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Characterization Theorems for Covariance Functions
on n−Dimensional Spheres Across Time

Anne Estrade, Alessandra Fariñas and Emilio Porcu

Abstract

This paper provides representation theorems for classes of nonstationary covariance func-
tions on spheres across time. Isotropy on spheres comes out naturally in virtue of the addition
theorem, and we show how to escape from this assumption, in order to obtain anisotropic ker-
nels. The same criterion is used to escape from stationarity in the temporal component. An
algorithm for the simulation of Gaussian processes with nonstationary and anisotropic covari-
ances is provided.

Keywords: Gegenbauer Polynomial, Positive Definite, Space-time Random Field, Spectral Rep-
resentation, Spherical Harmonic.

1 Introduction

The literature on positive definite kernels on spheres has become ubiquitous, and we refer the
reader to the essay by Gneiting (2013), with the list of references given there. Both mathematical
and statistical communities have been interested in the construction of positive definite functions
defined over product spaces where the sphere is involved. The recent tours de force in Barbosa
and Menegatto (2016); Guella and Menegatto (2016); Guella, Menegatto and Peron (2016); Guella
and Menegatto (2016) are apparent indications that there are some important branches of the
mathematical community devoted to studying such constructions.
Recently, Porcu, Alegŕıa and Furrer (2017) have proposed an overview of statiscal approaches for
global data, showing that positive definite functions have a crucial role for modeling temporally
evolving phenomena defined over the sphere representing planet Earth. The importance of positive
definite functions extends to statistical inferences through, e.g., likelihood techniques, as well as to
optimal linear prediction, called kriging in the geostatistical framework.

Recent statistical works are concerned with the construction of space-time covariances where the
space is the spherical shell. Characterization theorems for positive definite kernels on n dimensional
spheres have been provided in the seminal paper by Schoenberg (1942). Then, Berg and Porcu
(2016) and Porcu, Bevilacqua and Genton (2016) extended Schoenberg’s representation theorem to
space-time. In particular, Porcu, Bevilacqua and Genton (2016) focus on construction principles
that allow for algebraically tractable closed forms, and then analyze the discrepancy between using
the correct metric on the sphere and other metrics. Jun and Stein (2007, 2008) emphasize that
global data are affected by anisotropy and nonstationarity. This idea is pursued, albeit with different
approaches, by Castruccio and Guinness (2016). The key argument by this group of authors is
that statistical models on a spherical domain could be nonstationary for different latitudes, but
stationary at the same latitude.

Our paper considers the problem of covariance functions that are anisotropic with respect to
space and nonstationary with respect to time. Schoenberg’s representation (Schoenberg, 1942), in
concert with the addition theorem for spherical harmonics (Marinucci and Peccati, 2011), imply that
the spherical isotropy is a natural assumption for the construction of covariances over spheres. Thus,

1



the crux for generalizing the classical representation theorems to the anisotropic and nonstationary
case is to evade from the addition theorem for spherical harmonics and use a different mathematical
machinery. This paper puts some effort into this direction.

In particular, we provide spectral representations for positive definite kernels on (Sn×T )2, with
Sn being the n-dimensional sphere of Rn+1 with unit radius, and where T denotes time, which might
be the whole real line or a compact set. On the basis of such spectral representations, we illustrate
how to obtain anisotropy with respect to space, and nonstationarity with respect to time. The
paper is organized as follows. In Section 2, we give necessary notation and background. The main
results of the paper are provided in Section 3. Section 4 provides some examples and a simulation
technique for the models proposed in this paper.

2 Background

This section is largely expository and contains basic material that will be useful for a neater
exposition of our results. Although most of our work is related to the product space Sn × T , it
will be convenient to present some basic facts by making reference to a metric space, denoted M
throughout. We call kernel on M any symmetric mapping k : M ×M → R. The kernel k is positive
definite if, for every positive integer m and every set of points p1, . . . , pm ∈ M , the m×m matrix
with entries [k(pi, pi′)]1≤i,i′≤m satisfies, for any c1, . . . , cm ∈ R,

m∑
i,i′=1

ci ci′ k(pi, pi′) ≥ 0.

