HARNACK parts of ρ-Contractions
 Gilles Cassier, Mohammed Benharrat, Soumia Belmouhoub

To cite this version:

Gilles Cassier, Mohammed Benharrat, Soumia Belmouhoub. HARNACK parts of ρ-Contractions. Journal of Operator Theory, 2018, Volume 80 (Issue 2), pp.453-480. hal-01417360v2

HAL Id: hal-01417360 https://hal.science/hal-01417360v2

Submitted on 25 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HARNACK PARTS OF ρ-CONTRACTIONS

GILLES CASSIER ${ }^{1 *}$, MOHAMMED BENHARRAT ${ }^{2}$ AND SOUMIA BELMOUHOUB ${ }^{3}$

Abstract

The purpose of this paper is to describe the Harnack parts for the operators of class $C_{\rho}(\rho>0)$ on Hilbert spaces which were introduced by B. Sz. Nagy and C. Foias in [29. More precisely, we study Harnack parts of operators with ρ-numerical radius one. The case of operators with ρ-numerical radius strictly less than 1 was described in [11]. We obtain a general criterion for compact ρ-contractions to be in the same Harnack part. For classical contractions, this criterion can be simplified into a very useful form. Operators with numerical radius one received also a particular attention. Moreover, we study many properties of Harnack equivalence in the general case.

1. Introduction and preliminaries

Let H be a complex Hilbert space and $B(H)$ the set of all bounded linear operators on H. For $\rho>0$, we say that an operator $T \in B(H)$ admits a unitary ρ-dilation if there is a Hilbert space \mathcal{H} containing H as a closed subspace and a unitary operator $U \in B(\mathcal{H})$ such that

$$
\begin{equation*}
T^{n}=\rho P_{H} U^{n} \mid H, \quad n \in \mathbb{N}^{*} \tag{1.1}
\end{equation*}
$$

where P_{H} denotes the orthogonal projection onto the subspace H in \mathcal{H}.
In the sequel, we denote by $C_{\rho}(H), \rho>0$, the set of all operators in $B(H)$ which admit unitary ρ-dilations. A famous theorem due to B. Sz.-Nagy [26] asserts that $C_{1}(H)$ is exactly the class of all contractions, i.e., operators T such that $\|T\| \leq 1$. C. A. Berger [5] showed that the class $C_{2}(H)$ is precisely the class of all operators $T \in B(H)$ whose the numerical radius

$$
w(T)=\sup \{|\langle T x, x\rangle|: x \in H,\|x\|=1\}
$$

is less or equal to one. In particular, the classes $C_{\rho}(H), \rho>0$, provide a framework for simultaneous investigation of these two important classes of operators. Any operator $T \in C_{\rho}(H)$ is power-bounded:

$$
\begin{equation*}
\left\|T^{n}\right\| \leq \rho, \quad n \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

moreover, its spectral radius

$$
\begin{equation*}
r(T)=\lim _{n \rightarrow+\infty}\left\|T^{n}\right\|^{\frac{1}{n}} \tag{1.3}
\end{equation*}
$$

[^0]is at most one. In [27], an example of a power-bounded operator which is not contained in any of the classes $C_{\rho}(H), \rho>0$, is given. However, J. A. R. Holbrook [19] and J. P. Williams [30], independently, introduced the ρ-numerical radius (or the operator radii) of an operator $T \in B(H)$ by setting
\[

$$
\begin{equation*}
w_{\rho}(T):=\inf \left\{\gamma>0: \frac{1}{\gamma} T \in C_{\rho}(H)\right\} . \tag{1.4}
\end{equation*}
$$

\]

Note that $w_{1}(T)=\|T\|, w_{2}(T)=w(T)$ and $\lim _{\rho \rightarrow \infty} w_{\rho}(T)=r(T)$. Also, $T \in$ $C_{\rho}(H)$ if and only if $w_{\rho}(T) \leq 1$, hence operators in $C_{\rho}(H)$ are contractions with respect to the ρ-numerical radius, and the elements of $C_{\rho}(H)$ are called ρ contractions. Considerable attention has been paid to the study of ρ-contractions, see for instance [1, (3, 5, , 7, ,9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 27, 28, 29, and the references therein (the list will not be exhaustive).

Some properties of the classes $C_{\rho}(H)$ become more clear (see for instance, [9], [10], [11] and [7]) due to harmonic analysis methods using the following operatorial ρ-kernel

$$
\begin{equation*}
K_{z}^{\rho}(T)=(I-\bar{z} T)^{-1}+\left(I-z T^{*}\right)^{-1}+(\rho-2) I, \quad(z \in \mathbb{D}) \tag{1.5}
\end{equation*}
$$

(of a bounded operator T having its spectrum in the closed unit disc) introduced and first systematically developed in [6, 9, 10].

