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Abstract. Nowadays multi-agents has established as one of the most im-

portant areas of research and development in information technology. Agents 

are normally involved in cooperative distributed problem and they face fre-

quently with incomplete and/or conflicting information or task. Since more and 

more concern is attached to agents' teamwork and agents' dialogue, conflicts 

naturally arise as a key issue to be dealt with, not only with application dedicat-

ed techniques, but also with more formal and generic tools. In this semi-

expository paper we show that a formal treatment for multi-agent knowledge 

representation that can represent conflicts and incomplete information is possi-

ble through new logical system, namely the paraconsistente logics. We discuss 

one of such system adding suitable modal operators for knowledge.  

Keywords: multi-agent systems, conflicts in distributed systems, multi-

agents and logical representation, paraconsistente logics. 

1 Introduction 

Multi-agent systems have emerged as one of the most important areas of research 

and development in information technology in the 1990s. Since the theme has re-

ceived attention of specialists and nowadays a number of research topics has been 

considered such as cooperative distributed problem solving, mechanism design, auc-

tions, game theory, multi-agent planning, negotiation protocols, multi-agent learning, 

conflict resolution, agent-oriented software engineering, including implementation 

languages and frameworks, E-business agents, novel computing paradigms (autonom-

ic, grid, P2P, ubiquitous computing), among innumerous themes. 

In this paper we are focused in the problem of conflict resolution among agents. 

For this task we need a suitable language for represent agent’s communication and 

moreover inference rules to get interest results; in other words we need an underlying  

logical system to represent  agent’s interaction.  

Agents' conflicts arise for different reasons, involve different concepts, and are 

dealt with in different ways, depending on the kind of agents and on the domain 

where they are considered.  

For example, 
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 incompleteness and uncertainty of the agents' knowledge or beliefs: in dynamic 

contexts, an agent may have more recent or more complete information than the 

others, and the differences in the agents' knowledge create knowledge conflicts;  

 limited or unavailable resources: not all agents have access to the same resources, 

thus resulting in resource conflicts;  

 differences in the agents' skills and points of view: autonomous and heterogene-

ous agents have different abilities, or even different preferences, which can cause 

conflicts if the agents' pieces of information are not comparable, if they come up 

with different answers to the same questions, or if they are strongly committed to 

their own preferences.  

Up till now, the focus has been much on how to avoid, solve or get rid of conflicts. 

However, recent research has shown that conflicts have positive effects in so far as 

they can generate original solutions and be a basis for a global enrichment of the 

knowledge within a multi-agent system. 

Since more and more concern is attached to agents' teamwork and agents' dialogue, 

conflicts naturally arise as a key issue to be dealt with, not only with application dedi-

cated techniques, but also with more formal and generic tools. 

2 Paraconsistent, Paracomplete, and Non-alethic Logics 

In what follows, we sketch the non-classical logics discussed in the paper, establish-

ing some conventions and definitions. Let T be a theory whose underlying logic is L. 

T is called inconsistent when it contains theorems of the form A and A (the negation 

of A). If T is not inconsistent, it is called consistent. T is said to be trivial if all formu-

las of the language of T are also theorems of T. Otherwise, T is called non-trivial. 

When L is classical logic (or one of several others, such as intuitionistic logic), T is 

inconsistent iff T is trivial. So, in trivial theories the extensions of the concepts of 

formula and theorem coincide. A paraconsistent logic is a logic that can be used as 

the basis for inconsistent but non-trivial theories. A theory is called paraconsistent if 

its underlying logic is a paraconsistent logic.  

Issues such as those described above have been appreciated by many logicians. In 

1910, the Russian logician Nikolaj A. Vasil’év (1880-1940) and the Polish logician 

Jan Lukasiewicz (1878-1956) independently glimpsed the possibility of developing 

such logics. Nevertheless, Stanislaw Jaskowski (1996-1965) was in 1948 effectively 

the first logician to develop a paraconsistent system, at the propositional level. His 

system is known as ‘discussive’ (or discursive) propositional calculus’. Independ-

ently, some years later, the Brazilian logician Newton C.A. da Costa (1929-) con-

structed for the first time hierarchies of paraconsistent propositional calculi Ci, 1  i  

 of paraconsistent first-order predicate calculi (with and without equality), of para-

consistent description calculi, and paraconsistent higher-order logics (systems NFi, 1  

i  ). Another important class of non-classical logics are the paracomplete logics. A 

logical system is called paracomplete if it can function as the underlying logic of 

theories in which there are formulas such that these formulas and their negations are 

simultaneously false. Intuitionistic logic and several systems of many-valued logics 

are paracomplete in  this sense (and the dual of intuitionistic logic, Brouwerian logic, 

is therefore paraconsistent).  



