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Abstract

Spectral representations uniquely define the covariance functions associated
to random fields defined over spheres or spheres cross time. Covariance functions
on spheres cross time are usually modelled under the assumptions of either spatial
isotropy or axial symmetry, and the assumption of temporal stationarity. This
paper goes beyond these assumptions. In particular, we consider the problem of
spatially anisotropic covariance functions on spheres. The crux of our criterion is
to escape from the addition theorem for spherical harmonics. We also challenge
the problem of temporal nonstationarity in nonseparable space-time covariance
functions, where space is the n-dimensional sphere embedded in the (n + 1)-
dimensional Euclidean space. We finally propose a simulation routine for the
models proposed in this paper.
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1 Introduction

The literature on positive definite kernels on spheres has become ubiquitous, and we

refer the reader to the essay by Gneiting (2013), with the list of references given there.

Both mathematical and statistical communities have been interested in the construction

of positive definite functions defined over product spaces where the sphere is involved.

The recent tours de force in Barbosa and Menegatto (2016); Guella and Menegatto

(2016); Guella, Menegatto and Peron (2016) in concert with the works by Gneiting

(2013); Berg and Porcu (2017); Porcu, Bevilacqua and Genton (2016) and the recent

review in Jeong et al. (2017) are apparent indications that there are some important

branches of the mathematical and statistical communities devoted to studying such

constructions.

Recently, Porcu, Alegŕıa and Furrer (2018) have proposed an overview of statiscal ap-

proaches for global data, showing that positive definite functions have a crucial role for

modeling temporally evolving phenomena defined over the sphere representing planet

Earth. The importance of positive definite functions extends to statistical inferences

through, e.g., likelihood techniques, as well as to optimal linear prediction, called krig-

ing in the geostatistical framework.

Recent statistical works are concerned with the construction of space-time covariances

where the space is the spherical shell. Characterization theorems for positive definite

kernels on n-dimensional spheres have been provided in seminal papers by Schoenberg

(1942) and Narcowich (1995). Then, Berg and Porcu (2017) and Porcu, Bevilacqua

and Genton (2016) extended Schoenberg’s representation theorem to space-time. In

particular, Porcu, Bevilacqua and Genton (2016) focus on construction principles that

allow for algebraically tractable closed forms, and then analyze the discrepancy be-

tween using the correct metric on the sphere and other metrics. The literature on

spatial anisotropy on spheres has instead been sparse, with the work of Hitczenko and

Stein (2012) being a notable exception. Specifically, the authors show spectral repre-

sentations for anisotropic processes defined over R3 and then restricted to the sphere.

Under such a scheme, the covariance function depends on the chordal distance, being

the segment below the arc joining any pair of points located over the spherical shell.

The natural metric on the sphere is the great circle or geodesic distance, and for con-

structive criticism about the use of chordal distance the reader is referred to Gneiting

(2013) as well as to Porcu, Alegŕıa and Furrer (2018).

This paper goes beyond spatial anisotropy and temporal stationarity by eluding the

spectral representations by Schoenberg (1942) and Berg and Porcu (2017). Specifically,

we show how to avoid the addition theorem for spherical harmonics (Marinucci and

Peccati, 2011) to obtain more general representations. A similar strategy is adopted

by Jones (1963) and by Stein (2007) to obtain spectral representations for axially sym-

metric processes.
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In particular, we provide spectral representations for positive definite kernels on

(Sn×T )2, with Sn being the n-dimensional sphere of Rn+1 with unit radius, and where

T denotes time, which might be the whole real line or a compact set. On the basis of

such spectral representations, we illustrate how to obtain anisotropy with respect to

space, and nonstationarity with respect to time. The paper is organized as follows. In

Section 2, we give necessary notation and background. The main results of the paper

are provided in Section 3. Section 4 provides some examples and a simulation tech-

nique for the models proposed in this paper. To favor a neater exposition, technical

proofs are deferred to the Appendix.

2 Background

This section is largely expository and contains basic material that will be useful for the

exposition of our results. Although most of our work is related to the product space

Sn×T , it will be convenient to present some basic facts by making reference to a metric

space, denoted M throughout. We call kernel on M any mapping k : M ×M → C,

such that k(q, p) = k(p, q) for p, q ∈M , where a denotes the complex conjugate of the

complex number a. The kernel k is positive definite if, for every positive integer m and

every set of points p1, . . . , pm ∈ M , the m × m matrix with entries [k(pi, pi′)]1≤i,i′≤m

satisfies, for any c1, . . . , cm ∈ C,

m∑
i,i′=1

ci ci′ k(pi, pi′) ≥ 0.

