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HARNACK PARTS OF ρ-CONTRACTIONS

GILLES CASSIER1∗, MOHAMMED BENHARRAT2 AND SOUMIA BELMOUHOUB3

Abstract. The purpose of this paper is to describe the Harnack parts for
the operators of class Cρ (ρ > 0) on Hilbert spaces which were introduced by
B. Sz. Nagy and C. Foias in [29]. More precisely, we study Harnack parts of
operators with ρ-numerical radius one. The case of operators with ρ-numerical
radius strictly less than 1 was described in [11]. We obtain a general criterion
for compact ρ-contractions to be in the same Harnack part. For classical con-
tractions, this criterion can be simplified into a very useful form. Operators
with numerical radius one received also a particular attention. Moreover, we
study many properties of Harnack equivalence in the general case.

1. Introduction and preliminaries

Let H be a complex Hilbert space and B(H) the set of all bounded linear
operators on H. For ρ > 0, we say that an operator T ∈ B(H) admits a unitary
ρ-dilation if there is a Hilbert space H containing H as a closed subspace and a
unitary operator U ∈ B(H) such that

T n = ρPHU
n|H, n ∈ N∗, (1.1)

where PH denotes the orthogonal projection onto the subspace H in H.
In the sequel, we denote by Cρ(H), ρ > 0, the set of all operators in B(H)

which admit unitary ρ-dilations. A famous theorem due to B. Sz.-Nagy [26]
asserts that C1(H) is exactly the class of all contractions, i.e., operators T such
that ‖T‖ ≤ 1. C. A. Berger [5] showed that the class C2(H) is precisely the class
of all operators T ∈ B(H) whose the numerical radius

w(T ) = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ = 1}

is less or equal to one. In particular, the classes Cρ(H), ρ > 0, provide a frame-
work for simultaneous investigation of these two important classes of operators.
Any operator T ∈ Cρ(H) is power-bounded :

‖T n‖ ≤ ρ, n ∈ N, (1.2)

moreover, its spectral radius

r(T ) = lim
n→+∞

‖T n‖
1
n (1.3)
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is at most one. In [27], an example of a power-bounded operator which is not
contained in any of the classes Cρ(H), ρ > 0, is given. However, J. A. R. Holbrook
[19] and J. P. Williams [30], independently, introduced the ρ-numerical radius (or
the operator radii ) of an operator T ∈ B(H) by setting

wρ(T ) := inf{γ > 0 :
1

γ
T ∈ Cρ(H)}. (1.4)

Note that w1(T ) = ‖T‖, w2(T ) = w(T ) and limρ→∞wρ(T ) = r(T ). Also, T ∈
Cρ(H) if and only if wρ(T ) ≤ 1, hence operators in Cρ(H) are contractions
with respect to the ρ-numerical radius, and the elements of Cρ(H) are called ρ-
contractions. Considerable attention has been paid to the study of ρ-contractions,
see for instance [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 27, 28, 29] and the
references therein (the list will not be exhaustive).

Some properties of the classes Cρ(H) become more clear (see for instance,
[9],[10], [11] and [7]) due to harmonic analysis methods using the following oper-
atorial ρ-kernel

Kρ
z (T ) = (I − zT )−1 + (I − zT ∗)−1 + (ρ− 2)I, (z ∈ D) (1.5)

(of a bounded operator T having its spectrum in the closed unit disc) introduced
and first systematically developed in [6, 9, 10].

The ρ-kernels are connected to ρ-contraction by the next result. An operator
T is in the class Cρ(H) if and only if, σ(T ) ⊆ D and Kρ

z (T ) ≥ 0 for any z ∈ D
(see [10]).

The extension of Harnack domination to ρ-contrations appears in [11] and is
studied in the Cρ balls of B(H)n (n > 1) in [25].

We say that T1 is Harnack dominated by T0, if T0 and T1 satisfy one of the
following equivalent conditions given in the next theorem:

Theorem 1.1. [11, Theorem 3.1] For T0, T1 ∈ Cρ(H) and a constant c ≥ 1, the
following statements are equivalent:

(i) Rep(T1) ≤ c2Rep(T0)+(c2−1)(ρ−1)Rep(OH), for any polynomial p with
Rep ≥ 0 on D.

(ii) Rep(rT1) ≤ c2Rep(rT0) + (c2 − 1)(ρ − 1)Rep(OH), for any r ∈ ]0, 1[ and
each polynomial p with Rep ≥ 0 on D.

(iii) Kρ
z (T1) ≤ c2Kρ

z (T0), for all z ∈ D.
(iv) ϕT1(g) ≤ c2ϕT0(g) for any function g ∈ C(T) such that g ≥ 0 on T = D\D.
(v) If Vi acting on Ki ⊇ H is the minimal isometric ρ-dilation of Ti (i = 0, 1),

then there is an operator S ∈ B(K0, K1) such that S(H) ⊂ H, S|H = I,
SV0 = V1S and ‖S‖ ≤ c.

When T1 is Harnack dominated by T0 in Cρ(H) for some constant c ≥ 1, we

write T1

H
≺
c
T0, or also T1

H
≺T0. The relation

H
≺ is a preorder relation in Cρ(H).

The induced equivalent relation is called Harnack equivalence, and the associated
classes are called the Harnack parts of Cρ(H). So, we say that T1 and T0 are
Harnack equivalent if they belong to the same Harnack parts. In this later case,

we write T1
H∼T0.
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We say that an operator T ∈ Cρ(H) is a strict ρ−contraction if wρ(T ) < 1.
In [17] C. Foiaş proved that the Harnack part of contractions containing the null
operator OH consists of all strict contractions. More recently, G. Cassier and N.
Suciu proved in [11, Theorem 4.4] that the Harnack part of Cρ(H) containing the
null operator OH is the set of alle strict ρ−contractions. According to this fact
the following natural question arises:

If T an operator with ρ-numerical radius one, what can be said about the Har-
nack part of T?

Recall that a ρ-contraction is similar to a contraction [28] but many properties
are not preserved under similarity (and an operator similar to a contraction is
not necessarily a ρ-contraction!), in particular it is true for the numerical range
properties. Thus, the study of Harnack parts for ρ-contractions cannot be de-
duced from the contractions case, see for instance Theorem 2.17, Remark 2.18,
Theorem 2.25 and Remark 2.26. Notice also that some properties are of different
nature (see for example Theorem 2.1 and Remark 2.7). We find a few answers
in the literature of the previous question, essentially in the class of contractions
with norm one. In [2], the authors have proved that if T is either isometry or
coisometry then the Harnack part of T is trivial (i.e. equal to {T}), and if T is
compact or r(T ) < 1, or normal and nonunitary, then its Harnack part is not triv-
ial in general. The authors have asked that it seems interesting to give necessary
and/or sufficient conditions for a contraction to have a trivial Harnack part. It
was proved in [22] that the Harnack part of a contraction T is trivial if and only
if T is an isometry or a coisometry (the adjoint of an isometry), this a response
of the question posed by T. Ando and al. in the class of contractions. Recently
the authors of [4] proved that maximal elements for the Harnack domination in
C1(H) are precisely the singular unitary operators and the minimal elements are
isometries and coisometries.

This paper is a continuation and refinement of the research treatment of the
Harnack domination in the general case of the ρ−contractions. Note that this
treatment gives certain useful properties and leads to new techniques for studies
of the Harnack part of an operator with ρ-numerical radius one. More precisely,
we show that two ρ-contractions belong to the same Harnack parts have the same
spectral values in T. This property has several consequences and applications.
In particular, it will be shown that if T0 is a compact (i.e. T0 ∈ K(H)) with
wρ(T0) = 1 and whose spectral radius is strictly less than one, then a ρ-contraction
T1 ∈ K(H) is Harnack equivalent to T0 if and only if they satisfy the null spaces
condition : N (Kρ

z (T1)) = N (Kρ
z (T0)) for all z ∈ T and an additional conorm

condition on the ρ-operator kernels of T0 and T1. We give an example showing
that this conorm condition cannot be removed in general (see Remark 2.18). We
also study a situation where the null spaces condition is sufficient to characterize
Harnack equivalence. It is the case for all usual contractions, moreover we show
that if T0 is a compact contraction with ‖T0‖ = 1, then a contraction T1 ∈ K(H)
is Harnack equivalent to T0 if and only if I − T ∗1 T1 and I − T ∗0 T0 have the same
null space and T0 and T1 restricted to the null space of I −T ∗0 T0 coincide. A nice
application is the description of the Harnack part of the (nilpotent) Jordan block
of size n. We also obtain precise results about the relationships between the trace
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of the closure of the numerical range on the torus and the Harnack domination
for every ρ ∈ [1, 2]. The case of ρ = 2 plays a crucial role. We characterizes the
weak stability of a ρ−contraction in terms of its minimal isometric ρ−dilation.
The details of these basic facts are explained in Section 2. Last section is devoted
to applications in order to describe the Harnack part of some nilpotent matrices
with numerical radius one, in three cases: a nilpotent matrix of order two in
the two dimensional case, a nilpotent matrix of order two in Cn and a nilpotent
matrix of order three in the three dimensional case. In particular, we show that in
the first case the Harnack part is trivial, while in the third case the Harnack part
is an orbit associated with the action of a group of unitary diagonal matrices.

