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A FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD
WITH IMPROVED CONTROL OVER THE MODELING ERROR ∗

DOGHONAY ARJMAND † AND CHRISTIAN STOHRER ‡

Abstract. Multiscale partial differential equations (PDEs) are difficult to solve by traditional
numerical methods due to the need to resolve the small wavelengths in the media over the entire
computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method
(FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic,
and hyperbolic type. Typical multiscale methods require a coupling between a micro and a macro
model. Inspired from the homogenization theory, traditional FE-HMM schemes use elliptic PDEs as
the micro model. We use, however, the second order wave equation as our micro model independent
of the type of the problem on the macro level. This allows us to control the modeling error originating
by the coupling between the different scales. In a spatially fully discrete a priori error analysis we
prove that the modeling error can be made arbitrarily small for periodic media, even if we do not
know the exact period of the oscillations in the media. We provide numerical examples in one and
two dimensions confirming the theoretical results. Further examples show that the method captures
the effective solutions in general non-periodic settings as well.

Key words. Multiscale method, homogenization, partial differential equations, modeling error.
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1. Introduction Various physical phenomena in the universe have multi-
scale/multiphysics nature. In general, attacking these kind of problems poses a con-
siderable difficulty due to the interaction of different scales in the problem. While
the smallest scales in the problem contribute to the average behavior of the overall
system, the quantity of interest—the average part of the multiscale solution—varies
on a larger scale only. Nevertheless, using a coarse resolution in a naive way leads to
significant errors. On the other hand, resolving all the scales in the problem through
the entire computational domain can be prohibitively expensive if the size of the fluc-
tuations in the model parameters are much smaller than the characteristic length of
the domain. Therefore, the trend has been to develop multiscale methods which cou-
ple the mathematical models in different scales in a clever way and thereby lead to a
lower computational cost, see [14] and the references therein.

In this work, we develop and analyze a multiscale method, within the framework of
heterogeneous multiscale methods (HMM). This framework was introduced by E and
Engquist [15] to treat problems with multiscale nature. In the last decade multiscale
schemes based on HMM principles have been successfully applied to a variety of
different multiscale problems [16, 3]. Here, we propose a novel HMM scheme, which
approximates the effective solutions of multiscale problems modeled by linear elliptic,
parabolic, and hyperbolic partial differential equations (PDEs). We assume that the
multiscale nature of the problem is only due to the heterogeneities in the medium,
e.g. in the elliptic case we consider the model problem

Find uε∈H1
0 (Ω), such that∫

Ω

aε(x)∇uε ·∇vdx=

∫
Fvdx ∀v∈H1

0 (Ω).
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2 FE-HMM with Improved Control over the Modeling Error

Here the properties of the medium is represented by the coefficient aε, where ε is the
length of its fastest oscillations and thus stands for the size of the smallest scale in the
problem. We will introduce the precise mathematical settings of our model problems
in the next section. As ε gets smaller, a direct numerical simulation of such a problem
becomes expensive. On the contrary, the solution uε converges to the solution of an
effective problem, known as the homogenized problem, which has no dependency on
the small scale parameter. This is a well known result from homogenization theory,
see e.g.[10, 21, 13]. Nevertheless, explicit formulas for the homogenized equation are
only available under certain restrictive assumptions such as periodicity of the media.
Our motivation in this paper is to develop a method with targeting three main goals.
First, the method should not assume any restrictive assumptions such as periodicity.
The only assumption, other than classical well-posedness requirements, is that the
scales involved in the problem should be well separated. Second, the method should
approximate the homogenized solution up to high orders whenever homogenization is
applicable, e.g. in periodic media. Lastly, the method should be far cheaper than the
traditional methods.

The principle idea of HMM is to solve an incomplete macro problem with a
standard numerical scheme. The missing data to close the problem are computed
on the fly by solving micro problems constrained by the macro state. Since the
micro problems are computed on small sampling domains not covering the entire
computational domain HMM schemes become feasible in terms of computational costs.
Moreover, since the micro problems are independent of each other they could be solved
in parallel reducing the computational time even further. Following this idea one has
to choose two solvers, one for the solution of the macro problem and one for the micro
problem. Using twice a finite element method is a common choice, leading to so called
FE-HMM schemes.

The FE-HMM scheme proposed in [1, 17] for the elliptic, in [23, 6] for the
parabolic, and in [4, 5] for the hyperbolic problem use elliptic micro problems to
compute the FE-HMM bilinear form. At first, it might be surprising, that the same
micro problem is used in all three cases. Homogenization theory gives a profound
explanation thereof. Since only the elliptic part of all three second order partial dif-
ferential equations displays a multiscale behavior, the homogenized tensor remains
the same for all three cases. The a priori error analysis of these FE-HMM schemes
relies on Strang-type lemmas for nonconforming FEMs and the decomposition of the
overall error into a macro, a micro, and a modeling error. The former two errors can
be controlled by choosing appropriate meshsizes. However, in a general non-periodic
setting, or if the true period of a material is unknown a non-negligible modeling error
arises mainly caused by the artificial boundary conditions for the micro problems [26].

On the contrary, by the physical intuition it is natural to have the same type of
problems in the macro and the micro levels. For instance, Engquist, Holst, and Run-
borg proposed in [18, 19] a FD-HMM scheme for the wave equation with a hyperbolic
micro problem, instead of the elliptic one. Later the idea of using the wave equation
as the micro model was applied to FD-HMM scheme for elliptic problems [7]. The
motivation behind this strategy is to remove the boundary error which originates from
the artificial boundary condition posed on the micro problem. Due to the finite speed
of propagation of waves, the error on the boundary does not influence the interior
solution if the micro domain is large enough. However, when formulated in a finite
element setting, this method does not lead immediately to a symmetric bilinear form,
which makes the complete convergence analysis hard to carry [25, Section 5.5].
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Inspired by this FD-HMM scheme, we propose and analyze here a FE-HMM,
which uses hyperbolic micro problems. Therefore, it does not suffer from the artificial
boundary error in the micro problem due to the finite speed of propagation of the
microscopic solutions. Moreover, the method leads to a symmetric bilinear form.
Hence it is amenable to a rigorous mathematical study. Similar as for the standard
FE-HMM our new scheme can be used to approximate the homogenized solutions
of elliptic, parabolic, and hyperbolic equations, without needing to precompute the
homogenized coefficients, nor to resolve the microscopic scale underlying media. In
addition, the method does not assume any precise knowledge about the wavelength of
the fluctuations in the media. To validate the reliability of our method, we consider
a rather academic case of purely periodic media and we prove that the solution of
the proposed method converges to the homogenized solution up to arbitrary order
in terms of ε/η, where η is the size of the micro domain. Furthermore, we provide
numerical results to support the theoretical arguments.

The discussion in this paper is organized as follows. In section 2 we introduce
the precise mathematical settings we are interested in. The multiscale method is
presented in Section 3. Section 4 contains our main statements. The main result
is Theorem 4.7 in which we prove that our method improves the modeling error up
to arbitrary rates in ε/η. Moreover, we use this theorem to estimate the difference
between the FE-HMM and the homogenized solutions. The last section is devoted to
the numerical study of the method. We consider problems in one and two dimensions
showing that the effective parameters are well-captured.

2. Model problems Let Ω be bounded Lipschitz domain in Rd, 1≤d≤3. For
simplicity we assume that Ω can be covered exactly with simplicial or quadrilateral
elements. We consider three classical model problems for second order partial differ-
ential equation in their variational form and equipped with homogeneous Dirichlet
boundary conditions. Note that the choice for this type of boundary consition is only
for the ease of presentation. Yet, other boundary conditions could be used as well
with no conceptual changes in the multiscale method. Hence, we consider the elliptic
problem {

Find uε∈H1
0 (Ω), such that

Bε(uε,v) = (F,v) ∀v∈H1
0 (Ω),

(2.1)

the heat equation
Find uε : [0,T ]→H1

0 (Ω), such that

(∂tu
ε(t),v)+Bε(uε(t),v) = (F (t),v) ∀v∈H1

0 (Ω), 0<t<T,

uε(0) =f in Ω,

(2.2)

and the wave equation


Find uε : [0,T ]→H1

0 (Ω), such that

(∂ttu
ε(t),v)+Bε(uε(t),v) = (F (t),v) ∀v∈H1

0 (Ω), 0<t<T,

uε(0) =f in Ω,

∂tu
ε(0) =g in Ω.