As a consequence, paraconsistent theories do not satisfy the principle of non-

contradiction, which can be stated as follows: of two contradictory propositions, i.e., 

one of which is the negation of the other, one must be false. And, paracomplete theo-

ries do not satisfy the principle of the excluded middle, formulated in the following 

form: of two contradictory propositions, one must be true.  

Finally, logics which are simultaneously paraconsistent and paracomplete are 

called non-alethic logics.  

3 A Logical Framework for Representing Impreciseness, 

Conflicts and Paracompleteness 

We present, in this section, the multimodal predicate calculi M, based on annotated 

logics extensively studied by Abe [1], [4] and multimodal systems considered in [7].  

The symbol  = <, , ~> indicates some finite lattice with operator called the 

lattice of truth-values. We use the symbol  to denote the ordering under which  is a 

complete lattice,  and ┬ to denote, respectively, the bottom element and the top ele-

ment of . Also,  and  denote, respectively, the greatest lower bound and least up-

per bound operators with respect to subsets of . The operator ~:  will 

work as the “meaning” of the negation of the system M. 

The language of M has the following primitive symbols: 

1. Individual variables: a denumerable infinite set of variable symbols: x
1
, x

2
, ... 

2. Logical connectives:  (negation),  (conjunction),  (disjunction), and  (impli-

cation). 

3. For each n, zero or more n-ary function symbols (n is a natural number). 

4. For each n  0, n-ary predicate symbols. 

5. The equality symbol: = 

6. Annotational constants: each member of  is called an annotational constant.  

7. Modal operators: []1, []2, ... , []n, (n  1), []G, []
C

G , []
D

G  (for every nonempty subset 

G of {1, ... , n}). 

8. Quantifiers:  (for all) and  (there exists). 

9. Auxiliary symbols: parentheses and comma. 

A 0-ary function symbol is called a constant. We suppose that M possesses at 

least one predicate symbol. 

We define the notion of term as usual. Given a predicate symbol p of arity n and n 

terms t1, ... , tn, a basic formula is an expression of the form p(t1, ... , tn). An annotated 

atomic formula is an expression of the form p(t1, ... , tn), where  is an annotational 

constant. We introduce the general concept of (annotated) formula in the standard 

way. For instance, if A is a formula, then []1A, []2A, ... , []nA, []GA, []
C

G A, and []
D

G A 

are also formulas [7].  

Among several intuitive readings, an atomic annotated formula p(t1, ... , tn) can be 

read: it is believed that p(t1, ... , tn)’s truth-value is at least . 

Definition 1 Let A and B be formulas. We put A  B =Def. (A  B)  (B  A) and 



*A =Def. A  ((A  A)  (A  A)). The symbol ‘’ is called biconditional and 

‘*’ is called strong negation. 

Let A be a formula. Then: 
0
A =Def. A, 

1
A =Def.A, and 

k
A =Def. (

k-1
A), (k  N, 

k > 0). Also, if   , ~
0
 =Def. , ~

1
 =Def. ~, and ~

k
 =Def. ~(~

k-1
), (k  N, k > 0). If 

A is an atomic formula p(t1, ... , tn), then a formula of the form 
k
p(t1, ... , tn) (k  0) 

is called a hyper-literal. A formula other than hyper-literals is called a complex for-

mula.  

The postulates (axiom schemata and primitive rules of inference) of M are the 

same of the logics Q [1] plus the following listed below [7], where A, B, and C are 

any formulas whatsoever, p(t1, ... , tn) is a basic formula, and , , j are annotational 

constants. 

M1) []i(A  B)  ([]iA  []iB), i = 1, 2, ... , n  

M2) []iA  []i[]iA, i = 1, 2, ... , n 

M3) *[]iA  []i*[]iA, i = 1,2, ... , n 

M4)  []iA  A, i = 1, 2, ... , n 

M5) 
A

A

i[]

, i = 1, 2, ... , n 

M6) []G A  iG[]iA 

M7) []
C

G A  []G(A  []
C

G A) 

M8) []
D

i}{ A  []iA, i = 1, 2, ... , n 

M9) []
D

G A  []
D

G ' A if G’  G 

M10) 
BA

ABA
B

G

G

[]

)([]




 

M11) x[]iA  []ixA, i = 1, 2, ... , n  

M12) *(x = y)  []i*(x = y), i = 1, 2, ... , n 

M is an extension of the logic Q. As Q contains classical predicate logic, M 

contains classical modal logic S5, as well as the multimodal system studied in [7] in 

at least two directions. So, usual all valid schemes and rules of classical positive 

propositional logic are true. In particular, the deduction theorem is valid in M ant it 

contains intuitionistic positive logic. 