2. Main results

2.1. Spectral properties and Harnack domination. We denote by Γ(T ) the
set of complex numbers defined by Γ(T ) = σ(T )∩T, where T = D\D is the unidi-
mensional torus. In the following results, we prove that ρ-contractions belonging
to the same Harnack parts have the same spectral values in the torus.

Theorem 2.1. Let T0, T1 ∈ Cρ(H), (ρ ≥ 1), if T1

H
≺T0 then Γ(T1) ⊆ Γ(T0).

Proof. Let T0, T1 ∈ Cρ(H) be such that T1

H
≺T0. Then there exists c ≥ 1 such that

Kρ
z (T1) ≤ c2Kρ

z (T0), for all z ∈ D, (2.1)

so,

Kρ
z (T1) = (I − zT ∗1 )−1[ρI + 2(1− ρ)Re(zT1) + (ρ− 2) |z|2 T ∗1 T1](I − zT1)−1

≤ c2Kρ
z (T0), for all z ∈ D.

Hence

ρI + 2(1− ρ)Re(zT1) + (ρ− 2) |z|2 T ∗1 T1 ≤ c2(I − zT ∗1 )Kρ
z (T0)(I − zT1), (2.2)

for all z ∈ D. Now, let λ = eiω ∈ Γ(T1) which is contained in the approximate
point spectrum σap(T1), then there exists a sequence (xn)n≥0 of unit vectors such
that T1xn − eiωxn = yn converge to 0. From the inequality (2.2), we derive

ρI + 2(1− ρ)Re(z 〈T1xn, xn〉) + (ρ− 2) |z|2 ‖T1xn‖2

≤ c2 〈Kρ
z (T0)(I − zT1)xn, (I − zT1)xn〉

= c2
〈
Kρ
z (T0)[(1− zeiω)xn − zyn], (1− zeiω)xn − zyn

〉
= c2

∣∣1− zeiω∣∣2 〈Kρ
z (T0)xn, xn〉 − c2z(1− zeiω) 〈Kρ

z (T0)xn, yn〉
− c2z(1− ze−iω) 〈Kρ

z (T0)yn, xn〉+ c2 |z|2 〈Kρ
z (T0)yn, yn〉 ,

for any z ∈ D and all n ≥ 0. The triangular inequality gives∣∣∥∥T1xn − eiωxn
∥∥− ‖xn‖∣∣ ≤ ‖T1xn‖ ≤

∥∥T1xn − eiωxn
∥∥+ 1.

Letting n→ +∞, from the two previous inequalities we obtain

ρ+ 2(1− ρ)Re(zeiω) + (ρ− 2) |z|2 ≤ c2
∣∣1− zeiω∣∣2 lim sup

n→+∞
〈Kρ

z (T0)xn, xn〉 ,
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for any z ∈ D. Then, if we take z = (1− t)eiω with 0 < t < 1, we get

ρ+ 2(1− ρ)(1− t) + (ρ− 2)(1− t)2 ≤ c2t2 lim sup
n→+∞

〈
Kρ

(1−t)eiω(T0)xn, xn

〉
.

Assume that eiω /∈ Γ(T0), then Kρ
(1−t)eiω(T0) is uniformly bounded in ]0, 1[, then

there exists γ > 0 such that

ρ+ 2(1− ρ)(1− t) + (ρ− 2)(1− t)2 ≤ γc2t2,

which implies
2t ≤ (γc2 + 2− ρ)t2,

for all t > 0, and hence
2 ≤ (γc2 + 2− ρ)t.

Now, we get a contradiction by letting t→ 0. Hence eiω ∈ Γ(T0). �

From Theorem 2.1, we also obtain the following result

Corollary 2.2. If T1 and T0 are Harnack equivalent in Cρ(H) then Γ(T1) =
Γ(T0).

Let T ∈ B(H) and E be a closed invariant subspace of T , (T (E) ⊂ E). Then
T ∈ B(E ⊕ E⊥), has the following form:

T =

(
T1 R
0 T2

)
,

with T1 ∈ B(E), T2 ∈ B(E⊥) and R is a bounded operator from E⊥ to E. We de-
note by Γp(T ) = σp(T )∩T the point spectrum of T ∈ B(H) in the unidimensional
torus and by N (T ) its null space.

Theorem 2.3. Let T0, T1 ∈ Cρ(H) (ρ ≥ 1), if T1

H
≺T0 then Γp(T1) ⊆ Γp(T0) and

N (T1 − λI) ⊆ N (T0 − λI) for all λ ∈ Γp(T1).

For the proof of this theorem we need the following lemma.

Lemma 2.4. Let T ∈ Cρ(H). Then

‖(I − λT )Kρ
z (T )(I − λT ∗)‖ ≤ ρ(1 + 2|1− ρ|+ |ρ− 2|ρ)(1 + ρ

|z − λ|
1− |z|

)2,

for all z ∈ D and λ ∈ D.

Proof. Let z ∈ D and λ ∈ D, we have

(I − zT ∗)−1(I − λT ∗) = I + (z − λ)
+∞∑
n=0

znT ∗n+1.

Then by (1.2),

‖(I − zT ∗)−1(I − λT ∗)‖ ≤ 1 + ρ
|z − λ|
1− |z|

.

Taking into account this inequality and the fact that

Kρ
z (T1) = (I − zT1)−1[ρI + 2(1− ρ)Re(zT1) + (ρ− 2) |z|2 T1T

∗
1 ](I − zT ∗1 )−1,

we obtain the desired inequality. �
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Proof of Theorem 2.3. Let λ ∈ Γp(T1). Then the operator T1 ∈ Cρ(H) on N (T1−
λI)⊕N (T1 − λI)⊥ takes the form

T1 =

(
λI1 C

0 T̃1

)
.

Since |λ| = 1, by using Proposition [12, Proposition 3.] we can see that C = 0.
Thus, we have

Kρ
z (T1) =

(
ρ+2(1−ρ)Re(λz)+(ρ−2)|λ|2|z|2

|1−λz|2 I1 0

0 Kρ
z (T̃1)

)
,

Now, if T0 ∈ Cρ(H) be such that T1

H
≺T0, then there exists c ≥ 1 such that

Kρ
z (T1) ≤ c2Kρ

z (T0), for all z ∈ D,

Let x ∈ N (T1 − λI) and y ∈ R(T ∗0 − λI). The Cauchy-Schwarz inequality yields

|〈Kρ
z (T1)x, y〉|2 ≤ c2 〈Kρ

z (T1)x, x〉 〈Kρ
z (T0)y, y〉 .

We derive

ρI + 2(1− ρ)Re(λz) + (ρ− 2) |λ|2 |z|2

|1− λz|2
|〈x, y〉|2 ≤ c2 〈Kρ

z (T0)y, y〉 ‖x‖2.

Since y ∈ R(T ∗0 − λI), there exits u ∈ H such that y = (I − λT ∗0 )u. By Lemma
2.4, we have

〈Kρ
z (T0)y, y〉 =

〈
(I − λT0)Kρ

z (T0)(I − λT ∗0 )u, (I − λT ∗0 )u
〉

≤ ρ(1 + 2|1− ρ|+ |ρ− 2|ρ)(1 + ρ
|z − λ|
1− |z|

)2‖u‖2.

Let z = rλ, with 0 < r < 1. Then

|ρ+ 2(1− ρ)r + (ρ− 2)r2|
(1− r)2

|〈x, y〉|2 ≤ c2ρ(1+2|1−ρ|+ |ρ−2|ρ)(1+ρ)2‖u‖2‖x‖2.

This implies

|ρ+2(1−ρ)r+(ρ−2)r2|| 〈x, y〉 |2 ≤ c2(1−r)2ρ(1+2|1−ρ|+|ρ−2|ρ)(1+ρ)2‖u‖2‖x‖2.

By letting r to 1, it follows that 〈x, y〉 = 0, and hence x ∈ R(T ∗0 − λI)⊥ =
N (T0 − λI). So, Γp(T1) ⊆ Γp(T0) and N (T1 − λI) ⊆ N (T0 − λI). �

Remark 2.5. By Theorem 2.3, if IH
H
≺T on Cρ(H), (ρ ≥ 1) then T = IH . This

means that IH is a maximal element for the Harnack domination in Cρ(H) and
its Harnack part is trivial, for all ρ ≥ 1.

From Theorem 2.3, we also obtain the following result

Corollary 2.6. If T1 and T0 are Harnack equivalent in Cρ(H) then Γp(T1) =
Γp(T0) and N (T1 − λI) = N (T0 − λI) for all λ ∈ Γp(T0).
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Remark 2.7. After the authors have obtained Theorem 2.1, they have learned
that C. Badea, D. Timotin and L. Suciu [4] have proved using an other method
that, in the case of contractions (ρ = 1), the domination suffices for the equality
of the point spectrum in the torus. But in the case of ρ > 1 the inclusion in
Theorem 2.3 may be strict, for instance, we have

• For ρ > 1, we have 0H
H
≺
c
I in Cρ(H) with c =

√
ρ

ρ− 1
.

