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Plactic monoids: a braided approach

Introduction

A Young tableau on a totally ordered alphabet A is a finite decreasing sequence of non-empty A-rows. Here A-rows are non-decreasing words w ∈ A * , partially ordered by the relation x 1 . . . x s ≻ R y 1 . . . y t ⇐⇒ s t and ∀1 i s, x i > y i .

(

Introduced by Young in 1900, these combinatorial gadgets play a crucial role in the representation theory of the symmetric groups S n and the complex general linear groups GL n (C), in the Schubert calculus of Grassmannians, and in the study of symmetric functions. Figure 1 shows the graphical representation of a Young tableau. The tableaux are read either row-wise or column-wise, yielding two injective maps R, C : YT A ֒→ A * from the set of Young tableaux on A to the word monoid on A; the definition of these maps is clear from the example in Figure 1, where A = N. Alternatively, Young tableaux can be defined as finite non-decreasing sequences of 1 non-empty A-columns (= decreasing words), with respect to the partial order x 1 . . . x s C y 1 . . . y t ⇐⇒ s t and ∀1 i t, x i+s-t y i .

(2)

Motivated by the problem of longest non-decreasing subwords for w ∈ A * , Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] proposed an algorithm 2 for inserting new entries into a Young tableau, realized by an insertion map I : YT A × A * → YT A . His algorithm is recalled in Section 2. It comes with several bonuses. First, it endows YT A with the associative product T * T ′ := I(T, R(T ′ )). Second, it is used to construct a Young tableau out of any word w ∈ A * , via the tableau map T : w → I(∅, w). This map is surjective, with sections R and C. The tableau T (w) contains useful information about the word w. In particular, the length of its last row yields the maximal length of a non-decreasing subword of w, answering the original question of Schensted. More generally, Greene [START_REF] Greene | An extension of Schensted's theorem[END_REF] showed the lengths of k last rows (or k first columns) of T (w) to encode the maximal length of a subword of w forming a shuffle of k non-decreasing (respectively, decreasing) words.

Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] deduced from T a bijection between the monoid (YT A , * ) and the quotient Pl A of A * by the relations xzy ∼ zxy, x y < z; yxz ∼ yzx, x < y z.

(3) This quotient was baptized plactic monoid 3 and thoroughly explored by Lascoux and Schützenberger [START_REF] Lascoux | ), volume 109 of Quad[END_REF], followed by numerous other researchers. Among its multiple applications are one of the first proofs of the Littlewood-Richardson rule 4 [START_REF] Schützenberger | La correspondance de Robinson[END_REF], which is used to compute products of Schur functions, intersections of Grassmannians, and tensor products of irreducible representations of GL n (C) or S n ; and a combinatorial description of the Kostka-Foulkes polynomials [START_REF] Lascoux | Sur une conjecture de H. O. Foulkes[END_REF], which appear in the representation theory of GL n (F q ) as well as in certain lattice models in statistical mechanics. Plactic monoids are also strongly related with crystal bases, which describe the behavior of quantum groups when their deformation parameter q tends to 0 [START_REF] Date | Representations of U q (gl(n, C)) at q = 0 and the Robinson-Shensted [Schensted] correspondence[END_REF][START_REF] Krob | Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0[END_REF]. See [START_REF] Lascoux | The plactic monoid[END_REF] for a beautiful self-contained overview of different facets of plactic monoids.

The very recent work of Cain-Gray-Malheiro [START_REF] Cain | Finite Gröbner-Shirshov bases for plactic algebras and biautomatic structures for plactic monoids[END_REF] and Bokut-Chen-Chen-Li [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] launched a revival of plactic monoids. They independently showed that the set Col • A of non-empty columns in A * (alternatively, the set Row • A of non-empty rows) forms a Gröbner-Shirshov basis for Pl A . In [START_REF] Viktor Lopatkin | Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis[END_REF], Lopatkin fed the column basis into the algebraic discrete Morse machinery in order to compute the Hochschild cohomology of the algebras kPl A (here k is a field). At the heart of his work lies a study of the restriction of the product * to Col ×2 A . Here the column set Col A = Col • A ⊔ {e C } is seen inside YT A , and the empty column e C is identified with the empty tableau. Lopatkin observed that the * -product of two one-column tableaux has at most two columns. This yields an operator 5 σ C on Col ×2 A , which turns out to be a braiding, i.e., a (non-invertible) solution to the Yang-Baxter equation (σ × Id)(Id ×σ)(σ × Id) = (Id ×σ)(σ × Id)(Id ×σ) (4) on Col ×3 A . This equation plays a fundamental role in mathematical areas ranging from statistical mechanics to quantum field theory, from low-dimensional topology to quantum group theory. Attention to its set-theoretic form dates back to Drinfel ′ d [START_REF] Drinfeld | On some unsolved problems in quantum group theory[END_REF].

In Section 4 we extend the braiding σ C to the much larger set YT e A := YT A ×N 0 of N 0 -decorated Young tableaux-or, equivalently, to Pl e A := Pl A × N 0 . We also propose its row version σ R , defined on Row A = Row • A ⊔ {e R } and on the whole YT e A . The N 0 -decorations keep track of empty columns or rows. Such "dummy" elements are recurrent in normalization problems (cf. [START_REF] Heß | Factorability, String Rewriting and Discrete Morse Theory[END_REF][START_REF] Dehornoy | Quadratic normalization in monoids[END_REF][START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF]); the * -product, and hence our braidings, can be seen as particular instances of normalization. We recover the undecorated plactic monoid Pl A as the structure monoid for σ C or σ R (Theorem 4). The structure monoid of a braiding is a quadratic monoid classically associated to it, in a way that captures many of its properties.

Both σ C and σ R are compatible with the (concatenation×sum) product on Pl e A , and yield two braided commutative monoid structures (Theorem 3). Moreover, they define two actions of the positive braid monoid B + k (10) on (Pl e A ) ×k . Even better: σ C is idempotent on Col ×2 A , and so is σ R on Row ×2 A . Basics on idempotent braidings are recalled in Sections 3; see [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF] for more details and examples. As is always the case for idempotent braidings, the B + k -actions given by σ C and σ R restrict to the actions of the 0-Hecke monoid C k (12) on Col ×k A and Row ×k A respectively. Also known as Coxeter monoids6 , the C k appeared in the work of Tsaranov [START_REF] Tsaranov | Representation and classification of Coxeter monoids[END_REF], and since then were applied to Hecke algebras, to the Bruhat order on Coxeter groups, to Tits buildings, and to planar graphs [FG98, HST09, DT10, GM11, Ken11, Ken14].

Lascoux and Schützenberger [LS90] introduced the operators s i which in every Young tableau on A n = {1, 2, . . . , n} replace some carefully chosen is with i + 1, and vice versa. The s i are sometimes referred to as coplactic, or crystal reflection operators. They yield an S n -action on Pl An , instrumental in some applications of Young tableaux [START_REF] Lascoux | The plactic monoid[END_REF]. In Section 5 (Theorem 6) we show that this S n -action, extended to (Pl e An ) ×k , commutes with the B + k -action given by σ C or σ R . In [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF], the author developed a cohomology theory for braidings-and more generally, for solutions to the YBE in any preadditive monoidal category. See [START_REF] Fenn | An introduction to species and the rack space[END_REF][START_REF] Carter | Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles[END_REF][START_REF] Eisermann | Yang-Baxter deformations of quandles and racks[END_REF][START_REF] Ceniceros | Augmented biracks and their homology[END_REF] for alternative approaches, and [Leb13, LV17, PW16] for their comparison. This braided cohomology theory unifies the cohomological study of basic algebraic structures: associative and Lie algebras, self-distributive structures, bialgebras, Hopf (bi)modules, Yetter-Drinfel ′ d modules, factorized monoids, etc. It also suggests nicely behaved theories for new algebraic structures, such as cycle sets [START_REF] Lebed | Homology of left non-degenerate settheoretic solutions to the Yang-Baxter equation[END_REF]. Moreover, it comes with a handy graphical calculus, replacing technical verifications. Section 6 is a reminder on the braided cohomology theory for idempotent set-theoretic braidings. In this particular case, the braided cohomology coincides with the Hochschild cohomology of the structure monoid of the braiding. Moreover, they are isomorphic as graded algebras when the coefficients allow cup products to be defined (see [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF], or Theorem 8). Differential complexes are much smaller and simpler on the braided side, yielding an efficient tool for computing Hochschild cohomology.