(2.3)



4 FE-HMM with Improved Control over the Modeling Error

Here (·, ·) denotes the standard L2-inner product over Ω and the bilinear form Bε is
given by

Bε(v,w) =

∫
Ω

aε(x)∇v(x) ·∇w(x)dx, ∀v,w∈H1
0 (Ω).

We also assume that aε∈L∞(Ω;Rd×d) is symmetric, uniformly elliptic and bounded,
i.e., there exist 0<α≤β, such that for all ξ∈Rd and for all ε>0

α |ξ|2≤aε(x)ξ ·ξ≤β |ξ|2 . (2.4)

Hence the bilinear form Bε is symmetric, uniformly elliptic and bounded on H1
0 (Ω).

Note that the coefficient aε is assumed to be time independent and our theoretical
results for the parabolic and hyperbolic problems, (2.2) and (2.3), do not apply directly
to general time dependent coefficients. Furthermore, we make the following standard
regularity assumptions:

for the elliptic problem (2.1): F ∈L2(Ω)

for the heat equation (2.2): F ∈L2(0,T ;L2(Ω)), f ∈L2(Ω)

for the wave equation (2.3): F ∈L2(0,T ;L2(Ω)), f ∈H1
0 (Ω), g∈L2(Ω).

It is well known, that under these assumptions (2.1), (2.2), and (2.3) have each a
unique (weak) solution in the appropriate functional spaces.

2.1. Homogenization theory Following classical results in homogenization
theory the solutions of all three model problem converge to a homogenized solution
u0 as ε→0. These limits solve the so called homogenized problems, given by{

Find u0∈H1
0 (Ω), such that

B0(u0,v) = (F,v) ∀v∈H1
0 (Ω),

(2.5)

for the elliptic problem (2.1),
Find u0 : [0,T ]→H1

0 (Ω), such that(
∂tu

0(t),v
)

+B0(u0(t),v) = (F (t),v) ∀v∈H1
0 (Ω), 0<t<T,

u0(0) =f in Ω,

(2.6)

for the heat equation (2.6), and
Find u0 : [0,T ]→H1

0 (Ω), such that(
∂ttu

0(t),v
)

+B0(u0(t),v) = (F (t),v) ∀v∈H1
0 (Ω), 0<t<T,

u0(0) =f in Ω,

∂tu
0(0) =g in Ω.

(2.7)

for the wave equation (2.3). In brief summary: The variational formulations of the
homogenized equations of all three model are given by replacing the bilinear form Bε

with the homogenized bilinear form B0 defined as

B0(v,w) =

∫
Ω

a0(x)∇v(x) ·∇w(x)dx ∀v,w∈H1
0 (Ω).
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Here a0 is the standard homogenized matrix, which is also symmetric and satisfies
(2.4). We recall that in the periodic case, i.e. aε(x) =a(x/ε), where a is Y -periodic
and Y = [0,1]d the d-dimensional unit cube, the homogenized matrix is constant and
given by

a0
i,j =

∫
Y

a(x)(ej+∇χj(x)) ·eidx, (2.8)

where ei denotes the i-th canonical basis vector of Rd and χi solves the cell problem∫
Y

a(x)∇χi(x) ·∇z(x)dx=−
∫
Y

a(x)ei ·∇z(x)dx, ∀z(x)∈W 1
per(Y ). (2.9)

The proofs of the above statements and further details about homogenization can be
found in e.g. [13, 10].

3. Multiscale method Like standard FE-HMM our scheme is a non-
conforming FEM on a coarse (macroscopic) mesh. On the macroscopic level there
are no essential changes compared with the former FE-HMM schemes. However, on
the microscopic level, the use of a hyperbolic micro problem to estimate the effective
bilinear form is a novel approach.

First of all we introduce the notation we use. Let TH be a triangulation of Ω into
either simplicial or quadrilateral elements K. We assume that all elements K ∈TH
are affine equivalent to a reference element K̂. The affine mapping from K̂ to K is
denoted by FK . We denote the macro finite element spaces by

S`(Ω,TH) ={vH ∈H1(Ω) :vH |K ∈R`(K),∀K ∈TH}

and S`0(Ω,TH) =S`(Ω,TH)∩H1
0 (Ω), where R`(K) =P`(K), the space of polynomials

of degree ` if K is a simplex, or R`(K) =Q`(K), the space of polynomials of maximal
degree ` if K is a parallelogram.

Furthermore, we choose a quadrature formula (x̂j ,ω̂j)
J
j=1 on K̂, where x̂j and

ω̂j denote the quadrature nodes and weights, respectively. To preserve the order of
convergence we impose the following classical assumptions on the quadrature formula,
cf. [12]

ω̂j>0 ∀j∈{1,2,. ..,J},
J∑
j=1

ω̂j |∇p̂(x̂j)|2≥ λ̂‖∇p̂‖L2(K̂) ∀p̂(x̂)∈R`(K̂) with λ̂>0,

∫
K̂

p̂(x̂)dx̂=

J∑
j=1

ω̂j p̂(x̂j) ∀p̂(x̂)∈R˜̀
, (3.1)

where ˜̀= max(2`−2,`) if K̂ is a simplicial finite element, or ˜̀= max(2`−1,`+1) if K̂
is a rectangular finite element. For each K ∈TH let (xK,j ,ωK,j) denote the appropriate
quadrature formula on K given by xK,j =FK(x̂j) and ωK,j = |detDFK |ω̂j .

To achieve an arbitrary high order for the modeling error, we will use averaging
kernels. These kernels were first used in the HMM context to solve highly oscillatory
ordinary differential equations, see [20]. Later they were used in the FD-HMM schemes
described in [19, 7]. We recall the definition of the kernel space from [7]. A function
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lies in the Kernel space Kp,q, if

k(q+1)∈BV (R), suppk⊂ [−1,1], and

∫
R
k(x)xrdx=

{
1, r= 0,

0, 1≤ r≤p.

The simplest averaging corresponds to a constant kernel, i.e. k= 1/2 in [−1,1]. In this
case q=−1.

In this work we assume that all the kernels are symmetric, i.e. k(x) =k(−x)
for all x∈R. Note that this assumption is only used for the error analysis. The
algorithm itself works also for nonsymmetric kernels. We will use scaled kernels given
by kη(x) =η−1k(x/η) for η>0 with support [−η,η]. Furthermore, for a d-dimensional
setting we use the same notation to mean

kη(x) =η−dk
(x1

η

)
k
(x2

η

)
·· ·k

(xd
η

)
.

As described in the introduction a FE-HMM scheme consists of a macro and a
micro solver. Since the macro solver does not differ very much from the macro solver
of standard FE-HMM, we will only discuss it briefly in the following subsection.

3.1. Macrosolver The FE-HMM schemes are given for the elliptic problem
(2.1) by {

Find uH ∈S`0(Ω,TH) such that

BH(uH ,vH) = (F,vH) for all vH ∈S`0(Ω,TH),
(3.2)

for the heat equation (2.2) by
Find uH : [0,T ]→S`0(Ω,TH) such that

(∂tuH ,vH)+BH(uH ,vH) = (F,vH) for all vH ∈S`0(Ω,TH), 0<t<T,

uH(0) =fH in Ω,

(3.3)

and for the wave equation (2.3) by
Find uH : [0,T ]→S`0(Ω,TH) such that

(∂ttuH ,vH)+BH(uH ,vH) = (F,vH) for all vH ∈S`0(Ω,TH), 0<t<T,

uH(0) =fH in Ω,

∂tuH(0) =gH in Ω,

(3.4)

where the bilinear form is defined as

BH(vH ,wH) =
∑
K,j

ωK,j

∫
Iδ

kη(x)aε(xK,j+x)∇v̄h(x) ·∇w̄h(x)dx.