Kolmogorov’s existence theorem implies that a real-k is positive definite if and only

if there exists a zero mean real-valued Gaussian random field X defined on M such

that k is the covariance function of X. Namely, we have

k(p1, p2) := cov(X(p1), X(p2)) = E[X(p1)X(p2)], p1, p2 ∈M.

The class of positive definite kernels on M is a convex cone being stable by mul-

tiplication and closed under the topology of pointwise convergence. Furthermore, if

k1 and k2 are positive definite kernels on M1 and M2 respectively, then their tensor

product k1⊗ k2, defined as k1⊗ k2((p1, t1), (p2, t2)) := k1(p1, t1)k2(p2, t2) for pi, ti ∈Mi

for i = 1, 2, is a positive definite kernel on M1 ×M2.

Next lemma provides an integral characterization of continuous positive definite

kernels on M = Sn × R. It extends the special case given by Lemma 4.3 in Berg

and Porcu (2017). We do not give a proof because it is obtained by following similar

arguments.

Lemma 2.1. Let k be a continuous kernel on Sn × R.

Then, k is positive definite if and only if, for any continuous function c : Sn × R→ C
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with compact support,∫
Sn×R

∫
Sn×R

k((p1, t1), (p2, t2)) c(p1, t1) c(p2, t2) dσn(p1)dt1dσn(p2)dt2 ≥ 0, (2.1)

where σn is the surface measure on Sn.

Through the manuscript we consider the geodesic (or great circle) distance as the

mapping θ : Sn × Sn → [0, π] defined through

θ(p1, p2) = arccos(〈p1, p2〉), p1, p2 ∈ Sn,

where 〈·, ·〉 denotes the classical inner product. Whenever no confusion can arise, we

use the shortcut θ for θ(p1, p2). A kernel k : Sn × Sn → R is called isotropic if there

exists a function ψ : [0, π]→ R such that

k(p1, p2) = ψ(θ(p1, p2)), p1, p2 ∈ Sn. (2.2)

Isotropic covariance functions have a well established literature: Schoenberg (1942)

has shown that all continuous covariance functions on n-dimensional spheres, being

additionally isotropic, admit series expansions depending on spherical harmonics. We

now recall some basic facts on these topics. We refer to the recent monographs by

Wendland (2004) and Dai and Xu (2013) for more details.

Let

dn,` =

{
(2`+n−1)(`+n−2)!

`!(n−1)! if ` ∈ N,
1 if ` = 0.

(2.3)

and let us consider {Y`,j : ` ∈ N0, j = 1, . . . , dn,`}, the family of spherical harmonics

on the sphere Sn as defined in Narcowich (1995) (see also Jones (1963) for instance in

the case n = 2). These are complex-valued functions and they provide a complete or-

thonormal system in the space of the Lebesgue square integrable functions L2(Sn, dσn).

They moreover satisfy the next relation

Y`,j = Y`,dn,`−j+1, ` ∈ N0, j = 1, . . . , dn,`.

For any f ∈ L2(Sn, dσn) and any positive integer N , let us introduce

fN(p) :=
N∑
`=0

dn,`∑
j=1

b`,jY`,j(p), p ∈ Sn, with b`,j =

∫
Sn
f(p)Y`,j(p)dσn(p).

Thus, we have ∫
Sn

∣∣∣∣f(p)− fN(p)

∣∣∣∣2 dσn(p)→ 0 as N →∞,

and f is real-valued if and only if b`,j = b`,dn,`−j+1 for any ` and any j.
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A classical result provides an explicit relation between Gaussian random fields with

a continuous covariance and its related expansion in terms of spherical harmonics.

Formally, it states that any zero mean, real-valued and squared integrable Gaussian

random field X on Sn with covariance function k admits the expansion

X(p) =
∞∑
`=0

dn,`∑
j=1

b`,jY`,j(p), p ∈ Sn, (2.4)

with the coefficients {b`,j}`,j being complex-valued random variables with zero mean

and satisfying b`,j = b`,dn,`−j+1 for any (`, j). The representation in Equation (2.4) is

also known as Karhunen-Loève expansion. Specifically, we have

b`,j =

∫
Sn
X(p)Y`,j(p)dσn(p), ` ∈ N0, j = 1, . . . , dn,`.