• For ρ > 1, the operator T defined on C2 by T =

(
0 ρ
0 0

)
satisfies T

H
≺
c
I

in Cρ(H) with c =

√
2ρ

ρ− 1
.

Corollary 2.8. Let T0, T1 ∈ Cρ(H) (ρ ≥ 1) such that Γp(T0) = Γp(T1). Then T0

and T1 are Harnack equivalent in Cρ(H) if and only if T0 = U⊕T̃0 and T1 = U⊕T̃1

on H = E ⊕ E⊥, where E = ⊕λ∈Γp(T0)N (T0 − λI) = ⊕λ∈Γp(T1)N (T1 − λI), U

is an unitary diagonal operator on E and T̃0 and T̃1 are Harnack equivalent in
Cρ(E

⊥).

Proof. First we prove that if λ, µ ∈ Γp(T0), then N (T0 − λI)⊥N (T0 − µI) for
λ 6= µ. Let x ∈ N (T1 − λI) and y ∈ N (T0 − µI). Then

〈Kρ
z (T0)x, y〉 =

〈
((I − zT0)−1 + (I − zT ∗0 )−1 + (ρ− 2)I)x, y

〉
=

1

1− zλ
〈x, y〉+

1

1− zµ
〈x, y〉+ (ρ− 2) 〈x, y〉 .

By Cauchy-Schwarz inequality

| 〈Kρ
z (T0)x, y〉 |2 ≤ 〈Kρ

z (T0)x, x〉 〈Kρ
z (T0)y, y〉 .

Thus

| 1

1− zλ
+

1

1− zµ
+ (ρ− 2)|2| 〈x, y〉 |2 ≤

(ρ+ 2(1− ρ)Re(λz) + (ρ− 2) |z|2)(ρ+ 2(1− ρ)Re(µz) + (ρ− 2) |z|2)

|1− zλ|2|1− µz|2
‖x‖2‖y‖2.

So

|1 +
1− zλ
1− zµ

+ (ρ− 2)(1− zλ) |z|2 |2| 〈x, y〉 |2 ≤

(ρ+ 2(1− ρ)Re(λz) + (ρ− 2) |z|2)(ρ+ 2(1− ρ)Re(µz) + (ρ− 2) |z|2)

|1− µz|2
‖x‖2‖y‖2.

By taking z to λ, we get 〈x, y〉 = 0. By [12, Corollary 4.] the subspace E reduces
T0 and T1 and we can now easily derive the desired result. �

Example 2.9. Recall that an operator T ∈ B(H) is called to be quasi-compact
operator (or quasi-strongly completely continuous in the terminology of [31]) if
there exists a compact operator K and an integer m such that ‖Tm −K‖ < 1.
Since every operator T ∈ Cρ(H) (ρ ≥ 1) is power-bounded, by [31, Theorem
4]; if T ∈ Cρ(H) (ρ ≥ 1) is a quasi-compact operator then Γ(T ) = Γp(T ) and
contains a finite number of eigenvalues and each of them is of finite multiplicity.
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Now if we assume that T0, T1 are two quasi-compact operators which are Harnack
equivalent in Cρ(H), (ρ ≥ 1), then T0 = U ⊕ T̃0 and T1 = U ⊕ T̃1 where U is

a unitary diagonal operator on E = ⊕λ∈Γp(T0)N (T0 − λI) and both operators T̃0

and T̃1 are Harnack equivalent to 0 in Cρ(E
⊥).

Corollary 2.10. Let T0 ∈ Cρ(H) (ρ ≥ 1) be a compact normal operator with
wρ(T0) = 1. If the operator T1 ∈ Cρ(H) is Harnack equivalent to T0, then T1|E =
T0|E where E = ⊕λ∈Γp(T0)N (T0 − λI), E is a reducing subspace for T1 and T1|E⊥

is Harnack equivalent to 0, i.e. wρ(T1|E⊥) < 1.

Proof. By Corollary 2.8, for all λ ∈ Γp(T ), we have T0 = U ⊕ T̃0 and T1 = U ⊕ T̃1

on E⊕E⊥, where E = ⊕λ∈Γp(T0)N (T0−λI) and T̃0 and T̃1 are Harnack equivalent
in Cρ(E

⊥). Since T0 ∈ Cρ(H) is a compact normal operator we also have

wρ(T̃0) = r(T̃0) = sup{|λ|, λ ∈ σ(T0) \ Γp(T0)} < 1.

This means that T̃0 and T̃1 are Harnack equivalent to 0. �

In the following proposition, we prove that the ρ-contractions belong to the
same Harnack parts have the same null space for their operatorial ρ-kernels.

Proposition 2.11. Let T0, T1 ∈ Cρ(H). If T0 and T1 are Harnack equivalent in
Cρ(H) then N (Kρ

z (T0)) = N (Kρ
z (T1)) for all z ∈ D.

Proof. Since T0
H∼T1, then by Theorem 1.1, there exist c ≥ 1 such that

1

c2
Kρ
z (T0) ≤ Kρ

z (T1) ≤ c2Kρ
z (T0), for all z ∈ D. (2.3)

If x ∈ N (Kρ
z (T0)), then by the right side of the inequality equ1h, we also have

0 ≤ 〈Kρ
z (T1)x, x〉 ≤ c2 〈Kρ

z (T0)x, x〉 = 0.

This implies that
∥∥∥√Kρ

z (T1)x
∥∥∥ = 0, so Kρ

z (T1)x = 0, hence N (Kρ
z (T0)) ⊆

N (Kρ
z (T1)) for all z ∈ D. The converse inclusion holds by the left-side of the

inequality 2.3. �

Proposition 2.12. If wρ(T ) = 1 and Γ(T ) is empty then there exists z0 ∈ T
such that Kρ

z0
(T ) is not invertible.

Proof. Assume by absurdum that Kρ
z (T ) is invertible for all z ∈ T. We already

know from Lemma 3 of [12] that Kρ
z (T ) is invertible in D, a continuity argument

tells us that there exists a positive real number γ such that Kρ
z (T ) ≥ γI for every

z ∈ D. Since Γ(T ) is empty, we easily deduce thatKρ
z (T ) is well defined in an open

neighbourhood of D. Thus we can find r > 1 such that Kρ
z (rT ) = Kρ

rz(T ) ≥ γ
2
I

for any z ∈ D. Hence 1 ≤ wρ (T/r) = 1
r
, which is a contradiction. �

2.2. Numerical range properties and Harnack domination. Firstly, we
give a proposition which is useful in this subsection.

Proposition 2.13. Let T0, T1 ∈ Cρ1(H) and ρ2 ≥ ρ1. Then we have

(i) If T1

H
≺
c
T0 in Cρ1(H), then T1

H
≺
c
T0 in Cρ2(H).
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(ii) If T1
H∼
c
T0 in Cρ1(H), then T1

H∼
c
T0 in Cρ2(H).

Proof. (i) Since the Cρ classes increase with ρ, the two operators T0 and T1

belong to Cρ2(H). From Theorem 1.1, we know that there exists c ≥ 1 such
that Kρ1

z (T1) ≤ c2Kρ1
z (T0) for all z ∈ D. As c ≥ 1, it yields to

Kρ2
z (T1) = Kρ1

z (T1) + (ρ2 − ρ1)I ≤ c2 [Kρ1
z (T0) + (ρ2 − ρ1)I] = c2Kρ2

z (T0).

Using again Theorem 1.1, we obtained the desired conclusion.
The assertion (ii) is a direct consequence of (i). �

Let T ∈ B(H), we denote by W (T ) the numerical range of T which is the set
given by

W (T ) = {〈Tx, x〉 ;x ∈ H, ‖x‖ = 1} .
The following result give relationships between numerical range and Harnack
domination.

Theorem 2.14. Let T0, T1 ∈ Cρ(H) with 1 ≤ ρ ≤ 2, then we have:

(i) Assume that ρ = 1 and T1

H
≺T0, then W (T0) ∩ T = W (T1) ∩ T.

(ii) Suppose that 1 < ρ ≤ 2, T1

H
≺T0 and Γ(T0) = ∅, then W (T0) ∩ T ⊆

W (T1) ∩ T.

(iii) If T1
H∼T0, then W (T0) ∩ T = W (T1) ∩ T.