As an application, in Section 7 Hochschild cohomology computations for plactic monoids are substituted with the simpler braided cohomology computations for the column braiding σ C . This allows us to identify a copy of the exterior algebra Λ(kA) inside the Hochschild cohomology H * (Pl A ; k) of Pl A with trivial coefficients when A is finite (Theorem 9). Conjecturally, this exterior algebra covers the whole cohomology. We thus simplify and sharpen computations from [START_REF] Viktor Lopatkin | Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis[END_REF], including them into the conceptual framework of braided cohomology. Computations with different coefficients (Theorem 10) allow us to determine the cohomological dimension of Pl A , in the Hochschild sense. It is 1, 3, or ∞, for A of size 1, 2, or > 2 respectively.

Acknowledgments. The author is grateful to Patrick Dehornoy for bringing her attention to the mysterious appearance of braidings in Viktor Lopatkin's work on plactic monoids; to Viktor Lopatkin for patient guidance through that work; and to Vladimir Dotsenko for the fruitful suggestion to vary coefficients. This work was partially supported by the program ANR-11-LABX-0020-01 (Henri Lebesgue Center, University of Nantes), and by a Hamilton Research Fellowship (Hamilton Mathematics Institute, Trinity College Dublin).

Schensted algorithm

Fix an ordered alphabet A. Take a Young tableau T over A and an x ∈ A. We now recall two versions of the Schensted algorithm for inserting x into T , with basic applications.

The right insertion algorithm works as follows. If T is empty or x is at least as large as the last element of the last row of T , then attach x to the right of this last row. Otherwise choose in the last row the leftmost element x ′ among those exceeding x; replace it with x; and insert x ′ into the tableau obtained from T by forgetting its last row, using the same procedure. An easy verification shows that the algorithm indeed produces a Young tableau. An example is treated in Figure 2. The following lemma summarizes the basic properties of these maps and relations. Its proof is purely combinatorial and elementary; it can be found, for instance, in [START_REF] Lascoux | The plactic monoid[END_REF].

Lemma 2.1.

1. The map I descends to the quotient YT A × Pl A → YT A . 2. The maps R and C are sections of T : one has T R = T C = Id YT A . 3. The composition RT is Knuth-equivalent to the identity: for all w ∈ P l A , one has RT (w) ∼ w.

These properties lead to the following fundamental result:

Theorem 1 (Knuth,[START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]). The tableau map T induces a bijection between Pl A and YT A , with the inverse induced by the row map R (equivalently, by the column map C). The concatenation product on Pl A corresponds under this bijection to the associative product T * T ′ = I(T, R(T ′ ))

(5) on YT A , for which the empty tableau is the unit element. Now, the product * from the theorem suggests one more way of inserting an element x into a Young tableau T . Namely, one can view x as a one-cell tableau and compute x * T . By iteration, this gives the left insertion map

I ′ : A * × YT A → YT A .
The associativity of * and the properties from Lemma 2.1 imply that I ′ descends to the quotient Pl A × YT A , and that the corresponding left tableau map w → I ′ (w, ∅) coincides with T .

We next give a combinatorial description of the operation x * T , which can be called the left Schensted algorithm. If T is empty or x is larger than the first element of the first column of T , then attach x to the top of this first column. Otherwise choose in the first column the smallest element x ′ x, replace it with x, and then insert x ′ into the tableau obtained from T by forgetting its first column, using the same procedure. An example is treated in Figure 3. • are multi-transitive: x ⊳ i y ⊳ j z implies x ⊳ i z and x ⊳ j z for all i, j ∈ {1, 2};
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• satisfy the law of the excluded third: for all x, y ∈ A, exactly one of x ⊳ 1 y and y ⊳ 2 x holds. Define Young tableaux on such data (A, ⊳ 1 , ⊳ 2 ), called admissible data, as in the ordered case, with ⊳ 1 replacing < and ⊳ 2 replacing . Schensted's recipes, repeated verbatim, describe how to insert elements into such Young tableaux on the right and on the left. Now, the data (A, ⊳ 2 , ⊳ 1 ) are also admissible, and yield tableaux which are the transposes of those for (A, ⊳ 1 , ⊳ 2 ). The right Schensted algorithm for (A, ⊳ 2 , ⊳ 1 ) corresponds to the left one for (A, ⊳ 1 , ⊳ 2 ). To recover the case of an ordered A, take < as ⊳ 1 and as ⊳ 2 . More generally, for an ordered set A = A 1 ⊔ A 2 split into two, the relations

x ⊳ i y ⇐⇒ (x < y or x = y ∈ A i ) are admissible. On the other hand, starting from any admissible (A, ⊳ 1 , ⊳ 2 ) and identifying all x, y ∈ A for which x ⊳ i y ⊳ i x holds for some i, one gets induced relations on the quotient which are precisely such "split-order" relations.

We finish with one more elementary property of the insertion algorithms:

Lemma 2.3. The * -product of two one-row tableaux contains no more than two rows. The same property holds for columns.

Proof. Use the Schensted algorithm to subsequently insert the entries x 1 , x 2 , . . . of a row r ′ into a one-row tableau r = y 1 y 2 . . .. Each x i is placed into the cell occupied by the leftmost letter y k(i) in r which is greater than x i (excluding the already replaced letters y k(j) , j < i) if there is one, or to the right of this row if not. Indeed, x i+1 is at least as big as x i , and hence will replace someone to its right. This argument also gives

k(i) < k(i + 1), hence y k(i) y k(i+1)
. Thus all the chased letters y k(i) are attached to the second row from below. So, the tableau r * r ′ = I(r, r ′ ) contains at most two rows. An example is treated in Figure 4. The column case is analogous. 

Idempotent braidings

In the next section, we will interpret the two versions of the Schensted algorithm in terms of idempotent braidings on the set of A-rows (respectively, A-columns). But before that we need to recall basic properties of this type of braidings; see [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF] for a detailed exposition with proofs and multiple examples.

A braided set is a set X endowed with a braiding, i.e., a map σ : X ×2 → X ×2 satisfying the YBE (4). An idempotent braiding obeys the additional axiom σσ = σ. A braiding σ classically extends from X to words in X; the resulting braiding on X * is denoted by σ. The set of normal words for a given braided set is defined as

Norm(X, σ) = { x 1 . . . x k ∈ X * | ∀1 j < k, σ(x j , x j+1 ) = (x j , x j+1 ) }.
In real-life examples, braidings often interact with other structure on the underlying set. For instance, a braided commutative monoid is a monoid (M, •, 1) endowed with a braiding σ, subject to the following compatibility conditions for all u, v, w ∈ M:

σ(u • v, w) = (w ′′ , u ′ • v ′ ), where σ(v, w) = (w ′ , v ′ ), σ(u, w ′ ) = (w ′′ , u ′ ); (6) σ(u, v • w) = (v ′ • w ′ , u ′′ ), where σ(u, v) = (v ′ , u ′ ), σ(u ′ , w) = (w ′ , u ′′ ); (7) w ′ • v ′ = v • w, where σ(v, w) = (w ′ , v ′ ); (8) σ(v, w) = (w, v),
where v = 1 or w = 1. (9) One recovers usual commutative monoids taking as σ the flip (u, v) → (v, u). We will turn (a decorated version of) plactic monoids into braided commutative monoids in two ways-using an extension of the row or the column braiding.

