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 for solutions with high Sobolev regularity. Compared to a recent paper of us [14] dedicated to the barotropic case, not only we are able to treat the full system, but we also weaken the low frequency assumption and improve the decay exponents for the high frequencies of the solution.

∂ t (ρe) + div x (ρue) + P div x u -κ∆ x T = 2µD x (u) : D x (u) + λ(div x u) 2 .

Introduction

The motion of general viscous and heat conductive gases is governed by (1.1)

       ∂ t ρ + div x (ρu) = 0, ∂ t (ρu) + div x (ρu ⊗ u) + ∇ x P = div x τ, ∂ t ρ |u| 2
2 + e + div x u ρ |u| 2 2 + e + P = div x (τ • u -q), where ρ = ρ(t, x) ∈ R + denotes the density, u = u(t, x) ∈ R d , the velocity field and e = e(t, x) ∈ R + , the internal energy per unit mass. We restrict ourselves to the case of a Newtonian fluid: the viscous stress tensor is τ = λ div x u Id + 2µD x (u), where D x (u) 1 2 (D x u + T D x u) stands for the deformation tensor, and div x is the divergence operator with respect to the spatial variable. The bulk and shear viscosities are supposed to satisfy (1.2) µ > 0 and ν λ + 2µ > 0.

The heat flux q is given by q = -κ∇ x T where κ > 0, and T stands for the temperature.

For simplicity, the coefficients λ, µ and κ are taken constant in all that follows. It is well known that combining the second and third equations of (1.1) yields

In order to reformulate System (1.1) in terms of ρ, u and T only, we make the additional assumption that the internal energy e = e(ρ, T ) satisfies Joule law :

(1.3) ∂ T e = C v for some positive constant C v and that the pressure function P = P (ρ, T ) is of the form (1.4) P (ρ, T ) = π 0 (ρ) + T π 1 (ρ), where π 0 and π 1 are given smooth functions 1 . Then taking advantage of the Gibbs relations for the internal energy and the Helmholtz free energy, we get the Maxwell relation ρ 2 ∂ ρ e(ρ, T ) = P (ρ, T ) -T ∂ T P (ρ, T ) = π 0 (ρ), and end up with the following temperature equation:

(1.5) ρC v (∂ t T + u • ∇ x T ) + T π 1 (ρ)div x u -κ∆ x T = 2µD x (u) : D x (u) + λ(div x u) 2 .
We are concerned with the large time behaviour of (strong) global solutions to (1.1) in the case where the fluid domain is the whole space R d with d ≥ 3. We focus on solutions that are close to some constant equilibrium (ρ, 0, T ) with ρ > 0 and T > 0 satisfying the linear stability condition: ∂ ρ P (ρ, T ) > 0 and ∂ T P (ρ, T ) > 0. (1.6) Recall that, starting with the pioneering work by Matsumura and Nishida [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF], a number of papers have been dedicated to that issue in the case of solutions with high Sobolev regularity. We here aim at performing the long time asymptotics within the so-called critical regularity framework, that is in functional spaces endowed with norms that are invariant for all > 0 by the transform:

(1.7) ρ(t, x) ρ( 2 t, x), u(t, x) u( 2 t, x), T (t, x) 2 T ( 2 t, x) > 0.

That definition of criticality corresponds to the scaling invariance (up to a suitable change of the pressure terms) of System (1.1) written in terms of (ρ, u, T ).

Scaling invariance plays a fundamental role in the study of evolutionary PDEs. Recall that in the context of the incompressible Navier-Stokes equations, working in critical spaces goes back to the work by Fujita & Kato in [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] (see also more recent results in Kozono & Yamazaki [START_REF] Kozono | Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data[END_REF] and Cannone [START_REF] Cannone | A generalization of a theorem by Kato on Navier-Stokes equations[END_REF]), and that it has been extended to the compressible Navier-Stokes equations in e.g. [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Chikami | On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces[END_REF][START_REF] Chen | Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity[END_REF][START_REF] Danchin | Global existence in critical spaces for compressible Navier-Stokes equations[END_REF][START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF][START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat conductive gases[END_REF][START_REF] Danchin | The incompressible limit in L p type critical spaces[END_REF][START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF].

Even though, rigorously speaking, System (1.1) does not possess any scaling invariance, it is possible to solve it locally in time in Banach spaces endowed with norms having the invariance given by (1.1). For example, it has been proved in [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat conductive gases[END_REF] that in dimension

d ≥ 3, it is well-posed in Ḃ d p p,1 × ( Ḃ d p -1 p,1 ) d × Ḃ d p -2 p,1 if 1 ≤ p < d.
A key fact for proving that result is to observe that the coupling between the equations is low order.

As regards the global well-posedness issue however, the low order terms have to be taken into account in the choice of a suitable functional framework, and it is suitable to use "hybrid" Besov norms with different regularity indices in the low and high frequencies. The basic heuristics is that, for low frequencies, the first order terms predominate so that (1.1) can be handled by means of hyperbolic methods (in particular it is natural to work at the same level of regularity for the density, velocity and temperature). In contrast, in the high frequency regime, two types of behaviours coexist: the parabolic one for the velocity and temperature, and the damped one for the density. This heuristics may be translated in terms of a priori estimates by means of an energy method that can be directly implemented 1 One can thus consider e.g. perfect gases (π0(ρ) = 0 and π1(ρ) = Rρ with R > 0) or Van-der-Waals fluids (π0(ρ) = -αρ 2 , π1(ρ) = βρ/(δ -ρ) with α, β, δ > 0). on (1.1), after spectral localization (the main difficulty arising from the convection term in the density equation can be by-passed thanks to suitable integration by parts and commutator estimates, see [START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF]). Recently, the first author and L. He [START_REF] Danchin | The incompressible limit in L p type critical spaces[END_REF] extended the results of [START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF] to more general L p Besov spaces, and got the following statement: Theorem 1.1. Let ρ > 0 and T be two constant such that (1.6) is fulfilled. Suppose that d ≥ 3, and that p satisfies

(1.8) 2 ≤ p < d and p ≤ 2d/(d -2).
There exists a constant c = c(p, d, λ, µ, P, κ, C v , ρ, T ) such that if

a 0 ρ 0 -ρ is in Ḃ d p p,1 , if υ 0 u 0 is in Ḃ d p -1 p,1 , if θ 0 T 0 -T is in Ḃ d p -2
p,1 and if in addition the low frequency part 2 (a 0 , υ 0 , θ 0 ) of (a 0 , υ 0 , θ 0 ) is in

Ḃ d 2 -1 2,1 with X p,0 (a 0 , υ 0 , θ 0 ) Ḃ d 2 -1 2,1 + a 0 h Ḃ d p p,1 + υ 0 h Ḃ d p -1 p,1 + θ 0 h Ḃ d p -2 p,1 ≤ c (1.9)
then System (1.1)-(1.5) supplemented with the initial condition

(1.10) (ρ, u, T )| t=0 = (ρ 0 , u 0 , T 0 )
admits a unique global-in-time solution (ρ, u, T ) with ρ = ρ + a, u = υ and T = T + θ, where (a, υ, θ) belongs to the space X p defined by:

(a, υ, θ) ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), a h ∈ C b (R + ; Ḃ d p p,1 ) ∩ L 1 (R + ; Ḃ d p p,1 ), υ h ∈ C b (R + ; Ḃ d p -1 p,1 ) ∩ L 1 (R + ; Ḃ d p +1 p,1 ), θ h ∈ C b (R + ; Ḃ d p -2 p,1 ) ∩ L 1 (R + ; Ḃ d p p,1
). Moreover, we have for some constant C = C(p, d, λ, µ, P, κ, C v , ρ, T ),

X p (t) ≤ CX p,0 , (1.11)
for any t > 0, where (1.12) X p (t) (a, υ, θ)

L ∞ t ( Ḃ d 2 -1 2,1 )
+ (a, υ, θ)

L 1 t ( Ḃ d 2 +1 2,1 ) + a h L ∞ t ( Ḃ d p p,1 )∩L 1 t ( Ḃ d p p,1 ) + υ h L ∞ t ( Ḃ d p -1 p,1 )∩L 1 t ( Ḃ d p +1 p,1 ) + θ h L ∞ t ( Ḃ d p -2 p,1 )∩L 1 t ( Ḃ d p p,1 )
.

The natural next step is to look for a more accurate description of the long time behavior of the solutions. Recall that Matsumura and Nishida in [START_REF] Matsumura | The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids[END_REF] proved that if the initial data are a small perturbation in

H 3 (R 3 ) × L 1 (R 3 ) of (ρ, 0, T ) then 3 sup t≥0 t 3 4 (ρ -ρ, u, T -T )(t) L 2 < ∞, with t 1 + t 2 . (1.13)
It turns out that the above behavior is kind of universal: some years latter Kawashima in [START_REF] Kawashima | Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics[END_REF] exhibited similar decay rates for hyperbolic-parabolic composite systems satisfying what is now called the "Shizuta-Kawashima" stability criterion.

Still in the framework of solutions with high Sobolev regularity, there are lots of recent improvements concerning the large time description of solutions to the compressible Navier-Stokes equations. In particular, some informations are now available on the wave aspect of the solutions. In one dimension space and in the isentropic case, Zeng [START_REF] Zeng | L 1 Asymptotic behavior of compressible isentropic viscous 1-D flow[END_REF] showed 2 See the definitions in (3.3) and just below (3.7). 3 Similar decay rates have been established in the half-space or exterior domain cases, see for example [START_REF] Kagei | Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space[END_REF][START_REF] Kobayashi | Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of R 3[END_REF][START_REF] Matsumura | Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids[END_REF].

the L 1 convergence to the nonlinear Burgers' diffusive wave. For multi-dimensional diffusion waves, Hoff and Zumbrun [START_REF] Hoff | Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow[END_REF][START_REF] Hoff | Multidimensional diffusion waves for the Navier-Stokes diffusion waves[END_REF] gave a detailed analysis for the Green's function and derived the L ∞ time-decay rates of diffusive waves. In [START_REF] Liu | The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions[END_REF], Liu and Wang exhibited pointwise estimates of diffusion waves with the optimal time-decay rate in odd dimension, that corresponds to the weak Huygens' principle. This was generalized later to the full system (1.1) in [START_REF] Li | The Green's function of the Navier-Stokes equations for gas dynamics in R 3[END_REF]. Recently, Liu & Noh [START_REF] Liu | Wave propagation for the compressible Navier-Stokes equations[END_REF] provided an exhaustive classification of the different type of waves in the long-time asymptotics as a combination of low frequency waves, the dissipative Huygens, diffusion and Riesz waves.