Proof. (i) Let λ = eiω ∈ W (T0) ∩ T, then there exists a sequence (xn) of unit
vectors such that 〈T0xn, xn〉 −→ λ. We have for some c ≥ 1, 0 ≤ Kr,θ(T1) ≤
c2Kr,θ(T0) for all z ∈ D. Multiplying these inequalities by the nonnegative

function 1 − Re(λeiθ), integrating with respect to the Haar measure m and
letting r to 1, we get 0 ≤ I − Re(λT1) ≤ c2

[
I −Re(λT0)

]
. We deduce that

1 − Re(λ 〈T1xn, xn〉) −→ 0. Since 〈T1xn, xn〉 belongs to the closed unit disc, it

forces 〈T1xn, xn〉 −→ λ. Hence W (T0)∩T ⊆ W (T1)∩T. Now , let λ ∈ W (T1)∩T,
then there exists a sequence (yn) of unit vectors such that 〈T1yn, yn〉 −→ λ. As T1

is a contraction, it follows that 1 = lim | 〈T1yn, yn〉 | ≤ lim‖T1yn‖ ≤ lim‖T1yn‖ ≤
1, thus ‖T1yn‖ −→ 1. It implies ‖T1yn − λyn‖2 = ‖T1yn‖2 − 2Re(λ 〈T1yn, yn〉) +
1 −→ 0. Consequently, we have λ ∈ Γ(T1), by using Theorem 2.1 we see that

λ ∈ Γ(T0) ⊆ W (T0) ∩ T. So we get the desired equality.
(ii) Taking into account Proposition 2.13, it suffices to treat the case where

ρ = 2. Let λ = eiω ∈ W (T0) ∩ T, then there exists a sequence (xn) of unit
vectors such that 〈T0xn, xn〉 −→ λ. Set yn = (I − e−iωT0)xn, since Γ(T0) = ∅ we
necessarily have γ = inf{‖yn‖;n ≥ 0} > 0. Taking un = yn/‖yn‖, we can see that〈

K2
eiω(T0)un, un

〉
=

2

‖yn‖2

〈
(I −Re(e−iωT0))xn, xn

〉
≤ 2

γ2

〈
(I −Re(e−iωT0))xn, xn

〉
−→ 0.

Since T1

H
≺T0, there exists c ≥ 1 such that

K2
z (T1) ≤ c2K2

z (T0), for all z ∈ D. (2.4)
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On the one hand, if λ ∈ Γ(T1) we have obviously λ ∈ W (T1). On the other hand,
if λ /∈ Γ(T1) we can extended (2.4) at z = λ and we get

0 ≤
〈
K2
eiω(T1)un, un

〉
≤ c2

〈
K2
eiω(T0)un, un

〉
−→ 0,

hence
〈
K2
eiω(T1)un, un

〉
−→ 0. Observe that inf{‖(I − e−iωT1)−1un‖;n ≥ 0} ≥ 1

3
.

Set vn = (1/‖(I − e−iωT1)−1un‖)(I − e−iωT1)−1un, we obtain〈
(I −Re(e−iωT1))vn, vn

〉
≤ 9

2

〈
K2
eiω(T1)un, un

〉
−→ 0.

We deduce that 〈Re(e−iωT1)vn, vn〉 −→ 1. As T1 ∈ C2(H), it yields to:

1 ≥ | 〈T1vn, vn〉 |2 = |
〈
Re(e−iωT1)vn, vn

〉
|2 + |

〈
Im(e−iωT1)vn, vn

〉
|2,

and we derive successively that 〈Im(e−iωT1)vn, vn〉 −→ 0 and 〈T1vn, vn〉 −→ λ.

Thus λ ∈ W (T1) ∩ T and it ends the proof of (ii).

(iii) As before, we may suppose that ρ = 2. Assume that T1
H∼T0 and λ ∈

W (T0) ∩ T. By Corollary 2.2, we have Γ(T0) = Γ(T1). So, if λ ∈ Γ(T0) then

λ ∈ W (T1) ∩ T. Now, if λ /∈ Γ(T0), we proceed as in the second item (ii) to

prove that λ ∈ W (T1)∩T. Interchanging the roles of T0 and T1 gives the desired
equality. �

Remark 2.15. (1) The condition Γ(T0) = ∅, in (ii), cannot be relaxed. In fact,

we have T1 = 0H
H
≺
c
I = T0 in Cρ(H) (1 < ρ ≤ 2) with c =

√
ρ

ρ− 1
but

W (T0) ∩ T = {1} and W (T1) ∩ T = ∅.
(2) When T is a contraction, we have W (T ) ∩ T = Γ(T ) (see for instance the

end of the proof of (i)). So, the assertion (i) of Theorem 2.14 restore, in the case
of domination, the equality of the spectral values in the torus obtained by C.
Badea, D. Timotin and L. Suciu in [4] by another way.

Corollary 2.16. Let T0 ∈ Cρ(H) with 1 ≤ ρ ≤ 2. If W (T0) = D, and satisfies

Γ(T0) = ∅ when ρ 6= 1, then W (T1) = D for every T1 ∈ Cρ(H) such that T1

H
≺ T0.

Furthermore, in the case of Harnack equivalence, we have W (T1) = D as soon as

W (T0) = D.

Proof. By Theorem 2.14, Proposition 2.13 and the convexity theorem of Toeplitz-
Hausdorff, we obtain the desired conclusions. �

2.3. Harnack parts in the space of compact operators. Recall that the
conorm γ(A) of an operator A ∈ B(H) is defined by setting

γ(A) = inf
{
‖Ax‖;x ∈ (N (A)⊥ and ‖x‖ = 1

}
.

The Moore-Penrose inverse of A, denoted by A† , if it exists, is the unique solution
of the following equations:

AA†A = A,A†AA† = A†, (AA†)∗ = AA† and (A†A)∗ = A†A.

It is well known that A has an Moore-Penrose inverse if and only if the range
R(A) of A is closed. We denote by K(H) the set of all compact operators. The
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next result gives a characterization of Harnack equivalence in Cρ(H) ∩ K(H) for
operators with no spectral values in T (we can reduce the problem to this case,
see Remark 2.18 bellow).

Theorem 2.17. Let T0 ∈ Cρ(H) ∩ K(H) with wρ(T0) = 1 and Γp(T0) is empty.
Then T1 ∈ Cρ(H) ∩ K(H) is Harnack equivalent to T0 if and only if we have:

N (Kρ
z (T1)) = N (Kρ

z (T0)) for all z ∈ T, infz∈T γ(
√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†) >

0 and infz∈T γ(
√
Kρ
z (T0)†Kρ

z (T1))
√
Kρ
z (T0)†) > 0.

Proof. Set ET0(z) = N (Kρ
z (T0)) and ET1(z) = N (Kρ

z (T1)). Let T0, T1 ∈ Cρ(H) ∩
K(H) such that T0

H∼T1. Since Γp(T0) is empty, by Corollary 2.2, the opera-
tors T0 and T1 admit no eigenvalues in T. Hence, Kρ

z (T0) and Kρ
z (T1) are uni-

formly bounded in D and may be extended to positive operators on D. Fur-
thermore, if we proceed as in the proof of Proposition 2.11, we deduce that
ET0(z) = ET1(z) := E(z) for all z ∈ T. Let P (z) denotes the orthogonal projec-
tion on E(z) and Q(z) = I −P (z). Since T0 is compact operator with r(T0) < 1,
for any z ∈ D both of the series

∑+∞
n=1 z

nT n0 and
∑+∞

n=1 z
nT ∗n0 are convergent to a

compact operator in the operator norm, so we can write Kρ
z (T0) = ρI + Rz(T0)

where Rz(T0) is a compact operator. We derive that ET0(z) is a finite di-
mensional space, that the range R(Kρ

z (T0))) of Kρ
z (T0)) is closed and we have

R(
√
Kρ
z (T0))) = R(Kρ

z (T0))) = ET0(z)⊥. Of course, analogous properties hold
for Kρ

z (T1). Therefore, the Moore-Penrose inverses of Kρ
z (T0) and Kρ

z (T1) are well
defined. From Theorem 1.1, we know that there exists c ≥ 1 such that

1

c2
Kρ
z (T0) ≤ Kρ

z (T1) ≤ c2Kρ
z (T0).

Firstly, we show that E1(z) := N (
√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†) = E(z). Let

x ∈ E1(z) and write x = x1 + x2 with respect to the orthogonal decomposition

H = E(z) ⊕ E(z)⊥. We can see that x2 =
√
Kρ
z (T1))y2 where y2 ∈ E(z)⊥ and

then

0 =
〈
Kρ
z (T0)

√
Kρ
z (T1)†x,

√
Kρ
z (T1)†x

〉
=
〈
Kρ
z (T0)

√
Kρ
z (T1)†x2,

√
Kρ
z (T1)†x2

〉
=

〈
Kρ
z (T0)

√
Kρ
z (T1)†

√
Kρ
z (T1))y2,

√
Kρ
z (T1)†

√
Kρ
z (T1))y2

〉
= 〈Kρ

z (T0)y2, y2〉 .

Hence y2 ∈ ET0(z) ∩ ET0(z)⊥ = {0} which implies x = x1 ∈ E(z). The converse
inclusion is obvious.

Now, observe that

Q(z) = Kρ
z (T1)†Kρ

z (T1) =
√
Kρ
z (T1)†Kρ

z (T1)
√
Kρ
z (T1)†

≤ c2
√
Kρ
z (T1)†Kρ

z (T0)
√
Kρ
z (T1)†.