A braiding induces an action of the positive braid monoid

B + k = b 1 , . . . , b k-1 | b i b j = b j b i for |i -j| > 1, b i b i+1 b i = b i+1 b i b i+1 + (10) on X ×k , for all k ∈ N, via b i → Id ×(i-1) X ×σ × Id ×(k-i-1) X .
(11) In the idempotent case, this action descends to the quotient

C k = b 1 , . . . , b k-1 | b i b j = b j b i for |i -j| > 1, b i b i+1 b i = b i+1 b i b i+1 , b i b i = b i + (12) of B +
k , referred to as the Coxeter monoid.

An idempotent braided set (X, σ) is called pseudo-unital, or PUIBS, if endowed with a pseudo-unit, i.e., an element 1 ∈ X satisfying:

1. both σ(1, x) and σ(x, 1) lie in { (1, x), (x, 1) } for all x ∈ X; 2. dropping any occurrence of 1 from a normal word, one still gets a normal word. Given a word w ∈ X * , let the word w be obtained from it by erasing all its letters 1. This yields a projection Norm(X, σ) ։ Norm(X, σ, 1), where Norm(X, σ, 1) is the set of normal words without the letter 1, called reduced normal words. In our example of A-rows and A-columns, the empty row or column will be a pseudo-unit, and reduced normal words will correspond to Young tableaux.

The structure monoid of a braided set (X, σ) is presented as follows:

M(X, σ) = X | xy = y ′ x ′ whenever σ(x, y) = (y ′ , x ′ ), x, y ∈ X + .
To get from it the reduced structure monoid M(X, σ, 1) of a PUIBS (X, σ, 1), identify the letter 1 with the empty word. A representative x 1 . . . x k of an element of M(X, σ), with x j ∈ X, is called its normal form if it is a normal word. Reduced normal form is defined similarly. Structure monoids should be thought of as "universal enveloping monoids" of a braiding; in particular, they encode the representation theory of (X, σ, 1), in the sense of [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF][START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF]. This construction brings group-theoretic tools into the study of the YBE, and is the basis of most current approaches to the classification of braidings. In the opposite direction, it yields a rich source of (semi)groups and algebras with interesting algebraic properties (see [GIVdB98, ESS99, Rum05, JO05, Cho10, Deh15] and references therein). Our aim here is to recover plactic monoids as the reduced structure monoids of row/column braidings, and to apply to them general results on structure monoids, especially on their cohomology.

The languages of (reduced) normal words and (reduced) structure monoids turn out to be equivalent:

Theorem 2 ([Leb16]).
1. The structure monoid M(X, σ) of a braided set (X, σ) is braided commutative, with the braiding σ M induced by the braiding σ on X * . 2. If σ is idempotent, then the tautological map Norm(X, σ) → M(X, σ) is bijective.

Its inverse sends an m ∈ M(X, σ) represented by a word w ∈ X k to ∆ k w, which turns out to be the unique normal form of m:

Norm(X, σ) ←→ M(X, σ), Taut : w -→ [w], ∆ k w - → [w] : NForm . Here the longest element ∆ k = b 1 (b 2 b 1 ) • • • (b k-1 • • • b 2 b 1 ) of C k acts on X k via (11).
3. Under the above bijection, the braiding σ M on M(X, σ) corresponds to the restriction σ N of σ to Norm(X, σ). Further, the concatenation product on M(X, σ) corresponds to a product * on Norm(X, σ), which can be computed as the braiding σ N followed by concatenation. 4. For a PUIBS (X, σ, 1), the above bijection induces a bijection Norm(X, σ, 1) ↔ M(X, σ, 1). Its inverse computes the (unique) reduced normal form.

As a result of the last assertion, the concatenation product on M(X, σ, 1) pulls back to an associative product on Norm(X, σ, 1), still denoted by * . Explicitly, for reduced normal words v, w of length n and m, one has v * w = ∆ n+m (vw). The empty word is a unit for * . In general the braiding σ N does not restrict to Norm(X, σ, 1).

Two braidings on the plactic monoid

We now return to Young tableaux and the plactic monoid on an ordered alphabet A.

Recall the row set Row A = Row • A ⊔ {e R } including the empty row e R . We will often switch between its interpretations inside the word monoid A * , and inside YT A (as the subset of one-or zero-row tableaux). Our aim is to define a braiding σ R on Row A . Take r 1 , r 2 ∈ Row A ֒→ YT A . According to Lemma 2.3, there are two possibilities for the tableau r 1 * r 2 :

1. it can have two non-empty rows r ′ 2 , r ′ 1 , in which case we put σ R (r 1 , r 2 ) = (r ′ 2 , r ′ 1 ); 2. it can be a single row-the concatenation r 1 r 2 , which can be empty; we then declare σ R (r 1 , r 2 ) = (e R , r 1 r 2 ).

One obtains an idempotent operator on Row ×2

A . There is an analogous operator σ C on Col ×2 A . Both somewhat ignore the empty row/column:

σ R (r, e R ) = σ R (e R , r) = (e R , r), σ C (c, e C ) = σ C (e C , c) = (c, e C ). (13) 
Proposition 4.1. The operators σ R and σ C above are idempotent braidings on the row set Row A and the column set Col A respectively.

Proof. One should check the YBE (4) on Row ×3 A and Col ×3 A . Take three rows r 1 , r 2 , r 3 . We will prove that, evaluated on (r 1 , r 2 , r 3 ), both sides of the YBE for σ R yield the rows of r 1 * r 2 * r 3 (read from top to bottom), preceded with some empty rows e R if necessary.

Left-hand side: Let us show that the three (possibly empty) rows of (σ 1 by replacing some letters y i 1 , . . . , y ip with x 1 , . . . , x p (where x j < y i j , x j y i j -1 ) and adding the remaining letters of r 3 to the end. The chased letters y i 1 . . . y ip assemble into the row r ′ 3 . Since m l, x j < y i j < z i j , and y i < z i for the non-chased letters y i , one has r ′ 2 ≻ R r ′′ 1 . Now, the row r ′′ 2 is obtained from r ′ 2 by replacing some of its letters z hs with y is , and adding the remaining letters y it of r ′ 3 to the end, to positions h t . The relations y i < z i yield h j i j . But then y ′ h j y ′ i j = x j < y i j , where y ′ 1 y ′ 2 . . . is the row r ′′ 1 . For the non-chased letters z i , one has

R × Id)(Id ×σ R )(r ′ 2 , r ′ 1 , r 3 ) form a Young tableau, knowing that the rows (r ′ 2 , r ′ 1 ) = σ R (r 1 , r 2 ) form one. Write the rows as words in A: r ′ 2 = z 1 . . . z m , r ′ 1 = y 1 . . . y l , r 3 = x 1 . . . x k (Figure 5). Put σ R (r ′ 1 , r 3 ) = (r ′ 3 , r ′′ 1 ), σ R (r ′ 2 , r ′ 3 ) = (r ′′ 3 ,
y ′ i < z i because of r ′ 2 ≻ R r ′′ 1 . Put together, this yields r ′′ 2 ≻ R r ′′ 1 .
Hence the rows r ′′ 3 , r ′′ 2 , r ′′ 1 possibly include some empty ones, followed by the rows of a Young tableau T . In particular, T (r ′′ 3 r ′′ 2 r ′′ 1 ) = T . Since at the level of A * the braiding σ R is the composition RT , Lemma 2.1 implies 