In the present paper, we aim at proving optimal time-decay estimates for (1.1) within the critical regularity framework of Theorem 1.1. Recall that in the (simpler) barotropic case, Okita [START_REF] Okita | Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations[END_REF] proved the optimal L 2 decay rate in dimension d ≥ 3. The first author [START_REF] Danchin | Fourier analysis methods for the compressible Navier-Stokes equations[END_REF] proposed another description which allows to deal with the case d = 2 in the L 2 critical framework. Very recently, in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF] we improved the approach in [START_REF] Danchin | Fourier analysis methods for the compressible Navier-Stokes equations[END_REF] and succeeded in establishing optimal decay estimates in the general L p critical framework for all dimensions d ≥ 2. As a first attempt of generalization, we here establish similar results for the full Navier-Stokes equations (1.1). In fact, thanks to an improvement of our method, we shall obtain what we believe to be the optimal decay exponents for the full nonlinear system.

Reformulation of our problem and main results

Let us assume that the density and the temperature tend to some positive constants ρ and T , at infinity. Setting A µ∆ + (λ + µ)∇div , ρ = ρ(1 + b) and T = T + T, we see from (1.1) and (1.5) that, whenever b > -1, the triplet (b, u, θ)

satisfies 4              ∂ t b + u • ∇b + (1 + b)div u = 0, ∂ t u + u • ∇u - Au ρ(1+b) + π 0 (ρ(1+b)) 1+b ∇b + π 1 (ρ(1+b)) ρ(1+b) ∇T + π 1 (ρ(1+b)) 1+b T∇b = 0, ∂ t T + u • ∇T + ( T +T) π 1 (ρ(1+b)) ρC v (1+b) div u - κ ρC v (1+b) ∆T = 2µD(u) : D(u) + λ(div u) 2 ρC v (1+b) • Then, setting ν λ + 2µ, ν ν/ρ, χ 0 ∂ ρ P (ρ, T ) -1 2
, and performing the change of unknowns

a(t, x) = b(νχ 2 0 t, νχ 0 x), υ(t, x) = χ 0 u(νχ 2 0 t, νχ 0 x), θ(t, x) = χ 0 C v T T(νχ 2 0 t, νχ 0 x),
we finally obtain (2.1)

     ∂ t a + div υ = f, ∂ t υ -Aυ + ∇a + γ∇θ = g, ∂ t θ -β∆θ + γdiv υ = k, with A A ν , β κ νC v , γ = χ 0 ρ T C v π 1 (ρ),
and where the nonlinear terms f, g and k are given by

f -div (aυ), g -υ • ∇υ -I(a) Aυ -K 1 (a)∇a -K 2 (a)∇θ -θ∇K 3 (a) and k -υ • ∇θ -βI(a)∆θ + Q(∇υ, ∇υ) 1+a -( K 1 (a) + K 2 (a)θ)div υ with I(a) a 1 + a , K 1 (a) ∂ ρ P (ρ(1+a), T ) (1+a)∂ ρ P (ρ, T ) -1, K 2 (a) χ 0 ρ T C v π 1 (ρ(1+a)) 1+a -π 1 (ρ) , K 3 (a) χ 0 T C v a 0 π 1 (ρ(1 + z)) 1 + z dz, K 2 (a) π 1 (ρ(1 + a)) C v ρ(1 + a) , K 1 (a) χ 0 ρ T C v π 1 (ρ(1 + a)) 1 + a -π 1 (ρ) , Q(A, B) 1 νχ 0 1 T C v 2µA : B + λTr A Tr B •
In fact, the exact value of K 1 , K 2 , K 3 , K 1 and K 2 will not matter in our analysis. We shall just use that those functions are smooth and that

K 1 (0) = K 2 (0) = K 3 (0) = K 1 (0) = 0.
One can now state the main result of the paper.

Theorem 2.1. Let the assumptions of Theorem 1.1 be in force and (a, υ, θ) be the corresponding global solution. Let the real number s 1 satisfy

(2.2) max 0, 2 - d 2 ≤ s 1 ≤ s 0 with s 0 2d p -d 2 .
There exists a constant c > 0 depending only on p, d, λ, µ, P, κ, C v , ρ, T such that if

(2.3) D p,0 (a 0 , υ 0 , θ 0 ) Ḃ-s 1 2,∞ ≤ c,
then for all small enough ε > 0, we have

(2.4) D p (t) D p,0 + (∇a 0 , υ 0 ) h Ḃ d p -1 p,1 + θ 0 h Ḃ d p -2 p,1
for all t ≥ 0, where, setting α s 1 + d 2 + 1 2 -ε, the norm D p (t) is defined by

(2.5) D p (t) sup s∈[ε-s 1 , d 2 +1] τ s 1 +s 2 (a, υ, θ) L ∞ t ( Ḃs 2,1 ) + τ α a h L ∞ t ( Ḃ d p p,1 ) + τ α υ h L ∞ t ( Ḃ d p -1 p,1 ) + τ α θ h L ∞ t ( Ḃ d p -2 p,1 ) + τ α (∇υ, θ) h L ∞ t ( Ḃ d p p,1 )
.

The above statement deserves some comments:

• A similar result may be proved if the physical coefficients λ, µ and κ depend smoothly on the density. Here, we took them constant to avoid more technicalities. • To the best of our knowledge, whether well-posedness holds true in critical spaces for the full Navier-Stokes equations in R 2 is an open question. At the same time, it has been proved for slightly more regular data (see [START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF][START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat conductive gases[END_REF]) and we believe our approach to yield decay estimates for the corresponding solutions (computations are expected to be wilder, though). • For p = 2 and s 1 = d 2 , hypothesis (2.3) is less restrictive than the standard L 1 condition first because it only concerns the low frequencies and, second, because we have L r → Ḃ-s 1 2,∞ with 1 r = 1 2 + s 1 d • A similar assumption (for all frequencies and for p = 2 and s 1 = d

2 ) appears in several recent results : for the Boltzmann equation in the work by Sohinger and Strain [START_REF] Sohinger | The Boltzmann equation, Besov spaces, and optimal time decay rates in R n x[END_REF], and for hyperbolic systems with dissipation in the joint paper of Kawashima with the second author [START_REF] Xu | Frequency-localization Duhamel principle and its application to the optimal decay of dissipative systems in low dimensions[END_REF][START_REF] Xu | The optimal decay estimates on the framework of Besov spaces for generally dissipative systems[END_REF]. One can also mention the work by Guo and Wang [START_REF] Guo | Decay of dissipative equations and negative sobolev spaces[END_REF] that replaces the L 1 assumption by homogeneous Sobolev norms of negative order.

• Compared to the barotropic case studied in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF], the decay functional D p contains an additional decay information on the temperature. Furthermore, we improved the decay exponent for high frequencies : in the case s 1 = s 0 2d p -d 2 (which is the only one that has been considered in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]), we get α = 2d p + 1 2 -ε instead of 1. We believe exponent s 1 2 + d 2 + 1 2 as well as the upper bound s ≤ d 2 + 1 for the first term of D p to be optimal (see the very end of the present paper for more explanations).

• If we replace (2.3) with the following slightly stronger hypothesis:

(a 0 , υ 0 , θ 0 ) Ḃ-s 1 2,1 1 
then one can take ε = 0 in the definitions of D p and α.

• We expect to have similar decay estimates for s 1 belonging to the whole range

(1 -d 2 , 2d p -d 2 ]
. As the analysis for s 1 < max(0, 2 -d 2 ) is much more technical (it relies on tricky product estimates in Besov spaces), we chose to present only the case (2.2) which is already more general than that in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF].

From Theorem 2.1 and standard embedding, we readily get the following algebraic decay rates for the L p norms of the solution:

Corollary 2.1. Denote Λ s f F -1 (| • | s Ff ). The solution of Theorem 1.1 satisfies Λ s (ρ -ρ) L p D p,0 + (∇a 0 , υ 0 ) h Ḃ d p -1 p,1 + θ 0 h Ḃ d p -2 p,1 t -s 1 +s 2 if -s 1 < s ≤ d p , Λ s u L p D p,0 + (∇a 0 , υ 0 ) h Ḃ d p -1 p,1 + θ 0 h Ḃ d p -2 p,1 t -s 1 +s 2 if -s 1 < s ≤ d p -1, Λ s (T -T ) L p D p,0 + (∇a 0 , υ 0 ) h Ḃ d p -1 p,1 + θ 0 h Ḃ d p -2 p,1 t -s 1 +s 2 if -s 1 < s ≤ d p -2.
Remark 2.1. Taking p = 2, s 1 = d/2 and s = 0 in Corollary 2.1 leads back to the standard optimal L 1 -L 2 decay rates in (1.13), but for much less regular global solutions. Also, note that the derivative index can take both negative and nonnegative values rather than nonnegative integers only, and our results can thus be regarded as the natural extension of the classical results of [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF].

Let us briefly present the strategy for proving Theorem 2.1. The usual approach to get decay estimates of the type (1.13) is to take advantage of L 1 -L 2 decay estimates for the linear system corresponding to the left-hand side of (2.1), treating the nonlinear righthand side (f, g, k) by means of Duhamel formula (see [START_REF] Kawashima | Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] and references therein). That basic argument fails in the critical regularity spaces, though, as one cannot afford any loss of regularity for the high frequency part of the solution (for example, u • ∇a induces a loss of one derivative, while there is no smoothing for a, solution of a transport equation). Furthermore, the standard approach completely ignores the fact that the semigroup associated to (2.1) behaves differently for low and high frequencies. As regards the low frequency part of the solution, the linearized equations behave like the heat equation (at least in a L 2 type framework) and it is possible to adapt the standard method relying on L 1 -L 2 estimate. The only difference is that owing to our L p type assumption on the high frequencies and our more general low frequency assumption (2.3), the quadratic terms are in L r with 1 r = 1 2 + s 1 d , and it is thus natural to resort to L r -L 2 estimates (or sometimes to Ḃ-s 1 2,∞ -L 2 ones) rather than L 1 -L 2 estimates. We proceed differently for the analysis of the high frequencies decay of the solution. The idea is to work with a so-called "effective velocity" w (introduced by D. Hoff in [START_REF] Hoff | Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data[END_REF] and first used in the context of critical regularity by B. Haspot in [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF]) such that, up to low order terms, the divergence-free part of u, the temperature θ and w fulfill a parabolic system while a satisfies a damped transport equation. Performing L p estimates directly on that system after localization in the Fourier space and using suitable commutator estimates to handle the convection term in the density equation, it is possible to eventually get optimal decay exponents for high frequencies.