The ρ-kernels are connected to ρ-contraction by the next result. An operator T is in the class $C_{\rho}(H)$ if and only if, $\sigma(T) \subseteq \overline{\mathbb{D}}$ and $K_{z}^{\rho}(T) \geq 0$ for any $z \in \mathbb{D}$ (see [10]).

The extension of Harnack domination to ρ-contrations appears in 11 and is studied in the C_{ρ} balls of $B(H)^{n}(n>1)$ in [25].

We say that T_{1} is Harnack dominated by T_{0}, if T_{0} and T_{1} satisfy one of the following equivalent conditions given in the next theorem:

Theorem 1.1. [11, Theorem 3.1] For $T_{0}, T_{1} \in C_{\rho}(H)$ and a constant $c \geq 1$, the following statements are equivalent:
(i) $\operatorname{Rep}\left(T_{1}\right) \leq c^{2} \operatorname{Rep}\left(T_{0}\right)+\left(c^{2}-1\right)(\rho-1) \operatorname{Rep}\left(O_{H}\right)$, for any polynomial p with $R e p \geq 0$ on $\overline{\mathbb{D}}$.
(ii) $\operatorname{Rep}\left(r T_{1}\right) \leq c^{2} \operatorname{Rep}\left(r T_{0}\right)+\left(c^{2}-1\right)(\rho-1) \operatorname{Rep}\left(O_{H}\right)$, for any $\left.r \in\right] 0,1[$ and each polynomial p with Rep ≥ 0 on $\overline{\mathbb{D}}$.
(iii) $K_{z}^{\rho}\left(T_{1}\right) \leq c^{2} K_{z}^{\rho}\left(T_{0}\right)$, for all $z \in \mathbb{D}$.
(iv) $\varphi_{T_{1}}(g) \leq c^{2} \varphi_{T_{0}}(g)$ for any function $g \in C(\mathbb{T})$ such that $g \geq 0$ on $\mathbb{T}=\overline{\mathbb{D}} \backslash \mathbb{D}$.
(v) If V_{i} acting on $K_{i} \supseteq H$ is the minimal isometric ρ-dilation of $T_{i}(i=0,1)$, then there is an operator $S \in B\left(K_{0}, K_{1}\right)$ such that $S(H) \subset H,\left.S\right|_{H}=I$, $S V_{0}=V_{1} S$ and $\|S\| \leq c$.
When T_{1} is Harnack dominated by T_{0} in $C_{\rho}(H)$ for some constant $c \geq 1$, we write $T_{1} \stackrel{H}{\prec} T_{0}$, or also $T_{1} \stackrel{H}{\prec} T_{0}$. The relation $\stackrel{H}{\prec}$ is a preorder relation in $C_{\rho}(H)$. The induced equivalent relation is called Harnack equivalence, and the associated classes are called the Harnack parts of $C_{\rho}(H)$. So, we say that T_{1} and T_{0} are Harnack equivalent if they belong to the same Harnack parts. In this later case, we write $T_{1} \stackrel{H}{\sim} T_{0}$.

We say that an operator $T \in C_{\rho}(H)$ is a strict ρ-contraction if $w_{\rho}(T)<1$. In [17] C. Foiaş proved that the Harnack part of contractions containing the null operator O_{H} consists of all strict contractions. More recently, G. Cassier and N. Suciu proved in [11, Theorem 4.4] that the Harnack part of $C_{\rho}(H)$ containing the null operator O_{H} is the set of alle strict ρ-contractions. According to this fact the following natural question arises:

If T an operator with ρ-numerical radius one, what can be said about the Harnack part of T?

Recall that a ρ-contraction is similar to a contraction [28] but many properties are not preserved under similarity (and an operator similar to a contraction is not necessarily a ρ-contraction!), in particular it is true for the numerical range properties. Thus, the study of Harnack parts for ρ-contractions cannot be deduced from the contractions case, see for instance Theorem 2.17, Remark 2.18, Theorem 2.25 and Remark 2.26. Notice also that some properties are of different nature (see for example Theorem 2.1 and Remark 2.7). We find a few answers in the literature of the previous question, essentially in the class of contractions with norm one. In [2], the authors have proved that if T is either isometry or coisometry then the Harnack part of T is trivial (i.e. equal to $\{T\}$), and if T is compact or $r(T)<1$, or normal and nonunitary, then its Harnack part is not trivial in general. The authors have asked that it seems interesting to give necessary and/or sufficient conditions for a contraction to have a trivial Harnack part. It was proved in [22] that the Harnack part of a contraction T is trivial if and only if T is an isometry or a coisometry (the adjoint of an isometry), this a response of the question posed by T. Ando and al. in the class of contractions. Recently the authors of [4] proved that maximal elements for the Harnack domination in $C_{1}(H)$ are precisely the singular unitary operators and the minimal elements are isometries and coisometries.