When the field is isotropic, the variance only depends on ` through

E[b`,jb`′,j′ ] = a` δ`,`′δj,j′ , (2.5)

where δ is the Kronecker delta function and the associated covariance kernel admits

the expression

E[X(p1)X(p2)] =
∞∑
`=0

a`

dn,`∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn, (2.6)

where the sequence {a`}`∈N0 , identified through the relation (2.5), is called angular

power spectrum.

Representation (2.6) naturally yields the family of Gegenbauer polynomials {Cν
` :

` ∈ N0} for ν ≥ 0, which constitutes an orthogonal basis for the space L2([−1, 1], (1−
z2)ν−1/2dz). Actually, when n = 2, 3, . . ., the (n − 1)/2-Gegenbauer polynomial of

degree ` can be expressed in terms of the spherical harmonics through the addition

Theorem (see Equation 4.5 in Narcowich, 1995) or (Lemma 17.3 in Wendland, 2004):

C
(n−1)/2
` (〈p1, p2〉) = ωn

(n− 1)

(2`+ n− 1)

dn,`∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn, (2.7)

where ωn = 2π(n+1)/2/Γ ((n+ 1)/2) is the total mass of the surface measure σn on Sn,

being Γ(·) the Gamma function. Note that the Gegenbauer polynomials are real-valued.

Besides, for all ` ∈ N0,

|C(n−1)/2
` (z)| ≤ C

(n−1)/2
` (1) =

(
`+ n− 2

`

)
, ∀ z ∈ [−1, 1], (2.8)

and ∥∥∥C(n−1)/2
`

∥∥∥2
L2([−1,1],(1−z2)(n−2)/2dz)

=

∫ π

0

(
C

(n−1)/2
` (cos θ)

)2
sin θn−1dθ

=
ωn
ωn−1

(
`+n−2

`

)
(1 + 2`

n−1)
. (2.9)
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In the case n = 2, the Gegenbauer polynomials coincide with the Legendre polynomials

(Dai and Xu, 2013). When n = 1, the addition Theorem simplifies to

C0
` (〈p1, p2〉) = π

2∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ S1,

and according to Equation 22.3.14 in Abramowitz and Stegun (1972), C0
` (cos θ) =

2 `−1 cos(` θ) for ` ∈ N, and C0
` (cos θ) = 1 for ` = 0.

The ingredients in (2.6) and (2.5) sum up nicely to provide the following statement,

known as Schoenberg’s Theorem (Schoenberg, 1942). Let n be a positive integer. Then,

any kernel k : Sn × Sn → R is positive definite and isotropic if and only if

k(p1, p2) = ψ(θ(p1, p2)) =
∞∑
`=0

αn`C
(n−1)/2
` (cos θ), p1, p2 ∈ Sn, (2.10)

with all αn` ≥ 0 and
∑∞

`=0 α
n
`

(
`+n−2

`

)
<∞ when n = 2, 3, . . . or

∑∞
`=1 α

1
` `
−1 <∞ when

n = 1. Note that we use the upper index n in αn` to emphasize the dependence of the

Schoenberg’s coefficients with respect to the dimension of the sphere Sn.

When n = 2 and T = R, a direct way to extend representation (2.4) to processes

defined over S2 × R is proposed by Jones (1963):

X(p, t) =
∞∑
`=0

d2,`∑
j=1

b`,j(t)Y`,j(p), p ∈ S2, t ∈ R, (2.11)

where {b`,j(·)} is a uniquely determined sequence of stochastic processes defined over

the real line. Again, the hypothesis on such sequence are crucial to determine the

properties of the associated covariance. If E[b`,j(·)] = 0 and E[b`,j(t1)b`′,j′(t2)] = a`(t1−
t2)δ`,`′δj,j′ , then the associated covariance is isotropic in space and stationary in time.

Berg and Porcu (2017) show that all covariance functions being isotropic in space and

stationary in time are uniquely defined as

k(p1, t1, p2, t2) = ψ(θ(p1, p2), t1 − t2)

=
∞∑
`=0

a`(t1 − t2)C(n−1)/2
` (cos θ), (pi, ti) ∈ Sn × R,

for a uniquely determined sequence {a`(·)} of positive definite functions with the re-

quirement that
∑

` a`(0) <∞ (otherwise X in (2.11) would have infinite variance).