The rest of the paper unfolds as follows. In Section 3, we introduce some notation, recall basic results concerning Besov spaces, paradifferential calculus, product and commutator estimates. Section 4 is devoted to the proof of Theorem 2.1 and of Corollary 2.1.

Notations, functional spaces and basic tools

Throughout the paper, C stands for a harmless positive "constant", the meaning of which is clear from the context, and we sometimes write f g instead of f ≤ Cg. The notation f ≈ g means that f g and g f . For any Banach space X and f, g ∈ X, we agree that (f, g) X f X + g X . Finally, for all T > 0 and ρ ∈ [1, +∞], we denote by

L ρ T (X) L ∞ ([0, T ]; X) the set of measurable functions f : [0, T ] → X such that t → f (t) X is in L ρ (0, T ).
Let us next recall the definition and a few basic properties of Besov spaces (more details may be found in e.g. Chap. 2 and 3 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). We start with a dyadic decomposition in Fourier variables: fix some smooth radial non increasing function χ supported in B(0, 4 3 ) and with value 1 on B(0, 3 4 ), then set ϕ(ξ

) = χ(ξ/2) -χ(ξ) so that j∈Z ϕ(2 -j •) = 1 in R d \ {0} and Supp ϕ ⊂ ξ ∈ R d : 3/4 ≤ |ξ| ≤ 8/3 •
The homogeneous dyadic blocks ∆j are defined by

∆j f ϕ(2 -j D)f = F -1 (ϕ(2 -j •)Ff ) = 2 jd h(2 j •) f with h F -1 ϕ.
The Littlewood-Paley decomposition of a general tempered distribution f reads

(3.1) f = j∈Z ∆j f.
That equality holds true in the tempered distribution meaning, if f satisfies

(3.2) lim j→-∞ Ṡj f L ∞ = 0,
where Ṡj stands for the low frequency cut-off Ṡj χ(2 -j D).

In many parts of the paper, we use the notation z and z h with

(3.3) z := Ṡj 0 z and z h := (Id -Ṡj 0 )z,
where the value of the parameter j 0 depends on the coefficients of (2.1) through the proof of the main theorem.

Next, we come to the definition of the homogeneous Besov spaces.

Definition 3.1. For s ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov space Ḃs p,r is the set of tempered distributions f satisfying (3.2) and

f Ḃs p,r 2 js ∆j f L p r (Z) < ∞.
In order to state optimal regularity estimates for the heat equation, we need the following semi-norms first introduced by J.-Y. Chemin in [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] for all 0 ≤ T ≤ +∞, s ∈ R and 1 ≤ r, p, ≤ ∞:

(3.4) f L T ( Ḃs p,r ) 2 js ∆j f L T (L p ) r (Z) .
Index T will be sometimes omitted if T = +∞, and we denote [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]) the following optimal regularity estimates for the heat equation:

(3.5) C b (R + ; Ḃs p,r ) f ∈ C(R + ; Ḃs p,r ) s.t. f L ∞ ( Ḃs p,r ) < ∞ • Recall (see e.g.
Proposition 3.1. Let σ ∈ R, (p, r) ∈ [1, ∞] 2 and 1 ≤ ρ 2 ≤ ρ 1 ≤ ∞. Let u satisfy ∂ t u -µ∆u = f, u |t=0 = u 0 .
Then for all T > 0 the following a priori estimate is fulfilled:

(3.6) µ 1 ρ 1 u L ρ 1 T ( Ḃσ+ 2 ρ 1 p,r ) u 0 Ḃσ p,r + µ 1 ρ 2 -1 f L ρ 2 T ( Ḃσ-2+ 2 ρ 2 p,r ) .
The same estimate holds true (with a different dependency with respect to the viscosity coefficients) for the solutions to the following Lamé system

∂ t u -µ∆u -(λ + µ)∇div u = f, u |t=0 = u 0 , whenever µ > 0 and λ + 2µ > 0.
The properties of continuity for the product, commutators and composition involving standard Besov norms remain true when using the semi-norms defined in (3.4). The general principle is that the time Lebesgue exponent has to be treated according to Hölder inequality. Furthermore, Minkowski's inequality allows to compare • L T ( Ḃs p,r ) with the more standard Lebesgue-Besov semi-norms of L T ( Ḃs p,r ) as follows:

(3.7) f L T ( Ḃs p,r ) ≤ f L T ( Ḃs p,r ) if r ≥ , f L T ( Ḃs p,r ) ≥ f L T ( Ḃs p,r ) if r ≤ .
Restricting Besov norms to the low or high frequencies parts of distributions plays a fundamental role in our approach. For that reason, we shall often use the following notation for some suitable integer j 0 5 :

f Ḃs p,1 j≤j 0 2 js ∆j f L p and f h Ḃs p,1 j≥j 0 -1 2 js ∆j f L p , f L ∞ T ( Ḃs p,1 ) j≤j 0 2 js ∆j f L ∞ T (L p ) and f h L ∞ T ( Ḃs p,1 ) j≥j 0 -1 2 js ∆j f L ∞ T (L p ) .
We shall use the following nonlinear generalization of the Bernstein inequality (see e.g. Lemma 8 in [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF]) that will be the key to controlling the L p norms of the solution to the spectrally localized system (2.1):

Proposition 3.2. There exists c depending only on d, R 1 and R 2 so that if

(3.8) Supp Ff ⊂ {ξ ∈ R d : R 1 λ ≤ |ξ| ≤ R 2 λ},
is fulfilled then for all 1 < p < ∞,

cλ 2 p -1 p R d |f | p dx ≤ (p -1) R d |∇f | 2 |f | p-2 dx = - R d ∆f |f | p-2 f dx. (3.9)
Below are embedding properties which are used several times: Lemma 3.1.

• For any p ∈ [1, ∞] we have the continuous embedding

Ḃ0 p,1 → L p → Ḃ0 p,∞ . • If s ∈ R, 1 ≤ p 1 ≤ p 2 ≤ ∞ and 1 ≤ r 1 ≤ r 2 ≤ ∞, then Ḃs p 1 ,r 1 → Ḃs-d( 1 p 1 -1 p 2 ) p 2 ,r 2 .
• The space Ḃ d p p,1 is continuously embedded in the set of bounded continuous functions (going to 0 at infinity if p < ∞).

Let us also mention the following interpolation inequality

Lemma 3.2. Let 1 ≤ p, r 1 , r 2 , r ≤ ∞, σ 1 = σ 2 and θ ∈ (0, 1). Then (3.10) f Ḃθσ 2 +(1-θ)σ 1 p,r f 1-θ Ḃσ 1 p,r 1 f θ Ḃσ 2 p,r 2
.

As already pointed out, the low frequency hypothesis is less restrictive than the usual L q . This is a consequence of the following embedding: Lemma 3.3. Suppose that σ > 0 and 1 ≤ q < 2. One has

(3.11) f Ḃ-σ r,∞ f L q with 1 q - 1 r = σ d •
The following product laws and commutator estimates proved in e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] and [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF] will play a fundamental role in the analysis of the bilinear terms of (1.7). Proposition 3.3. Let σ > 0 and 1 ≤ p, r ≤ ∞. Then Ḃσ p,r ∩ L ∞ is an algebra and (3.12)

f g Ḃσ p,r f L ∞ g Ḃσ p,r + g L ∞ f Ḃσ p,r
.

Let the real numbers σ 1 , σ 2 , p 1 and p 2 be such that

σ 1 + σ 2 > 0, σ 1 ≤ d p 1 , σ 2 ≤ d p 2 , σ 1 ≥ σ 2 , 1 p 1 + 1 p 2 ≤ 1.
Then we have

(3.13) f g Ḃσ 2 q,1 f Ḃσ 1 p 1 ,1 g Ḃσ 2 p 2 ,1 with 1 q = 1 p 1 + 1 p 2 - σ 1 d • Finally, for exponents σ > 0 and 1 ≤ p 1 , p 2 , q ≤ ∞ satisfying d p 1 + d p 2 -d ≤ σ ≤ min d p 1 , d p 2 and 1 q = 1 p 1 + 1 p 2 - σ d ,
we have

(3.14) f g Ḃ-σ q,∞ f Ḃσ p 1 ,1 g Ḃ-σ p 2 ,∞ . Proposition 3.3 is not enough to handle the case 2p > d in the proof of Theorem 2.1.
We shall make use of the following estimates proved recently in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]. Proposition 3.4. Let j 0 ∈ Z, and denote z Ṡj 0 z, z h z -z and, for any s ∈ R,

z Ḃs 2,∞ sup j≤j 0 2 js ∆j z L 2 .
There exists a universal integer N 0 such that for any 2 ≤ p ≤ 4 and σ > 0, we have The terms in System (2.1) corresponding to the functions K 1 , K 2 , K 3 , K 1 and K 2 will be bounded thanks to the following classical result:

f g h Ḃ-s 0 2,∞ ≤ C f Ḃσ p,1 + Ṡj 0 +N 0 f L p * g h Ḃ-σ p,∞ (3.15) 
f h g Ḃ-s 0 2,∞ ≤ C f h Ḃσ p,1 + Ṡj 0 +N 0 f h L p * g Ḃ-σ p,∞ (3.16 
Proposition 3.5. Let F : R → R be smooth with F (0) = 0. For all 1 ≤ p, r ≤ ∞ and σ > 0 we have F (f ) ∈ Ḃσ p,r ∩ L ∞ for f ∈ Ḃσ p,r ∩ L ∞ , and F (f ) Ḃσ p,r ≤ C f Ḃσ p,r (3.17)
with C depending only on f L ∞ , F (and higher derivatives), σ, p and d. Remark 3.1. As Theorem 1.1 involves L T ( Ḃs p,r ) semi-norms, we shall very often use Propositions 3.3, 3.4 and 3.5 adapted to those spaces. The general rule is that exactly the same estimates hold true, once the time Lebesgue exponents have been treated according to Hölder inequality.