The summation goes over all K ∈TH and 1≤ j≤J . By v̄h and w̄h we denote the
average of the micro solution vh and wh over the sampling time interval [−τ,τ ], i.e.

v̄h(x) =

∫ τ

−τ
kτ (t)vh(t,x)dt, (3.5)

with the obvious changes for w̄h. The micro solutions vh and wh defined on Iδ =
(−δ,δ)d are specified in the next section. Furthermore, kτ and kη are scaled averaging
kernels of a kernel k∈Kp,q.
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3.2. Micro solver and hyperbolic micro problem For the micro problem
we consider the FE space

Ss(Iδ,Th) ={zh∈W (Iδ) :zh|Q∈R(Q),∀Q∈Th},

where for a periodic coupling W (Iδ) =W 1
per(Iδ), and for a Dirichlet coupling W (Iδ) =

H1
0 (Iδ). Furthermore, we use the suggestive notation vh∈vH,lin +Ss(Iδ,Th) to denote

that vh−vH,lin∈Ss(Iδ,Th).
The hyperbolic micro problem reads as

Find vh : [−τ,τ ]→vH,lin +Ss(Iδ,Th) such that

(∂ttvh,zh)+

∫
Iδ

aε(xK,j +x)∇vh(x) ·∇zh(x)dx= 0

for all zh∈Ss(Iδ,Th),−τ ≤ t≤ τ,
vh(0) =vH,lin(x) and ∂tvh(0) = 0 in Iδ,

where vH,lin(x) =vH(xK,j)+∇vH(xK,j) ·x. From the definition it is clear that vh and
thus v̄h depend on K and j. For the ease of reading we do not reflect this dependence
in the notation. Note that we center the sampling domain for every quadrature node
xK,j at the origin. This shift is taken into account be evaluating aε at xK,j+x. Using
sampling domains centered at xK,j is also possible and would lead to an equivalent
scheme. Our choice, however, simplifies the subsequent analysis a little, since fewer
shifts are needed.

We would like to emphasize again that the use of a hyperbolic micro problem
is the crucial difference between the FE-HMM we propose and the former FE-HMM
that use an elliptic micro problem instead. Since the wave equation and its FEM
approximation provide a finite speed of propagation, the influence of the boundary
condition vanishes by choosing δ such that no information may travel from boundary
into the averaging domain [−η,η]d. Hence, the choice of the boundary condition has
only a minor relevance compared with standard FE-HMM, see [26]. The convergence
results in the next section hold for periodic and as well for Dirichlet coupling condition.

4. Error Analysis The analysis of FE-HMM schemes relies in a decomposition
of the overall error into a macro, a micro, and a modeling error. For this decomposi-
tion we introduce two additional bilinear forms. Firstly the discretized homogenized
bilinear form is given by

B0
H(vH ,wH) =

∑
K∈TH

J∑
j=1

ωK,ja
0(xK,j)∇vH(xK,j) ·∇wH(xK,j). (4.1)

It corresponds to a classical FEM approximation of the homogenized equation with
numerical quadrature. However, since the homogenized tensor a0 is usually not known
a priori we can not use it for an actual computation. Note in addition that we do not
compute neither a0 nor B0 with our FE-HMM scheme. They are used only for the
error analysis. Secondly the semidiscrete FE-HMM formulation is given by

B̃H(vH ,wH) =
∑
K,j

ωK,j

∫
Iδ

kη(x)aε(xK,j+x)∇v̄(x) ·∇w̄(x)dx, (4.2)

where v̄ and w̄ are the time averages of the solutions of the non-discretized counterpart
of the micro problem. In more detail, we have

v̄(x) =

∫ τ

−τ
kτ (t)v(t,x)dt, (4.3)
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where v solves 

Find v : [−τ,τ ]→vH,lin +W (Iδ) such that

(∂ttv,z)+

∫
Iδ

aε(xK,j+x)∇v ·∇zdx= 0

for all z∈W (Iδ),−τ ≤ t≤ τ,
v(0) =vH,lin(x) and ∂tv(0) = 0 in Iδ.

(4.4)

Clearly, w̄ is defined accordingly. Again, due to the finite speed of propagation the
boundary condition does not influence B̃H if δ is chosen sufficiently large compared
to η and τ . By sufficiently large, we mean that

δ≥η+τ
√
β, (4.5)

where β is the boundedness constant of aε, see (2.4). Due to the finite speed of prop-
agation of waves, the solution inside the region Iη×(−τ,τ) where the local averaging
takes place, will not be affected by the boundary conditions imposed on the boundary
of Iδ if (4.5) holds. In this case, the micro problem (4.4) can be replaced by the
following infinite domain problem without any influence on B̃H .

∂ttv(t,x) =∇·(aε(x)∇v(t,x)) in Rd,−τ ≤ t≤ τ
v(0,x) =vH,lin(x) in Rd,

∂tv(0,x) = 0 in Rd.

(4.6)

This formulation simplifies the error analysis below, since we do no longer have to
deal with boundary conditions for the micro problem.

By u0
H we denote the FEM approximation of the analytically homogenized prob-

lem and by ũH the solution of the semidiscrete FE-HMM. To be more precise, u0
H is

the solutions of (3.2), (3.3), or (3.4), where BH is replaced with B0
H , and ũH is the so-

lution of the corresponding equations when BH is replaced with B̃H . The convergence
proof of the FE-HMM can now be outlined as follows.

Due to the triangle inequality we have∥∥u0−uH
∥∥≤∥∥u0−u0

H

∥∥︸ ︷︷ ︸
=eMAC

+
∥∥u0

H− ũH
∥∥︸ ︷︷ ︸

=eMOD

+‖ũH−uH‖︸ ︷︷ ︸
=eMIC

, (4.7)

The macro error eMAC can be bounded using standard convergence results for FEM
with numerical integration. However, to estimate the modeling error eMOD and the
micro error eMIC we use Strang-type lemmas.

4.1. Strang-type Lemmas Strang-type lemmas were originally considered
to handle nonconforming FEM arising by the use of quadrature formulas to evaluate
integrals in standard FEM; see [11, 24, 9]. While the elliptic version can be considered
as a classical result, generalized versions for the heat and the wave equation were
proven only recently. Here we summarize these results in a unified setting.

For the following three Strang-type Lemmas let V be a closed subset of H1
0 (Ω)

and f,g∈V be given as above. We assume that the two bilinear forms B1 and B2 on
V are coercive and bounded, i.e. there are 0<α̃≤ β̃ such that

α̃‖v‖2H1(Ω)≤Bi(v,v) and |Bi(v,w)|≤ β̃‖v‖H1(Ω)‖w‖H1(Ω) ,
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for i= 1,2 and for all v,w∈V . Furthermore, we introduce the difference over V
between two bilinear forms given by

dV (B1,B2) = sup
v,w∈V \{0}

|B1(v,w)−B2(v,w)|
‖v‖H1(Ω)‖w‖H1(Ω)

.

The clasical elliptic Strang-type Lemma can now be written as follows.
Lemma 4.1. Let F ∈L2(Ω) and u1, u2 be the unique solution of{

Find u1∈V , such that

B1(u1,v) = (F,v) ∀v∈V,

and {
Find u2∈V , such that

B2(u2,v) = (F,v) ∀v∈V.

Assume that ui∈H1(Ω) for i= 1,2. Then

‖u1−u2‖H1(Ω)≤CdV (B1,B2),

where C depends on ‖ui‖H1(Ω), but is independent of dV (B1,B2).

The version of the Strang-type Lemma for the heat equation in [6] is more general,
since the bilinear form may also depend on time. Here we simplify the result by only
considering time-independent coefficients aε, i.e. bilinear forms that are constant in
time.
Lemma 4.2. For given T >0 let F ∈L2(0,T ;L2(Ω)) and u1, u2 be the unique solution
of 

Find u1 : [0,T ]→V , such that

(∂tu1(t),v)+B1(u1(t),v) = (F (t),v) ∀v∈V Ω, 0<t<T,

u1(0) =f in Ω,

and 
Find u2 : [0,T ]→V , such that

(∂tu2(t),v)+B2(u2(t),v) = (F (t),v) ∀v∈V Ω, 0<t<T,

u2(0) =f in Ω.

Assume that ∂kt ui∈L2(0,T ;H1(Ω)) for k= 0,1 and i= 1,2. Then

‖u1−u2‖L∞(0,T ;H1(Ω))≤CdV (B1,B2).

where C depends on
∥∥∂kt ui∥∥L2(0,T ;H1(Ω))

, k= 0,1, but is independent of dV (B1,B2).