This paper is a continuation and refinement of the research treatment of the Harnack domination in the general case of the ρ-contractions. Note that this treatment gives certain useful properties and leads to new techniques for studies of the Harnack part of an operator with ρ-numerical radius one. More precisely, we show that two ρ-contractions belong to the same Harnack parts have the same spectral values in \mathbb{T}. This property has several consequences and applications. In particular, it will be shown that if T_{0} is a compact (i.e. $T_{0} \in \mathcal{K}(H)$) with $w_{\rho}\left(T_{0}\right)=1$ and whose spectral radius is strictly less than one, then a ρ-contraction $T_{1} \in \mathcal{K}(H)$ is Harnack equivalent to T_{0} if and only if they satisfy the null spaces condition : $\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)$ for all $z \in \mathbb{T}$ and an additional conorm condition on the ρ-operator kernels of T_{0} and T_{1}. We give an example showing that this conorm condition cannot be removed in general (see Remark 2.18). We also study a situation where the null spaces condition is sufficient to characterize Harnack equivalence. It is the case for all usual contractions, moreover we show that if T_{0} is a compact contraction with $\left\|T_{0}\right\|=1$, then a contraction $T_{1} \in \mathcal{K}(H)$ is Harnack equivalent to T_{0} if and only if $I-T_{1}^{*} T_{1}$ and $I-T_{0}^{*} T_{0}$ have the same null space and T_{0} and T_{1} restricted to the null space of $I-T_{0}^{*} T_{0}$ coincide. A nice application is the description of the Harnack part of the (nilpotent) Jordan block of size n. We also obtain precise results about the relationships between the trace
of the closure of the numerical range on the torus and the Harnack domination for every $\rho \in[1,2]$. The case of $\rho=2$ plays a crucial role. We characterizes the weak stability of a ρ-contraction in terms of its minimal isometric ρ-dilation. The details of these basic facts are explained in Section 2. Last section is devoted to applications in order to describe the Harnack part of some nilpotent matrices with numerical radius one, in three cases: a nilpotent matrix of order two in the two dimensional case, a nilpotent matrix of order two in \mathbb{C}^{n} and a nilpotent matrix of order three in the three dimensional case. In particular, we show that in the first case the Harnack part is trivial, while in the third case the Harnack part is an orbit associated with the action of a group of unitary diagonal matrices.

2. Main Results

2.1. Spectral properties and Harnack domination. We denote by $\Gamma(T)$ the set of complex numbers defined by $\Gamma(T)=\sigma(T) \cap \mathbb{T}$, where $\mathbb{T}=\overline{\mathbb{D}} \backslash \mathbb{D}$ is the unidimensional torus. In the following results, we prove that ρ-contractions belonging to the same Harnack parts have the same spectral values in the torus.

Theorem 2.1. Let $T_{0}, T_{1} \in C_{\rho}(H)$, $(\rho \geq 1)$, if $T_{1} \stackrel{H}{\prec} T_{0}$ then $\Gamma\left(T_{1}\right) \subseteq \Gamma\left(T_{0}\right)$.
Proof. Let $T_{0}, T_{1} \in C_{\rho}(H)$ be such that $T_{1} \stackrel{H}{\prec} T_{0}$. Then there exists $c \geq 1$ such that

$$
\begin{equation*}
K_{z}^{\rho}\left(T_{1}\right) \leq c^{2} K_{z}^{\rho}\left(T_{0}\right), \quad \text { for all } z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

so,

$$
\begin{aligned}
K_{z}^{\rho}\left(T_{1}\right) & =\left(I-z T_{1}^{*}\right)^{-1}\left[\rho I+2(1-\rho) \operatorname{Re}\left(\bar{z} T_{1}\right)+(\rho-2)|z|^{2} T_{1}^{*} T_{1}\right]\left(I-\bar{z} T_{1}\right)^{-1} \\
& \leq c^{2} K_{z}^{\rho}\left(T_{0}\right), \quad \text { for all } z \in \mathbb{D} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\rho I+2(1-\rho) \operatorname{Re}\left(\bar{z} T_{1}\right)+(\rho-2)|z|^{2} T_{1}^{*} T_{1} \leq c^{2}\left(I-z T_{1}^{*}\right) K_{z}^{\rho}\left(T_{0}\right)\left(I-\bar{z} T_{1}\right), \tag{2.2}
\end{equation*}
$$