Kolmogorov’s existence theorem implies that k is positive definite if and only if there exists a
zero mean real valued Gaussian random field X defined on M such that k is the covariance function
of X. Namely, we have

k(p1, p2) := cov(X(p1), X(p2)) = E[X(p1)X(p2)], p1, p2 ∈M.

The class of positive definite kernels on M is a convex cone being stable by multiplication
and closed under the topology of pointwise convergence. Furthermore, if k1 and k2 are positive
definite kernels on M1 and M2 respectively, then their tensor product k1 ⊗ k2, defined as k1 ⊗
k2((p1, p2), (t1, t2)) := k1(p1, t1)k2(p2, t2) for pi, ti ∈ Mi for i = 1, 2, is a positive definite kernel on
M1 ×M2.

Next lemma provides an integral characterization of continuous positive definite kernels on
Sn ×R. It extends the special case given by Lemma 4.3 in Berg and Porcu (2016). We do not give
a proof because it is obtained by following similar arguments.

Lemma 2.1. Let k be a continuous kernel on Sn × R.
Then, k is positive definite if and only if, for any continuous function c : Sn×R→ R with compact
support, ∫

Sn×R

∫
Sn×R

k(p1, t1, p2, t2) c(p1, t1) c(p2, t2) dσn(p1)dt1dσn(p2)dt2 ≥ 0, (2.1)

where σn is the surface measure on Sn.
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Through the manuscript we consider the geodesic (or great circle) distance as the mapping
θ : Sn × Sn → [0, π] defined through

θ(p1, p2) = arccos(〈p1, p2〉), p1, p2 ∈ Sn,

where 〈·, ·〉 denotes the classical inner product. Whenever no confusion can arise, we use the shortcut
θ for θ(p1, p2). A kernel k : Sn × Sn → R is called isotropic if there exists a function ψ : [0, π]→ R
such that

k(p1, p2) = ψ(θ(p1, p2)), p1, p2 ∈ Sn. (2.2)

Isotropic covariance functions have a well established literature: Schoenberg (1942) has shown that
all continuous covariance functions on n-dimensional spheres, being additionally isotropic, admit
series expansions depending on spherical harmonics. We now recall some basic facts on these topics.
We refer to the recent monographs by Wendland (2005) and Dai and Xu (2013) for more details.

Let ∆Sn denotes the Laplace-Beltrami operator on Sn. Introducing λ` = `(` + n − 1) with
` = 0, 1, . . ., the sequence {λ` : ` ∈ N0} is called the spectrum of ∆Sn . For each eigenvalue λ`, the
associated eigenspace in L2(Sn,dσn), i.e. the set of functions Y that satisfy the equation

∆SnY − λ`Y = 0, (2.3)

has uniquely determined dimension dn,`, where

dn,` =

{
(2`+n−1)(`+n−2)!

`!(n−1)! if ` ∈ N,
1 if ` = 0.

(2.4)

One can choose a complete orthonormal system in L2(Sn,dσn), {Y`,j : ` ∈ N0, j = 1, . . . , dn,`} such
that each Y`,j satisfies the eigenproblem in Equation (2.3). The functions {Y`,j : j = 1, . . . , dn,`}
are called spherical harmonics of order `. For any f ∈ L2(Sn,dσn), let us introduce

fN (p) :=

N∑
`=0

dn,`∑
j=1

b`,jY`,j(p), p ∈ Sn, with b`,j =

∫
Sn
f(p)Y`,j(p)dσn(p).

Thus, we have ∫
Sn
|f(p)− fN (p)|2 dσn(p)→ 0, as N →∞.