In view of Jones (1963)’s result, it becomes apparent that the spectral representation

(2.11) is the building block for considering alternatives to isotropy. The following re-

sults show that we can go beyond these spectral representations, by inducing spatial

anisotropy and temporal non-stationarity.
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3 Beyond Spatial Isotropy and Temporal Station-

arity

Recall that T denotes either a compact interval in R or R itself. We are concerned

with the representation of real-valued positive definite kernels on Sn × T . It should

be remarked that isotropy and stationarity occur in a separate way in each respective

space.

Definition 1. Let k be a continuous positive definite kernel on Sn × T .

i.- k is called isotropic with respect to space when there exists a function k̃S : [0, π]×
T × T → R such that

k(p1, t1, p2, t2) = k̃S(θ(p1, p2), t1, t2), p1, p2 ∈ Sn, t1, t2 ∈ T.

ii.- k is called stationary with respect to time when there exists a function k̃T : Sn ×
Sn × R→ R such that

k(p1, t1, p2, t2) = k̃T (p1, p2, t2 − t1), p1, p2 ∈ Sn, t1, t2 ∈ T.

We first focus on a class of kernels defined on the product space Sn × T . We call

E(Sn, T ) the set of continuous symmetric maps k : (Sn × T )2 → R that satisfy the

following: for any t1, t2 ∈ T fixed, there exists a sequence {ϕn`,j(t1, t2)}`,j of complex

numbers such that

k(p1, t1, p2, t2) =
∞∑
`=0

dn,`∑
j=1

ϕn`,j(t1, t2)Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn, (3.1)

where the convergence holds uniformly with respect to (p1, p2) in Sn × Sn and the

sequence {ϕn`,j(t1, t2)}`,j satisfies

ϕn`,j(t1, t2) = ϕn`,dn,`−j+1(t1, t2), ` ∈ N0, j = 1, . . . , dn,`.

An example of a kernel k belonging to E(Sn, T ) is given by the covariance function of a

real-valued random field X on Sn × T with a spectral representation similar to (2.11),

X(p, t) =
∞∑
`=0

dn,`∑
j=1

b`,j(t)Y`,j(p), p ∈ Sn, t ∈ R, (3.2)

where {b`,j(t) : ` ∈ N0, j = 1, . . . , dn,`} is a family of complex-valued centered random

processes on T such that, for all t ∈ T ,

b`,j(t) = b`,dn,`−j+1(t) and E

 ∞∑
`=0

dn,`∑
j=1

|b`,j(t)|2
 <∞,
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and for all t1, t2 ∈ T ,

E[b`,j(t1)b`′,j′(t2)] = 0 for (`, j) 6= (`′, j′). (3.3)

In that case, the covariance function associated with X satisfies Equation (3.1) with

ϕn`,j(t1, t2) = E[b`,j(t1)b`,j(t2)], t1, t2 ∈ T.

Let us remark that writing (3.3) with `′ = ` and j′ = dn,` − j + 1 yields

if j 6= dn,` − j + 1 then E[b`,j(t)
2] = 0, ∀t ∈ T.

In particular, it prevents b`,j to be real-valued except if vanishing.

Theorem 3.1. Let k belong to E(Sn, T ). Then, the following holds.

a) For every t1, t2 ∈ T , the series
∑∞

`=0

∑dn,`

j=1 |ϕn`,j(t1, t2)|2 converges. Additionally,

for any ` ∈ N0 and any j ∈ {1, . . . , dn,`},

ϕn`,j(t1, t2) =

∫
Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2)dσn(p1)dσn(p2). (3.4)

Moreover, ϕn`,j is continuous on T × T for every ` ∈ N0 and j ∈ {1, . . . , dn,`}.

b) The kernel k is a positive definite kernel on Sn× T if and only if, for any ` ∈ N0

and any j ∈ {1, . . . , dn,`}, ϕn`,j is a positive definite kernel on T .

Next result provides a spectral representation for the positive definite kernels that

are isotropic with respect to the space Sn and not necessarily stationary with respect

to time. On the one hand, it is a generalization of the main result given in Berg and

Porcu (2017), which provides a characterization for the stationary case. On the other

hand, it is a corollary of Theorem 3.1.

Theorem 3.2. Let k be a continuous kernel on Sn × T .