r 1 r 2 r 3 ∼ r ′′ 3 r ′′ 2 r ′′ 1 . Theorem 1 then yields r 1 * r 2 * r 3 = T (r 1 r 2 r 3 ) = T (r ′′ 3 r ′′ 2 r ′′ 1 ) = T , as desired. r ′′ 3 z h 1 z h 2 • • • r ′ 2 z 1 • • • z h 1 • • • z h 2 • • • r ′′ 2 z 1 • • • y i 1 • • • y i 2 • • • ↑ տ r ′ 1 y 1 • • • y i 1 • • • • • • y i 2 • • • Id ×σ R σ R ×Id r ′′ 1 y 1 • • • x 1 • • • • • • x 2 • • • տ ր r 3 x 1 x 2 • • •
Put (r ′ 3 , r ′ 2 ) = σ R (r 2 , r 3 ), (r ′′ 3 , r ′ 1 ) = σ R (r 1 , r ′ 3 ), (r ′′ 2 , r ′′ 1 ) = σ R (r ′ 1 , r ′ 2 )
. One has to check the relation r ′′ 3 ≻ R r ′′ 2 ; the reasoning can then be completed as for the left-hand side. The word r ′′ 3 is formed by the letters z i 1 , . . . , z i k of r 1 chased by the letters y 1 , . . . , y k of r ′ 3 . Since r ′ 3 ≻ R r ′ 2 , the first letters x 1 , . . . , x k of r ′ 2 satisfy x j < y j , and thus in the computation of σ R (r ′ 1 , r ′ 2 ) they chase the letters

y ′ h 1 , . . . , y ′ h k of r ′ 1 = y ′ 1 y ′ 2 . . . with h j i j ,
possibly plus some extra letters on the right. The inequalities y ′

h j y ′ i j = y j < z i j then yield r ′′ 3 ≻ R r ′′ 2 .
The column case can be treated analogously. Alternatively, one can use the duality argument from Remark 2.2.

The explicit description of the * -product from the proof of Lemma 2.3 yields a useful comparison of rows/columns before and after the braiding procedure: Observation 4.2.

1. Take r 1 , r 2 ∈ Row A , and put σ R (r 1 , r 2 ) = (r 3 , r 4 ). Then r 3 is a subrow of r 1 , r 2 is a subrow of r 4 , and one has The column braiding has one more useful elementary property, generalizing (13): Observation 4.3. Let c 1 be a subcolumn of c 2 . Then one has

r 3 ≻ R r 4 , r 3 ≻ R r 2 . Moreover, r i R
σ C (c 1 , c 2 ) = σ C (c 2 , c 1 ) = (c 2 , c 1 ). Even better: Observation 4.2 implies that σ C (c 1 , c 2 ) is of the form (c 2 , c ′ 1 ) or (c ′ 2 , c 1 ) if and only if c 1 is a subcolumn of c 2 .
There is no hope for a similar characterization for subrows. In fact, even the evaluation of σ R on the diagonal (r 1 , r 1 ) is rather involved.

These observations suggest seeing M(Col A , σ C , e C ) and M(Row A , σ R , e R ) as some sort of "idempotent" monoids of I-type; cf. [START_REF] Gateva-Ivanova | Skew polynomial rings with binomial relations[END_REF][START_REF] Gateva | Semigroups of I-type[END_REF] for a more classical "involutive" version of this notion. 

σ C ( 1 , 2 ) = ( 1 , 2 ), σ C ( 2 , 1 ) = ( 2 1 , e C ).
The rows are in bijection with N ×2 0 : the couple (k, l) corresponds to k ones followed by l twos. The braiding σ R then reads

σ R ((k 1 , l 1 ), (k 2 , l 2 )) = ((0, min{l 1 , k 2 }), (k 1 + k 2 , l 1 + l 2 -min{l 1 , k 2 })).
The row and column braidings are far from being invertible. However, a weak form of invertibility does hold for them: Observation 4.5. Put σ(a 1 , a 2 ) = (a 3 , a 4 ), where σ is either σ R or σ C , and the a i are either rows or columns. Then any three of the a i s determine the remaining one. In the row case, a 1 and a 4 suffice to recover a 2 and a 3 . In the column case, the only couple that determines all the a i s is (a 1 , a 2 ).

Recalling the definition of normal words, one easily describes them for σ = σ R or σ C , using the properties (13) of empty rows and columns:

Norm(Row A , σ R ) 1:1 -→ YT A × N 0 , ( 14 
) (e α R r 1 . . . r k ) -→ ( r 1 r k •••• , α ); Norm(Col A , σ C ) 1:1 -→ YT A × N 0 , (15) (c 1 . . . c k e α C ) -→ ( c 1 •••••c k , α ), where on the left one has e R = r 1 ≻ R . . . ≻ R r k and c 1 C . . . C c k = e C respectively.
Working with columns is preferable for certain applications, since for finite A the column set Col A is of finite size 2 |A| , while Row A is always infinite.

Theorem 2 now provides braided commutative monoid structures on YT A × N 0 .

Notation 4.6. The number of rows and columns in a Young tableau T is denoted by rows(T ) and cols(T ) respectively.

Theorem 3. Take a totally ordered alphabet A. The set YT A × N 0 of N 0 -decorated Young tableaux on A can be seen as a braided commutative monoid in two ways:

1. The unit is the element (∅, 0), the product is given by

(T 1 , α 1 ) * R (T 2 , α 2 ) = (T 1 * T 2 , α 1 + α 2 + rows(T 1 ) + rows(T 2 ) -rows(T 1 * T 2 )), and the braiding σ R ((T 1 , α 1 ), (T 2 , α 2 )) = ((T ′ 2 , α ′ 2 ), (T ′ 1 , α ′ 1 )
) is uniquely defined by the following conditions:

• the rows of T ′ 2 followed by those of T ′ 1 form the tableau T 1 * T 2 ;

• α ′ 1 + rows(T ′ 1 ) = α 1 + rows(T 1 ), α ′ 2 + rows(T ′ 2 ) = α 2 + rows(T 2 ); • α ′ 1 > 0 if and only if rows(T 1 * T 2 ) < α 1 + rows(T 1 ), in which case T ′ 2 = ∅. 2.
The unit is the element (∅, 0), the product is given by

(T 1 , α 1 ) * C (T 2 , α 2 ) = (T 1 * T 2 , α 1 + α 2 + cols(T 1 ) + cols(T 2 ) -cols(T 1 * T 2 )), and the braiding σ C ((T 1 , α 1 ), (T 2 , α 2 )) = ((T ′ 2 , α ′ 2 ), (T ′ 1 , α ′ 1 )
) is uniquely defined by the following conditions:

• the columns of T ′ 2 followed by those of T ′ 1 form the tableau T 1 * T 2 ;

• α ′ 1 + cols(T ′ 1 ) = α 1 + cols(T 1 ), α ′ 2 + cols(T ′ 2 ) = α 2 + cols(T 2 ); • α ′ 2 > 0 if and only if cols(T 1 * T 2 ) < α 2 + cols(T 2 )
, in which case T ′ 1 = ∅. We will call the braidings from the theorem insertion braidings, since they are based on Schensted's insertion algorithms.

For the arguments with α 1 = α 2 = 0, the formulas for * R and * C immediately give Corollary 4.7. The functions rows and cols are subadditive on YT A : for two tableaux T 1 , T 2 one has rows(T 1 * T 2 ) rows(T 1 ) + rows(T 2 ), cols(T 1 * T 2 ) cols(T 1 ) + cols(T 2 ).

Knuth's bijection (Theorem 1) allows one to transport the above structures to the N 0 -decorated plactic monoid: Corollary 4.8. The constructions from Theorem 3 induce, via the tableau map T , two braided commutative monoid structures on Pl A × N 0 . Remark 4.9. According to Theorem 2, the braiding σ R suffices to reconstruct the product * R on YT A × N 0 , and hence the product * on YT A . Schensted algorithms being nothing else than recipes for calculating T * a and a * T for a tableau T and an a ∈ A, we thus include these algorithms into the braided paradigm.

At this stage working with the N 0 -decorations might seem a handicap. We will now propose two ways to circumvent them. The second one will allow us to study the cohomology of undecorated plactic monoids in Section 7. The case m = 1 recovers the braidings σ R and σ C . In contrast, note that the total braidings σ R and σ C are not idempotent, but satisfy a weaker condition σ 3 = σ.