A classical result provides an explicit relation between any isotropic random field and its related
expansion in terms of spherical harmonics. Formally, it states that any zero-mean, real-valued and
squared integrable random field X on Sn with covariance function k being isotropic admits the
expansion

X(p) =

∞∑
`=0

dn,`∑
j=1

b`,jY`,j(p), p ∈ Sn, (2.5)

with the coefficients {b`,j}`,j being real-valued uncorrelated zero-mean random variables with vari-
ance depending on ` only. Specifically, we have

b`,j =

∫
Sn
X(p)Y`,j(p)dσn(p), ` ∈ N0, j = 1, . . . , dn,`.
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The representation in Equation (2.5) is also known as Karhunen-Loève expansion and the associated
covariance kernel admits the expression

E[X(p1)X(p2)] =

∞∑
`=0

a`

dn,`∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn, (2.6)

where the sequence {a`}`∈N0
is called angular power spectrum and is identified through the relation

E[b`1,j1b`2,j2 ] = a`1δ`1,`2δj1,j2 , (2.7)

where δ is the Kronecker delta function.
Representation (2.6) naturally yields the family of Gegenbauer polynomials {Cν` : ` ∈ N0} for

ν ≥ 0, which constitutes an orthogonal basis for L2([−1, 1], (1− z2)ν−1/2dz).
When, n = 2, 3, . . ., the (n− 1)/2-Gegenbauer polynomial of degree ` can be expressed in terms

of the spherical harmonics through the addition Theorem (see Equation 4.5 in Narcowich, 1995)
and (Lemma 17.3 in Wendland, 2005):

C
(n−1)/2
` (〈p1, p2〉) = ωn

n− 1

2`+ n− 1

dn,`∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn, (2.8)

where ωn = 2π(n+1)/2/Γ ((n+ 1)/2) is the total mass of the surface measure σn on Sn. Besides, for
all ` ∈ N0,

|C(n−1)/2
` (z)| ≤ C(n−1)/2

` (1) =

(
`+ n− 2

`

)
, ∀ z ∈ [−1, 1], (2.9)

and

‖C(n−1)/2
` ‖2L2([−1,1],(1−z2)(n−2)/2dz) =

∫ π

0

(
C

(n−1)/2
` (cos θ)

)2
sin θn−1dθ

=
ωn
ωn−1

(
`+n−2

`

)
(1 + 2`

n−1 )
. (2.10)

In the case n = 2, the Gegenbauer polynomials coincide with the Legendre polynomials (Dai and
Xu, 2013).

When n = 1, the addition Theorem simplifies to

C0
` (〈p1, p2〉) = π

2∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ S1,

and according to Equation 22.3.14 in Abramowitz and Stegun (1972), C0
` (cos θ) = 2 `−1 cos(` θ) for

` ∈ N, and C0
` (cos θ) = 1 for ` = 0.

The ingredients in (2.6) and (2.7) sum up nicely to provide the following statement, known as
Schoenberg’s Theorem (Schoenberg, 1942). Let n be a positive integer. Then, any kernel k on
Sn × Sn is positive definite and isotropic if and only if

k(p1, p2) = ψ(θ(p1, p2)) =

∞∑
`=0

αn`C
(n−1)/2
` (cos(θ(p1, p2))), p1, p2 ∈ Sn, (2.11)
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with all αn` ≥ 0 and
∑∞
`=0 α

n
`

(
`+n−2

`

)
<∞ when n = 2, 3, . . . or

∑∞
`=1 α

1
` `
−1 <∞ when n = 1.

Note that we use the upper index n in αn` to emphasize the dependence of the Schoenberg’s
coeficients with respect to the dimension of the sphere Sn.

3 Results

Throughout, T denotes either any compact interval in R or R itself. We are concerned with
the representation of real-valued positive definite kernels on Sn × T . At this point, it should be
remarked that isotropy and stationarity occur in a separate way in each respective space.

Definition 1. Let k be a continuous positive definite kernel on Sn × T .

i.- k is called isotropic with respect to space when there exists a function k̃S : [0, π]× T × T → R
such that

k(p1, t1, p2, t2) = k̃S(arccos(〈p1, p2〉), t1, t2), p1, p2 ∈ Sn, t1, t2 ∈ T.

ii.- k is called stationary with respect to time when there exists a function k̃T : Sn × Sn ×R→ R
such that

k(p1, t1, p2, t2) = k̃T (p1, p2, t2 − t1), p1, p2 ∈ Sn, t1, t2 ∈ T.