Since the null space of the right hand operator is E(z), the previous inequality

implies that infz∈T γ(
√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†) > 1

c2
. In the same manner,

we prove that infz∈T γ(
√
Kρ
z (T0)†Kρ

z (T1))
√
Kρ
z (T0)†) > 0.
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Conversely, set γ = infz∈T γ(
√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†) > 0. We have seen

that
E1(z) = N (

√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†) = ET0(z)

for any z ∈ T. Hence, since
√
A† =

√
A
†

for any positive operator with closed
range, we have successively the following inequalities

γQ(z) ≤
√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†

and

γKρ
z (T1) = γQ(z)Kρ

z (T1)Q(z) = γ
√
Kρ
z (T1)Q(z)

√
Kρ
z (T1)

≤
√
Kρ
z (T1)

√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†

√
Kρ
z (T1)

= Q(z)Kρ
z (T0)Q(z) = Kρ

z (T0).

Thus we have shown that T1

H
≺T0. In a similar way we can prove that T0

H
≺T1 and

the proof is ended. �

Remark 2.18. 1) The condition ”Γp(T0) is empty” can be relaxed. In this case,

we can use Corollary 2.8 and apply Theorem 2.17 for T̃0 and T̃1 as in the decom-
position of T0 and T1 respectively, given by the Corollary 2.8.
2) According to Theorem 1.5 of [23], we can see that the conorm conditions

inf
z∈T

γ(
√
Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†) > 0

and inf
z∈T

γ(
√
Kρ
z (T0)†Kρ

z (T1))
√
Kρ
z (T0)†) > 0

are equivalent to the spectral conditions

0 < inf
{
t ∈ σ

(
Kρ
z (T1)†Kρ

z (T0))
)
\ {0}

}
and 0 < inf

{
t ∈ σ

(
Kρ
z (T0)†Kρ

z (T1))
)
\ {0}

}
.

Remark 2.19. The following example shows that the null spaces condition

N (Kρ
z (T1)) = N (Kρ

z (T0)) for all z ∈ T (2.5)

is not sufficient in general to ensure that T1 is Harnack equivalent to T0 in Theorem
2.17. We consider the two following operators acting on C2 which are given by
the matrices

T0 =

(
1
2

1
0 1

2

)
and T1 =

(
1
2

+ i
2

1
0 1

2
− i

2

)
.

For any z ∈ D, we have

K2
z (T0) =

 2−<(z)
|1− z

2
|2

z

(1− z
2)

2

z

(1− z
2)

2
2−<(z)
|1− z

2
|2


and

K2
z (T1) =

 2
√

2(
√

2−<(ze−i
π
4 ))

|
√

2−e−i
π
4 z|2

2z

(
√

2−zei
π
4 )(
√

2−ze−i
π
4 )

2z

(
√

2−ze−i
π
4 )(
√

2−zei
π
4 )

2
√

2(
√

2−<(zei
π
4 ))

|
√

2−ei
π
4 z|2

 .
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An easy computation gives

δT0(θ) := det
(
K2
eiθ(T0)

)
= 16

(1− cos θ)(3− cos θ)

|2− eiθ|4

and

δT1(θ) := det
(
K2
eiθ(T1)

)
= 8

(1− cos θ)2

|
√

2− ei(θ−
π
4 )|2|
√

2− ei(θ+
π
4 )|2

.

Since Tr
(
K2
eiθ

(T0)
)
> 0 and δT0(θ) ≥ 0 for any θ ∈ R, from [10] we derive that

T0 ∈ C2(C2). The same argument is valid for T1. Moreover, we easily see that
N (K2

1(T1)) = N (K2
1(T0)) = C(1,−1) and N (K2

z (T1)) = N (K2
z (T0)) = {0} for

any z ∈ T \ {1}. Suppose that T0 is Harnack dominated by T1, using Theorem
1.1 we see that there exists c ≥ 1 such that K2

z (T0) ≤ c2K2
z (T1) for any z ∈ T.

Hence δT0(θ) ≤ c4δT1(θ) which implies

2
3− cos θ

|2− eiθ|4
≤ c4 (1− cos θ)

|
√

2− ei(θ−
π
4 )|2|
√

2− ei(θ+
π
4 )|2

for any θ ∈ [−π, π]\{0}. Letting θ goes to 0, we get 4 ≤ 0 a contradiction. Finally,
T1 and T0 satisfy the null spaces condition 2.5 but are not Harnack equivalent.
In the sequel, we give a situation where the null spaces condition 2.5 ensures the
Harnack equivalence (see Corollary 2.23).

The next proposition is concerned with the dimension of ET (z) = N (Kρ
z (T )) for

any compact operator T in Cρ(H) with Γp(T ) = ∅ . We set dT (z) = dim(ET (z))
for any z ∈ T. Notice that dT (z) is well defined (Γp(T ) = ∅) and is always finite
since T is assumed to be compact.

Proposition 2.20. Let T ∈ Cρ(H)∩K(H) with Γp(T ) is empty. Then, we have

sup
z∈T

dT (z) < +∞.

Proof. We proceed by absurdum and suppose that supz∈T dT (z) = +∞. Then
there exists a sequence (zn) ⊆ T, converging to z ∈ T, such that dT (zn) ↑ +∞.
We easily see that we can find a strictly increasing sequence of positive integers
(np) for which dT (znp) > p. Let E be an arbitrary subspace of H of dimension
d. Observe that we have E⊥ ∩ ET (znp) 6= {0} for any p > d. Otherwise, we
easily see that ET (znp) = PET (znp )(E) (where PET (znp ) is the orthogonal projection

ET (znp)), a fact which is impossible to verify for any p > d. Thus, we can choose
a unit vector up in E⊥ ∩ ET (znp) for every p > d. Replacing (np) by one of its
subsequences if necessary, we can assume that up is weakly convergent to a vector
u ∈ E⊥. Since Rα(T ) is compact for any α ∈ T and the map α 7→ Rα(T ) is norm
continuous on T, we derive

0 = 〈Kρ
znp

(T )up, up〉 = ρ+ 〈Rznp (T )up, up〉 → ρ+ 〈Rz(T )u, u〉 ≥ 〈Kρ
z (T )u, u〉 ≥ 0.

It implies both that u ∈ ET (z) and that u 6= 0. We have obtained that ET (z) ∩
E⊥ 6= {0} for an arbitrary finite-dimensional subspace E, a contradiction since
ET (z) is of finite dimension. �
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The following supremum-infimum formula was used in [8]. It will be useful in
the sequel. Let E be a subspace of H, we denote by E(1) the unit sphere of E.

Lemma 2.21. Let A ∈ B(H) be a operator with finite dimensional kernel and
closed range. Then we have

γ(A) = sup
{

inf
{
〈|A|x, x〉;x ∈ F⊥(1)

}
;F ⊆ H, dimF ≤ dim(N (A))

}
.

Proof. The right hand side in the previous equality will be denoted by γ
′
(A).

From the definition, we easily deduce that γ(A) = γ(|A|). Recall that the range
of A is closed if and only if the range of |A| is closed and we always have N (A) =
N (|A|). Thus, we are reduced to prove Lemma 2.21 when A is supposed to be a
positive operator (〈Ax, x〉 ≥ 0 for any x ∈ H). Let ε > 0, then there exists a unit
vector u in N (A)⊥ such that 〈Au, u〉 ≤ ‖Au‖ ≤ γ(A) + ε. Set L = N (A) + Cu
and d = dim(N (A)), then we have

d+ 1− dim(L ∩ F⊥) = dim(
L

L ∩ F⊥
) = dim(

L+ F⊥

F⊥
) ≤ dim(

H

F⊥
) ≤ d,

for every subspace F ⊆ H such that dim(F ) ≤ d. Therefore, for any such
subspace F , we have dim(L∩F⊥) ≥ 1 and we can find a unit vector y ∈ L∩F⊥.
We write y = x+ αu where x ∈ N (A) and α ∈ C. Since y ∈ F⊥(1), we have

inf
{
〈|A|x, x〉;x ∈ F⊥(1)

}
≤ 〈Ay, y〉 = |α|2〈Au, u〉 ≤ γ(A) + ε.

Taking the supremum over all subspaces F of dimension less than d, we get
γ
′
(A) ≤ γ(A) + ε. As ε is arbitrary, we derive that γ

′
(A) ≤ γ(A). Then,

the equality γ
′
(A) = γ

′
(A) is obtained by considering the particular case where

F = N (A). �

We also need the next lemma.

Lemma 2.22. We have the two following properties:

(i) Let A ∈ B(H) be a nonzero operator with closed range, then γ
(
A†
)

=
‖A‖−1.

(ii) Let A and B be two positive operators, and suppose that N (A) = N (B),
then

γ(
√
BA
√
B) ≥ γ(A)γ(B).