The proof of decay estimates

In this section, we prove Theorem 2.1. We start with the global solution (a, υ, θ) given by Theorem 1.1, that satisfies (1.11) and thus in particular

(4.1) a L ∞ ( Ḃ d p p,1 )
1.

Then there only remains to prove (2.4). The overall strategy is to combine frequencylocalization of the linear part of the full system with the Duhamel principle to handle the nonlinear terms.

We shall proceed in three steps.

Step 1 is dedicated to the proof of decay estimates for the low frequency part of (a, υ, θ), that is

D p,1 (t) sup s∈[ε-s 1 , d 2 +1] τ s 1 +s 2 (a, υ, θ) L ∞ t ( Ḃs 2,1 ) .
To this end, we shall exhibit the low frequency decay exponents for the linear system corresponding to the left-hand side of (2.1). This will be achieved by means of a simple energy method on the spectrally localized system, without computing the Green function of the linear system. Denoting by (E(t)) t≥0 the corresponding semi-group, we shall get

(4.2) sup t≥0 t s 1 +s 2 E(t)U 0 Ḃs 2,1 U 0 Ḃ-s 1 2,∞ if s > -s 1 .
Then taking advantage of Duhamel formula reduces the proof to that of suitable decay estimates in the space Ḃ-s 1 2,∞ for all the nonlinear terms in f, g and h. Using the embedding L r → Ḃ-s 1 2,∞ with 1 r = s 1 d + 1 2 and the obvious product law L 2r × L 2r → L r , it turns out to be (almost) enough to exhibit appropriate bounds for the solution in L 2r . In fact, that strategy fails only if p > d 2 , owing to the term I(a)∆θ h which, according to Theorem 1.1,

is only in Ḃ d p -2
p,1 for a.a. t ≥ 0. Clearly, if d p -2 < 0 then one cannot expect that term to be in any Lebesgue space. To overcome that difficulty, we will have to use the more elaborate product laws in Besov spaces stated in Proposition 3.4.

Step 2 is devoted to bounding 6

D p,2 (t) τ α a h L ∞ t ( Ḃ d p p,1 ) + τ α υ h L ∞ t ( Ḃ d p -1 p,1 ) + τ α θ h L ∞ t ( Ḃ d p -2 p,1 )
.

To this end, following Haspot's approach in [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF], we introduce the effective velocity

(4.3) w ∇(-∆) -1 (a -div υ).
Then, up to low order terms, w, θ and the divergence free part of the velocity satisfy a heat equation, while a fulfills a damped transport equation. That way of rewriting the full system allows to avoid the loss of one derivative arising from the convection term in the density equation. Basically, this is the same strategy as for the barotropic Navier-Stokes equations (see [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]). In the polytropic case however, one has to perform low and high frequency decompositions of the (new) nonlinear terms involving θ, for θ h is less regular than υ h by one derivative.

In the last step, we establish a gain of regularity and decay altogether for the high frequencies of υ and θ, namely we bound

D p,3 (t) τ α (∇υ, θ) h L ∞ t ( Ḃ d p p ,1 ) 
.

This strongly relies on the maximal regularity estimates for the heat and Lamé semi-groups (see Proposition 3.1). Compared to our previous paper [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF], we found a way to improve substantially the decay rate exhibited in D p,3 : we get t -α instead of just t -1 .

Step 1: Bounds for the low frequencies. Let (E(t)) t≥0 be the semi-group associated to the left-hand side of (2.1). The standard Duhamel principle gives

(4.4)   a(t) υ(t) θ(t)   = E(t)   a 0 υ 0 θ 0   + t 0 E(t -τ )   f (τ ) g(τ ) k(τ )   dτ.
The following lemma states that the low frequency part of (a L , υ L , θ L ) E(t)(a 0 υ 0 , θ 0 ) behaves essentially like the solution to the heat equation. Lemma 4.1. Let (a L , υ L , θ L ) be the solution to the following system

(4.5)    ∂ t a L + div υ L = 0, ∂ t υ L -Aυ L + ∇a L + γ∇θ L = 0, ∂ t θ L -β∆θ L + γdiv υ L = 0,
with the initial data

(4.6) (a L , υ L , θ L )| t=0 = (a 0 , υ 0 , θ 0 ).
Then, for any j 0 ∈ Z, there exists a positive constant c 0 = c 0 (λ, µ, β, γ, j 0 ) such that (a L,j , υ L,j , θ L,j )(t) L 2 e -c 0 2 2j t (a 0,j , υ 0,j , θ 0,j ) L 2 (4.7) for t ≥ 0 and j ≤ j 0 , where we set z j = ∆j z for any z ∈ S (R d ). 6 Recall that α s1

+ d 2 + 1 2 -ε. Proof. Set ω L |D| -1 div υ L with F(|D| s f )(ξ) |ξ| s f (ξ)(s ∈ R).
Remembering that A = ν -1 (µ∆ + (λ + µ)∇div ) and that ν = λ + 2µ, we get (4.8)

   ∂ t a L + |D|ω L = 0, ∂ t ω L -∆ω L -|D|a L -γ|D|θ L = 0, ∂ t θ L -β∆θ L + γ|D|ω L = 0.
Let (A, Ω, Θ) be the Fourier transform of (a L , ω L , θ L ). Then, we have for all |ξ|, (4.9)

   ∂ t A + Ω = 0, ∂ t Ω + ρ 2 Ω -ρA -γρΘ = 0, ∂ t Θ + βρ 2 Θ + γρΩ = 0,
from which we get the following three identities:

1 2 d dt |A| 2 + Re(A Ω) = 0, (4.10) 1 2 d dt |Ω| 2 + 2 |Ω| 2 -Re(A Ω) -γ Re(Θ Ω) = 0, (4.11) 1 2 d dt |Θ| 2 + β 2 |Θ| 2 + γ Re(Θ Ω) = 0, (4.12)
where f indicates the complex conjugate of a function f . By adding up (4.10), (4.11) and (4.12), we obtain (4.13) 1 2

d dt |(A, Ω, Θ)| 2 + β 2 |(Ω, Θ)| 2 ≤ 0 with β min(1, β).
Next, to track the dissipation of A, we use the fact that

(4.14) d dt [-Re(A Ω)] + |A| 2 -|Ω| 2 -2 Re(A Ω) + γ Re(Θ Ā) = 0.
Combining with (4.10), we deduce that

(4.15) 1 2 d dt [| A| 2 -2 Re(A Ω)] + 2 |A| 2 -2 |Ω| 2 + γ 2 Re(Θ Ā) = 0.
Therefore, introducing the "Lyapunov functional"

L 2 (t) |(A, Ω, Θ)| 2 + K | A| 2 -2 Re(A Ω)
for some K > 0 (to be chosen hereafter), we get from (4.13) and (4.15) that 1 2

d dt L 2 + 2 (K|A| 2 + ( β -K)|Ω| 2 + β|Θ| 2 ) + Kγ 2 Re(Θ Ā) ≤ 0.
Then, taking advantage of the following Young inequality

γRe(Θ Ā) ≤ 1 2 |A| 2 + γ 2 2 |Θ| 2
then choosing K so that Kγ 2 = β -K, we end up with (4.16)

d dt L 2 + β 2 2 1 + γ 2 |A| 2 + γ 2 1 + γ 2 |Ω 2 | + 2|Θ| 2 ) ≤ 0.
Using again Young's inequality, we discover that there exists some constant C 0 > 0 depending only on β and γ so so that (4.17)

C -1 0 L 2 ≤ |(A, A, Ω, Θ)| 2 ≤ C 0 L 2 .
This in particular implies that for all fixed ρ 0 > 0 we have for some constant c 0 depending only on ρ 0 , β and γ,

β 2 1 + γ 2 |A| 2 + γ 2 1 + γ 2 |Ω 2 | + 2|Θ| 2 ≥ c 0 L 2 ρ for all 0 ≤ ≤ 0 .
Therefore, reverting to (4.16), L 2 ρ (t) ≤ e -c 0 2 t L 2 ρ (0), whence using (4.17), (4.18)

|(A, Ω, Θ)| ≤ Ce -c 0 2 t 2 |(A, Ω, Θ)(0)
| for all t ≥ 0 and 0 ≤ ≤ 0 .

Multiplying both sides by ϕ(2 -j ξ) with |ξ| = , then taking the L 2 norm and using Fourier-Plancherel theorem, we end up for all j ≤ j 0 with

(4.19) (a L,j , ω L,j , θ L,j )(t) L 2 e -c 0 2 2 2j t (a L,j , ω L,j , θ L,j )(0) L 2 .
Now, as the divergence free part Pu L of u L satisfies the heat equation

∂ t Pu L -µ∆u L = 0,
we have for all j ∈ Z,

(4.20) Pu L,j (t) L 2 ≤ e -µ2 2j t Pu L,j (0) L 2 with µ := µ/ν.
Then putting (4. [START_REF] Hoff | Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow[END_REF]) and (4.20) together completes the proof of the lemma.

