψ and ψ ρs ρ sρϕ contains the cube (sρ) 3 . If |s| > |ϕ |, |s| > |ψ |, and |s| ≤ |ϕ | + |ψ | then there exist three words a, b, and c such that s = abc, ϕ = ab, and ψ = bc. It follows that ψ ρs ρ sρϕ contains the cube (bcρa)
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 34 with |f (xa)| = |f (z)| and |f (b)| < |π 1 f (z)|. Let f be a ps-morphism from A * to B * . Let v and T be non-empty words over A such that v 3 is a pure cube. Let us assume that f(T ) = π 1 f (v) 3 σ 2 with |π 1 | < |f (T [1])|, |σ 2 | < |f (T [|T |])|, π 1 asuffix of the image by f of a shortest word v 1 and σ 2 a prefix of the image by f of a shortest word v 2 . Then one of the following holds:• (P.1): There exist a cube x 3 , a word y over A, and a word Z over B such that (P.1.1):T = x 3 y, |y| ≤ 1, f (y) = π 1 σ 2 , f (x) = π 1 Z, and f (v) = Zπ 1 (P.1.2): or T = yx 3 , |y| = 1, f (y) = π 1 σ 2 , f (x) = Zσ 2 , and f (v) = σ 2 Z.• (P.2):There exist a pure cube x 3 and a non-empty word y over A such that (P.2.1):T = x 3 y with |f (x 2 )| < |π 1 f (v)| (P.2.2): or T = yx 3 with |f (x 2 )| < |f (v)σ 2 |. • (P.3): T = t 3 , |v| ≥ 3, |t| = 1 (i.e., t is a letter), 2|f (v)| < |f (t)| < 3|f (v)|,and there exist two words x = ε and y such that |f (x)| = |f (t)| and (P.3.1): v 1 v 3 v 2 = x 3 y with v 1 a prefix of x, v 2 a suffix of xy, and |f (y)| < |f (t)σ 2 | (P.3.2): or v 1 v 3 v 2 = yx 3 with v 1 a prefix of yx, v 2 a suffix of x, and |f (y)| < |π 1 f (t)| where π 1 and σ 2 are the words such that

  do not have any common factor of length at least |U | + |f (v)|.

is an internal factor W with 4q -1 ≥ q. It implies that v q is an internal factor W with |f (v) q | = |U |, i.e., f (W ) and u 3 are synchronised; a contradiction with the hypotheses.

Step 2: W [2..|W | -1] contains a cube and so a pure-cube.

By contradiction, let us assume that W [2..|W | -1] is cube-free. It implies that W starts or ends with a pure cube. Let s 1 and p 5 be the words such that f

If 

If W starts with a pure cube v 3 , let W com be the greatest prefix of

) that is factor of U 4 so a common factor of a power of f (v) and a power of U . Let us remark that, if

By

Step 1, we have

In the case where W ends with a cube v 3 , we similarly obtain that

In the same way, if W ends with a cube, we also obtain either a contradiction with the assumptions or that f is not cube-free.

Step 3: For any pure cube v 3 ∈ Fcts (W [2..|W | -1]), the word f (v) 3 is an internal factor of U 3 and

For any pure cube

Let us recall that, for all integers j ∈ [1; 5 -c v ], f (v) 3 is an internal factor of p j U cv s j+cv . Consequently, if v j is the shortest factor of W [i j ..i j+cv ] such that f ( v j ) contains f (v) 3 then, by Corollary 3.5, v j verifies Property (P.1) for all integers j ∈ [1; 5 -c v ].

We are going to see that it implies that W can be reduced; a final contradiction. Case 3.1:

For all integers j ∈ [1; 2], if v j verifies (P.1.1) then x j 3 ∈ L j+1,v . And if v j verifies (P.1.2) then x j 3 ∈ R j+1,v . In other words, we have L j+1,v ∪R j+1,v = ∅ with j + 1 ∈ [2; 3]; by Lemma 2.9(2), we can reduce W .

Case 3.2:

= ∅ for all integers j ∈ [2; 4]; by Lemma 2.9(1), a reduction can be done.