Alternatively, the explicit description ( 14)-(15) of normal words and the properties (13) of e R and e C show that they are pseudo-units for (Row A , σ R ) and (Col A , σ C ) respectively. Theorem 2 then implies Theorem 4. The plactic monoid on a totally ordered alphabet A is isomorphic to the reduced structure monoids for the row/column braidings for A:

M(Row A , σ R , e R ) 1:1 ←→ Pl A 1:1 ←→ M(Col A , σ C , e C ).
Note that the braidings from Theorem 3 do not descend to Pl A . Our braided interpretation yields a simple way to determine the center of Pl A : Proposition 4.11. The center of the plactic monoid Pl A is the free monoid generated by the longest column c A := a n a n-1 . . . a 2 a 1 when A is the finite alphabet a 1 < a 2 < . . . < a n , and is trivial when A is infinite. Proof. Our proof jungles two interpretations of columns: inside Pl A , and inside YT A . By construction, the column braiding preserves the column product: 

σ C (c 1 , c 2 ) = (c 3 , c 4 ) implies the relation c 3 c 4 = CT (c 1 c 2 ) = c 1 c 2 in Pl A .
• • • c k , c i C c i+1 ,
using the map CT . Let us show that the last column c k , and hence every column c i , contains every letter a ∈ A. Suppose the contrary, and consider the commutation relation wa = aw. Theorems 2 and 4 allow to rewrite it as a Young tableaux equality:

b 1 • • • b k (c 1 , . . . , c k , a) = (c 1 , . . . , c k ) * a = a * (c 1 , . . . , c k ) = b k • • • b 1 (a, c 1 , . . . , c k ),
where the positive braid monoid B + k+1 from (10) acts on Col ×(k+1) A via σ C , and the overlines stand for the reduction, i.e., empty column elimination. Observations 4.2 and 4.3 leave us with two options. Either the above tableau T has k + 1 columns, in which case the last one should be a and, at the same time, a letter from c k ; but a / ∈ c k . Or T has k columns, and the last one is simultaneously a subcolumn of c k a (which must be a column), and c k with a column with 1 letters placed on top of it. This is possible only when this last column is c k . Repeating this argument for all columns of T , we conclude that its first column is c 1 a and, at the same time, ac 1 -contradiction. This result is classical [START_REF] Lascoux | ), volume 109 of Quad[END_REF]. In [START_REF] Cedó | Plactic algebras[END_REF] it was used to show that the center of the plactic algebra kPl A is k[c A ] when A is finite.

Insertion braidings vs. letter permuting operators

In this section, A is the alphabet A n := {1, 2, . . . , n} with the usual order, with n ∈ N ∪ {∞}. We will recall the classical operators s i on YT An which define an S n -action on it, and establish its compatibility with the insertion braidings.

The s i are first defined on words w ∈ A * n . Write out all the letters i and i + 1 occurring in w, keeping their order. Then match any consecutive letters (i + 1, i), in this order, and forget them; here the couple (last letter of w, first letter of w) is considered consecutive. Continue this process for unmatched letters until only some is or some i + 1s are left. The pairs matched in the end are easily seen to be independent of the matching order. Then change all unmatched letters to i + 1 or to i respectively. Insert the obtained letters (both matched and unmatched) into their original positions, to get the word s i (w). The whole process is illustrated in Figure 6. The operators s i are clearly involutive, and commute for |i 1i 2 | > 1. With some more work, they are shown to satisfy the YBE-like relation s i s i+1 s i = s i+1 s i s i+1 , see [START_REF] Lascoux | ), volume 109 of Quad[END_REF][START_REF] Lascoux | The plactic monoid[END_REF]. They behave nicely with respect to the Knuth equivalence ∼: Lemma 5.1. Take four words w 1 , w 2 , w 3 , w 4 ∈ A * n , with w 2 ∼ w 3 . Then there exist four words w j of the same length as the w j , with w 2 ∼ w 3 , such that s i (w 1 w 2 w 4 ) = w 1 w 2 w 4 , s i (w 1 w 3 w 4 ) = w 1 w 3 w 4 .

Proof. Write s i (w 1 w 2 w 4 ) = w 1 w 2 w 4 , where the whole word is cut into three so that the subwords w j and w j have the same length. Further, suppose that w 3 is obtained from w 2 by applying a single Knuth relation; the general case follows by induction. We regard this relation as a permutation θ of the letters of w 2 . That is, w 3 = θ(w 2 ).

In the notations of (3), we take as θ the transposition of x and z, except for two cases:

• the relation i(i + 1)i ∼ (i + 1)ii is seen as moving i across (i + 1)i;

• the relation (i + 1)i(i + 1) ∼ (i + 1)(i + 1)i is seen as moving i + 1 across (i + 1)i. With this interpretation, all the letters i, i+1 from w 1 w 2 w 4 conserve their matched/unmatched status in w 1 θ(w 2 )w 4 , with respect to the matching procedure from the definition of s i . Moreover, if all the unmatched is (or i + 1s) are changed to i + 1 (or i) to get s i (w 1 w 2 w 4 ), the permutation θ still describes a valid Knuth relation for w 2 , and satisfies s i (w 1 θ(w 2 )w 4 ) = w 1 θ( w 2 ) w 4 . The assertion of the lemma then holds for w 3 = θ( w 2 ) ∼ w 2 .

Plugging empty words w 1 and w 4 into the lemma, one recovers Theorem 5 ([LS81, LLT02]). The operators s i above, for 1 i < n, define an action of the symmetric group S n on the set of words A * n , which descends to the plactic monoid Pl An .

The induced operators from the theorem, as well as the operators on YT An corresponding to them via the Knuth bijection, are still denoted by s i .

Example 5.2. The row set Row An is identified with N n 0 : the ith component of N n 0 counts the number of is in our row. The inclusion of N n 0 ≃ Row An into A * n or into YT An yields sections for the corresponding abelianization maps. Restricted to Row An , the s i above permute the components i and i + 1 of N n 0 . This example justifies the name letter permuting operators we employ for the s i .

Example 5.3. The set YT

A 2 is parametrized by triples (n 1,2 , n 2,1 , n 2,2 ) ∈ N 3 0 with n 1,2
n 2,1 : the parameter n q,i counts the number of is in row q. The action of s 1 is here as follows:

s 1 (n 1,2 , n 2,1 , n 2,2 ) = (n 1,2 , n 2,2 + n 1,2 , n 2,1 -n 1,2 ). 13
We will need some more properties of the letter permuting operators. Recall the row and column maps R, C from Figure 1.

Definition 5.4. The shape of a Young tableau is the sequence of the lengths of its rows. The set of tableaux on A of the same shape λ is denoted by YT λ A . Proposition 5.5.

1. The operators s i above restrict from A * n to the sets R(YT λ An ) and C(YT λ An ) of row-and column-readings of Young tableaux of the same shape λ. 2. The bijection R : YT An → R(YT An ) intertwines the induced and the restricted versions of the s i . The same is true for C. 3. The s i commute with the operators RT and CT on A * n . 4. For any w j ∈ R(YT

λ j An ) (or C(YT λ j An )), the word s i (w 1 . . . w k ) ∈ A *
n decomposes as w 1 . . . w k , where each w j lies in R(YT

λ j An ) (respectively, C(YT λ j An )).

The row and column versions of the above decomposition coincide. Explicitly, for

any T j ∈ YT An , put T j = T ( w j ) and T j = T ( v j ), where the w j and the v j are computed as in Point 4 from w j = R(T j ) and v j = C(T j ) respectively. The tableaux thus obtained are identical: T j = T j for all j.

Proof. We will treat the row case only, the column case being analogous. Take a T ∈ YT λ An . Assume that s i acts on R(T ) by replacing some of its is with i + 1s; the case of the replacement i + 1 i is similar. Reassemble s i (R(T )) into a tableau T of shape λ, filling each row from left to right, starting from the top row. We will show that T is a Young tableau. This yields

s i R(T ) = R( T ), hence Point 1.
We first need an observation, which directly follows from our matching procedure:

Observation 5.6. Consider a word w ∈ A * n with two consecutive letters i. If in s i (w) the left i changes to i + 1, then so does the right one. Similarly, if in s i-1 (w) the right i changes to i -1, then so does the left one.