Set U (a, υ, θ) and U 0 (a 0 , υ 0 , θ 0 ). From Lemma 4.1 and the obvious inequality sup t≥0 j∈Z t s 1 +s 2 2 j(s 1 +s) e -c 0 2 2j t ≤ C s < +∞ if s + s 1 > 0, we get (4.2) (see [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF] for more details). Hence we have

t 0 E(t -τ )(f, g, k)(τ ) dτ Ḃs 2,1 t 0 t -τ -s 1 +s 2 (f, g, k)(τ ) Ḃ-s 1 2,∞ dτ. (4.21)
We claim that if p and s 1 fulfill (1.8) and (2.2), respectively, then we have for all t ≥ 0, (4.22)

t 0 t -τ -s 1 +s 2 (f, g, k)(τ ) Ḃ-s 1 2,∞ dτ t -s 1 +s 2 D 2 p (t) + X 2 p (t) .
In order to prove our claim, we shall use repeatedly the following obvious inequality that is satisfied whenever 0 ≤ σ 1 ≤ σ 2 and σ 2 > 1:

(4.23)

t 0 t -τ -σ 1 τ -σ 2 dτ t -σ 1 with t 1 + t 2 .
We shall also take advantage of the embeddings L r → Ḃ-s 1 2,∞ and Ḃσ p,1 → L 2r with

s 1 d r - d 2 and σ d p - d 2r • Let us emphasize that Condition (2.2) is equivalent to p 2 ≤ r ≤ min(2, d 2 )•
All the terms in f, g and h, but I(a)∆θ h will be treated thanks to the following inequalities that follow from Hölder inequality and the above embeddings:

(4.24) F G Ḃ-s 1 2,∞ F G L r ≤ F L 2r G L 2r F Ḃσ p,1 G Ḃσ p,1
.

We shall often use the fact that, because σ

+ 2 ≤ d 2 + 1, sup 0≤τ ≤t τ d 4r + k 2 (∇ k a , ∇ k υ , ∇ k θ )(τ ) L 2r D p (t) for k = 0, 1, 2. (4.25)
This is just a consequence of

D k z L 2r z Ḃσ+k p,1 z Ḃk+ d 2 -d 2r 2,1
and of the fact that we have -s

1 < k + d 2 -d 2r ≤ d 2 + 1 for k ∈ {0, 1, 2}. Then using also that σ ≤ d p -1 (as r ≤ d 2 )
, one can write that

z h Ḃσ p,1 z h Ḃ d p -1 p,1
.

Therefore as obviously α ≥ d 4r + 1 2 for small enough ε, we have Combining with (4.24), one can thus bound the terms υ • ∇a and K 1 (a)∇a as follows:

υ • ∇a Ḃ-s 1 2,∞ + K 1 (a)∇a Ḃ-s 1 2,∞ (a, υ) L 2r ∇a L 2r t -d 2r -1 2 D 2 p (t). Now, as d 2r + 1 2 ≥ 1 2 (s 1 + s) for all s ≤ 1 + d 2 ,
we get for all t ≥ 0, sup

-s 1 +ε≤s≤1+ d 2 t 0 t -τ -s 1 +s 2 υ • ∇a Ḃ-s 1 2,∞ + K 1 (a)∇a Ḃ-s 1 2,∞ dτ t -s 1 +s 2 D 2 p (t)+X 2 p (t) .
The terms a div υ , υ •∇υ , I(a)∆υ , K 2 (a)∇θ , θ ∇K 3 (a), υ •∇θ , I(a)∆θ , K 1 (a)div υ and K 2 (a)θ div υ may be handled along the same lines.

To deal with the other terms in f, g and k, we shall also often use the fact that (4.27)

t s 1 2 + d 4 -ε 2 (a, υ, θ) L ∞ T ( Ḃ d p p,1 ) D p (t).
This may be proved by decomposing functions a, υ and θ in low and high frequencies, using the definition of D p (t) and the fact that, because p ≥ 2 and α ≥ s

1 2 + d 4 -ε 2 , t s 1 2 + d 4 -ε 2 (a, υ, θ) L ∞ T ( Ḃ d p p,1 ) t s 1 2 + d 4 -ε 2 (a, υ, θ) L ∞ T ( Ḃ d 2 2,1 ) + t s 1 2 + d 4 -ε 2 (a, υ, θ) h L ∞ T ( Ḃ d p p,1 ) t s 1 2 + d 4 -ε 2 (a, υ, θ) L ∞ T ( Ḃ d 2 -ε 2,1 ) + t α (a, υ, θ) h L ∞ T ( Ḃ d p p,1 )
.

As an example, let us bound K 2 (a)∇θ h . Then we use that, owing to (4.24), if t ≥ 2,

t 0 t -τ -s 1 +s 2 (K 2 (a)∇θ h )(τ ) Ḃ-s 1 2,∞ dτ t 0 t -τ -s 1 +s 2 a(τ ) L 2r ∇θ h (τ ) L 2r dτ = 1 0 + t 1 (• • •)dτ I 1 + I 2 .
Using the fact that

∇θ h L 2r θ h Ḃσ+1 p,1 θ h Ḃ d p p,1
, and remembering the definitions of X p (t) and D p (t), and Inequality (4.26), we obtain

I 1 t -s 1 +s 2 sup 0≤τ ≤1 a(τ ) L 2r 1 0 θ(τ ) h Ḃ d p p,1 dτ t -s 1 +s 2 D p (1)X p (1). (4.28)
Next, because τ ≈ τ when τ ≥ 1, one has for all -s 1 < s ≤ d 2 + 1,

I 2 = t 1 t -τ -s 1 +s 2 τ -d 2r -1 2 τ d 4r a(τ ) L 2r τ d 4r + 1 2 ∇θ h (τ ) L 2r dτ sup 1≤τ ≤t τ d 4r a(τ ) L 2r sup 1≤τ ≤t τ α θ(τ ) h Ḃ d p p,1 t 1 t -τ -s 1 +s 2 τ -d 2r -1 2 dτ t -s 1 +s 2 D 2 p (t)
. Therefore, for t ≥ 2, we arrive at (4.29)

t 0 t -τ -s 1 +s 2 (K 2 (a)∇θ h )(τ ) Ḃ-s 1 2,∞ dτ t -s 1 +s 2 D p (t)X p (t) + D 2 p (t) •
The case t ≤ 2 is obvious as t ≈ 1 and t -τ ≈ 1 for 0 ≤ τ ≤ t ≤ 2, and

t 0 K 2 (a)∇θ h L r dτ ≤ a L ∞ t (L 2r ) ∇θ h L 1 t (L 2r ) D p (t)X p (t). (4.30)
The terms with adiv υ h , I(a)∆υ h , υ • ∇υ h , θ h ∇K 3 (a), υ • ∇θ h and K 1 (a)div υ h may be treated along the same lines. For the term corresponding to Q(∇υ,∇υ) 1+a one may write, thanks to (4.1),

t 0 t -τ -s 1 +s 2 Q(∇υ, ∇υ) 1 + a Ḃ-s 1 2,∞ dτ t 0 t -τ -s 1 +s 2 ∇υ(τ ) 2 L 2r dτ t 0 t -τ -s 1 +s 2 ∇υ (τ ) 2 L 2r + ∇υ h (τ ) 2 L 2r dτ.
Now, (4.25) implies that (4.31)

t 0 t -τ -s 1 +s 2 ∇υ (τ ) 2 L 2r dτ sup 0≤τ ≤t τ d 4r + 1 2 ∇υ (τ ) L 2r 2 t 0 t -τ -s 1 +s 2 τ -d 2r -1 dτ t -s 1 +s 2 D 2 p (t)
and we have if t ≥ 2,

t 0 t -τ -s 1 +s 2 ∇υ h (τ ) 2 L 2r dτ = 1 0 + t 1 (• • •)dτ J 1 + J 2 .
Using that σ ≤ d p -1 and interpolation (see Lemma 3.2), we arrive at

∇υ h L 2r ∇υ h Ḃσ p,1 ∇υ h 1 2 Ḃ d p -2 p,1 ∇υ h 1 2 Ḃ d p p,1
, which leads to

J 1 t -s 1 +s 2 1 0 ∇υ h (τ ) 2 L 2r dτ t -s 1 +s 2 X 2 p (1). (4.32)
For J 2 , we get for all -s 1 < s ≤ d 2 + 1,

J 2 t 1 t -τ -s 1 +s 2 τ -d 2r -1 2 τ d 4r + 1 4 ∇υ h Ḃ d 2r -1 p,1 2 dτ t -s 1 +s 2 D 2 p (t). So finally, if t ≥ 2, t 0 t -τ -s 1 +s 2 ∇υ h (τ ) 2 L 2r dτ t -s 1 +s 2 X 2 p (t) + D 2 p (t) • (4.33)
The above inequality also holds true for t ≤ 2 since t ≈ 1 and t-τ ≈ 1 for 0 ≤ τ ≤ t ≤ 2. Therefore, combining with (4.31) and (4.33), we end up with

t 0 t -τ -s 1 +s 2 Q(∇υ, ∇υ) 1 + a Ḃ-s 1 2,∞ dτ t -s 1 +s 2 X 2 p (t) + D 2 p (t) . (4.34)
The term K 2 (a)θ h div υ may be treated as K 2 (a)∇θ h and K 2 (a)θ div υ h , as for example adiv υ h . To bound K 2 (a)θ h div υ h , one has to proceed slightly differently. If t ≥ 2 then we start as usual with

t 0 t -τ -s 1 +s 2 θ h (τ ) L 2r div υ h (τ ) L 2r dτ = 1 0 + t 1 (• • •)dτ J 1 + J 2 .
For J 1 , one can write

J 1 t -s 1 +s 2 θ h L 2 ([0,1],L 2r ) div υ h L 2 ([0,1],L 2r ) t -s 1 +s 2 θ h L 1 ([0,1], Ḃ d p p,1 ) + θ h L ∞ ([0,1], Ḃ d p -2 p,1 ) υ h L 1 ([0,1], Ḃ d p +1 p,1 ) + υ h L ∞ ([0,1], Ḃ d p -1 p,1 ) t -s 1 +s 2 X 2 p (1)
and for all -s 1 < s ≤ d 2 + 1, we have, thanks to (4.25),

J 2 t 1 t -τ -s 1 +s 2 τ -d 2r -1 2 τ d 4r θ h (τ ) L 2r τ d 4r + 1 2 div υ h (τ ) L 2r dτ t -s 1 +s 2 D 2 p (t)
. The case t ≤ 2 is left to the reader.