Proof. (i) SinceR(A) is closed if and only ifR(A∗) = R(A†) is closed and (A†)† =
A, it follows from Proposition 1.3 of [23] that

γ(A†) =
1

‖(A†)†‖
=

1

|A‖
.

(ii) Firstly we observe thatN (
√
BA
√
B) = N (A). Indeed let x ∈ N (

√
BA
√
B),

then we have 0 = 〈
√
BA
√
Bx, x〉 = ‖

√
A
√
Bx‖2 which implies that

√
Bx ∈

N (
√
A) = N (

√
B). Hence x ∈ N (B) = N (A). Thus, we have N (

√
BA
√
B) ⊆

N (A) . The converse inclusion is immediate.

Now, let x be a unit vector in N (A)⊥ = R(A). We see that
√
Bx is a nonzero

vector in R(
√
B) = R(B) = R(A). Using Theorem 1.5 of [23], we see that
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γ(T ) = inf {t; t ∈ σ(T ) \ {0}} = inf
{
t; t ∈ W

(
T|R(T )

)}
for any positive operator

T . Then, we obtain

〈A

( √
Bx

‖
√
Bx‖

)
,

√
Bx

‖
√
Bx‖
〉 ≥ γ(A),

and hence 〈
√
BA
√
Bx, x〉 ≥ γ(A)〈Bx, x〉 ≥ γ(A)γ(B). Since R(

√
BA
√
B) =

R(A), taking the infimum over all such x gives the desired inequality. �

The previous lemmas enable us to give a situation where the null spaces con-
dition 2.5 is equivalent to Harnack equivalence in Cρ(H) ∩ K(H).

Corollary 2.23. Let T0 ∈ Cρ(H) ∩ K(H) with wρ(T0) = 1 and Γp(T0) is empty.
Assume that dim(N (Kρ

z (T0))) is constant over T. Then T1 ∈ Cρ(H) ∩ K(H) is
Harnack equivalent to T0 if and only if we have: N (Kρ

z (T1)) = N (Kρ
z (T0)) for all

z ∈ T.

Proof. The direct implication follows immediately from Theorem 2.17. We now
prove the converse implication. For simplicity, we write γT0(z) = γ (Kρ

z (T0))
(resp. γT1(z) = γ (Kρ

z (T1))) for every z ∈ T. Let z1 and z2 be two points of the
torus and let F be a subspace of dimension less than d := dim(N (Kρ

z (T0))) (for
arbitrary z ∈ T by assumption). If y belongs to F⊥(1), we can write

inf
x∈F⊥(1)

{
〈Kρ

z1
(T0))x, x〉

}
≤ 〈Kρ

z1
(T0))y, y〉 ≤ ‖Kρ

z1
(T0))−Kρ

z2
(T0))‖+ 〈Kρ

z2
(T ))y, y〉.

We derive

inf
x∈F⊥(1)

{
〈Kρ

z1
(T0))x, x〉

}
≤ ‖Kρ

z1
(T ))−Kρ

z2
(T ))‖+ inf

x∈F⊥(1)

{
〈Kρ

z2
(T0))x, x〉

}
.

By taking the supremum over all such F and using Lemma 2.21, we obtain

γT0(z1) ≤ ‖Kρ
z1

(T ))−Kρ
z2

(T ))‖+ γT0(z2).

Exchanging z1 and z2, we get

|γT0(z1)− γT0(z2)| ≤ ‖Kρ
z1

(T0))−Kρ
z2

(T0))‖.

Hence, the function γT0 is continuous on T. Since T0 is compact, the range of
Kρ
z (T0)) is closed and consequently γT0(z) > 0 for any z ∈ T. The same properties

are also satisfied by T1. Thus, we have

γT0 := inf
z∈T

γT0(z) > 0 and γT1 := inf
z∈T

γT1(z) > 0.

By continuity and compacity, we also have

M(T0) = sup
z∈T
‖Kρ

z (T0)‖ < +∞ and M(T1) = sup
z∈T
‖Kρ

z (T1)‖ < +∞.

Noticing that N (Kρ
z (T0)†) = N (Kρ

z (T0)) = N (Kρ
z (T1)) = N (Kρ

z (T1)†) and ap-
plying Lemma 2.22, we get

γ
(√

Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†

)
≥ γ (Kρ

z (T0))) γ
(
Kρ
z (T1)†

)
= γT0(z)‖Kρ

z (T1)‖−1.
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The operators T0 and T1 play the same role, thus we finally obtain

inf
z∈T

γ
(√

Kρ
z (T1)†Kρ

z (T0))
√
Kρ
z (T1)†

)
≥ γT0M(T1)−1 > 0

and

inf
z∈T

γ(
√
Kρ
z (T0)†Kρ

z (T1))
√
Kρ
z (T0)†) ≥ γT1M(T0)−1 > 0.

We conclude by using again Theorem 2.17. �

The following result gives a simple criterion for a unitary conjugate of T to be
Harnack equivalent to T in ∈ Cρ(H) ∩ K(H) when dim(N (Kρ

z (T ))) is constant
over T .

Corollary 2.24. Let T ∈ Cρ(H) ∩ K(H) with wρ(T ) = 1, Γp(T ) is empty and
such that dim(N (Kρ

z (T ))) is constant over T. Let U be a unitary operator, then
U∗TU is Harnack equivalent to T if and only if U(N (Kρ

z (T ))) ⊆ N (Kρ
z (T )) for

all z ∈ T. Moreover, the set of unitary operators U ∈ B(H) such that U∗TU
H∼T

form a multiplicative group.

Proof. We have Kρ
z (U∗TU) = U∗Kρ

z (T )U and N (Kρ
z (U∗TU)) = N (Kρ

z (T )U) =
U∗N (Kρ

z (T )). As we have seen in the proof of Theorem 2.17, we can write
Kρ
z (T ) = ρI + Rρ

z(T ), where Rρ
z(T ) is compact. Thus N (Kρ

z (T )) is finite di-
mensional. Assume that U(N (Kρ

z (T ))) ⊆ N (Kρ
z (T )) for all z ∈ T. Then,

the restriction of U to N (Kρ
z (T )) is injective, and hence is surjective. Then

UN (Kρ
z (T )) = N (Kρ

z (T )) = U∗N (Kρ
z (T )) and N (Kρ

z (U∗TU)) = N (Kρ
z (T )) for

all z ∈ T. By Corollary 2.23 we conclude that U∗TU
H∼T . Conversely, assume that

U∗TU
H∼T . By Proposition 2.11, we derive that N (Kρ

z (T )) = N (Kρ
z (U∗TU)) =

N (Kρ
z (T )U) = U∗N (Kρ

z (T )), which implies U(N (Kρ
z (T ))) ⊆ N (Kρ

z (T )) for all
z ∈ T.

As we have seen before, the condition U(N (Kρ
z (T ))) ⊆ N (Kρ

z (T )) for a unitary
operator U is equivalent to U(N (Kρ

z (T ))) = N (Kρ
z (T )). As a direct consequence

we see that the set of unitary operators U ∈ B(H) such that U∗TU
H∼T form a

multiplicative group. �

In the case of contractions, the characterization of Harnack equivalence inK(H)
is simpler.

Theorem 2.25. Let T0 ∈ C1(H)∩K(H) with ‖T0‖ = 1. Then T1 ∈ C1(H)∩K(H)
is Harnack equivalent to T0 if and only if E := N (I − T ∗0 T0) = N (I − T ∗1 T1) and
T0|E = T1|E.

Proof. According to Corollary 2.8, we are reduced to prove Theorem 2.25 with
the extra assumption Γp(T0) is empty. Let T0, T1 ∈ C1(H) ∩ K(H) such that

T0
H∼T1. On the one hand, the fact that

Kz(T0) = (I − zT ∗0 )−1[I − |z|2 T ∗0 T0](I − zT0)−1,

easily implies that

N (Kz(T0)) = (I − zT0)(N (I − T ∗0 T0)) for all z ∈ T,
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and similarly

N (Kz(T1)) = (I − zT1)(N (I − T ∗1 T1)) for all z ∈ T.

From Proposition 2.11, we get

(I − zT0)(N (I − T ∗0 T0)) = (I − zT1)(N (I − T ∗1 T1)) for all z ∈ T.

We put E = N (I − T ∗0 T0). Let x ∈ N (I − T ∗1 T1) and z ∈ T. Then (I − zT1)x =
(I − zT0)y(z) with y(z) ∈ E, hence y(z) = (I − zT0)−1(I − zT1)x has an analytic

extension in a neighbourhood of D. It follows that x = y(0) =
∫ 2π

0
y(eiθ)dm(θ) ∈

E, since E is closed. This proves N (I − T ∗1 T1) ⊆ E. Now the equality holds by
interchanging the roles of T0 and T1. Furthermore, for all x ∈ E we have

y(z) = (I − zT0)−1(I − zT1)x ∈ E for all z ∈ D.