Then, k is positive definite and isotropic with respect to space if and only if we have,

for every (pi, ti) ∈ Sn × T, i = 1, 2,

k(p1, t1, p2, t2) =
∞∑
`=0

αn` (t1, t2)C
(n−1)/2
` (cos θ), (3.5)

where,

i) for every ` ∈ N0, α
n
` is a real-valued continuous positive definite kernel on T ;

ii) for every t in T ,
∑∞

`=1 α
n
` (t, t)`n−2 <∞;

iii) let k̃S(θ, t1, t2) = k(p1, t1, p2, t2). Then, for every t1, t2 ∈ T , the convergence in

(3.5) is uniform with respect to θ ∈ [0, π].
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Moreover, for every t1, t2 ∈ T and ` ∈ N0,

αn` (t1, t2) =
ωn−1
ωn

(1 + 2`
n−1)(

`+n−2
`

) ∫ π

0

k̃S(θ, t1, t2)C
(n−1)/2
` (cos θ) sinn−1 θ dθ, for n = 2, 3, . . . ,

(3.6)

and

α1
`(t1, t2) =

{
`
π

∫ π
0
k̃S(θ, t1, t2) cos(`θ) dθ, for ` = 1, 2, . . .

1
π

∫ π
0
k̃S(θ, t1, t2) dθ, for ` = 0.

(3.7)

Next result comes from Theorems 3.1 and 3.2.

Corollary 3.3. Let k : (Sn× T )2 → R be a kernel in E(Sn, T ). Assume moreover that

k is positive definite.

Then, k is isotropic with respect to space if and only if the functions {ϕn`,j}`,j ap-

pearing in Expansion (3.1) do not depend on the j index, i.e. they are such that

ϕn`,j ≡ ϕn`,j′ , for all j, j′ ∈ {1, . . . , dn,`} , ` ∈ N0.

Furthermore, the functions {ϕn`,j}`,j are linked with the functions {αn` }` in Expansion

(3.5) by the following. For n ≥ 2,

ϕn`,j(t1, t2) =
ωn (n− 1)

2`+ n− 1
αn` (t1, t2) , t1, t2 ∈ T, (3.8)

and ϕ1
`,j(t1, t2) = π α1

`(t1, t2) for n = 1.

4 Examples and Simulations

In this section, we consider random fields given by Expansion (3.2) where we choose

a family of independent Gaussian complex-valued centered Gaussian processes {b`,j :

` ∈ N0, j = 1, . . . , dn,`} such that b`,j = b`,dn,`−j+1. Note that independence yields

relation (3.3) to be satisfied.

4.1 A Spatially Isotropic and Time Nonstationary Model

We propose the kernel k(p1, t1, p2, t2) = k̃S(θ(p1, p2), t1, t2), such that

k̃S(θ, t1, t2) = exp

{
λ(g(t1, t2) cos θ − 1)

}
, (θ, t1, t2) ∈ [0, π]× R× R, (4.1)

with λ a nonnegative constant and g the nonstationary positive definite kernel on R
given by

g(t1, t2) =
1

t21 + t22 + 1
, t1, t2 ∈ R.

We note that the kernel (4.1) is nonseparable, isotropic with respect to space and

nonstationary with respect to time. It is called Poisson model, the stationary analogue
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case is shown in Table 1 in Porcu, Bevilacqua and Genton (2016), where one can see

other properties of the model. The Schoenberg’s functions {αn` }`∈N0 that appear in

(3.5) when expanding the isotropic kernel, are given by (3.6). In the case n = 2, it

yields for every t1, t2 ∈ R,

α2
`(t1, t2) = 2 exp(−λ) (1 + 2`)

∫ π

0

exp

{
λg(t1, t2) cos θ

}
C

1/2
` (cos θ) sin θ dθ ` ∈ N0.

(4.2)

We now simulate in R Software (2013), a realization of a Gaussian random field on

S2×R whose covariance function is given by (4.1). First, we compute the α2
` following

(4.2) using the Package orthopolynom by Novomestky (2015) in the computation of

the Gegenbauer polynomials (see Figure 1). Then, we take four time instants t1 = 0.1,

t2 = 0.2, t3 = 0.3 and t4 = 0.4 in order to observe the temporal evolution of the

process. We choose λ = 2 and a mesh on S2 with 40.000 points. For each time instant

we use the spectral representation of the field given by the spherical harmonics series

expansion (3.2), i.e., we simulate

XN(p, ti) =
N∑
`=0

2`+1∑
j=1

b`,j(ti)Y`,j(p), p ∈ S2, i = 1, . . . , 4.

In this way, we need to simulate the coefficients {b`,j(ti)}`,j for each instant of time. The

truncation of the series expansion was put at N = 10, which means ` = 0, 1, . . . , 10,

since in this case the decay of α2
` is fast enough as ` increases.