For the wave equation we finally have from [4].
Lemma 4.3. For given T >0 let F,∂tF ∈L2(0,T ;L2(Ω)) and u1, u2 be the unique
solution of 

Find u1 : [0,T ]→V , such that

(∂ttu1(t),v)+B1(u1(t),v) = (F (t),v) ∀v∈V Ω, 0<t<T,

u1(0) =f in Ω,

∂tu1(0) =g in Ω,
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and 
Find u2 : [0,T ]→V , such that

(∂ttu2(t),v)+B2(u2(t),v) = (F (t),v) ∀v∈V Ω, 0<t<T,

u2(0) =f in Ω,

∂tu2(0) =g in Ω.

Assume that ∂kt ui∈L2(0,T ;H1(Ω)) for k= 0,1,2 and i= 1,2. Then

‖∂t(u1−u2)‖L∞(0,T ;L2(Ω)) +‖u1−u2‖L∞(0,T ;H1(Ω))≤CdV (B1,B2).

where C depends on
∥∥∂kt ui∥∥L2(0,T ;H1(Ω))

, k= 0,1,2, but is independent of dV (B1,B2).

Combining these lemmas with (4.7) we get∥∥u0−uH
∥∥≤∥∥u0−u0

H

∥∥︸ ︷︷ ︸
=eMAC

+CdV (B0
H ,B̃H)︸ ︷︷ ︸

=eMOD

+CdV (B̃H ,BH)︸ ︷︷ ︸
=eMIC

,

where ‖·‖ denotes the norm specified in the Lemmas 4.1, respectively 4.2 or 4.3.
Moreover, the space V equals here the macro FE space S`(Ω,TH). The remaining
principal task is now to bound the differences between the bilinear forms. However,
since BH relies on averaging kernels, we will first recall some of their useful properties.

4.2. Averaging kernels The computation of the bilinear form in FE-HMM
involves averaging a highly oscillatory function over the microscopic domain Iδ. For
a fixed oscillation length ε, the high frequencies of the oscillatory function is filtered
out by using an averaging operator. The use of general averaging kernels allows us to
achieve high order convergence rates in terms of ε/η, where η<δ represents the size of
the support of the kernel. Now we present a lemma from [8, Lemma 2.3] which shows
that this averaging can be made as accurate as we like. Here we cite it in a simplified
version adapted to our setting.
Lemma 4.4. Let ϕ be a 1-periodic continuous function and denote its average over

one period by ϕ=
∫ 1

0
ϕ(t)dt. Then we have for k∈Kp,q∣∣∣∣∫
R
kη(t)ϕ

( t
ε

)
dt−ϕ

∣∣∣∣≤C ‖ϕ‖L∞(R)

(
ε

η

)q+2

,

where the constant C does not depend on ε, η, ϕ.
Later in the analysis we need to apply the averaging operator to functions in

multidimensions. The following corollary generalizes Lemma 4.4 to higher dimensions.
The result follows by a simple induction over the dimension d.
Corollary 4.5. Let Φ be a Y -periodic continuous function and denote its average
over one period by Φ =

∫
Y

Φ(x)dx. Then we have for k∈Kp,q∫
Rd
kη(x)Φ

(x
ε

)
dx= Φ+γ

( ε
η

)q+2

,

where |γ|≤C ‖Φ‖L∞(Rd) and C is independent of ε, η, and Φ.
To compute the FE-HMM bilinear form BH , we need the local time average of

the solution of a second order wave equation in the sampling domain Iδ. In [8, Lemma
2.3, Theorem 4.1], the authors proved that the time averages of solutions of second
order wave equations with periodic coefficients solve PDEs of elliptic type. The right
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hand side of the resulting elliptic PDE converges to the time average of the right hand
side of the hyperbolic PDE with O(ε/τ)q convergence rate. Here, we provide a lemma
which improves the convergence rate to O(ε/τ)q+2 when the right hand side of the
wave equation is time-independent.
Lemma 4.6. Assume that a∈ (C∞(Rd))d×d is Y -periodic, symmetric, and uniformly
elliptic and bounded (cf. (2.4)). Furthermore let Φ∈C∞(Rd) be a Y -periodic function
with Φ = 0, k∈Kp,q with an even q, and w the solution of the problem

∂ttw(t,x) =∇·(a(x)∇w(t,x))+Φ(x), for x∈Rd,t>0

w(0,x) = 0, for x∈Rd

∂tw(0,x) = 0, for x∈Rd.

Let the local time average w̄ be defined as

w̄(x) :=

∫
R
kτ (t)w

( t
ε
,x
)
dt.

Then for 0<ε≤ τ the local time average w̄ satisfies

∇·(a(x)∇w̄(x)) =−Φ(x)+
( ε
τ

)q+2

R(x). (4.8)

where, R is Y -periodic with zero average, i.e. R̄= 0, and

‖R‖H1(Y )≤C ‖Φ‖L2(Y ) . (4.9)

Proof. We represent by {λ2
j ,ϕj} the eigenvalue and eigenvector pair of the oper-

ator L :=−∇·(a∇). The eigenvalues are strictly positive except for λ2
0 = 0, and the

eigenvectors {ϕj}∞j=0 are smooth periodic functions such that

ϕ̄j =

{
1, j= 0

0, j >0.

Moreover, the eigenfunctions form an orthonormal basis for the periodic functions in
L2(Y ), see [22]. Now we start with an eigenfunction expansion of the terms w(t,x)
and Φ(x). Since a and Φ are periodic, w will also be periodic. Furthermore, by the
zero initial data of w we conclude that w(t,·) = 0. Hence

w(t,x) =

∞∑
j=1

wj(t)ϕj(x), Φ(x) =

∞∑
j=1

φjϕj(x).

We use the orthogonality of the eigenvectors and put the above expressions into the
wave equation. This gives {

w′′j (t)+λ2
jwj(t) =φj ,

wj(0) =w′j(0) = 0.

Since φj is a constant, we can write the solution wj explicitely

wj(t) =
φj
λ2
j

(1−cos(λjt)).
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Now we define

cj :=
( ε
τ

)−q−2
∫
R
κτ (t)cos

(λjt
ε

)
dt.

Then

w̄(x) =

∞∑
j=1

φj
λ2
j

ϕj(x)−
( ε
τ

)q+2 ∞∑
j=1

φj
λ2
j

cjϕj(x),

and

L[w̄](x) =

∞∑
j=1

φj
λ2
j

L[ϕj ](x)−
( ε
τ

)q+2

L

 ∞∑
j=1

φj
λ2
j

cjϕj

(x)

=

∞∑
j=1

φjϕj(x)+
( ε
τ

)q+2

R(x) = Φ(x)+
( ε
τ

)q+2

R(x),

where

R(x) =L

 ∞∑
j=1

φj
λ2
j

cjϕj

(x).

To get an H1 estimate of R we use the fact that q is even and apply the operator
Lq/2+1 to R. This gives

L
q/2+1 [R] =

∞∑
j=1

φjcjλ
q+2
j ϕj(x).

Then by standard elliptic regularity and Parseval’s identity it follows that

‖R‖2H1(Y )≤‖R‖
2
Hq+2(Y )≤C

∥∥∥∥∥∥
∞∑
j=1

φjcjλ
q+2
j ϕj

∥∥∥∥∥∥
2

L2(Y )

=C

∣∣∣∣∣∣
∞∑
j=1

φ2
jc

2
jλ

2q+4
j

∣∣∣∣∣∣ .
Moreover, by Lemma 4.4 we get

|cj |≤
( ε
τ

)−q−2

C ′
(

ε

τλj

)q+2

=C ′
1

λq+2
j

,

where C ′ does not depend on λj ,τ,ε. From here, we obtain

‖R‖2H1(Y )≤CC
′

 ∞∑
j=1

φ2
j

2

≤ C̃ ‖Φ‖2L2(Y ) .

Note that C̃ may depend on p and q, but not on τ or ε.



D. Arjmand and C. Stohrer 13

4.3. Modeling error In this section, we state our main result. In particular,
we prove that the modeling error defined in (4.7) can be made arbitrarily small by
using a kernel with higher q, i.e., higher regularity properties.