Theorem 1 M is non-trivial. 

Now we introduce a semantical analysis by using Kripke models. 

Definition 2 A Kripke model for M (or M structure) is a set theoretical structure 

K = [W, R1, R2, ... , Rn, I] where W is a nonempty set of elements called ‘worlds’; Ri (i 

= 1, 2, ... , n) is a binary relation on W such that it is an equivalence relation. I is an 

interpretation function with the usual properties with the exception that for each n-ary 

predicate symbol p we associate a function pI:W
n
  . 

Given a Kripke model K for the language L of M, the diagram language L(K) is 

obtained as usual.  

Definition 3 If A is a closed formula of M, and wW, we define the relation K,w 

╟ A (K,w force A) by recursion on A: 

1. If A is atomic of the form p(t1, ... , tn), then K,w ╟ A iff pI(K(t1), ... ,K(tn))  . 



2. If A is of the form 
k
p(t1, ... , tn) (k  1), K,w ╟ A iff K,w ╟ 

k-1
p~(t1, ... , tn). 

3. Let A and B formulas. Then, K,w ╟ (A  B) iff K,w ╟ A; K,w ╟ B; K,w ╟ (A  B) iff 

K,w ╟ A or K,w ╟ B; K,w ╟ (A  B) iff it is not the case that K,w ╟ A or K,w ╟ B; 

4. If F is a complex formula, then K,w ╟ (F) iff it is not the case that K,w ╟ F. 

5. If A is of the form (x)B, then K,w ╟ A iff K,w ╟ Bx[i] for some i in L(K). 

6. If A is of the form (x)B, then K,w ╟ A iff K,w ╟ Bx[i] for all i in L(K). 

7. If A is of the form []iB then K,w ╟ A iff K,w’ ╟ B for each w’  W such that wRiw’,  

i = 1, 2, ... , n 

Definition 4 Let K = [W, R1, R2, ... , Rn, I] be a Kripke structure for M. The 

Kripke structure K forces a formula A (in symbols, K ╟ A), if K,w ╟ A for each w  

W. A formula A is called M-valid if for any M-structure K, K ╟ A. A formula A is 

called valid if it is M-valid for all M structure. We symbolize this fact by ╟ A. 

Theorem 2 Let K = [W, R1, R2, ... , Rn, I] be a Kripke structure for M. Then  

1. If A is an instance of a propositional tautology then, K ╟ A  

2. If K ╟ A and K ╟ A  B, then K ╟ B  

3. K ╟ []i(A  B)  ([]iA  []iB), i = 1, 2, ... , n 

4. K ╟ []iA  []i[]iA, i = 1, 2, ... , n 

5. K ╟ []iA  A, i = 1, 2, ... , n 

6. If K ╟ A then K ╟ []iA, i = 1, 2, ... , n 

Theorem 3 Let K be a Kripke model for M and F a complex formula. Then we 

have not simultaneously K,w ╟ F and K,w ╟ F. 

Theorem 4 Let p(t1, ... , tn) be a basic formula and , ,   . We have 

╟ p(t1, ... , tn); ╟ p(t1, ... , tn)  p(t1, ... , tn), if   ; ╟ p(t1, ... , tn)  p(t1, ... , tn) 

 p(t1, ... , tn), where  =    

Theorem 5 Let A and B be arbitrary formulas and F a complex formula. Then: 

╟ ((A  B)  ((A  *B)  *A)); ╟ (A  (*A  B)); ╟ (A  *A); ╟ (F  

*F);   ╟ A  **A; ╟ xA  x*A; ╟ (A  B)  *(*A  *B); ╟ A  

x*A;   ╟ xA  B  x(A  B); ╟ A  xB  x(A  B) 

Corollary 5.1 In the same conditions of the preceding theorem, we have not simul-

taneously K ╟ ╖A and K ╟ A. The set of all formulas together with the connectives , 

, , and ╖ has all properties of the classical logic. 