Return now to our T , seen as a modification of T . There are only two possible reasons for it not to be a Young tableau:

• An i changed to i + 1, while its right neighbor i remained unchanged. This contradicts Observation 5.6. • An i changed to i + 1, while its top neighbor i + 1 remained unchanged. Assume that they live in column p, and in rows q + 1 and q respectively. This means that this i + 1 was matched with some i, which has to lie in row q + 1 and column p ′ < p. Then in T , in each column between p ′ and p, row q + 1 contained i and row q contained i + 1. This implies that our i from the cell (p, q + 1), unmatched by assumption, had to match with the i + 1 from the cell (p ′ , q). Contradiction. One concludes that T is a Young tableau, as announced.

The modified tableau T will serve us once more. Recall that it satisfies the relation s i R(T ) = R( T ). By Theorem 1, one has T = T R( T ) = T s i R(T ). The action of s i on Young tableaux is induced by its action on A * n , implying T s i = s i T , and hence T = s i T R(T ) = s i (T ). So s i R(T ) = R( T ) = Rs i (T ). This proves Point 2. Point 3 follows since s i commutes with T .

The proof of Point 4 repeats verbatim that of Point 1. It remains to check Point 5. According to Theorem 1, for all j the words w j = R(T j ) and v j = C(T j ) are Knuth-equivalent. Lemma 5.1 then yields w j ∼ v j . Again by Theorem 1, one obtains the desired equality T ( w j ) = T ( v j ). Now we can extend the S n -action given by the operators s i from YT An to (YT An × N 0 ) ×k . Concretely, put s i ((T 1 , α 1 ), . . . , (T k , α k )) = (( T 1 , α 1 ), . . . , ( T k , α k )), where the T j are computed from the T j by the last point of Proposition 5.5. That proposition, together with Theorem 5, imply that these s i define an S n -action on (YT An × N 0 ) ×k . Theorem 6. Take integers n, k > 0, and consider the power (YT An × N 0 ) ×k of the set of N 0 -decorated Young tableaux on A n . It carries two actions: the letter permuting S n -action via the operators s i defined above, and the action of the positive braid monoid B + k via the braiding σ R from Theorem 3. The two actions commute. Similarly, the operators s i and σ C yield pairwise commuting S n -and B + k -actions. As a consequence, one obtains two actions of the direct product S n ×B + k on (YT An × N 0 ) ×k . Pursuing Remark 4.10, one can restrict these actions to those of C n × B + k on (YT r m A ) ×k and on (YT c m A ) ×k respectively, for any m > 0.

Proof. We treat only the row case here, the column case being similar. We also omit the N 0 -decorations, which demand a laborious but straightforward book-keeping. Take Young tableaux T j ∈ YT 

( T l * T l+1 ) = R( T l )R( T l+1 ) ∼ R( T ′ l+1 )R( T ′ l ) = R( T ′ l+1 * T ′ l ). The injectivity of R : YT An → Pl An implies T l * T l+1 = T ′ l+1 * T ′ l , as desired.
Remark 5.7. It could seem more natural to extend the s i to (YT An × N 0 ) ×k diagonally. However, this extension is no longer compatible with the B + k -actions. Take for instance k = 2 and one-cell tableaux 1 and 2 . One computes σ R (s

1 × s 1 )( 1 , 2 ) = σ R ( 2 , 1 ) = ( 2 , 1 ), (s 1 × s 1 )σ R ( 1 , 2 ) = (s 1 × s 1 )(e R , 1 2 ) = (e R , 1 2 ).

Braided cohomology: generalities

We now attack the cohomological part of the paper. This section briefly reviews braided cohomology theory for a pseudo-unital idempotent braided set (X, σ, 1). The resulting cohomology groups turn out to compute the Hochschild cohomology of the structure monoid M(X, σ, 1). Moreover, this identification respects cup products. For details and proofs, see [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF]. In Section 7, this approach is applied to the column braiding and plactic monoids: the former is used to compute the cohomology of the latter. Braided cohomology works as follows. Fix a PUIBS (X, σ, 1) and a commutative unital ring k. For any k ∈ N, consider the k-module of critical7 k-cochains CrC k = { f : X ×k → k | f (. . . , 1, . . .) = 0; f (. . . , x, y, . . .) = 0 when σ(x, y) = (x, y)}. Complete this with CrC 0 = k. Choose a braided character of (X, σ, 1), i.e., a map ε : X → k satisfying ε(1) = 1 k and ε(x)ε(y) = ε(y ′ )ε(x ′ ) whenever σ(x, y) = (y ′ , x ′ ). The simplest example is the constant braided character ε 1 (x) := 1 k . As usual, the positive braid monoid B + k (10) acts on X ×k via σ. Consider the braided differentials

d k br = k i=1 (-1) i-1 (d k;i l -d k;i r ) : CrC k-1 → CrC k , k > 0, where (d k;i l f )(x 1 , . . . , x k ) = ε(x ′ i )f (x ′ 1 , . . . , x ′ i-1 , x i+1 , . . . , x k ), x ′ i x ′ 1 . . . x ′ i-1 = b 1 • • • b i-1 (x 1 . . . x i ), (d k;i r f )(x 1 , . . , x k ) = f (x 1 , . . . , x i-1 , x ′′ i+1 , . . . , x ′′ k )ε(x ′′ i ), x ′′ i+1 . . . x ′′ k x ′′ i = b k-i • • • b 1 (x i . . . x k ).
The superscript i indicates the component of our k-tuple which should be pulled to the left or to the right, according to the subscript being l or r. The chased component acts on, and is acted on by, everyone it crosses when moving, using the braiding σ. After getting to the very left/right, it becomes an argument for ε, while the remaining (k -1)-tuple is fed to f . See [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF] for more intuitive graphical and shuffle versions of these constructions.

Given two critical k-cochains f ∈ CrC p , g ∈ CrC q , their cup product is defined by f ⌣ g(x 1 , . . . , x p+q ) = s∈Shp,q (-1) |s| (f × g)(T s -1 (x 1 , . . . , x p+q )).

Here the summation runs over all (p, q)-shuffles, i.e., all permutations s ∈ S p+q preserving the order of the first p and the last q elements: s(1) < s(2) < . . . < s(p), s(p+1) < s(p+2) < . . . < s(p+q). Further, taking any shortest words

t i 1 t i 2 • • • t i |s| rep- resenting s -1 in terms of elementary transpositions, lift it to b i 1 b i 2 • • • b i |s| ∈ B +
p+q . This lift depends on the permutation s only, and is denoted by T s -1 . It acts on X ×(p+q) via σ. Finally, the product f × g sends (x ′ 1 , . . . , x ′ p+q ) to f (x ′ 1 , . . . , x ′ p )g(x ′ p+1 , . . . , x ′ p+q ) ∈ k. One can check that the two operations above are k-(bi)linear and well defined: the results are indeed critical k-cochains. Moreover, as the names suggest, they define a cohomology theory: Theorem 7 ( [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF]). The data (CrC k , d k br , ⌣) above define a differential graded associative algebra, graded commutative up to homotopy. That is, 1. the differential squares to zero: d k+1 br d k br = 0; 2. the cup product is associative, with the unit 1 k ∈ k = CrC 0 ; 3. the differential is a derivation w.r.t. the cup product:

d p+q+1 br (f ⌣ g) = d p+1 br (f ) ⌣ g + (-1) p f ⌣ d q+1 br (g), f ∈ CrC p , g ∈ CrC q ;
4. if the constant braided character ε 1 is used, then there exists a second product

• : CrC p ⊗ CrC q → CrC p+q-1 measuring the commutativity defect of ⌣: g ⌣ f -(-1) pq f ⌣ g = (-1) q d p+q br (f • g) + (d p+1 br f ) • g -(-1) q f • (d q+1 br g
). The cohomology of the above complex is denoted by H * (X, σ, 1; k, ε), and called the braided cohomology of (X, σ, 1) with coefficients in (k, ε).