We like to remark that our simulation procedure follows the approximation de-

scribed in Lang and Schwab (2013) (see Lemma 5.1 in this reference).

To compute the spherical harmonic functions, we use the function legendre sphP lm

included in the Package gsl by Hankin et al. (2017), defined as follows

Y`,j(ϑ, ϕ) =

√
2`+ 1

4π

`− j
`+ j

P`,j(cosϑ) eijϕ, p = p(ϑ, ϕ) ∈ S2,

where P`,j denote the associated Legendre function and (ϑ, ϕ) ∈ [0, π]× [0, 2π).

The variables {b`,j(ti) : ` = 0, 1, . . . , 10, j = 1, . . . , 2` + 1, i = 1, 2, 3, 4} are

simulated as centered complex-valued Gaussian random variables following the next

dependence rule: for each fixed ti, {b`,j(ti) : ` = 0, 1, . . . , 10, j = 1, . . . , 2` + 1} are

uncorrelated and for each fixed `, j,

cov(b`,j(ti), b`,j(tk)) = ϕ`,j(ti, tk) =
π

2`+ 1
α2
`(ti, tk),

with α2
` given by (4.2). Moreover, following Corollary 2.5 in Lang and Schwab (2013),

for j 6= 0, we have that Re(b`,j(ti)) and Im(b`,j(ti)) are equal in law, uncorrelated and
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Figure 1. α2
` (·, ·) for ` = 1, 6 and 12, with λ = 2.

satisfy

E[Re(b`,j(ti))
2] = E[Im(b`,j(ti))

2] =
ϕ`,j(ti, ti)

2
,

and for j = 0, the elements {b`,0(ti)}` are real-valued and satisfy

E[b`,0(ti)
2] = ϕ`,0(ti, ti).

Note that the above covariances ϕ`,j do not depend on the j index. This fact induces

isotropy with respect to space following Corollary 3.3. By a usual regression, we get

that b`,j(t2) follows a conditional Gaussian distribution given b`,j(t1), i.e

b`,j(t2) | b`,j(t1) ∼ N

(
ϕ2
`,j(t1, t2)

ϕ2
`,j(t1, t1)

b`,j(t1), ϕ
2
`,j(t2, t2)−

ϕ2
`,j(t1, t2)

2

ϕ2
`,j(t1, t1)

)
.

We do subsequently the same conditioning for b`,j(t3) given {b`,j(ti) : i = 1, 2} and

for b`,j(t4) given {b`,j(ti) : i = 1, 2, 3}, with j = 1, . . . , 2`+ 1, either for the real or for

the imaginary part, separately. At the end, it is possible to evaluate the error of the

approximation applying Proposition 5.2 of Lang and Schwab (2013), since for every

ti ∈ R, α2
`(ti, ti) decays algebraically with order β > 2 i.e., for i = 1, . . . , 4, there exist

constants Ci > 0 and `0 ≥ 0 such that α2
`(ti, ti) ≤ Ci `

−β for all ` ≥ `0. Thus, it holds

‖X(·, ti)−XN(·, ti)‖L2(S2) ≤ ĈiN
−(β−2)/2,

for N ≥ `0, where Ĉi
2

= Ci

(
2

β−2 + 1
β−1

)
. As an example, the decay of α2

`(ti, ti) for

i = 1, 2, is compared with a function in O(`−3) in Figure 2.

11



Figure 2. ` 7→ α2
` (t1, t1) and ` 7→ α2

` (t2, t2) respectively in color black with curves in
O(`−3) in green.

Figure 3. Isotropic nonstationary Gaussian random field simulated at time instants
t1 = 0.1, t2 = 0.2, t3 = 0.3 and t4 = 0.4 respectively, with N = 10 over a mesh in S2 with

40.000 points.

In Figure 3, we can see the variation of the field through time.

4.2 A Spatially Anisotropic and Time Nonstationary Model

In this section, we provide an anisotropic nonstationary covariance model on Sn × R,

modifying the model given in the previous section. We consider a random field X on

Sn × R that admits an expansion of the type (3.2). We again choose a family of inde-

pendent complex-valued centered Gaussian processes {b`,j : ` ∈ N0, j = 1, . . . , dn,`}
satisfying b`,j = b`,dn,`−j+1. Introducing the covariance functions,

E[b`j(t1)b`j(t2)] = ϕn`,j(t1, t2),

12



we now impose that ϕn`,j depends on the j index, in order to elude the isotropy assump-

tion with respect to space. In particular, when n = 2 we propose to use

ϕ2
`j(t1, t2) =

2j + 1

2`+ 1
α2
`(t1, t2), t1, t2 ∈ R, (4.3)

with α2
` being defined by (4.2).