Theorem 6 There are Kripke models K such that for some hyper-literals A and B 

and some worlds w and w’  W, we have K,w ╟ A and K,w ╟ A and it is not the case 

that K,w’ ╟ B. 

Proof. Let W = {{a}} and R = {({a},{a})} (that is w = {a}) and p(t1, ... , tn) and 

q(t’1, ... , t’n) basic (closed) formulas such that I(p)  ┬ and I(q)  . As ┬  ┬, it fol-

lows that p┬(t1, ... , tn)  ┬. Also, ┬  ~┬. So, pI  ~┬. Therefore, K,w ╟ p┬(t1, ... , tn) 

and K,w ╟ p~┬(t1, ... , tn). By condition 2 of Definition 4.2, it follows that K,w ╟  

p┬(t1, ... , tn). On the other hand, as it is false that   ┬; it follows that it is not the 

case that qI  ┬, and so, it is not the case that K,w ╟ q(t’1, ... , t’n).  

Theorem 7 For some systems M there are Kripke models K such that for some 

hyper-literal formula A and some world w  W, we don’t have K,w ╟ A nor K,w ╟ 

A. 



Corollary 7.1 For some systems M there are Kripke models K such that for some 

hyper-literal formulas A and B, and some worlds w, w’  W, we have K,w ╟ A and 

K,w ╟ A and we don’t have K,w ╟ B nor K,w ╟ B. 

The earlier results show us that there are systems M such that we have “incon-

sistent” worlds, “paracomplete” worlds, or both. 

Now we present a strong version these results linking with paraconsistent, 

paracomplete, and non-alethic logics. 

Definition 5 A Kripke model K is called paraconsistent if there are basic formulas 

p(t1, ... , tn), q(t1, ... , tn), and annotational constants ,    such that K,w ╟ p(t1, 

... , tn), K,w ╟  p(t1, ... , tn), and it is not the case that K,w ╟ q(t1, ... , tn). 

Definition 6 A system M is called paraconsistent if there is a Kripke model K for 

M such that K is paraconsistent. 

Theorem 8 M is a paraconsistent system iff # 2. 

Proof. Define a structure K = [{w}, {(w, w)}, I] such that 









TI

I

p

q  

It is clear that pI  ┬, and so K ╟ p┬(t1, ... , tn). Also, pI  ~┬, and, so K ╟ p~┬(t1, ... , 

tn), or K ╟ p┬(t1, ... , tn). Also, it is not the case that qI(t1, ... , tn)  , so it is not the 

case that K,w ╟ q(t1, ... , tn).  

Definition 7 A Kripke model K is called paracomplete if there are a basic formula 

p(t1, ... , tn) and an annotational constant    such that it is false that K,w ╟ p(t1, 

... , tn) and it is false that K,w ╟ p(t1, ... , tn). A system M is called paracomplete if 

there is a Kripke models K for M such that K is paracomplete. 

Definition 8 A Kripke model K is called non-alethic if K are both paraconsistent 

and paracomplete. A system M is called non-alethic if there is a Kripke model K for 

M such that K is non-alethic. 

Theorem 9 If # 2, then there are systems M which are paracomplete and 

systems M’ that are not paracomplete, #’ 2. 

Corollary 9.1 If # 2, then there are systems M which are non-alethic and 

systems M’ that are not non-alethic, #’ 2. 

Theorem 10 Let U be a maximal non-trivial maximal (with respect to inclusion of 

sets) subset of the set of all formulas. Let A and B formulas whatsoever. Then if A is 

an axiom of M, then A  U; A  B  U iff A  U and B  U ;A  B  U iff A  U or 

B  U; A  B  U iff A  U or B  U; If p(t1, ... , tn)  U and p(t1, ... , tn)  U, then 

p(t1, ... , tn)  U, where  =   ; 
k
p(t1, ... , tn)  U iff 

k-1
p~(t1, ... , tn)  U. If A 

and A  B  U, then B  U; A  U iff *A  U. Moreover A  U or *A  U. If A 

is a complex formula, A  U iff A  U. Moreover A  U or A  U. If A  U, then 

[]iA  U. 

Proof. Let us show only 3. In fact, if p(t1, ... , tn)  U and p(t1, ... , tn)  U, then 

p(t1, ... , tn)  p(t1, ... , tn)  U by 2. But it is an axiom p(t1, ... , tn)  p(t1, ... , tn)  

p(t1, ... , tn), where  =   . It follows that p(t1, ... , tn)  p(t1, ... , tn)  p(t1, ... , 

tn)  U, and so p(t1, ... , tn)  U, by 6. 