Theorem 4.7. Let B0
H and B̃H be given by (4.1) and (4.2), respectively. Suppose that

the averaging kernel k used in the definition of B̃H lies in Kp,q with even q, η= τ and
δ≥η+τ

√
β. Furthermore, let aε(x) be given by aε(x) =a(x/ε) where a∈ (C∞(Rd))d×d

is Y -periodic, symmetric, elliptic, and bounded (cf. (2.4)). Then

dV (B0
H ,B̃H)≤C

(
ε

η

)q+2

,

where V =S`(Ω,TH) and C is a constant independent of ε and η.

Proof. Our first goal is to rewrite v̄ (resp. w̄) defined in (4.3) in terms of vH
and the periodic continuations of the solutions χi of the cell problem (2.9), which we
denoted by χi as well. Afterwards, we insert this reformulation into the definition of
the bilinear form B̃H of the semidiscrete FE-HMM formulation.

Due to the assumption on δ, the micro problem (4.4) can be replaced by the
infinite domain problem (4.6) without any influence on B̃H , as explained earlier. We
denote the solution of (4.6) by v and introduce its scaled and adjusted counterpart

V (t,x) =ε−1(v(tε,xε)−v(0,xε)). (4.10)

We see that V satisfies
∂ttV (t,x) =∇·(a(x)(∇V (t,x)+∇vH(xK,j)) in Rd,−τ ≤ t≤ τ,
V (0,x) = 0 in Rd,

∂tV (0,x) = 0 in Rd,

and consider the time average of V

V (x) =

∫ τ

−τ
kτ (t)V

( t
ε
,x
)
dt.

Now, we can apply Lemma 4.6 with the identifications

w=V and Φ =∇·(a(x)∇vH(xK,j)).

Formula (4.8) in Lemma 4.6 immediately gives

∇·(a(x)∇V (x)) =−∇·(a(x)∇vH(xK,j))+
( ε
τ

)q+2

Rv(x).

Furthermore, we can rewrite the time average as

V (x) =

d∑
i=1

χi(x)∂xivH(xK,j)+
( ε
τ

)q+2

ev(x),

where ev is the zero average solution of the periodic problem

∇·(a(x)∇ev(x)) =Rv(x). (4.11)
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Inserting v from (4.10) into (4.3) we get

v̄(x) =ε

∫ τ

−τ
kτV

( t
ε
,
x

ε

)
dt+v(0,x)

=vH,lin(x)+ε

d∑
i=1

χi
(x
ε

)
∂xivH(xK,j)+ε

( ε
τ

)q+2

ev

(x
ε

)
.

(4.12)

To simplify the subsequent analysis we use the abbreviation

v∗H(x) =vH,lin(x)+ε

d∑
i=1

χi
(x
ε

)
∂xivH(xK,j). (4.13)

Therefore,

∇v̄(x) =∇v∗H(x)+
( ε
τ

)q+2

∇ev
(x
ε

)
(4.14)

and

∇v∗H(x) =∇vH(xK,j)+

d∑
i=1

∇χi
(x
ε

)
∂xivH(xK,j). (4.15)

Here ∇ev(x/ε) =∇yev(y)|y=x/ε, and ∇χi(x/ε) should be interpreted similarly. Note
that due to the periodicity of χi, the gradient of v∗H is εY -periodic as well. With
obvious changes, the above considerations hold for wH as well. We insert (4.14) into
(4.2) to get

B̃H(vH ,wH) = B̃1
H(vH ,wH)+

( ε
τ

)q+2

B̃2
H(vH ,wH),

where

B̃1
H(vH ,wH) =

∑
K,j

ωK,j

∫
Iδ

kη(x)aε(xK,j+x)∇v∗H(x) ·∇w∗H(x)dx

and

B̃2
H(vH ,wH) =

∑
K,j

ωK,j

∫
Iδ

kη(x)aε(xK,j+x)∇v∗H(x) ·∇ew
(x
ε

)
dx

+
∑
K,j

ωK,j

∫
Iδ

kη(x)aε(xK,j+x)∇w∗H(x) ·∇ev
(x
ε

)
dx

+
( ε
τ

)q+2∑
K,j

ωK,j

∫
Iδ

kη(x)aε(xK,j +x)∇ev
(x
ε

)
·∇ew

(x
ε

)
dx.

We will now bound B̃1
H . Since aε, ∇w∗H and ∇v∗H are εY -periodic, we can apply

Corollary 4.5 to get

B̃1
H(vH ,wH) =

∑
K,j

ωK,j

∫
Y

a(x)∇v∗H(εx) ·∇w∗H(εx)dx+
( ε
η

)q+2∑
K,j

ωK,jγK,j

=
∑
K,j

ωK,ja
0∇vH(xK,j) ·∇wH(xK,j)+

( ε
η

)q+2∑
K,j

ωK,jγK,j

=B0
H(vH ,wH)+

( ε
η

)q+2∑
K,j

ωK,jγK,j .
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In the second equality we used (4.15) and the formula (2.8) for the homogenized
matrix. Form Corollary 4.5 we have that the constants γK,j are bounded by

|γK,j |≤C ‖a(x)∇v∗H(εx) ·∇w∗H(εx)‖L∞(Rd)

≤C |∇vH(xK,j)||∇wH(xK,j)|,

where we absorbed the contribution of a and χi into the constant C. Then by the
Cauchy-Schwartz inequality, by the assumption (3.1) on the quadrature formula, and
the Poincaré inequality it follows that∣∣∣∑

K,j

ωK,jγK,j

∣∣∣≤C∑
K,j

ωK,j |∇vH(xK,j)||∇wH(xK,j)|

≤C
(∑
K,j

ωK,j |∇vH(xK,j)|2
)1/2(∑

K,j

ωK,j |∇wH(xK,j)|2
)1/2

≤C ‖vH‖H1(Ω)‖wH‖H1(Ω) .

Hence we have

B̃1
H(vH ,wH) =B0

H(vH ,wH)+C
( ε
η

)q+2

‖vH‖H1(Ω)‖wH‖H1(Ω) .

It remains to show, that B̃2
H is bounded from above. Here we show the estimate

of the last term in B̃2
H . The proof of the first two terms in B̃2

H follows similarly. First
we use Corollary 4.5 to see that

∑
K,j

ωK,j

∫
Iδ

Kη(x)aε(x)∇ev
(x
ε

)
·∇ew

(x
ε

)
dx=

∑
K,j

ωK,j

∫
Y

a(y)∇ev(y) ·∇ew(y)dy+
( ε
η

)q+2 ∑
K∈TH

J∑
j=1

ωK,jγK,j .

Then by elliptic regularity of equation (4.11) and by the estimate (4.9) in Lemma 4.6
we get

‖ev‖Hr+2(Y )≤C‖Rv‖Hr(Y )≤C |∇vH(xK,j)| , r= 0,1.

Therefore ∣∣∣∣∫
Y

a(y)∇ev(y) ·∇ew(y)dy

∣∣∣∣≤‖a∇ev‖L2(Y )‖∇ew‖L2(Y )

≤C ‖ew‖H1(Y )‖ev‖H1(Y )

≤C |∇vH(xK,j)||∇wH(xK,j)| .

Moreover, if d= 1,2,3 then Hr(Y ) ↪→C(Y ) for r> d/2≥1.5. Hence, with r= 2 we have

|γK,j |≤ |a∇ev ·∇ew|∞≤|a∇ev|∞ · |∇ew|∞≤C ‖a∇ev‖H2(Y )‖∇ew‖H2(Y )

≤C ‖ev‖H3(Y )‖ew‖H3(Y )≤C |∇vH(xK,j)||∇wH(xK,j)| .
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4.4. Fully discrete a priori error analysis Combining the previous results,
we get eventually the following convergence result for the FE-HMM with hyperbolic
micro problems.
Theorem 4.8. Suppose that u0 is the solution of the homogenized problems (2.5),
(2.6), or (2.7) and uH the corresponding FE-HMM solutions solving (3.2), (3.3), or
(3.4). Suppose that the assumptions of Theorem 4.7 hold. Then∥∥u0−uH

∥∥≤C(H`+

(
ε

η

)q+2

+

(
h

ε

)s)
,

where C does not depend on ε,η,h or H. Note that the norm in the statement is the
same norm as in the corresponding Strang-type Lemma 4.1, 4.2, or 4.3.