To bound the term corresponding to I(a)∆θ h , one has to consider the cases 2 ≤ p ≤ d 

L q → Ḃ-s 2 2,∞ , I(a)∆θ h Ḃ-s 2 2,∞ I(a)∆θ h L q a L 2r ∆θ h L p a L 2r θ h Ḃ d p p,1 (4.35) 
By repeating the procedure leading to (4.29)-(4.30) and using that -s 2 ≤ -s 1 , we get

t 0 t -τ -s 1 +s 2 I(a)∆θ h Ḃ-s 1 2,∞ dτ t 0 t -τ -s 1 +s 2 I(a)∆θ h Ḃ-s 2 2,∞ dτ t -s 1 +s 2 D 2 p (t) + X p (t)D p (t) •
In the case d/2 < p < d, the regularity exponent d p -2 is negative, which precludes ∆θ h to be in any Lebesgue space. However, it follows from (3.15), taking σ = 2 -d/p, that 

I(a)∆θ h Ḃ-s 0 2,∞ ≤ C I(a) L p * + I(a) Ḃ2-d p p,1 ∆θ h Ḃ d p -2 p,∞ with s 0 2d p -d 2 and 1 p * = 1 2 -1 p • Now,
I(a) L p * a L p * a Ḃ d p 2,1 + a h Ḃ d p p,1
.

Therefore we eventually get (4.36)

I(a)∆θ h Ḃ-s 0 2,∞ ( a Ḃ2-s 0 2,1 + a Ḃ d p 2,1 + a h Ḃ d p p,1 ) θ h Ḃ d p p,1
.

If t ≥ 2 then (4.36) implies that t 0 t -τ -s 1 +s 2 I(a)∆θ h Ḃ-s 0 2,∞ dτ t 0 t -τ -s 1 +s 2 a Ḃmin(2-s 0 , d p ) 2,1 + a h Ḃ d p p,1 θ h Ḃ d p p,1 dτ = 1 0 + t 1 (• • •)dτ I 1 + I 2 . (4.37)
On the one hand, the definitions of D p and X p ensure that 

I 1 t -s 1 +s 2 D p (1)X p (1
I 2 t 1 t -τ -s 1 +s 2 τ -α a Ḃmin(2-s 0 , d p ) 2,1 + a h Ḃ d p p,1 τ α θ h Ḃ d p p,1 dτ t -s 1 +s 2 D 2 p (t) + X p (t)D p (t) .
Putting together with (4.37) and using that -s 0 ≤ -s 1 , we thus get if t ≥ 2,

t 0 t -τ -s 1 +s 2 I(a)∆θ h Ḃ-s 1 2,∞ dτ t -s 1 +s 2 D 2 p (t) + X p (t)D p (t) •
That the above inequality holds for t ≤ 2 is a direct consequence of the definitions of D p and X p .

Putting together all the above estimates completes the proof of Inequality (4.22). Then, combining with (4.2) for bounding the term of (4.4) pertaining to the data, we get

(4.40) t s 1 +s 2 (a, υ, θ)(t) Ḃs 2,1 D p,0 +D 2 p (t)+X 2 p (t) for all t ≥ 0 and -s 1 < s ≤ d 2 +1.
Step 2: Decay estimates for the high frequencies of (∇a, υ, θ). Let us first recall the following elementary result (see the proof in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]).

Lemma 4.2. Let X : [0, T ] → R + be a continuous function. Assume that X p is differentiable for some p ≥ 1 and satisfies

1 p d dt X p + M X p ≤ F X p-1
for some constant M ≥ 0 and measurable function F : [0, T ] → R + .

Denote X ε = (X p + ε p ) 1/p for ε > 0. Then it holds that

d dt X ε + M X ε ≤ F + M ε.
Let P Id + ∇(-∆) -1 div be the Leray projector onto divergence-free vector fields. It follows from (2.1) that Pu satisfies the following ordinary heat equation:

∂ t Pυ -µ∆Pυ = Pg.
Applying ∆j to the above equation gives for all j ∈ Z, ∂ t Pυ j -µ∆Pυ j = Pg j with υ j ∆j υ and g j ∆j g.

According to Proposition 3.2, we thus end up for some constant c p > 0 with

1 p d dt Pυ j p L p + c p µ2 2j Pυ j p L p ≤ Pg j L p Pυ j p-1 L p .
Hence, using the notation

• ε, L p ( • p L p + ε p ) 1/p , it follows from Lemma 4.2 that for all ε > 0, (4.41) d dt Pυ j ε, L p + c p µ2 2j Pυ j ε, L p ≤ Pg j L p + c p µ2 2j ε.
Next, we observe that (a, w) with w being the effective velocity defined in (4.3) fulfills

∂ t w -∆w = ∇(-∆) -1 (f -div g) -γ∇θ + w -(-∆) -1 ∇a, ∂ t a + a = f -div w.
Arguing as for Pυ, one can arrive at

(4.42) d dt w j ε, L p + c p 2 2j w j ε, L p ≤ ∇(-∆) -1 (f j -div g j ) L p + -γ∇θ j + w j -(-∆) -1 ∇a j L p + c p 2 2j ε, and, denoting R i j [u • ∇, ∂ i ∆j ]a for i = 1, • • • , d, (4.43) 
d dt ∇a j ε, L p + ∇a j ε, L p ≤ 1 p div υ L ∞ ∇a j L p + ∇ ∆j (adiv υ) L p + C2 2j w j L p + R j L p + ε.
Similarly, as the temperature θ satisfies (4.44)

∂ t θ -β∆θ + γdiv w + a = k,
we have, according to Proposition 3.2, that d dt θ j ε, L p + c p β2 2j θ j ε, L p ≤ k j -γdiv w j -a j L p + c p 2 2j ε. (4.45) Adding up (4.41), (4.42), Ac p ×(4.43) and B2 -j ×(4.45) for some A, B > 0 (to be chosen afterward) gives that

d dt Pυ j ε, L p + w j ε, L p +Ac p ∇a j ε, L p +2 -j βB θ j ε, L p +c p 2 2j µ Pυ j ε, L p + w j ε, L p ) +Ac p ∇a j ε, L p + c p βB2 j θ j ε, L p ≤ Pg j L p + ∇(-∆) -1 (f j -div g j ) L p +Ac p 1 p divυ L ∞ ∇a j L p + ∇ ∆j (adiv υ) L p + R j L p + 2 -j B k j L p +2 -j B γdiv w j + a j L p + -γ∇θ j + w j -(-∆) -1 ∇a j L p + CAc p 2 2j w j L p + M ε , where M ε (c p µ2 2j + c p 2 2j + Ac p + c p Bβ2 j )ε.
Because (-∆) -1 is a homogeneous Fourier multiplier of degree -2, we have

(-∆) -1 ∇a j L p 2 -2j ∇a j L p 2 -2j 0 ∇a j ε, L p for j ≥ j 0 -1. (4.46)
Choosing first B large enough, then A suitably small, and finally j 0 suitably large, one can absorb the last line of the above inequality by the l.h.s. Hence, there exists a constant c 0 > 0 such that for all j ≥ j 0 -1,

d dt Pυ j ε, L p + w j ε, L p + Ac p ∇a j ε, L p + 2 -j βB θ j ε, L p + c 0 Pυ j ε, L p + w j ε, L p +Ac p ∇a j ε, L p + 2 -j βB θ j ε, L p ) ≤ g j L p + ∆j (aυ) L p +Ac p 1 p divu L ∞ ∇a j L p + ∇ ∆j (adiv u) L p + R j L p + 2 -j B k j L p + M ε .
Then, integrating in time and having ε tend to 0, we arrive for all j ≥ j 0 -1 at

(4.47) e c 0 t (Pυ j , w j , ∇a j , 2 -j θ j )(t) L p (Pυ j , w j , ∇a j , 2 -j θ j )(0) L p + t 0 e c 0 τ S j (τ ) dτ with S j S 1 j + • • • + S 6 j and S 1 j ∆j (aυ) L p , S 2 j g j L p , S 3 j 2 -j k j L p , S 4 j ∇ ∆j (adiv υ) L p , S 5 j R j L p , S 6 j div υ L ∞ ∇a j L p .
It is clear that (υ j , ∇a j , 2 -j θ j ) satisfies a similar inequality. Indeed, we have υ = w -∇(-∆) -1 a + Pυ which leads for j ≥ j 0 -1 to

υ j L p w j L p + Pυ j L p + 2 -2j 0 ∇a j L p .
Therefore, there exists a constant c 0 > 0 such that for all j ≥ j 0 -1 and t ≥ 0,

(2 j a j , υ j , 2 -j θ j )(t) L p e -c 0 t (2 j a j (0), υ j (0), 2 -j θ j (0)) L p + t 0 e -c 0 (t-τ ) S j (τ ) dτ.
Now, multiplying both sides by t α 2 j( d p -1) , taking the supremum on [0, T ], and summing up over j ≥ j 0 -1 yields (4.48)

t α a h L ∞ T ( Ḃ d p p,1 ) + t α υ h L ∞ T ( Ḃ d p -1 p,1 ) + t α θ h L ∞ T ( Ḃ d p -2 p,1 ) a 0 h Ḃ d p p,1 + υ 0 h Ḃ d p -1 p,1 + θ 0 h Ḃ d p -2 p,1 + j≥j 0 -1 sup 0≤t≤T t α t 0 e -c 0 (t-τ ) 2 j( d p -1) S j (τ ) dτ •
To treat the case T ≤ 2, we use the fact that (4.49)

j≥j 0 -1 sup 0≤t≤2 t α t 0 e -c 0 (t-τ ) 2 j( d p -1) S j (τ ) dτ 2 0 j≥j 0 -1 2 j( d p -1) S j (τ ) dτ •
The terms in S 1 j , S 4 j , S 5 j and S 6 j as well as those in S 2 j corresponding to υ • ∇υ, I(a)∆υ or K 1 (a)∇a may be estimated exactly as in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]. Therefore, it is only a matter of handling the 'new' terms in S 2 j , and S 3 j , that is To this end, we shall often use the fact that, by interpolation, we have a

L 2 t ( Ḃ d p p,1 )
+ υ

L 2 t ( Ḃ d p p,1 )
X p (t). (4.51)

For K 2 (a)∇θ, we still use the decomposition

K 2 (a)∇θ = K 2 (a)∇θ + K 2 (a)∇θ h .
Thanks to Hölder inequality and Propositions 3.3 and 3.5, we get

K 2 (a)∇θ h L 1 t ( Ḃ d p -1 p,1 )
a

L 2 t ( Ḃ d p p,1 )
∇θ

L 2 t ( Ḃ d p -1 p,1 )
+ a

L ∞ t ( Ḃ d p p,1 ) ∇θ h L 1 t ( Ḃ d p -1 p,1 )
. (4.52) Now, interpolation and embedding (recall that p ≥ 2) imply that ∇θ

L 2 t ( Ḃ d p -1 p,1 ) θ 1 2 L ∞ T ( Ḃ d p -1 p,1 ) θ 1 2 L 1 t ( Ḃ d p +1 p,1 ) θ L ∞ t ( Ḃ d 2 -1 2,1 ) + θ L 1 T ( Ḃ d 2 +1 2,1 ) X p (t)
and a

L ∞ t ( Ḃ d p p,1 )
a

L ∞ t ( Ḃ d 2 -1 2,1 ) + a h L ∞ t ( Ḃ d p p,1 )
X p (t).