Given a set U of formulas, define U/[]i = {A[]iA  U}, i = 1, 2, ... , n. Let us con-

sider the canonical structure K = [W, Ri, I] where W = {UU is a maximal non-trivial 

set} and the interpretation function is as usual with the exception that given a n-ary 



predicate symbol p we associate the function pI : W
n
  defined by pI(t


1, ... , t


n) 

=def. { p(t1, ... , tn)  U} (such function is well defined, so p(t1, ... , tn)  

U). Moreover, define Ri =Def. {(U, U’) U/[]i   U’}. 

Lemma 1 For all propositional variable p and if U is a maximal non-trivial set of 

formulas, we have ppI(t1, ... , tn) (t1, ... , tn)  U. 

Proof. It is a simple consequence of the previous theorem, item 5. 

Theorem 11 For any formula A and for any non-trivial maximal set U, we have (K, 

U) ╟ A iff A  U. 

Proof. Let us suppose that A is p(t1, ... , tn) and (K, U) ╟ p(t1, ... , tn). It is clear by 

previous lemma that ppI(t1, ... , tn) (t1, ... , tn)  U. It follows also that pI(t

1, ... , t


n)  . 

It is an axiom that ppI(t1, ... , tn) (t1, ... , tn)  p(t1, ... , tn). Thus, p(t1, ... , tn)  U. Now, 

let us suppose that p(t1, ... , tn)  U. By previous lemma, ppI(t1, ... , tn) (t1, ... , tn)  U. It 

follows that pI(t

1, ... , t


n)  . Thus, by definition, (K, U) ╟ p(t1, ... , tn). By theorem 

3.20, 
k
p(t1, ... , tn)  U iff 

k-1
p~(t1, ... , tn)  U. Thus, by definition 3.4, (K, U) ╟ 


k
p(t1, ... , tn) iff (K, U) ╟ 

k-1
p~(t1, ... , tn) . So, by induction on k the assertion is 

true for hyper-literals.  

The other cases, the proof is as in the classical case. 

Corollary 11.1 A is a provable formula of M iff ╟ A 

4 Concluding Remarks 

It is quite interesting to observe the role of conflict within a multiagent system, i.e. 

how this system may evolve thanks to, despite, or because of conflicts. Such concept 

receives different ‘interpretations’ or characterizations depending on of the domain 

considered. Some considerations regarding to it 
 It is easier not to be in conflict than to be in conflict. The former may mean that the 

agents are not even interacting. The latter supposes that the agents are within the 

same context.  

 incompleteness and uncertainty of the agents' knowledge or beliefs: in dynamic 

contexts, an agent may have more recent or more complete information than the 

others, and the differences in the agents' knowledge create knowledge conflicts;  

 limited or unavailable resources: not all agents have access to the same resources, 

thus resulting in resource conflicts; 

  differences in the agents' skills and points of view: autonomous and heterogeneous 

agents have different abilities, or even different preferences, which can cause con-

flicts if the agents' pieces of information are not comparable, if they come up with 

different answers to the same questions, or if they are strongly committed to their 

own preferences.  

 When two agents (in this case, e.g. two robots) a conflict does not seem to be nec-

essarily symmetric: conflict (a, b) does not imply conflict (b, a). When two robots 

roam in a 2D space for instance, the notion of spatial conflict appears only at the 

time when a robot attempts to move to the location of the other robot. But the latter 

does not see this conflict.  

 Are conflicts useful? The answer depends on the problem. To be useful, a conflict 

must be observed. For example, if an agent think about a solution and ask for two 



other agent’s (experts) for an opinion and they have contradictory opinions, the 

former agent can decide, for instance, consult a third agent.  

 What we learn from a conflict depends on the situation. Learning is possible if 

agents are aware of the conflict.  

 Conflicts are positive in certain cases, e.g. they may create specific behaviours, 

create competition, or stimulate inference.  

Up till now, the focus has been much on how to avoid, solve or get rid of conflicts. 

However, recent research has shown that conflicts have positive effects in so far as 

they can generate original solutions and be a basis for a global enrichment of the 

knowledge within a multiagent system. Thus this work is a contribution in this direc-

tion, showing, for instance that it is unnecessary to try to avoid conflicts; on the con-

trary with a logical knowledge representation of conflicts we can manage mathemati-

cally them and so it is possible to understand better the nature of them. 
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