We first focus on a class of kernels defined on the product space Sn×T . We call E(Sn, T ) the set of
continuous symmetric maps k : (Sn × T )2 → R that satisfy the following: for any t1, t2 ∈ T fixed,
there exists a sequence {ϕn`,j(t1, t2)}`,j of real numbers such that

k(p1, t1, p2, t2) =

∞∑
`=0

dn,`∑
j=1

ϕn`,j(t1, t2)Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn, (3.1)

where the convergence holds uniformly with respect to (p1, p2) in Sn × Sn.

An example of a kernel k belonging to E(Sn, T ) is given by the covariance kernel of a random field
X on Sn × T such that

X(p, t) =

∞∑
`=0

dn,`∑
j=1

b`,j(t)Y`,j(p), (p, t) ∈ Sn × T, (3.2)

with {b`,j(t) : ` ∈ N0, j = 1, . . . , dn,`} a sequence of independent centered random processes on

T such that E
(∑∞

`=0

∑dn,`

j=1 b`,j(t)
2
)
< ∞, for all t ∈ T. In that case, the covariance function

associated with X satisfies Equation (3.1) with

ϕn`,j(t1, t2) = cov(b`,j(t1), b`,j(t2)), t1, t2 ∈ T.
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Theorem 3.1. Let k belong to E(Sn, T ). Then, the following holds.

a) For every t1, t2 ∈ T , the series
∑∞
`=0

∑dn,`

j=1 ϕ
n
`,j(t1, t2)2 converges. Additionally, for any

` ∈ N0 and any j ∈ {1, . . . , dn,`},

ϕn`,j(t1, t2) =

∫
Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2)dσn(p1)dσn(p2). (3.3)

Moreover, ϕn`,j is continuous and symmetric on T × T for every ` ∈ N0 and j ∈ {1, . . . , dn,`}.

b) The kernel k is a positive definite kernel on Sn × T if and only if, for any ` ∈ N0 and any
j ∈ {1, . . . , dn,`}, ϕn`,j is a positive definite kernel on T .

Proof. a) For any positive integer N , let us define

kN (p1, t1, p2, t2) :=

N∑
`=0

dn,`∑
j=1

ϕn`,j(t1, t2)Y`,j(p1)Y`,j(p2). (3.4)

For every t1 and t2 in T , kN (·, t1, ·, t2) converges to k(·, t1, ·, t2) as N → ∞ uniformly on Sn × Sn,
and hence in L2(Sn × Sn,dσn ⊗ dσn), i.e.

‖k(·, t1, ·, t2)− kN (·, t1, ·, t2)‖2L2(Sn×Sn) −→N→∞
0. (3.5)

The left-hand side in (3.5) is equal to

∫
Sn

∫
Sn

 ∞∑
`=N+1

dn,`∑
j=1

ϕn
`,j(t1, t2)Y`,j(p1)Y`,j(p2)

2

dσn(p1)dσn(p2)

=

∞∑
`=N+1

dn,`∑
j=1

∞∑
`′=N+1

dn,`∑
j′=1

ϕn
`,j(t1, t2)ϕn

`′,j′(t1, t2)

∫
Sn

∫
Sn
Y`,j(p1)Y`′,j′(p1)Y`,j(p2)Y`′,j′(p2)dσn(p1)dσn(p2)

=

∞∑
`=N+1

dn,`∑
j=1

ϕn
`,j(t1, t2)2 .

Hence,
∑∞
`=0

∑dn,`

j=1 ϕ
n
`,j(t1, t2)2 < ∞. By the orthonormality of the spherical harmonics, for any

t1, t2 ∈ T , we can thus prove that∫
Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2)dσn(p1)dσn(p2) = ϕn`,j(t1, t2).