Hence, we arrive at

K 2 (a)∇θ h L 1 t ( Ḃ d p -1 p,1 )
X 2 p (t). (4.53) Similarly, it follows from Proposition 3.3 that

θ∇K 3 (a) h L 1 t ( Ḃ d p -1 p,1 ) θ L 2 t ( Ḃ d p p,1 )
∇K 3 (a)

L 2 T ( Ḃ d p -1 p,1 ) + θ h L 1 t ( Ḃ d p p,1 ) ∇K 3 (a) L ∞ T ( Ḃ d p -1 p,1 )
X 2 p (t). Next, for υ • ∇θ , we use the following obvious inequality

(4.54) z h L ∞ T ( Ḃ d q -ς q,1 ) 2 -j 0 ς z h L ∞ T ( Ḃ d q p,1 )
for q = 2, p and ς ≥ 0, which, combined with Proposition 3.3 implies that

υ • ∇θ h L 1 t ( Ḃ d p -2 p,1 )
2 -j 0 υ • ∇θ

L 1 t ( Ḃ d p -1 p,1 ) υ L 2 t ( Ḃ d p p,1 )
∇θ

L 2 t ( Ḃ d 2 -1 2,1 )
, and for υ • ∇θ h , we have

υ • ∇θ h h L 1 t ( Ḃ d p -2 p,1 ) υ L 2 t ( Ḃ d p p,1 ) ∇θ h L 2 t ( Ḃ d p -2 p,1 )
.

Therefore we have

υ • ∇θ h L 1 t ( Ḃ d p -2 p,1 )
X 2 p (t). (4.55) Similarly,

I(a)∆θ h L 1 t ( Ḃ d p -2 p,1 )
a

L ∞ t ( Ḃ d p p,1 ) 2 -j 0 ∆θ L 1 T ( Ḃ d 2 -1 2,1 ) + ∆θ h L 1 T ( Ḃ d p -2 p,1 )
X 2 p (t).

Because p < d and d ≥ 3, it follows from Proposition 3.3 and (4.1) that

Q(∇υ, ∇υ) 1 + a h L 1 t ( Ḃ d p -2 p,1 )
(1 + a

L ∞ t ( Ḃ d p p,1 )
) ∇υ 2

L 2 t ( Ḃ d p -1 p,1 )
X 2 p (t) (4.56) and

K 1 (a)div υ h L 1 t ( Ḃ d p -2 p,1 ) 2 -j 0 a L 2 T ( Ḃ d p p,1 )
div υ

L 2 t ( Ḃ d p -1 p,1 )
X 2 p (t). (4.57)

For the term K 2 (a)θdiv υ, we use the decomposition

K 2 (a)θdiv υ = K 2 (a)θ div υ + K 2 (a)θ h div υ. Now, we have K 2 (a)θ div υ h L 1 t ( Ḃ d p -2 p,1 ) 2 -j 0 K 2 (a)θ div υ h L 1 t ( Ḃ d p -1 p,1 ) (1 + a L ∞ t ( Ḃ d p p,1 )
) θ

L 2 t ( Ḃ d p p,1 ) div υ L t ( Ḃ d p -1 p,1 )
X 2 p (t) (4.58) and

K 2 (a)θ h div υ h L 1 t ( Ḃ d p -2 p,1 )
(1 + a

L ∞ t ( Ḃ d p p,1 )
) div υ

L ∞ t ( Ḃ d p -2 p,1 ) θ h L 1 t ( Ḃ d p p,1 )
( υ

L ∞ t ( Ḃ d 2 -1 2,1 ) + υ h L ∞ t ( Ḃ d p -1 p,1 ) ) θ h L 1 t ( Ḃ d p p,1 )
X 2 p (t).

Therefore, putting together all the above estimates, we conclude that (4.59)

j≥j 0 -1 sup 0≤t≤2 t α t 0 e -c 0 (t-τ ) 2 j( d p -1) S j (τ ) dτ X 2 p (2).
To bound the supremum for 2 ≤ t ≤ T in the last term of (4.48), one can split the integral on [0, t] into integrals on [0, 1] and [1, t]. The [0, 1] part can be handled exactly as the supremum on [0, 2] treated before. For the [1, t] part of the integral, we use the fact that (4.60)

j≥j 0 -1 sup 2≤t≤T t α t 1 e c 0 (τ -t) 2 j( d p -1) S j (τ ) dτ j≥j 0 -1 2 j( d p -1) sup 1≤t≤T t α S j (t).
In order to bound the term corresponding to S 1 j , we decompose a and υ into low and high frequencies. Now, we obviously have

t α aυ h L ∞ t ( Ḃ d p -1 p,1 ) a L ∞ t ( Ḃ d p p,1 ) t α υ h L ∞ t ( Ḃ d p -1 p,1 )
X p (t)D p (t)

t α a h υ L ∞ t ( Ḃ d p -1 p,1 ) t α a h L ∞ t ( Ḃ d p p,1 ) υ L ∞ t ( Ḃ d p -1 p,1 )
X p (t)D p (t), and, using (4.54),

t α a υ h L ∞ t ( Ḃ d p -1 p,1 ) t α a υ h L ∞ t ( Ḃ d p +1 p,1 )
t α a υ

L ∞ t ( Ḃ d 2 +1
2,1 )

t 1 2 (s 1 + d 2 -ε) a L ∞ t ( Ḃ d 2 2,1 ) t 1 2 (s 1 + d 2 + 1 2 -ε) υ L ∞ t ( Ḃ d 2 +1
2,1 )

+ t 1 2 (s 1 + d 2 -ε) υ L ∞ t ( Ḃ d 2 2,1 ) t 1 2 (s 1 + d 2 + 1 2 -ε) a L ∞ t ( Ḃ d 2 +1
2,1 )

.

In order to bound the right-hand side, we notice that, from the definition of tilde norms and of D p , one can get for k = 0, 1, 2,

t s 1 2 + d 4 + k 2 -1 2 -ε 2 (D k a , D k υ , D k θ ) L ∞ T ( Ḃ d 2 -1 2,1 ) t s 1 2 + d 4 + k 2 -1 2 -ε 2 (a, υ, θ) L ∞ T ( Ḃ d 2 -1+k-ε 2,1 ) ≤ D p (T ). (4.61)
So finally, we have

j≥j 0 -1 2 j( d p -1) sup 1≤t≤T t α S 1 j (t) D 2 p (t).
The terms corresponding to υ • ∇υ h , υ h • ∇υ , K 1 (a)∇a h and I(a)∆υ h may be bounded as aυ h or a h υ. As regards υ • ∇υ , one can write using again (4.54) and (4.61),

t α υ • ∇υ h L ∞ t ( Ḃ d p -1 p,1 ) t α υ • ∇υ h L ∞ t ( Ḃ d 2 2,1 ) t 1 2 (s 1 + d 2 -ε) υ L ∞ t ( Ḃ d 2 2,1 ) t 1 2 (s 1 + d 2 + 1 2 -ε) ∇υ L ∞ t ( Ḃ d 2 2,1 ) 
D 2 p (t) and similarly, thanks to (4.27),

t α K 1 (a)∇a L ∞ t ( Ḃ d p -1 p,1 ) t 1 2 (s 1 + d 2 -ε) a L ∞ t ( Ḃ d p p,1 ) t 1 2 (s 1 + d 2 + 1 2 -ε) ∇a L ∞ t ( Ḃ d 2 2,1 ) t α I(a)∆υ L ∞ t ( Ḃ d p -1 p,1 ) t 1 2 (s 1 + d 2 -ε) a L ∞ t ( Ḃ d p p,1 ) t 1 2 (s 1 + d 2 + 1 2 -ε) ∆υ L ∞ t ( Ḃ d 2 -1 2,1 )
.

The terms in S 4 j , S 5 j and S 6 j may be treated along the same lines. So let us next focus on the terms of S 2 j and S 3 j corresponding to (4.50). Then Proposition 3.3 and Inequality (4.54) ensure that

t α K 2 (a)∇θ h L ∞ T ( Ḃ d p -1 p,1 ) t s 1 2 + d 4 -ε 2 K 2 (a) L ∞ T ( Ḃ d p p,1 ) t s 1 2 + d 4 + 1 2 -ε 2 ∇θ L ∞ T ( Ḃ d p p,1 ) t s 1 2 + d 4 -ε 2 a L ∞ T ( Ḃ d 2 2,1 ) + t s 1 2 + d 4 -ε 2 a h L ∞ T ( Ḃ d p p,1 ) t s 1 2 + d 4 + 1 2 -ε 2 ∇θ L ∞ T ( Ḃ d 2 2,1 )
.

Consequently, we arrive at

t α K 2 (a)∇θ L ∞ T ( Ḃ d p -1 p,1 ) D 2 p (T ). (4.62)
Additionally, it follows from Proposition 3.5 that (4.63)

t α K 2 (a)∇θ h L ∞ T ( Ḃ d p -1 p,1 ) a L ∞ T ( Ḃ d p p,1 ) t α ∇θ h L ∞ T ( Ḃ d p -1 p,1 )
X p (T )D p (T ).