Proof. As mentioned before, we start by splitting the error into three parts and
apply the Strang type Lemmas 4.1, 4.2, and 4.3 to the latter two. Thus, we have∥∥u0−uH

∥∥≤∥∥u0−u0
H

∥∥+
∥∥u0

H− ũH
∥∥+‖ũH−uH‖

≤
∥∥u0−u0

H

∥∥+CdV (B0
H ,B̃H)+CdV (B̃H ,BH).

While the first term, i.e. the macro error, can be bounded by classical results for FEM
[11, 24, 9], we use Theorem 4.7 to bound the second one. Hence, it remains to bound
the last term which accounts for the micro error. To simplify the notation we denote
by

BK,j(v,w) =

∫
Iδ

kη(x)aε(xK,j+x)∇v ·∇wdx

the contribution corresponding to quadrature node xK,j to the FE-HMM bilinear
form. The discrete and the semidiscrete FE-HMM bilinear form can thereby be rewrit-
ten as

BH(vH ,wH) =
∑
K,j

ωK,jBK,j(v̄h,w̄h) and B̃H(vH ,wH) =
∑
K,j

ωK,jBK,j(v̄,w̄)

and consequently

B̃H(vH ,wH)−BH(vH ,wH) =
∑
K,j

ωK,j
(
BK,j(v̄,w̄)−BK,j(v̄h,w̄h)

)
.

By (4.12) and (4.13), v̄ can be written as

v̄=v∗H(x)+ε
( ε
τ

)q+2

ev

(x
ε

)
.

where ev solves the periodic problem (4.11). Similarly, v̄h is given by

v̄h=v∗H,h(x)+ε
( ε
τ

)q+2

ev,h

(x
ε

)
,

where v∗H,h−vH,lin∈Ss(Iδ,Th) is an approximation of v∗H−vH,lin, and ev,h is an ap-
proximation of ev. Hence,∣∣BK,j(v̄,w̄)−BK,j(v̄h,w̄h)

∣∣≤ ∣∣BK,j(v∗H ,w∗H)−BK,j(v∗H,h,w∗H,h)
∣∣

+
( ε
τ

)q+2 ∣∣BK,j(ev,w∗H)−BK,j(ev,h,w∗H,h)
∣∣

+
( ε
τ

)q+2 ∣∣BK,j(v∗H ,ew)−BK,j(v∗H,h,ew,h)
∣∣

+
( ε
τ

)2q+4 ∣∣BK,j(ev,ew)−BK,j(ev,h,ew,h)
∣∣ .
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Since the first term is the leading order quantity in the micro error, we give an
estimate of this term only. The higher order terms, bounded by (ε/τ)q+2, can be
estimated similarly. We split the leading error term∣∣BK,j(v∗H ,w∗H)−BK,j(v∗H,h,w∗H,h)

∣∣≤ ∣∣BK,j(v∗H−v∗H,h,w∗H)
∣∣+ ∣∣BK,j(v∗H,h,w∗H,h−w∗H)

∣∣
using the standard triangular inequality and bound the first term on the right hand
side by,∣∣BK,j(v∗H−v∗H,h,w∗H)

∣∣= ∣∣∣∣∫
Iδ

kη(x)aε(xK,j+x)∇
(
v∗H−v∗H,h

)
·∇w∗Hdx

∣∣∣∣
≤Cη−d

∥∥∇(v∗H−v∗H,h)∥∥L2(Iδ)
‖∇w∗H‖L2(Iδ)

≤Cη−dhsmax
i

∥∥∥εχi( ·
ε

)∥∥∥
Hs+1(Iδ)

|∇vH(xK,j)|η
d/2 |∇wH(xK,j)|

≤C
(
h

ε

)s
|∇vH(xK,j)||∇wH(xK,j)| .

In the last line we used the fact that |Iδ|=O(ηd). The same bound holds for the
second term because of the symmetry of BK,j . As in the proof of the modeling error,
we apply the Cauchy-Schwarz inequality and use the assumptions of the quadrature
rule to obtain∑

K,j

ωK,j
∣∣BK,j (v∗H ,w

∗
H)−BK,j

(
v∗H,h,w

∗
H,h

)∣∣≤C(h
ε

)s
‖vH‖H1(Ω)‖wH‖H1(Ω).

5. Numerical Results The goal of this section is twofold. On the one hand,
we give numerical results corroborating the theory on the control of the modeling
error. On the other hand, we show that FE-HMM with hyperbolic micro problems
can be used even in situation beyond the scope of the convergence analysis above, e.g.
in nonperiodic media. To demonstrate the flexibility and versatility of the method we
consider an elliptic, a parabolic, and a hyperbolic example with Dirichlet, Neumann,
or periodic boundary conditions. Furthermore, we alternate the macro and the micro
solver, the quadrature formula, and the averaging kernel between the examples.

5.1. Modeling Error We provide numerical results showing that the modeling
error can be reduced arbitrarily by taking smoother kernels. In the spirit of Theorem
4.7 we consider first the difference between the bilinear forms B0

H and BH in one and
two dimensions. To this end let

aε(x) = 1.1+0.5 sin
(

2π
x

ε

)
in one dimension and

aε(x) =
(

1.1+0.5 sin
(

2π
x1

ε

))(
1.1+0.5 sin

(
2π
x2

ε

))
.

in two dimensions. For both coefficients the exact homogenized coefficients can be
computed analytically [21]. Since both bilinear forms consist of a sum over all quadra-
ture point, we restrict our analysis to a single summand. Namely, we compute∣∣BK,j(v̄h,w̄h)−a0(xK,j)∇vH(xK,j) ·∇wH(xK,j)

∣∣ ,
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Difference between homogenized and FE-HMM bilinear form
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10−3 10−2
10−9

10−6

10−3

100

1

7

1

9

ε

2D (η= τ = 0.01, h= ε/15)

k∈K3,5, k∈K3,7

Fig. 5.1. Difference between the homogenized and the FE-HMM bilinear form for one (left)
and two (right) dimensions. We fix η and τ and let the small scale parameter ε tend to zero. For
a kernel k∈K3,5 we observe convergence of order 7 and for k∈K3,7 convergence of order 9. These
results are in good agreement with the statement of Theorem 4.7.

where v̄h and w̄h, defined in (3.5), are the averages of micro solution constrained by
vH or wH respectively.

We choose xK,j = 0, vH =wH =x and fix the size of the averaging domain in space
and time, while refining the small scale parameter ε. For the one dimensional example
shown on the left hand side of Figure 5.1 we set η= τ = 0.03 and h= ε/40. For the two
dimensional example shown on right hand side we set η= τ = 0.01 and h= ε/15. The
FE-HMM bilinear form is computed twice, once with a kernel k∈K3,5 and once with
k∈K3,7. We recover the expected convergence rate O((ε/η)q+2) experimentally, see
Figure 5.1. The oscillations in the convergence curves can be explained as follows: If
η is an integer multiple of ε the averaging is more accurate, but even if η/ε is not an
integer FE-HMM convergence as ε→0.

To show that the results from the first experiment carry over to the actual mod-
eling error we consider now the elliptic model problem (2.1) in Ω = [0,1], where

aε(x) =
√

2+sin
(

2π
x

ε

)
with ε= 1/1000 and F (x) =π2 sin(πx). Because our main interest is the modeling error
we compute the difference between the FEM approximation u0

H of the homogenized
equation and the FE-HMM solution uH . Both solutions are computed with P1 FE on
the same uniform macro mesh with H= 1/64. To reduce the micro error we solve the
micro problems with high accuracy on a mesh with h= ε/1000. Instead of diminishing
ε as in the previous example we increase η, while ε remains fixed. In addition δ must
be adapted as well. More precisely, we set τ = 6ε and

δ=η+τ
√

2.5. (5.1)

This guarantees that no information from the boundary conditions interferes with the
averaging procedure, since aε(x)<2.5 for all x∈Ω. On the left hand side of Figure 5.2
we show the L2-difference between u0

H and uH computed with a kernel k∈K3,5. We
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observe a convergence rate of order 7, as expected. The error we observe originates
from the spatial approximation (FEM discretization of the micro problem and spatial
averaging). In comparison the time averaging process results only in very small errors
in this setting.