Application of Lebesgue’s Theorem to the above integral shows continuity of ϕn`,j on T × T for all
` and j.

b) Suppose that k is a positive definite kernel on Sn×T . For any fixed ` and j, and any compactly
supported function q on T , we apply Lemma 2.1 with c(p, t) = Y`,j(p) q(t) for (p, t) ∈ Sn × T , and
obtain ∫

Sn×T

∫
Sn×T

k(p1, t1, p2, t2)Y`,j(p1) q(t1)Y`,j(p2) q(t2) dσn(p1)dσn(p2)dt1dt2 ≥ 0.
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Direct application of Fubini’s Theorem yields∫
T

∫
T

q(t1) q(t2)

(∫
Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2) dσn(p1)dσn(p2)

)
dt1dt2 ≥ 0.

The fact that the inner integral is equal to ϕn`,j(t1, t2) proves that ϕn`,j is a positive definite kernel
on T .

Conversely, suppose that ϕn`,j is a positive definite kernel on T for all ` and j. Then, for a1, . . . , am
in R and (p1, t1), . . . , (pm, tm) in Sn × T , we have

m∑
i,i′=1

aiai′k(pi, ti, pi′ , ti′) =

m∑
i,i′=1

aiai′ lim
N→∞

N∑
`=0

dn,`∑
j=1

ϕn`,j(ti, ti′)Y`,j(pi)Y`,j(pi′)

= lim
N→∞

N∑
`=0

dn,`∑
j=1

m∑
i,i′=1

aiai′ϕ
n
`,j(ti, ti′)Y`,j(pi)Y`,j(pi′) ≥ 0,

since ϕn`,j(ti, ti′)Y`,j(pi)Y`,j(pi′) is positive definite on (Sn×T )2 being the tensor product of positive
definite kernels on T and Sn repectively, for every ` and j. Then, the limit of a sequence of positive
definite kernels on Sn × T is also a positive definite kernel on Sn × T .

Next result provides a spectral representation for the positive definite kernels that are isotropic
with respect to the space Sn and not necessarily stationary with respect to time. On the one
hand, it is a generalization of the main result given in Berg and Porcu (2016), which provides a
characterization for the stationary case. On the other hand, it is a corollary of Theorem 3.1.

Theorem 3.2. Let k be a continuous kernel on Sn × T .
Then, k is positive definite and isotropic with respect to space if and only if we have,
for every (pi, ti) ∈ Sn × T, i = 1, 2,

k(p1, t1, p2, t2) =

∞∑
`=0

αn` (t1, t2)C
(n−1)/2
` (cos(θ(p1, p2))), (3.6)

where,

i) for every ` ∈ N0, αn` is a real-valued continuous positive definite kernel on T ;

ii) for every t in T ,
∑∞
`=1 α

n
` (t, t)`n−2 <∞;

iii) let k̃S(θ, t1, t2) = k(p1, t1, p2, t2). Then, for every t1, t2 ∈ T , the convergence in (3.6) is
uniform with respect to θ ∈ [0, π].

Moreover, for every t1, t2 ∈ T and ` ∈ N0,

αn` (t1, t2) =
ωn−1
ωn

(1 + 2`
n−1 )(

`+n−2
`

) ∫ π

0

k̃S(θ, t1, t2)C
(n−1)/2
` (cos θ) (sin θ)n−1dθ, for n = 2, 3, . . . , (3.7)

and

α1
` (t1, t2) =

{
`
π

∫ π
0
k̃S(θ, t1, t2) cos(`θ) dθ, for ` = 1, 2, . . .

1
π

∫ π
0
k̃S(θ, t1, t2) dθ, for ` = 0.

(3.8)
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Proof. Suppose that k is a positive definite kernel on Sn × T and additionnaly spatially isotropic.
First, by Definition 1, there exists a function k̃S : [0, π]× T × T → R such that for every t1, t2 ∈ T
and p1, p2 ∈ Sn,

k(p1, t1, p2, t2) = k̃S(θ(p1, p2), t1, t2).