To bound t α θ∇K 3 (a), we use that t α θ∇K 3 (a) = t α θ ∇K 3 (a) + t α θ h ∇K 3 (a). The second term can be estimated as in (4.63). For the first term, we write K 3 (a) = K 3 (0)a + K 3 (a)a for some smooth function K 3 vanishing at 0. Now, we have thanks to (4.61),

t α θ ∇a h L ∞ T ( Ḃ d p -1 p,1 ) t s 1 2 + d 4 -ε 2 θ L ∞ T ( Ḃ d 2 2,1 ) t s 1 2 + d 4 + 1 2 -ε 2 ∇a L ∞ T ( Ḃ d 2 2,1 ) D 2 p (T ), t α θ ∇a h h L ∞ T ( Ḃ d p -1 p,1 ) θ L ∞ T ( Ḃ d 2 -1 2,1 ) t α ∇a h L ∞ T ( Ḃ d p -1 p,1 )
X p (T )D p (T ), and, using Proposition 3.5, the the fact that K 3 (0) = 0 and (4.27),

t α θ ∇( K 3 (a)a) h L ∞ T ( Ḃ d p -1 p,1 ) t s 1 2 + d 4 -ε 2 θ L ∞ T ( Ḃ d 2 2,1 ) t s 1 2 + d 4 -ε 2 a L ∞ T ( Ḃ d p p,1 ) t 1 2 a L ∞ T ( Ḃ d p p,1 ) D 3 p (T ), because s 1 2 + d 4 -ε 2 > 1 2
for sufficiently small ε. In summary, we get

t α θ∇K 3 (a) h L ∞ T ( Ḃ d p -1 p,1 ) D 2 p (T ) + D 3 p (T ) + X p (T )D p (T ). (4.64) Likewise, Proposition 3.3 implies that t α υ • ∇θ h h L ∞ T ( Ḃ d p -2 p,1 ) υ L ∞ T ( Ḃ d p -1 p,1 ) t α ∇θ h L ∞ T ( Ḃ d p -1 p,1 )
X p (T )D p (T ), (4.65) and it follows from (4.54), (4.61) and (4.27) that

t α υ • ∇θ h L ∞ T ( Ḃ d p -2 p,1 ) t s 1 2 + d 4 -ε 2 υ L ∞ T ( Ḃ d p p,1 ) t s 1 2 + d 4 + 1 2 -ε 2 ∇θ L ∞ T ( Ḃ d 2 2,1 ) 
D 2 p (T ). Next, we have

t α I(a)∆θ h h L ∞ T ( Ḃ d p -2 p,1 ) a L ∞ T ( Ḃ d p p,1 ) t α θ h L ∞ T ( Ḃ d p p,1 )
X p (T )D p (T ) (4.66) and, using (4.27), (4.67)

t α I(a)∆θ h L ∞ T ( Ḃ d p -2 p,1 ) t s 1 2 + d 4 + 1 2 -ε 2 ∆θ L ∞ T ( Ḃ d 2 -1 2,1 ) t s 1 2 + d 4 -ε 2 a h L ∞ T ( Ḃ d p p,1 ) D 2 p (T ).
To bound the term containing Q(∇υ,∇υ) 1+a

, we just write that, owing to Propositions 3.3, 3.5, and to Condition (4.1),

t α Q(∇υ,∇υ) 1 + a h L ∞ T ( Ḃ d p -2 p,1 ) t s 1 2 + d 4 + 1 4 -ε 2 ∇υ L ∞ T ( Ḃ d p p,1 ) + t s 1 2 + d 4 + 1 4 -ε 2 ∇υ h L ∞ T ( Ḃ d p p,1 ) 2 •
Hence, from (4.1), (4.61) and the definition of D p , we infer that

t α Q(∇υ, ∇υ) 1 + a h L ∞ T ( Ḃ d p -2 p,1 ) D 2 p (T ). (4.68)
For the next term in (4.50), we start with the decomposition

K 1 (a)div υ K 1 (a)div υ h + K 1 (a)div υ .
Now, by virtue of (4.54), Propositions 3.3 and 3.5,

t α K 1 (a)div υ h h L ∞ T ( Ḃ d p -2 p,1 ) a L ∞ T ( Ḃ d p p,1 ) t α υ h L ∞ T ( Ḃ d p -1 p,1 )
X p (T )D p (T ) (4.69) and, thanks to (4.27), (4.54) and (4.61),

t α K 1 (a)div υ h L ∞ T ( Ḃ d p -2 p,1 ) t s 1 2 + d 4 + 1 2 -ε 2 div υ L ∞ T ( Ḃ d 2 2,1 ) t s 1 2 + d 4 -ε 2 a L ∞ T ( Ḃ d p p,1 ) D 2 p (T ).
For K 2 (a)θdiv υ, as the regularity of θ h is lower than that of υ h , we use the decomposition K 2 (a)θdiv υ = K 2 (a)θ div υ + K 2 (a)θ h div υ again. Remembering (4.1), it follows from Propositions 3.3 and 3.5 and Inequality (4.61) that

t α K 2 (a)θ h div υ h L ∞ T ( Ḃ d p -2 p,1 ) t α θ h L ∞ T ( Ḃ d p p,1 )
div υ

L ∞ T ( Ḃ d p -2 p,1 )
D p (T )X p (T )

t α K 2 (a)θ div υ h L ∞ T ( Ḃ d p -2 p,1 ) t s 1 2 + d 4 -ε 2 θ L ∞ T ( Ḃ d 2 2,1 ) t s 1 2 + d 4 + 1 2 -ε 2 div υ L ∞ T ( Ḃ d p p,1 )
D 2 p (T ). Putting all above inequalities together, the r.h.s. of (4.60) can be estimated as follows: Consequently, keeping in mind that D p is small, we obtain Step 3: Decay estimates with gain of regularity for the high frequencies of υ and θ. We here want to prove that the parabolic smoothing effect provided by the last two equations of (2.1) allows to get gain of regularity and decay altogether for υ and θ. Let us focus on the equation for θ (handling υ being similar). Recall that ∂ t θ -β∆θ = -γdiv v + k.

Hence (4.71) ∂ t (t α ∆θ) -β∆(t α ∆θ) = αβt α-1 ∆θ + βt α ∆(k -γdiv v), t α ∆θ| t=0 = 0.

We thus deduce from Proposition 3. As Theorem 1.1 ensures that X p X p,0 and as (a 0 , u 0 , θ 0 )

Ḃ d 2 -1 2,1
(a 0 , u 0 , θ 0 ) Ḃ-s , which completes the proof of Corollary 2.1.

We end this section with some heuristics concerning the optimality of the regularity and decay exponents in the definition of D p . Let us first explain why the regularity exponent s in D p,1 has to satisfy s ≤ d 2 + 1. The general fact (based on Inequality (4.23)) that we used repeatedly is that the time decay exponent δ for (f, g, k) Ḃ-s 1 2,∞ must satisfy δ ≥ s 1 +s 2 • Now, if we look at the term a div u , then a necessary condition for having

a div u Ḃ-s 1 2,∞ a Ḃσ 1 2,∞ div u Ḃσ 2 2,∞ is that σ 1 + σ 2 ≤ d 2 -s 1 .
As the decay exponent of the right-hand side is s 1 + σ 

1 p

 1 , and C depending only on j 0 , d and σ.

≤t τ d 4r + 1 2

 1 , a)(τ ) L 2r + sup 0≤τ ∇a(τ ) L 2r D p (t).

2 and p > d 2 separately. If 2 ≤ p ≤ d 2 then we have, denoting 1 q 1 p + 1 2r and s 2 d p + d 2r -d 2 and using the embedding

 22122 

d p 2 , 1 →

 21 Proposition 3.5 and obvious embedding ensure that I(a) p * ≥ p, we have Ḃ L p * and Ḃs 0 p,1 → L p * , whence

( 4 .

 4 50) K 2 (a)∇θ, θ∇K 3 (a), υ • ∇θ, I(a)∆θ, Q(∇υ, ∇υ) 1 + a , K 1 (a)div υ and K 2 (a)θdiv υ.

  sup 1≤t≤T t α S j (t) X 2 p (T ) + D 3 p (T ) + D 2 p (T ) + D p (T )X p (T ).

Finally, bounding the

  first terms on the right-side of (4.75)-(4.76) according to (4.70), and adding up (4.75)-(4.76) to (4.40) and (4.70) yields for all T ≥ 0, D p (T ) D p,0 + (a 0 , υ 0 , θ 0 )

  , one can conclude that(2.4) is fulfilled for all time if D p,0 and X p,0 are small enough. This completes the proof of Theorem 2.1.Corollary 2.1 easily follows from Theorem 2.1 : let us just show the inequality for θ as an example. Since the embedding Ḃs 2,1 → Ḃs-d(1/2-1/p) Ḃs p,1 holds for the low frequencies whenever p ≥ 2, we have for all -s 1 < s ≤ d p -2, D p,0 + (∇a 0 , υ 0 ) h

					1
			2,∞
	p,1 → sup t∈[0,T ] t s 1 +s 2 Λ s θ Ḃ0 p,1 t s 1 +s 2 θ L ∞ T ( Ḃs 2,1 ) + t	s 1 +s 2 θ h L ∞ T ( Ḃs
	Hence, using (2.4) yields			
	t	s 1 +s 2 θ L ∞ T ( Ḃs 2,1 )	Ḃ d p -1 p,1	+ θ 0	h Ḃ d p -2 p,1
		s 1 +s 2 θ h L ∞ T ( Ḃs p,1 )	D p,0 + (∇a 0 , υ 0 ) h Ḃ d p -1 p,1	+ θ 0	h Ḃ d p -2 p,1

p,1 ) .

. Now, the fact that α ≥ s 1 +s 2 for all s ≤ d p -2 allows to write that t

  Hence we must have s ≤ d 2 + 1. To see that the decay rate in D p,2 cannot be more than s 1 + d 2 + 1 2 , one can observe that, owing to s ≤ d 2 + 1, the term a ∇a (which at most has the same regularity as ∇a ) cannot be estimated in a space with higher regularity than Ḃ d , the definition of D p,1 ensures that the right-hand side has decay exponent s 1 + d 2 + 1 2 • A similar argument shows that the decay rate in the definition of D p,3 is optimal.

	1 +σ 2 +1 2 2,1 . As the corresponding estimate , we 2 • 2 2 + 1 4 + s 1 deduce that δ ≤ d
	reads					
	a ∇a	Ḃ d 2 2,1	a	Ḃ d 2 2,1	∇a	2 Ḃ d 2,1

For better readability, from now on, we just denote Dx by D, divx by div , and so on.

For technical reasons, it is convenient to have a small overlap between low and high frequencies.
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