On the right hand side of Figure 5.2 we show an excerpt of the same graph. Ad-
ditionally we display the modeling error of a standard FE-HMM scheme as described
in [2]. There, elliptic cell problem are used and no averaging kernels are involved.
Since δ is not an integer multiple of ε, we use a Dirichlet coupling condition. For the
elliptic FE-HMM we used the same discretization parameters for the macro and the
micro solver. Using elliptic micro problems the modeling error decays but very slowly
compared with the modeling error obtained by using hyperbolic micro problems. One
remarkable exception should be well noted: If the size of the sampling domain Iδ is
an integer multiple of ε the modeling error vanishes completely for periodic media [2,
Proposition 14]. Because δ is given by (5.1) there is no case, where δ/ε is an inte-
ger. Nevertheless, we see clearly that the modelling error is minimal where this ratio
equals almost 12 or 13. Thus, we do not expect that in the second graph of Figure
5.2 the error of the elliptic FE-HMM vanishes. If δ/ε was an integer, we would still
see the micro error emerging from the discretization of the micro problem. In this
particular case it is advantageous to use elliptic micro problems. However, in more
general situations, where the periodicity is not known, or in a non-periodic medium,
the enhanced controllability of the modeling provided by the use of FE-HMM with
hyperbolic micro problems might be worth while.
Remark 5.1. Comparing our FE-HMM with hyperbolic micro problems with standard
elliptic FE-HMM in terms of computational cost note first, that the macro solver is
exactly the same for both cases. Hence, the same number of micro problems must
be solved for both types of FE-HMM and since for both of them the micro problems
are independent of each other a possible parallelization for the hyperbolic FE-HMM as
straight forward as for standard FE-HMM. The difference is only due to solution of
the micro problem. While for standard FE-HMM an elliptic problem must be solved
for every quadrature node in the macro mesh, we need to solve hyperbolic problems.
In addition slightly bigger sampling domains must be chosen, such that errors from
inaccurate coupling conditions between macro and micro solution do not interfere.
Note, that in standard FE-HMM there is no similar possibility to exclude this error
source completely.

5.2. Elliptic problem We consider the elliptic model problem (2.1) in Ω =
[0,1]2 with homogeneous Dirichlet boundary conditions and a source given by

F (x) = 10 exp
(
−10

(
(x1−0.5)2 +(x2−0.5)2

))
.

The multiscale tensor is given by

aε(x) =

(
41

40
+

9

40
sin
(

2π
x1

ε

))(5

4
+

3

4
sin
(

2π
x1

ε

))
,

and we set ε= 1/100. Because aε is scalar, periodic and has separated variables x1 and
x2, we can compute the homogenized tensor a0(x) = diag(5/4,41/40), for all x∈Ω, see
[21]. Note, that even though aε is scalar valued and thus isotropic for every x∈Ω,
the homogenized tensor is anisotropic.

We compare the FE-HMM solution uH with the discretized homogenized solution
u0
H both computed with Q1 FE on a uniform mesh with meshsize H= 0.1 and a four
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Fig. 5.2. Difference between the FE-HMM solution uH and the discrete homogenized solution
u0H (left) and the comparison between the FE-HMM with elliptic and hyperbolic microp roblems
(right). We use a kernel κ∈K3,5, and for a fixed ε we study the convergence as η and τ get
larger. We observe convergence of order 7 (left plot). Moreover, the FE-HMM with hyperbolic
micro problems leads to much smaller error, if the micro domain is large enough, in comparison to
standard FE-HMM with elliptic micro problems (right).

point Gauss-Legendre quadrature formula given by the reference nodes and weights

x̂j =

(
3±
√

3

6
,
3±
√

3

6

)
and ω̂j =

1

4
for j= 1,. ..,4

on the reference element K̂= [0,1]2. For the micro solver we use Q1 FE, too. In
this example we would like to show again, that the FE-HMM with hyperbolic micro
problems provides reliable solutions, even without knowing the exact length of the
period. Therefore, we set η= τ = 2.6ε and the size of the sampling domain δ= 6.711ε.
Furthermore, we use a symmetric kernel k∈K3,9.

In Figure 5.3 we see that uH approximates well the homogenized solution, even
though the small scale oscillations are not resolved with the coarse macro mesh. More
precisely, the relative H1-error between u0

H and uH is 8.28 ·10−3.

5.3. Parabolic problem Because we use FEM for the macro solver, the whole
FE-HMM scheme can be as easily applied to complex geometry as standard FEMs.
Here, we use the computational domain Ω depicted in Figure 5.4 and solve the heat
equation (2.2) with no internal source, i.e. F = 0. To model a uniformly distributed
heat distribution at t= 0, we set f = 0. For t>0 we are heating from the left boundary
ΓD1 , while enforcing the original temperature at the right boundary ΓD2 . Hence, we
impose the following Dirichlet Boundary condition:

u(x,t) =

{
0, for x∈ΓD0 and all t>0,

1, for x∈ΓD1 and all t>0.

We assume that the remaining boundary ΓN is perfectly insulated. Thus, we im-
pose there a homogeneous Neumann boundary condition. The thermal diffusivity in
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Fig. 5.3. Poisson equation: FE-HMM solution uH (right) and FEM solution of the homogenized
equation with analytically computed tensor a0 (left). The solutions coincide well, despite δ, the size
of the sampling domain, being not an integer multiple of ε.
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Fig. 5.4. Heat equation: Sketch of the computational domain Ω. While imposing Dirichlet
boundary conditions on ΓD

0 and ΓD
1 , we impose a homogeneous Neumann condition on ΓN .

modeled by

aε(x) =

(
1.1+

1

2
sin
(

2π
x1

ε

))(
1.1+

1

2

(
sin
(

2π

√
2x2

ε

)
+sin

(
2π
x2

ε

)))
,

with ε= 1/40 = 0.025. Note, that aε is only ε-periodic in the x1-direction, but not in
x2.

Since a0 can not be computed analytically in this case, we compare the FE-
HMM solution with a direct numerical simulation (DNS), computed on a grid, that
resolves all the oscillations of aε. To do so we used a triangular mesh with almost
700 000 elements and piecewise linear FE. For the FE-HMM however we used for
the macro solver P1 FE, too, but on a coarse mesh with only 138 elements. The
other discretization parameters were chosen as follows: For linear finite elements it is
enough to use the midpoint rule as quadrature formula. Hence, we only have to solve
one micro problem per macroscopic element. We set the size of the sampling domain
δ= 3.59ε and used Q1 FE on a regular mesh with meshsize h= δ/72. For the averaging
we used k∈K5,5 with η= τ = 1.25ε.

The spatial discretization of the heat equation, be it by FEM or FE-HMM, leads
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Fig. 5.5. Heat equation: Snapshots at t= 0.2, t= 0.5, and t= 1.0 of the FE-HMM solution
(top) and the DNS solution (bottom) show the good agreement of the FE-HMM with the true (DNS)
solution. For the FE-HMM the mesh that we use is depicted as well. The mesh used for the DNS
computation has over 5 000 times more elements.
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Fig. 5.6. Heat equation: Contour plot of the stable state reached at t= 1.0 of the FE-HMM
solution (left) and the DNS solution (right). The wiggles of the contour lines in the DNS solution,
clearly observable on the zoom at (1.25,1), are caused by the heterogeneities of the diffusivity. Since
FE-HMM approximates the homogenized solution these microscopic effects are not recovered. Yet,
the overall behavior is well captured.

to system of first order ordinary differential equations that must be discretized as
well. Here, we chose for the time-stepping the well known Crank-Nicolson scheme.
Due to the stability of this implicit scheme, we could use the same timestep for the
FE-HMM and the DNS solution. In Figure 5.5 we show three snapshots of the heating
process. At t= 1.0 a stable state has been reached. For a closer inspection this final
state is shown again in Figure 5.6. The overall behavior of the FE-HMM and the
DNS solution coincide well. However, the contour lines of the DNS solution display
a microscopic wiggling behavior reflecting the multiscale structure of the underlying
media. Since FE-HMM approximates the homogenized solution we do not recover
these microscopic effects, as expected.
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Fig. 5.7. Wave equation: Multiscale coefficient aε(x) with a zoom at x= 0.8 (left). Its oscilla-
tions length is not not constant but varies (left).