Notice that y(z) = x+
∑+∞

n=1 z
nT n−1

0 (T0 − T1)x. On the other hand, we have

T n−1
0 (T0 − T1)x =

∫ 2π

0

e−inθy(eiθ)dm(θ) ∈ E for all n ≥ 1,

and 〈
(I − T ∗0 T0)T n−1

0 (T0 − T1)x, T n−1
0 (T0 − T1)x

〉
= 0 for all n ≥ 1.

Thus

‖T n−1
0 (T0 − T1)x‖2 = ‖T n0 (T0 − T1)x‖2 for all n ≥ 1,

So

‖(T0 − T1)x‖ = ‖T n0 (T0 − T1)x‖2 −→ 0,

because r(T0) < 1. This implies that T0x = T1x for all x ∈ E.
Conversely, if E = N (I − T ∗0 T0) = N (I − T ∗1 T1) and T0|E = T1|E, then for all

z ∈ T, we have

N (Kz(T0)) = (I − zT0)(N (I − T ∗0 T0)) = (I − zT1)(N (I − T ∗1 T1)) = N (Kz(T1)).

Since Γp(T0) = ∅, it follows that for any z ∈ T, we have

dT0(z) = d := dim(N (I − T ∗0 T0)).

Then, we can apply Corollary 2.23 and we obtain T0
H∼T1. �

Remark 2.26. In the case of classical contraction, observe that the null spaces
condition 2.5 is always equivalent to the Harnack equivalence.

For each n ≥ 1, let

Jn =


0 1 0 . . . 0

0 0
. . . . . .

...
...

...
. . . . . . 0

0 0 . . .
. . . 1

0 0 . . . . . . 0


denotes the (nilpotent) Jordan block of size n. By Theorem 2.25 and the fact
that N (I − J∗nJn) = span{e2, . . . , en}, the Harnack part of Jn is given by
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Corollary 2.27. The Harnack part of Jn in C1(Cn) is precisely the set of all
matrices of the form

M =


0 1 0 . . . 0

0 0
. . . . . .

...
...

...
. . . . . . 0

0 0 . . .
. . . 1

z 0 . . . . . . 0

 ,

where z is in the open unit disc.

In the case of compact operators, we deduce from Theorem 2.14 the next result.

Proposition 2.28. Let T0, T1 ∈ Cρ(H) ∩ K(H) with 1 ≤ ρ ≤ 2, then we have:

(i) Assume that ρ = 1 and T1

H
≺T0, then W (T0) ∩ T = W (T1) ∩ T.

(ii) Suppose that 1 < ρ ≤ 2, T1

H
≺T0 and Γ(T0) = ∅, then W (T0) ∩ T ⊆

W (T1) ∩ T.

(iii) If T1
H∼T0, then W (T0) ∩ T = W (T1) ∩ T.

Proof. According to Theorem 2.14, it suffices to prove that W (T )∩T = W (T )∩T
for each T ∈ C2(H)∩K(H). Indeed, let λ ∈ W (T )∩T, then λ is a limit of scalar
products 〈Txn, xn〉 for some sequence (xn) of unit vectors. Therefore, there exist
a subsequence (xj(n)) of (xn) such that xj(n) converges to some x in the weak
star topology. Since T is a compact operator, we have Txj(n) −→ Tx in the
norm topology, this implies that λ = 〈Tx, x〉, and hence x 6= 0. Consequently,
λ
‖x‖2 ∈ W (T ) ⊆ D. So 1

‖x‖2 ≤ 1 and hence ‖x‖2 ≥ 1, but we also have ‖x‖2 ≤ 1,

it tells us that ‖x‖ = 1 and λ ∈ W (T ). �

2.4. Weak stability and Harnack domination. One says that an operator is
weakly stable if limn→+∞ T

n = 0 in the weak topology of B(H). Also we have
that this is equivalent to T ∗ is weakly stable. This notion plays an important role
in analysis of operators (see for instance [18] and [21]).

We give the following proposition which is useful to study this property.

Proposition 2.29. Let H be a separable Hilbert space. Then, we have

(i) Let T ∈ Cρ(H) and denote by V its minimal isometric ρ-dilation. Then,
for every m ≥ 1, we have

‖
m∑
k=1

V ∗k+1xk‖ ≤ ‖
m∑
k=1

T ∗kxk‖ ≤ ρ‖
m∑
k=1

V ∗kxk‖

for any m-tuple (x1, · · · , xm) of vectors of H.
(ii) Assume that T1 be Harnack dominated by T0 in Cρ(H) for a constant

c ≥ 1. If Vi acting on Ki ⊇ H is the minimal isometric ρ-dilation of Ti
(i = 0, 1), then we have

‖
m∑
k=1

V k
1 xk‖ ≤ c‖

m∑
k=1

V k
0 xk‖
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for any m-tuple (x1, · · · , xm) of vectors of H.

Proof. (i) Let h =
∑n

i=0 V
ihi with hi ∈ H, then we have

〈
m∑
k=1

T ∗kxk, V h〉 =
m∑
k=1

n∑
i=0

〈T ∗kxk, V i+1hi〉 =
1

ρ

m∑
k=1

n∑
i=0

〈T ∗kxk, T i+1hi〉

=
m∑
k=1

n∑
i=0

〈V ∗k+i+1xk, hi〉 = 〈
m∑
k=1

V ∗k+1xk, h〉

Since the subset of all elements h having the above form is dense in K, we get

‖
m∑
k=1

T ∗kxk‖ = sup
‖h‖=1

|〈
m∑
k=1

T ∗kxk, h〉| ≥ sup
‖h‖=1

|〈
m∑
k=1

T ∗kxk, V h〉|

≥ sup
‖h‖=1

|〈
m∑
k=1

V ∗k+1xk, h〉 = ‖
m∑
k=1

V ∗k+1xk‖

and the left-hand side inequality is obtained. The right-hand side inequality is
obvious.

(ii) Now, suppose that T1

H
≺
c
T0 in Cρ(H) and Vi acting on Ki ⊇ H is the

minimal isometric ρ-dilation of Ti (i = 0, 1). Using Theorem 1.1, we know that
there exists an operator S ∈ B(K0, K1) such that S(H) ⊂ H, S|H = I, SV0 = V1S
and ‖S‖ ≤ c. Let (x1, · · · , xm) be a m-tuple of vectors of H. Observe that
SV k

0 = V k
1 S for any positive integer k, thus we get

‖
m∑
k=1

V k
1 xk‖ = ‖

m∑
k=1

V k
1 Sxk‖ = ‖S

[
m∑
k=1

V k
0 xk

]
‖ ≤ c‖

m∑
k=1

V k
0 xk‖.

�

Lemma 2.30. A ρ-contraction T is weakly stable if and only if the minimal
isometric ρ-dilation of T is weakly stable.

Proof. Let us assume that T is weakly stable and [V,K] is the minimal isometric
ρ-dilation of T . Hence T ∗ is also weakly stable, i.e T ∗nh −→ 0 in the weak
topology. Since T ∗ has the Blum-Hanson property, for each h ∈ H and every
increasing sequence (kn)n≥0 of positive integers, we have

1

N

N∑
n=0

T ∗knh −→ 0

in the norm topology. For each N , set xk = h/N if there exists an integer n such
that k = kn and xk = 0 otherwise, and use Proposition 2.29 (i). We derive

1

N

N∑
n=1

V ∗kn+1h −→ 0.
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It is enough to ensure that

1

N

N∑
n=0

V ∗lnx −→ 0. (2.6)

for any increasing sequence (ln)n≥0 of positive integers and any x ∈ H. Now, let
x =

∑m
i=1 V

ixi with xi ∈ H, we easily deduce from (2.6) that

1

N

N∑
n=1

V ∗lnx −→ 0.

Since the subset of all elements x having the above form is dense in K and

that the sequence of operators 1/N
[∑N

n=1 V
∗ln
]

is a sequence of contractions,

we derive that V ∗ has the Blum-Hanson property. Thus, the sequence (V ∗nx)
weakly converge to 0 for any x ∈ K. Hence V is weakly stable.

Conversely, assume that V is weakly stable. Then for each (x, y) ∈ H2 and
any n ≥ 1, we have 〈T nx, y〉 = ρ〈V nx, y〉 −→ 0. Hence, T is weakly stable. �

Corollary 2.31. Let T0 and T1 be two operators in Cρ(H). Then, we have:

(i) Assume that T1 be Harnack dominated by T0 in Cρ(H) and that T0 is
weakly stable (resp. stable). Then T1 is also weakly stable (resp. stable).

(ii) Let T0 and T1 be Harnack equivalent in Cρ(H). Then T0 is weakly stable
(resp. stable) if and only if T1 is weakly stable (resp. stable).

Proof. (i) Assume that T0 is weakly stable. Using Lemma 2.30, we see that the
minimal isometric ρ-dilation V0 is weakly stable. Applying Proposition 2.29 (ii)
and using the Blum-Hanson property as in the proof of Lemma 2.30, we deduce
than V1 is weakly stable. Using again Lemma 2.30, we obtain the weak stability
of T1.

Now, suppose that T0 is stable. We deduce from Lemma 3.5 of [11] that V0 is
stable. From Proposition 2.29 (ii) we derive that V1 is stable. Then, by Lemma
3.5 of [11] we obtain the stability of T1.