Let us fix t1 and t2 in T . Since the map k̃S(arccos(·), t1, t2) belongs to L2([−1, 1], (1−z2)(n−2)/2dz),
it admits an expansion in terms of the Gegenbauer polynomials, i.e. there exists a sequence of real
numbers {αn` (t1, t2)}`∈N0

such that

k̃S(arccos(·), t1, t2) =

∞∑
`=0

αn` (t1, t2)C
(n−1)/2
` (·), (3.9)

where the convergence holds in L2([−1, 1], (1 − z2)(n−2)/2dz). Using (2.8), we see that k satisfies
Equation (3.1) with, for n = 2, 3, . . .,

ϕn`,j(t1, t2) =
ωn (n− 1)

2`+ n− 1
αn` (t1, t2), ` ∈ N0, j = 1, . . . , dn,`,

and ϕ1
`,j(t1, t2) = π α1

` (t1, t2) for ` ∈ N0, j = 1, 2. Hence, k belongs to E(Sn, T ). Then, Theorem 3.1
applies and shows that {αn` }`∈N0

is a sequence of continuous positive definite kernels on T . Point
i) is thus established.

We now focus on point ii). Let t ∈ T be fixed and let us recall that Expansion (3.9) holds in

L2([−1, 1], (1 − z2)(n−2)/2dz) for t1 = t2 = t. Moreover, since k̃S(arccos(·), t, t) is continuous on
[−1, 1], we have that the series in (3.9) is Abel summable on [0, 1) for any z ∈ [−1, 1] (see Theorem

9 in Müller, 1966), i.e. the limit limr→1−
∑∞
`=0(αn` (t, t)C

(n−1)/2
` (z) r`) exists. For z = 1, since

αn` (t, t)C
(n−1)/2
` (1) ≥ 0 for all ` ∈ N0, it implies that the series

∑∞
`=0(αn` (t, t)C

(n−1)/2
` (1)) is finite.

Noting that, for n = 2, 3, . . ., C
(n−1)/2
` (1) =

(
`+n−2

`

)
∼ `n−2

(n−2)! and C0
` (1) ∼ 2`−1 when ` → ∞.

Then, the convergence of the series is equivalent to

∞∑
`=1

αn` (t, t)`n−2 <∞.

Hence, we get ii).
Finally, it remains to establish assertion iii). We consider Expansion (3.9) for fixed t1, t2 ∈ T .

By Cauchy-Schwarz inequality and by (2.9), we can see that for z ∈ [−1, 1] and for all ` ∈ N0,

|αn` (t1, t2)C
(n−1)/2
` (z)| ≤ 1

2
(αn` (t1, t1) + αn` (t2, t2))

(
`+ n− 2

`

)
,

with
∑∞
`=1 α

n
` (ti, ti)`

n−2 < ∞ for i = 1, 2. Then, by the M-test of Weierstrass, the series in (3.9)

converges uniformly to a continuous function, being precisely the function k̃S(arccos(·), t1, t2). This
proves the uniform convergence of the series in (3.6) for fixed (t1, t2) ∈ T × T .

At last, Equation (3.7) follows directly from the orthogonality of the Gegenbauer polynomials
and (2.10).
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Let us prove now the converse part of Theorem 3.2. If k is a kernel that satisfies Expansion
(3.9) with i), ii), iii) then, using the addition formula (2.8), it is easy to see that k belongs to
E(Sn, T ). The converse part of Theorem 3.1 allows us to state that k is a positive definite kernel
on Sn × T . The isotropy property is clear from (3.9) since the right-hand side only depends on the
inner product of p1 and p2 in Sn.

Next result comes from Theorems 3.1 and 3.2.

Corollary 3.3. Let k : (Sn×T )2 → R be a kernel in E(Sn, T ). Assume moreover that k is positive
definite.

Then, k is isotropic with respect to space if and only if the functions {ϕn`,j}`,j appearing in
Expansion (3.1) do not depend on the j index, i.e. they are such that

ϕn`,j ≡ ϕn`,j′ , for all j, j′ ∈ {1, . . . , dn,`} , ` ∈ N0.