5.4. Hyperbolic problem For the final example we solve the one dimensional
wave equation (3.4) propagating through a complicated media given by

aε(x) = 1+
1

4

(
sin(πx)+sin

( 2πx

ε(1−0.5 cos(4x))

)
,

)
with ε= 1/1000. Not only is aε highly oscillatory, but also the local average and the
wave length of the oscillations vary over the computational domain Ω = [−1,1], see
Figure 5.7. As initial data we choose the Gaussian pulse f(x) = exp(−100x2) and
g(x) = 0 and set periodic boundary conditions.

Similarly to the previous example for the heat equation, we compare the FE-
HMM solution with a DNS computed on refined mesh. Here, however, we use cubic
FE for both, the macro and the micro solver. For the spatial discretization we use
a uniform mesh with macro meshsize H= 1/20 and micro meshsize h= 10−4. For the
time-stepping we choose a the explicit leap-frog scheme. Note that the CFL condition
couples the timestep with the macro meshsize H. This means that larger timesteps
are allowed compared with DNS discretization using standard FEM with a mesh that
resolve all scales. This leads to an additional saving of computational costs. The FE-
HMM parameters are chosen here as set as η= τ = 10ε and δ= 22.25ε. Compared with
the other examples η, τ , and thus δ are chosen slightly bigger. This choice accounts
for the variability of the oscillation length in the media.

In Figure 5.8 we show the reference solution uε and the FE-HMM solution uH
at three different times. Again, we observe that uH approximates well the effective
behavior of uε. Once again, we would like to stress, that the spatial discretization
of the FE-HMM scheme is exactly the same for all three examples above. Only the
timestepping scheme must be adapted to the problem at hand.

6. Conclusion We have proposed and analyzed a FE-HMM method for numer-
ical approximation of homogenized solutions of linear multiscale PDEs. In particular,
we consider elliptic, parabolic, and second order hyperbolic problems in heterogeneous
media. The proposed method uses a second order hyperbolic PDE as the micro model,
whereas the macro model is adjusted to the type of the underlying original problem.
The modeling error of typical FE-HMM schemes are limited by an O(ε/η) error. The
FE-HMM developed here reduces the modeling error up to arbitrary rates in ε/η,
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Fig. 5.8. Wave equation: Snapshots at t= 0.6, t= 1.2, and t= 1.8 of the FE-HMM solution
(red) and the DNS solution (black). Note that uH and the effective behavior of uε coincide.

without increasing the computational cost in terms of ε in comparison to previous
studies. Higher order rates are achieved by using smoother kernels while computing
the bilinear form. Although the present theory is restricted to the periodic media,
numerical results confirm that the method performs well in one- and two-dimensional
non-periodic media as well. Finally, we emphasize that the analysis for the parabolic
and the hyperbolic problems are valid only for time independent coefficients and fur-
ther studies are needed to treat the modeling error in the time dependent setting.

Acknowledgement. The research of Doghonay Arjmand is funded by Swedish
e-Science Research Center (SeRC). The financial support is gratefully acknowledged.
The work of Christian Stohrer is partially supported by the ANR (Projet META-
MATH) and the SNFS.

REFERENCES

[1] Assyr Abdulle. On a priori error analysis of fully discrete heterogeneous multiscale FEM.
Multiscale Model. Simul., 4(2):447–459, 2005.

[2] Assyr Abdulle. The finite element heterogeneous multiscale method: A computational strategy
for multiscale PDEs. GAKUTO Internat. Ser. Math. Sci. Appl., 31:133–181, 2009.

[3] Assyr Abdulle, Weinan E, Bjorn Engquist, and Eric Vanden-Eijnden. The heterogeneous mul-
tiscale method. Acta Numer., 21:1–87, 2012.

[4] Assyr Abdulle and Marcus J. Grote. Finite element heterogeneous multiscale method for the
wave equation. Multiscale Model. Simul., 9(2):766–792, 2011.

[5] Assyr Abdulle, Marcus J. Grote, and Christian Stohrer. Finite element heterogeneous multiscale
method for the wave equation: Long time effects. Multiscale Model. Simul., 12(3):1230–
1257, 2014.

[6] Assyr Abdulle and Gilles Vilmart. Coupling heterogeneous multiscale FEM with Runge-Kutta
methods for parabolic homogenization problems: A fully discrete spacetime analysis. Math.
Models Methods Appl. Sci, 22(06):1250002 (40 pages), 2012.

[7] Doghonay Arjmand. Analysis and Applications of the Heterogeneous Multiscale Methods for
Elliptic and Hyperbolic Partial Differential Equation. Licentiate thesis, KTH, 2013.

[8] Doghonay Arjmand and Olof Runborg. Analysis of heterogeneous multiscale methods for long
time wave propagation problems. Multiscale Model. Simul., 12(3):1135–1166, 2014.

[9] Garth A. Baker and Vassilios A. Dougalis. The effect of quadrature errors on finite element
approximations for second order hyperbolic equations. SIAM J. Numer. Anal., 13(4):577–
598, 1976.

[10] Alain Bensoussan, Jaques-Louis Lions, and George Papanicolaou. Asymptotic Analysis for



D. Arjmand and C. Stohrer 25

Periodic Structures, volume 5 of Studies in Mathematics and its Application. North-
Holland, 1978.

[11] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 40 of Classics
in applied mathematics. SIAM, 2002. reprint from 1978s original.

[12] Philippe G. Ciarlet and Pierre-Arnaud Raviart. The combined effect of curved boundaries ans
numerical integration in isoparametric finite element methods. In The Mathematical Foun-
dations of the Finite Element Method: With Application to Partial Differential Equations,
pages 409–474. Academic Press, 1972.

[13] Doina Cioranescu and Patrizia Donato. An Introduction to Homogenization, volume 17 of
Oxford Lecture Series in Mathematics and its Application. Oxford, University Press, 1999.

[14] Weinan E. Principles of Multiscale Modeling. Cambridge University Press, 2011.
[15] Weinan E and Bjorn Engquist. The heterogeneous multiscale methods. Commun. Math. Sci.,

1(1):87–132, 2003.
[16] Weinan E, Bjorn Engquist, Xiantao Li, Weiqing Ren, and Erik Vanden-Eijnden. Heterogeneous

multiscale methods: A review. Commun. Comput. Phys., 2(3):367–450, 2007.
[17] Weinan E, Pingbing Ming, and Pingwen Zhang. Analysis of the heterogeneous multiscale

method for elliptic homogenization problems. J. Amer. Math. Soc., 18(1):121–156, 2005.
[18] Bjorn Engquist, Henrik Holst, and Olof Runborg. Multiscale methods for the wave equation.

Proc. Appl. Math. Mech., 7(1):1140903–1140904, 2007.
[19] Bjorn Engquist, Henrik Holst, and Olof Runborg. Multi-scale methods for wave propagation

in heterogeneous media. Commun. Math. Sci., 9(1):33–56, 2011.
[20] Bjorn Engquist and Yen-Hsi Tsai. Heterogeneous multiscale methods for stiff ordinary differ-

ential equations. Math. Comp., 74(252):1707–1742, 2005.
[21] Vasilii V. Jikov, Serguei M. Kozlov, and Olga A. Oleinik. Homogenization of Differential

Operators and Integral Functionals. Springer-Verlag, 1994.
[22] Mark G. Krein and Mark A. Rutman. Linear Operators that Leave Invariant a Cone in a

Banach Space. Uspehi Matem. Nauk (N. S.) 3, 1(23):3-95, 1948.
[23] Pingbing Ming and Pingwen Zhang. Analysis of the heterogeneous multiscale method for

parabolic homogenization problems. Math. Comp., 76(257):153–177, 2007.
[24] Pierre-Arnaud Raviart. The use of numerical integration in finite element methods for solving

parabolic equations. In Topics in Numerical Analysis (Proc. Roy. Irish Acad. Conf.,
University Coll., Dublin, 1972), pages 233–264. Academic Press, London, 1973.

[25] Christian Stohrer. Finite Element Heterogeneous Multiscale Methods for the Wave Equation.
PhD thesis, University of Basel, 2013.

[26] Xingye Yue and Weinan E. The local microscale problem in the multiscale modeling of strongly
heterogeneous media: Effects of boundary conditions and cell size. Journal of Computa-
tional Physics, 222(2):556 – 572, 2007.