By the theorem, the cup product induces an associative graded product in cohomology, for which we keep the name cup product and the notation ⌣. It is commutative in the case of the constant character.

The braided cohomology construction and its properties can be extended to much more general YBE solutions. As coefficients, one can take any braided bimodule instead of k. Further, this theory admits a dual homological version. See [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF][START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF].

Consider next the reduced structure monoid M = M(X, σ, 1). Our ε, extended to M multiplicatively, becomes a monoid character, still denoted by ε. The Hochschild cohomology H * (M; k, ε) of M with coefficients in (k, ε) is computed by the complex

HC k = { f : M ×k → k | f (. . . , 1, . . .) = 0}, C 0 = k, (d k H f )(x 1 , . . . , x k ) = ε(x 1 )f (x 2 , . . . , x k ) -f (x 1 x 2 , x 3 , . . . , x k ) + • • • + (-1) k-1 f (x 1 , . . . , x k-2 , x k-1 x k ) + (-1) k f (x 1 , . . . , x k-1 )ε(x k ).
Together with the cup product f ⌣ g(x 1 , . . . , x p+q ) = f (x 1 , . . . , x p )g(x p+1 , . . . , x p+q ), these data enjoy all the properties from Theorem 7. As explained in [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF], this classical result for Hochschild cohomology can be recovered by plugging the PUIBS (M, σ Ass , 1 M ) into Theorem 7, where σ Ass (v, w) = (1 M , vw). Now, consider the maps S k :

X ×k → kX ×k ֒→ kM ×k , x 1 x 2 • • • x k → s∈S k (-1) |s| T s (x 1 . . . x k ).
Theorem 8 [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF]). The maps S k induce a differential graded algebra map S * : (HC * , d * H , ⌣) → (CrC * , d * br , ⌣) between the Hochschild cochain complex of the reduced structure monoid of a PUIBS, and the critical cochain complex of the PUIBS itself, both with coefficients in (k, ε). This map induces a graded algebra isomorphism in cohomology.

The isomorphism S * , as well as the induced isomorphism in cohomology, are called quantum symmetrizers. Notation S * is abusively used for any of them.

The quantum symmetrizer can be defined for very general YBE solutions. However, it is unknown if S * is a quasi-isomorphism in general. This question was raised independently by Farinati and García-Galofre [START_REF] Farinati | A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation[END_REF], and by Dilian Yang [Yan16, Question 7.5]. Besides the idempotent case, the answer is known to be positive for involutive braidings and the constant character on a ring k of characteristic zero [START_REF] Farinati | A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation[END_REF].

Theorem 8 and the results of [START_REF] Farinati | A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation[END_REF] open the way for braided techniques in Hochschild cohomology computation. This was applied in [START_REF] Lebed | Cohomology of idempotent braidings, with applications to factorizable monoids[END_REF] to factorizable monoids, resulting in a generalized Künneth formula. Applications to plactic monoids are discussed in the next section.

Conjecture 1. The injection from Theorem 9 is in fact an algebra isomorphism Λ(kA) ≃ H * (Pl A ; k). This result was stated as a theorem in [START_REF] Viktor Lopatkin | Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis[END_REF], but surjectivity was not proved there. Using elementary combinatorics of columns, we checked surjectivity in small degree. An argument working in all degrees is still missing. A pleasant consequence of the conjecture would be cohomology vanishing in degree > |A|.

For ε 0 , the cohomology algebra is more intricate. Its description will involve the maps f c 1 ,...,c k ∈ CrC k (Col A , σ C , e C ), where the non-empty columns c i satisfy σ C (c i , c i+1 ) = (c i , c i+1 ) for all i; such k-tuples of columns are called critical. The value of f c 1 ,...,c k is 1 k on (c 1 , . . . , c k ), and 0 on other arguments. Given a cocycle f ∈ CrC k , we keep notation f for both its braided cohomology class, and the Hochschild cohomology class corresponding to it via the quantum symmetrizer. We will also use the k-module A * = Map(A, k) and, more generally, C * = Map(C, k) for any collection of columns C. Theorem 10. Let A be an ordered set, and k a commutative unital ring. Consider the Hochschild cohomology H * := H * (Pl A ; k, ε 0 ) of the plactic monoid on A with coefficients in (k, ε 0 ).

1. ; H 3 has a basis f 2 , 1 , 2 1

H
. In higher degrees, the cohomology vanishes.

The only non-zero products amongst these generators are

f 2 ⌣ f 1 , 2 1 = -f 2 , 2 1 ⌣ f 1 = f 2 , 1 , 2 1 .
Remark 7.2. In the last point we obtain a cup product in cohomology which is very far from being graded commutative.

Proof. By Theorem 8, we can compute the braided cohomology H * (Col A , σ C , e C ; k, ε 0 ) to get the desired Hochschild cohomology. Observe that for our coefficients, the "left" terms d k;i l f of the braided differential vanish on critical k-tuples c 1 , . . . , c k . Indeed, an empty column appears as one of the components of σ C (c, c ′ ) = (c ′′ , c ′′′ ) if and only if the columns c and c ′ are gluable, i. here the leading column 2 is added only for odd k. This is clearly a critical k-tuple. We will show that the class of f c is non-zero in H k . To check that f c is a cocycle, we will prove that the definition of d k+1 br f on a critical (k + 1)-tuple of columns never involves evaluating f on c. Indeed, suppose f (c) =
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 1 Figure 1: A Young tableau with its row-wise and column-wise readings
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 2 Figure 2: Inserting the element 3 into a Young tableau from the right in three steps
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 3 Figure 3: Inserting the element 3 into a Young tableau from the left in four steps
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 4 Figure 4: The * -product of two rows
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 5 Figure 5: The left-hand side of the YBE for three rows

  r j holds when i = 3 or j = 4, where the relation R is defined in the obvious way. 2. Take c 1 , c 2 ∈ Col A , and put σ C (c 1 , c 2 ) = (c 3 , c 4 ). Then c 1 is a subcolumn of c 3 , c 4 is a subcolumn of c 2 , and one has c i C c j whenever i = 3 or j = 4.

Example 4. 4 .

 4 For the two-element alphabet A = {1, 2}, with 1 < 2, there are only four columns: e C , 1 , 2 , 2 1 . For σ C , the only values not given by Observation 4.3 are

  Remark 4.10. The braiding σ R restricts to the set of couples (T, α) with rows(T ) + α = m for a fixed m ∈ N. Such couples correspond to T ∈ YT A with rows(T ) m. One obtains an idempotent braiding on the set YT r m A of such tableaux. Similarly, σ C restricts to an idempotent braiding on the set YT c m A of tableaux T with cols(T ) m.
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 6 Figure 6: Computing s 1 (312321232223311)