We now simulate a Gaussian random field on S2 × R at two time instants. The

procedure to apply is analogous to the one explained in Section 4.1, simulating in this

case the {b`,j(ti) : i = 1, 2}`,j in such a way that the time covariance is given by formula

(4.3).

Figure 4. Anisotropic nonstationary Gaussian random field simulated at time instants
t1 = 0.2, t2 = 0.4 respectively, with N = 10 over a mesh in S2 with 40.000 points.

In order to better appreciate the anisotropy, we plot the field at t2 = 0.4 from diff-
erent viewing directions, which are obtained varying the azimuthal angle or rotating
the sphere.

13



Figure 5. Anisotropic nonstationary Gaussian random field simulated at t2 = 0.4 with
viewing directions given by the azimuthal angles 0◦, 90◦, 180◦ and 270◦ respectively.

In Figure 5, we can see the field in the instant t2 from four different directions, in
order to observe changes in the appearance according to the zone of the sphere, which
may reflect the anisotropy.

Appendix: Proofs

Proof of Theorem 3.1

a) For any positive integer N , let us define

kN(p1, t1, p2, t2) :=
N∑
`=0

dn,`∑
j=1

ϕn`,j(t1, t2)Y`,j(p1)Y`,j(p2). (4.4)

For every t1 and t2 in T , kN(·, t1, ·, t2) converges to k(·, t1, ·, t2) as N → ∞ uniformly
on Sn × Sn, and hence in L2(Sn × Sn, dσn ⊗ dσn), i.e.

‖k(·, t1, ·, t2)− kN(·, t1, ·, t2)‖2L2(Sn×Sn) −→N→∞
0. (4.5)

The left-hand side in (4.5) is equal to∫
Sn

∫
Sn

∣∣∣∣∣∣
∞∑

`=N+1

dn,`∑
j=1

ϕn`,j(t1, t2)Y`,j(p1)Y`,j(p2)

∣∣∣∣∣∣
2

dσn(p1)dσn(p2)

=

∞∑
`=N+1

dn,`∑
j=1

∞∑
`′=N+1

dn,`∑
j′=1

ϕn`,j(t1, t2)ϕ
n
`′,j′(t1, t2)

∫
Sn

∫
Sn
Y`,j(p1)Y`′,j′(p1)Y`,j(p2)Y`′,j′(p2)dσn(p1)dσn(p2)

=

∞∑
`=N+1

dn,`∑
j=1

|ϕn`,j(t1, t2)|2 .
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Hence,
∑∞

`=0

∑dn,`

j=1 |ϕn`,j(t1, t2)|2 <∞. By the orthonormality of the spherical harmon-
ics, for any t1, t2 ∈ T , we can thus prove that∫

Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2)dσn(p1)dσn(p2) = ϕn`,j(t1, t2).

Application of Lebesgue’s Theorem to the above integral shows continuity of ϕn`,j on
T × T for all ` and j.

b) Suppose that k is a positive definite kernel on Sn × T . For any fixed ` and j,
and any compactly supported function q on T , we apply Lemma 2.1 with c(p, t) =
Y`,j(p) q(t) for (p, t) ∈ Sn × T , and obtain∫

Sn×T

∫
Sn×T

k(p1, t1, p2, t2)Y`,j(p1) q(t1)Y`,j(p2) q(t2) dσn(p1)dσn(p2)dt1dt2 ≥ 0.

Direct application of Fubini’s Theorem yields∫
T

∫
T

q(t1) q(t2)

(∫
Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2) dσn(p1)dσn(p2)

)
dt1dt2 ≥ 0.

The fact that the inner integral is equal to ϕn`,j(t1, t2) proves that ϕn`,j is a positive
definite kernel on T .