Furthermore, the functions {ϕn`,j}`,j are linked with the functions {αn` }` in Expansion (3.6) by the
following, for n ≥ 2,

ϕn`,j(t1, t2) =
ωn (n− 1)

2`+ n− 1
αn` (t1, t2) , t1, t2 ∈ T, (3.10)

and ϕ1
`,j(t1, t2) = π α1

` (t1, t2) for n = 1.

4 Examples of nonstationary models on Sn × R
In this section, we will consider random fields given by expansions of the type (3.2). Our purpose,

is to simulate the data with the necessary knowledge of the covariance structure of the field.

4.1 An isotropic nonstationary model on Sn × R
We propose the kernel k(p1, t1, p2, t2) = k̃S(arccos(〈p1, p2〉), t1, t2), such that

k̃S(θ, t1, t2) = exp(λ(g(t1, t2) cos θ − 1)), (θ, t1, t2) ∈ [0, π]× R× R, (4.1)

with λ a nonnegative constant and g the nonstationary positive definite kernel on R given by

g(t1, t2) =
1

t21 + t22 + 1
, t1, t2 ∈ R.

We note that the kernel (4.1) is nonseparable, isotropic with respect to space and nonstationary
with respect to time. It is called Poisson model, the stationary analogue case is shown in Table
1 in Porcu, Bevilacqua and Genton (2016), where one can see other properties of the model. The
Schoenberg’s functions {αn` }`∈N0

that appear in (3.6) when expanding the kernel, are given by (3.7).
If n = 2 for every t1, t2 ∈ R,

α2
` (t1, t2) = 2 exp(−λ) (1 + 2`)

∫ π

0

exp(λg(t1, t2) cos θ)C
1/2
` (cos θ) sin θ dθ, ` ∈ N0. (4.2)
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4.2 Simulation of an isotropic nonstationary Gaussian field on S2 × R
We simulate in R software a realization of a Gaussian random field on S2 ×R whose covariance

function is given by (4.1). First, we compute the α2
` following (4.2) using the Package orthopolynom

by Novomestky (2015) in the computation of the Gegenbauer polynomials (see Fig. 1). Then we
take four time instants t1 = 0.1, t2 = 0.3, t3 = 0.5 and t4 = 0.7, in order to observe the changes of
the field realization along the time, we chose λ = 2 and a mesh on S2 with 40.000 points. For each
time instant we use the spectral representation of the field given by the spherical harmonics series
expansion (3.2), i.e we simulate

XN (p, ti) =

N∑
`=0

2`+1∑
j=1

b`,j(ti)Y`,j(p), p ∈ S2, i = 1, . . . , 4.

In this way, it requires to simulate the coefficients {b`,j(ti)}`,j for each instant of time. The
truncation of the series expansion was put at N = 10, that means ` = 0, 1, . . . , 10, since in this case
the decay of α2

` is fast enough as ` increases.

Additionally, to compute the spherical harmonic functions, we use the function legendre sphP lm
included in the Package gsl by Hankin et al. (2017), defined as follows

Y`,j(p) =

√
2`+ 1

4π

`− j
`+ j

P`,j(p), p ∈ S2,

where P`,j denote the associated Legendre function.

Figure 1. α2
`(·, ·) for ` = 1, 6 and 12, with λ = 2.

10



The variables {b`,j(ti) : ` = 0, 1, . . . , 10, j = 1, . . . , 2` + 1, i = 1, 2, 3, 4} are simulated as
centered Gaussian random variables following the next dependence rule: for each fixed ti, {b`,j(ti) :
` = 0, 1, . . . , 10, j = 1, . . . , 2`+ 1} are uncorrelated and for each fixed `, j,

cov(b`,j(ti), b`,j(tk)) = ϕ`,j(ti, tk) =
π

2`+ 1
α2
` (ti, tk),

with α2
` given by (4.2). Note that the above covariance do not depend on j index. This fact induces

isotropy with respect to space. Hence, b`,j(t2) follows a conditional Gaussian distribution given
b`,j(t1), i.e

b`,j(t2) | b`,j(t1) ∼ N

(
ϕ2
`,j(t1, t2)

ϕ2
`,j(t1, t1)

b`,j(t1), ϕ2
`,j(t2, t2)−

ϕ2
`,j(t1, t2)2

ϕ2
`,j(t1, t1)

)
.