The assertion (ii) is a direct consequence of (i). �

Remark 2.32. 1) Concerning the stability of two Harnack equivalent ρ-contractions,
the assertion (ii) is exactly Corollary 3.6 of [11].

2) Since any ρ-contraction T is similar to a contraction and power bounded,
by [21, Proposition 8.5], the residual spectrum σr(T ) of T is included in D. By
[21, Proposition 8.4] it follows that if any ρ-contraction T is weakly stable then
σp(T ) ⊆ D. In this case, according to Lemma 2.30, if V is the minimal isometric
ρ-dilation of T , then Γ(V ) = σc(V ). So, if there exist λ ∈ σp(T ) such that |λ| = 1
then T is not weakly stable and this ρ-contraction is in the Harnack part of an
operator with ρ-numerical radius one.
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3. Examples of Harnack parts for some nilpotent matrices with
numerical radius one

In the sequel, we describe the Harnack parts of some nilpotent matrices with
numerical radius one. We begin by the nilpotent matrix of order two in the
dimension two.

Theorem 3.1. Let T0 =

(
0 2
0 0

)
∈ C2(C2), then the Harnack part of T0 is

reduced to {T0}.

Proof. Let T1 ∈ C2(C2) such that T1
H∼T0, then by Theorem 1.1, there exists c ≥ 1

such that
1

c2
K2
z (T0) ≤ K2

z (T1) ≤ c2K2
z (T0), for all z ∈ D. (3.1)

By Corollary 2.2, the operator T1 admits no eigenvalues in T. Hence, K2
z (T0) and

K2
z (T1) are uniformly bounded in D and may be extended to a positive operator

on D.
We have

K2
z (T0) = 2

(
1 z
z 1

)
,

thus det(K2
z (T0)) = 4(1 − |z|2) and dT0(z) = 1 over T. Let v(z) =

(
1
−z

)
, then

K2
z (T0)v(z) = 0 on T. This implies by (3.1) that

0 = K2
1,θ(T )v(eiθ) = K2

1,θ(T )e1 − eiθK2
1,θ(T )e2 = 0 for all θ ∈ R. (3.2)

Multiplying successively (3.2) by 1 and e−iθ, and integrating with respect to the
Haar measure m on the torus, we obtain: Te2 = 2e1 and T ∗e1 = 2e2. Thus T
takes the form

T =

(
0 2
b 0

)
,

with b ∈ C. Since w(T ) ≤ 1, we have

|2x2x1 + bx1x2| ≤ |x1|2 + |x2|2 .

If we take x1 =
√

2
2

and x2 =
√

2
2
eiθ, we get∣∣1 + be−2iθ

∣∣ ≤ 1.

In particular, for θ = arg b
2

1 + |b| ≤ 1

This implies that b = 0 and T = T0. �

In the following result, we describe the Harnack part of a nilpotent matrix of
order two in C2(Cn), n ≥ 3, with numerical radius one.
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Theorem 3.2. Let T0 ∈ C2(Cn), n ≥ 3 such that

T0 =


0 0 . . . a
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


with |a| = 2, then the Harnack part of T0 is the set of all matrices of C2(Cn) of
the form

T1 =

0 0 a
0 B 0
0 0 0

 (3.3)

with B ∈ C2(Cn−2) such that w(B) < 1.

Proof. Let T ∈ C2(Cn) such that T1
H∼T0. By Corollary 2.2, the operator T1 admits

no eigenvalues in T. Hence, K2
z (T0) and K2

z (T1) are uniformly bounded in D and
may be extended to a positive operators on D. We have

K2
z (T0) =

 2 0 az
0 2In−2 0
az 0 2

 ,

where In−2 denotes the identity matrix on the linear space spanned by the vectors
e2, . . . , en−1 of the canonical basis of Cn. Then det(K2

z (T0)) = 2n−2(4− |a|2 |z|2).
Let v(z) = −aze1 + 2en, then K2

z (T0)v(z) = 0 on T. Thus by proposition 2.11,
K2
z (T1)v(z) = 0 on T. This implies that

− ae−iθK2
1,θ(T1)e1 + 2K2

1,θ(T1)en = 0 for all θ ∈ R. (3.4)

Multiplying successively (3.4) by 1, eiθ, e−iθ and e2iθ, and integrating with respect
to m, we obtain:

T ∗1 e1 = aen, T1en = ae1, T
∗
1 en = 0 and T1e1 = 0. (3.5)

By (3.5) , the matrix T1 take the form (3.3). Hence

K2
z (T1) =

 2 0 az
0 K2

z (B) 0
az 0 2

 (3.6)

By Theorem 2.17, we know that N (K2
z (T1)) = N (K2

z (T0)) for all z ∈ T, it forces
N (K2

z (B)) to be equal to {0} for every z ∈ T. It is clear that B belongs to
C2(Cn−2) and according to Proposition 2.12 we should have w(B) < 1, we derive
that B is Harnack equivalent to 0.

Conversely, Let T1 ∈ C2(Cn) given by (3.3), then we can write K2
z (T1) under

the form given by (3.6). Since B ∈ C2(Cn−2) with w(B) < 1, B is Harnack
equivalent to 0 in C2(Cn−2). Then by Theorem 1.1, there exists c ≥ 1 such that

2
1

c2
In−2 ≤ K2

z (B) ≤ 2c2In−2, for all z ∈ D.

Thus
1

c2
K2
z (T0) ≤ K2

z (T1) ≤ c2K2
z (T0), for all z ∈ D.
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This means that T1 is Harnack equivalent to T0. �

Theorem 3.3. Let T0 =

0 a 0
0 0 a
0 0 0

 such that |a| =
√

2, then the Harnack part

of T0 is the set of all matrices of C2(C3) of the form

T1 = a

0 e−iθ 0
0 0 eiθ

0 0 0

 , θ ∈ R.

Proof. Let T1 ∈ C2(C3) such that T1
H∼T0. By Corollary 2.2, the operator T1

admits no eigenvalues in T. Hence, K2
z (T0) and K2

z (T1) are uniformly bounded in
D and may be extended to positive operators on D. Furthermore, by [7, Theorem

5.2] T 2
1
H∼T 2

0 , then by Theorem 3.2, the operator T 2
1 takes the following form

T 2
1 =

0 0 a2

0 b 0
0 0 0

 ,

with |b| < 1. If b 6= 0 then N (T 2
1 ) = Ce1 is invariant by T1, so T1e1 = xe1 but

0 = T 2
1 e1 = x2e1, this implies that x = 0 and T1e1 = 0. Similarly, C3 6= R(T1) ⊇

R(T 2
1 ) = span{e1, e2} which is invariant by T1, so T1e2 = ue1 + ve2 for some

u, v ∈ C. On the other hand, we have

K2
z (T0) =

 2 az a2z2

az 2 az
a2z2 az 2

 ,

thus det(K2
z (T0)) = 4(2−|a|2 |z|2), so dT0(z) = 1 on T. Let v(z) = −a2ze1 +2ze3,

then N (K2
z (T0)) = Cv(z) on T. Thus by Proposition 2.11, K2

z (T )v(z) = 0 on T.
This implies that

− a2e−iθK2
1,θ(T1)e1 + 2eiθK2

1,θ(T1)e3 = 0 for all θ ∈ R. (3.7)

Using (3.7) in a similar way than before, we get

2T1e3 = a2T ∗1 e1 and 2T ∗1 e3 = a2T1e1. (3.8)

By this we deduce that

〈T1e3, e1〉 =
a2

2
〈T ∗1 e1, e1〉 =

a2

2
〈e1, T1e1〉 = 0

and

〈T1e3, e3〉 =
a2

2
〈T ∗1 e1, e3〉 =

a2

2
〈e1, T e3〉 = 0.

The matrix T1 takes the form

T1 =

0 u 0
0 v w
0 0 0

 .
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By (3.8), 2w = a2T ∗e1 = a2ue2, hence

aw = au. (3.9)

This implies that u and v must be not equal to 0. Now the fact that

T 2
1 =

0 uv uw
0 v2 wv
0 0 0

 =

0 0 a2

0 b 0
0 0 0

 .

implies that v = b = 0 and

uw = a2. (3.10)

By (3.9) and (3.10) we can deduce that u = ae−iθ and w = aeiθ, θ ∈ R.
Conversely, let T ∈ C2(C3) given as above, then

K2
z (T1) =

 2 uz a2z2

uz 2 wz
a2z2 wz 2


Observe that

T1 = U∗θT0Uθ with Uθ =

eiθ 0 0
0 1 0
0 0 eiθ

 , θ ∈ R.

We easily verify that Uθ satisfies the hypotheses of Corollary 2.24. Hence T1 is
Harnack equivalent to T0.

Remark 3.4. In the last example, observe that the Harnack part of T0 is exactly
the orbit {U∗θT0Uθ; θ ∈ R} under the action of the group given in Corollary 2.24.

�
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