Conversely, suppose that ϕn`,j is a positive definite kernel on T for all ` and j. Then,
for a1, . . . , am in C and (p1, t1), . . . , (pm, tm) in Sn × T , we have

m∑
i,i′=1

aiai′k(pi, ti, pi′ , ti′) =
m∑

i,i′=1

aiai′ lim
N→∞

N∑
`=0

dn,`∑
j=1

ϕn`,j(ti, ti′)Y`,j(pi)Y`,j(pi′)

= lim
N→∞

N∑
`=0

dn,`∑
j=1

m∑
i,i′=1

aiai′ϕ
n
`,j(ti, ti′)Y`,j(pi)Y`,j(pi′) ≥ 0,

since ϕn`,j(ti, ti′)Y`,j(pi)Y`,j(pi′) is a positive definite kernel on Sn × T , being the tensor
product of positive definite kernels on T and Sn respectively, for every ` and j. �

Proof of Theorem 3.2

Suppose that k is a positive definite kernel on Sn × T and additionnaly spatially
isotropic.
First, by Definition 1, there exists a function k̃S : [0, π] × T × T → R such that for
every t1, t2 ∈ T and p1, p2 ∈ Sn,

k(p1, t1, p2, t2) = k̃S(θ(p1, p2), t1, t2).

Let us fix t1 and t2 in T . Since the map k̃S(arccos(·), t1, t2) belongs to L2([−1, 1], (1−
z2)(n−2)/2dz), it admits an expansion in terms of the Gegenbauer polynomials, i.e. there
exists a sequence of real numbers {αn` (t1, t2)}`∈N0 such that

k̃S(arccos(·), t1, t2) =
∞∑
`=0

αn` (t1, t2)C
(n−1)/2
` (·), (4.6)
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where the convergence holds in L2([−1, 1], (1− z2)(n−2)/2dz). Using (2.7), we see that
k satisfies Equation (3.1) with, for n = 2, 3, . . .,

ϕn`,j(t1, t2) =
ωn (n− 1)

2`+ n− 1
αn` (t1, t2), ` ∈ N0, j = 1, . . . , dn,`,

and ϕ1
`,j(t1, t2) = π α1

`(t1, t2) for ` ∈ N0, j = 1, 2. Hence, k belongs to E(Sn, T ). Then,
Theorem 3.1 applies and shows that {αn` }`∈N0 is a sequence of continuous positive
definite kernels on T . Point i) is thus established.

We now focus on point ii). Let t ∈ T be fixed and let us recall that Expan-
sion (4.6) holds in L2([−1, 1], (1 − z2)(n−2)/2dz) for t1 = t2 = t. Moreover, since

k̃S(arccos(·), t, t) is continuous on [−1, 1], we have that the series in (4.6) is Abel
summable on [0, 1) for any z ∈ [−1, 1] (see Theorem 9 in Müller, 1966), i.e. the limit

limr→1−
∑∞

`=0(α
n
` (t, t)C

(n−1)/2
` (z) r`) exists. For z = 1, since αn` (t, t)C

(n−1)/2
` (1) ≥ 0 for

all ` ∈ N0, it implies that the series
∑∞

`=0(α
n
` (t, t)C

(n−1)/2
` (1)) is finite. Noting that,

for n = 2, 3, . . ., C
(n−1)/2
` (1) =

(
`+n−2

`

)
∼ `n−2

(n−2)! and C0
` (1) ∼ 2`−1 when `→∞. Then,

the convergence of the series is equivalent to

∞∑
`=1

αn` (t, t)`n−2 <∞.

Hence, we get ii).
Finally, it remains to establish assertion iii). We consider Expansion (4.6) for fixed

t1, t2 ∈ T . By Cauchy-Schwarz inequality and by (2.8), we can see that for z ∈ [−1, 1]
and for all ` ∈ N0,

|αn` (t1, t2)C
(n−1)/2
` (z)| ≤ 1

2
(αn` (t1, t1) + αn` (t2, t2))

(
`+ n− 2

`

)
,

with
∑∞

`=1 α
n
` (ti, ti)`

n−2 < ∞ for i = 1, 2. Then, by the M-test of Weierstrass, the
series in (4.6) converges uniformly to a continuous function, being precisely the function

k̃S(arccos(·), t1, t2). This proves the uniform convergence of the series in (3.5) for fixed
(t1, t2) ∈ T × T .

At last, Equation (3.6) follows directly from the orthogonality of the Gegenbauer
polynomials and (2.9).

Let us prove now the converse part of Theorem 3.2. If k is a kernel that satisfies
Expansion (4.6) with i), ii), iii) then, using the addition formula (2.7), it is easy to see
that k belongs to E(Sn, T ). The converse part of Theorem 3.1 allows us to state that k
is a positive definite kernel on Sn × T . The isotropy property is clear from (4.6) since
the right-hand side only depends on the inner product of p1 and p2 in Sn. �
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