We do subsequently the same recurrence for b`,j(t3) given b`,j(t2) and for b`,j(t4) given b`,j(t3),
with j = 1, . . . , 2`+1. At the end, it is possible to evaluate the error of the approximation applying
Proposition 5.2 of Lang and Schwab (2013), since for every ti ∈ R, α2

` (ti, ti) decays algebraically with
order β > 2 i.e., for i = 1, . . . , 4, there exist constants Ci > 0 and `0 ≥ 0 such that α2

` (ti, ti) ≤ Ci `−β
for all ` ≥ `0. Thus, it holds

‖X(·, ti)−XN (·, ti)‖L2(S2) ≤ ĈiN−(β−2)/2,

for N ≥ `0, where Ĉi
2

= Ci

(
2

β−2 + 1
β−1

)
. As an example, the decay of α2

` (ti, ti) for i = 1, 2, is

compared with a function in O(`−3) in Figure 2.

Figure 2. α2
`(t1, t1) and α2

`(t2, t2) respectively in color black with curves in O(`−3) in green, identifying
the x-axis with the index `.
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Figure 3. Isotropic nonstationary Gaussian random field simulated at time instants t1 = 0.1, t2 = 0.3,
t3 = 0.5 and t4 = 0.7 respectively, with N = 10 over a mesh in S2 with 40.000 points.

In Figure 3, we can see the variation of the field along the time, there are small differences
between the spheres due to the strong correlation in time.

4.3 An anisotropic nonstationary model on Sn × R
In this section, we give an anisotropic nonstationary covariance model on Sn×R, modifying the

model given in the previous section. We still consider a random field X on Sn × R that admits an
expansion of type (3.2),

X(p, t) =

∞∑
`=0

dn,`∑
j=1

b`,j(t)Y`j(p), p ∈ Sn, t ∈ R.

We now choose a family of independent Gaussian processes {b`,j : ` ∈ N0, j = 1, . . . , dn,`}
satisfying

E[b`j(t1)b`j(t2)] = ϕn`,j(t1, t2),

where we impose that ϕn`,j has dependence on the j index, in order to elude the isotropy assumption
with respect to space, through the application of Corollary 3.3. In particular, when n = 2 we propose
to use

ϕ2
`j(t1, t2) =

2j + 1

2`+ 1
α2
` (t1, t2), t1, t2 ∈ R, (4.3)
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where we add the j dependence through the multiplication term 2j+1
2`+1 with α2

` being defined as in
(4.2).

4.4 Simulation of an anisotropic nonstationary Gaussian field on S2 × R
We simulate a Gaussian random field on S2 × R. The procedure to apply is analogous to the

one explained in the last section, simulating in this case the {b`,j(ti) : i = 1, 2, 3, 4}`,j in such a way
that the time covariance is given by formula (4.3).

Figure 4. Anisotropic nonstationary Gaussian random field simulated at time instants t1 = 0.2, t2 = 0.6
respectively, with N = 10 over a mesh in S2 with 40.000 points.

In order to appreciate better the anisotropy, we plot the field at t1 = 0.2 from different viewing
directions, which are obtained varying the azimuthal angle or rotating the sphere.
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Figure 5. Anisotropic nonstationary Gaussian random field simulated at t1 = 0.2 with viewing directions
given by the azimuthal angles 0◦, 90◦, 180◦ and 270◦ respectively.

In Figure 5, we can see the field in the instant t1 from different directions, in order to observe
changes in the appearance according to the zone of the sphere, which may reflect the anisotropy.
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alessa.farinas@gmail.com

Emilio Porcu

School of Mathematics and Statistics, Newcastle University, United Kingdom

Department of Mathematics, University Federico Santa Maŕıa, Chile
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