(

  λ jAn . By Proposition 5.5, one has s i (T 1 , . . . , T k ) = ( T 1 , . . . , T k ), with T j ∈ YT λ j An . Further, as explained in Theorem 3, a generator b l of B + k sends (T 1 , . . . , T k ) to (T 1 , . . . , T ′ l+1 , T ′ l , . . . , T k ), and the tableau T ′ l+1 can be placed on top of T ′ l to obtain T ′ l+1 * T ′ l . By Proposition 5.5 and Lemma 5.1, one hass i (T 1 , . . . , T ′ l+1 , T ′ l , . . . , T k ) = ( T 1 , . . . , T ′ l+1 , T ′ l , . . . , T k ), and T ′ l+1 placed on top of T ′ l yields T ′ l+1 * T ′ l .The diagram below summarizes all our notations. (T 1 , . . . , T l , T l+1 , . . . , T k ) T 1 , . . . , T l , T l+1 , . . . , T k ) (T 1 , . . . , T ′ l+1 , T ′ l , . . . , T k )s i / / ( T 1 , . . . , T ′ l+1 , T ′ l , . . . , T k )The theorem follows if we show that the map b l on the right completes this diagram into a commutative square. For this, one needs to compare T ′ l+1 * T ′ l and T l * T l+1 . Recall that the row map R intertwines the * -product and the concatenation product. Lemma 5.1 then yields R

  e., merge into the column c ′′ = cc ′ ; in this casec ′′′ = e C . So the column c ′ i from d k;i l f (c 1 , . . . , c k ) = ε(c ′ i )f (c ′ 1 , . . . , c ′ i-1 , c i+1 , . . . , c k ) cannot be empty, yielding ε(c ′ i ) = 0.We will discard the terms d k;i l f in what follows. 1. Assume k 3; the remaining cases follow from subsequent points. Let A contain three distinct letters, say 1 < 2 < 3. Consider the k-tuple of columns c = ( 2 , ) 1 ,

  Then, by Observation 4.3, a column commutes with its subcolumns. Hence the longest column c A , if exists, is central in Pl A . A length argument shows that c A generates a free submonoid of Pl A . Now take a central element w ∈ Pl A , written in its column form c 1

  is non-zero in every degree, unless |A| 2.2. There is a k-linear isomorphism H1 ≃ A * . 3. There is a k-linear isomorphism H 2 ≃ (C ∧ A )

	1 , 2 1	, f	2 , 2 1

* * , where

C ∧ A is the collection of A-column couples ( a , b d ) with a b.

4. The cup product vanishes on H 1 . 5. For a two-letter alphabet A = {1, 2}, H 1 has a basis f 1 , f 2 ; H 2 has a basis f

These monoids were defined and studied for all Coxeter groups. Since only the symmetric group case is relevant for us, we use simplified terms and notations.

Our terminology is borrowed from the algebraic discrete Morse theory[START_REF] Sköldberg | Morse theory from an algebraic viewpoint[END_REF][START_REF] Jöllenbeck | Minimal resolutions via algebraic discrete Morse theory[END_REF], which is behind our cohomology comparison results.

Braided cohomology for plactic monoids

Let us return to the plactic monoid. Theorem 4 interprets Pl A as the reduced structure monoid for the column braiding σ C or the row braiding σ R for A. Theorem 8 then identifies the cohomologies of the three structures:

Corollary 7.1. The braided cohomology H * (Col A , σ C , e C ; k, ε) of the braided set of Acolumns and the Hochschild cohomology H * (Pl A ; k, ε) of Pl A with the same coefficients are isomorphic graded algebras. The same holds for the braided set of A-rows.

Two types of braided characters are considered here: 1. the constant character ε 1 , often omitted from notations; 2. the character ε 0 vanishing on all non-empty columns/rows/words. While the first one is common in the set-theoretic YBE framework, the second one is fundamental in the associative world. More generally, a character ε for any of the above structures is determined by its values on a ∈ A, which can be chosen arbitrarily.

Start with 1 . Assume the alphabet A finite. The degree 1 part of H * (Pl A ; k) is easy to compute. The cocycle condition for f : 

(16) According to Theorem 7, different ξ a anticommute with respect to the cup product. Moreover, one has ξ a ⌣ ξ a = 0. Indeed, the definition of the cup product reads here ξ a ⌣ ξ a (c 1 , c 2 ) = ξ a (c 1 )ξ a (c 2 )ξ a (c 3 )ξ a (c 4 ), where σ C (c 1 , c 2 ) = (c 3 , c 4 ). If both c 1 and c 2 contain a, then so do c 3 and c 4 , yielding ξ a (c 1 )ξ a (c 2 ) = 1 = ξ a (c 3 )ξ a (c 4 ). Otherwise at most one of c 3 and c 4 contains a, hence ξ a (c 1 )ξ a (c 2 ) = 0 = ξ a (c 3 )ξ a (c 4 ).

Further, the products

By Observation 4.3, the braiding σ C acts on such k-tuples by permutation. As a consequence,

• the evaluation yields 1 k if a i = a ′ i for all i, and 0 otherwise; • both d k;i l and d k;i r simply remove the ith component of such a k-tuple, without affecting the remaining ones; thus coboundaries d k br f vanish on such k-tuples. We have just proved Theorem 9. Let A be a finite ordered set, and k a commutative unital ring. The exterior algebra Λ(kA) injects, as an algebra, into the Hochschild cohomology H * (Pl A ; k) of the plactic monoid on A, via the map a → ζ a .

Formula 16 also defines an A-labeled basis θ a of H 1 (Row A , σ R , e R ; k). The above theorem and Corollary 7.1 guarantee that the θ a freely generate an exterior subalgebra of H * (Row A , σ R , e R ; k). This statement is much more difficult to prove by direct combinatorial methods, the row braiding being more delicate than its column cousin.

A natural question is whether the theorem actually describes the whole of H * (Pl A ; k).

, where c ′ must be a column of c. It contains c i by Observation 4.2, in a strict way since σ C (c i , c i+1 ) = (c i , c i+1 ). Hence c ′ has at least two entries, and must be 3 2 .

The only possibilities for its subcolumn c i are 2 or 3 . Since in c the column

which contradicts the criticality.

To conclude, let us check that all cocycles d k br g, g ∈ CrC k-1 , vanish on c. Indeed, when pulling a column 1 or 2 to the right of c, we will get an empty column only A and vanishes outside; • g(a) = 0, and g(c) = f (a, c ′ ) for a column c decomposed as c = ac ′ ; here and until the end of the proof notation a for a one-cell column, and c, c ′ , c i for non-empty columns. By construction, the cocycle f ′ := f -(h + d 2 br g) vanishes on C ∧ A and on gluable couples (a, c ′ ). Consider the cocycle condition (d 3 br f ′ )(a, c 2 , c 3 ). For a gluable triple, it implies f ′ (c, c ′ ) = 0 for any gluable arguments. When a and c 2 are gluable but c 2 and c 3 are not, one concludes f ′ (c, c ′ ) = 0 for non-gluable arguments with c of length 2. When c 2 and c 3 are gluable, a and c 2 are not, and c 2 is of length 2, one gets f ′ (a, c 2 c 3 ) = f ′ (c ′ 2 , bc 3 ), where c ′ 2 is the column c 2 with some letter b replaced with a. Columns c ′ 2 and bc 3 are not gluable since a b. Moreover, c ′ 2 and c 2 have the same length 2. The previous case then yields f ′ (a, c 2 c 3 ) = f ′ (c ′ 2 , bc 3 ) = 0. Summarizing, f ′ can be non-zero only on non-gluable (a, c) with c of length 2. But these couples are either from C ∧ A , or non-critical (if c is one-cell). So f ′ is the zero map. 4. Since cocycles f, g ∈ CrC 1 vanish on columns with two cells, one has

Here a b, and ( 5. These cohomology computations follow from the previous points, and from the following explicit list of critical k-tuples of columns for A = {1, 2}: 20

• k = 2: ( 2 , 1 ), ( 1 , 2 1 ), and ( 2 , 2 1 );

);

• k 4: void. Cup products are computed using

)g( 1 ).

Remark 7.3. In the proof we decomposed the k-module of 2-cocycles of Pl A as (C ∧ A ) * ⊕ (Col 2 A ) * , where Col 2 A is the set of A-columns with at least two cells.

Corollary 7.4. The cohomological dimension of Pl

This follows from the theorem and the following observation: for a 2-or 1-letter alphabet, there are no critical k-tuples of columns with k 4 (resp., k 2). The 1letter case gives the well-known cohomological dimension of the polynomial ring k[x].

We hope that the two examples from this section convinced the reader that a detour by the braided cohomology can considerably simplify Hochschild cohomology computations.