for all $z \in \mathbb{D}$. Now, let $\lambda=e^{i \omega} \in \Gamma\left(T_{1}\right)$ which is contained in the approximate point spectrum $\sigma_{a p}\left(T_{1}\right)$, then there exists a sequence $\left(x_{n}\right)_{n \geq 0}$ of unit vectors such that $T_{1} x_{n}-e^{i \omega} x_{n}=y_{n}$ converge to 0 . From the inequality (2.2), we derive

$$
\begin{aligned}
\rho I+2(1-\rho) & R e\left(\bar{z}\left\langle T_{1} x_{n}, x_{n}\right\rangle\right)+(\rho-2)|z|^{2}\left\|T_{1} x_{n}\right\|^{2} \\
& \leq c^{2}\left\langle K_{z}^{\rho}\left(T_{0}\right)\left(I-\bar{z} T_{1}\right) x_{n},\left(I-\bar{z} T_{1}\right) x_{n}\right\rangle \\
& =c^{2}\left\langle K_{z}^{\rho}\left(T_{0}\right)\left[\left(1-\bar{z} e^{i \omega}\right) x_{n}-\bar{z} y_{n}\right],\left(1-\bar{z} e^{i \omega}\right) x_{n}-\bar{z} y_{n}\right\rangle \\
& =c^{2}\left|1-\bar{z} e^{i \omega}\right|^{2}\left\langle K_{z}^{\rho}\left(T_{0}\right) x_{n}, x_{n}\right\rangle-c^{2} z\left(1-\bar{z} e^{i \omega}\right)\left\langle K_{z}^{\rho}\left(T_{0}\right) x_{n}, y_{n}\right\rangle \\
& -c^{2} \bar{z}\left(1-z e^{-i \omega}\right)\left\langle K_{z}^{\rho}\left(T_{0}\right) y_{n}, x_{n}\right\rangle+c^{2}|z|^{2}\left\langle K_{z}^{\rho}\left(T_{0}\right) y_{n}, y_{n}\right\rangle,
\end{aligned}
$$

for any $z \in \mathbb{D}$ and all $n \geq 0$. The triangular inequality gives

$$
\left|\left\|T_{1} x_{n}-e^{i \omega} x_{n}\right\|-\left\|x_{n}\right\|\right| \leq\left\|T_{1} x_{n}\right\| \leq\left\|T_{1} x_{n}-e^{i \omega} x_{n}\right\|+1 .
$$

Letting $n \rightarrow+\infty$, from the two previous inequalities we obtain

$$
\rho+2(1-\rho) \operatorname{Re}\left(\bar{z} e^{i \omega}\right)+(\rho-2)|z|^{2} \leq c^{2}\left|1-\bar{z} e^{i \omega}\right|^{2} \limsup _{n \rightarrow+\infty}\left\langle K_{z}^{\rho}\left(T_{0}\right) x_{n}, x_{n}\right\rangle
$$

for any $z \in \mathbb{D}$. Then, if we take $z=(1-t) e^{i \omega}$ with $0<t<1$, we get

$$
\rho+2(1-\rho)(1-t)+(\rho-2)(1-t)^{2} \leq c^{2} t^{2} \limsup _{n \rightarrow+\infty}\left\langle K_{(1-t) e^{i \omega}}^{\rho}\left(T_{0}\right) x_{n}, x_{n}\right\rangle
$$

Assume that $e^{i \omega} \notin \Gamma\left(T_{0}\right)$, then $K_{(1-t) e^{i \omega}}^{\rho}\left(T_{0}\right)$ is uniformly bounded in $] 0,1[$, then there exists $\gamma>0$ such that

$$
\rho+2(1-\rho)(1-t)+(\rho-2)(1-t)^{2} \leq \gamma c^{2} t^{2}
$$

which implies

$$
2 t \leq\left(\gamma c^{2}+2-\rho\right) t^{2}
$$

for all $t>0$, and hence

$$
2 \leq\left(\gamma c^{2}+2-\rho\right) t
$$

Now, we get a contradiction by letting $t \rightarrow 0$. Hence $e^{i \omega} \in \Gamma\left(T_{0}\right)$.
From Theorem 2.1, we also obtain the following result
Corollary 2.2. If T_{1} and T_{0} are Harnack equivalent in $C_{\rho}(H)$ then $\Gamma\left(T_{1}\right)=$ $\Gamma\left(T_{0}\right)$.

Let $T \in B(H)$ and E be a closed invariant subspace of $T,(T(E) \subset E)$. Then $T \in B\left(E \oplus E^{\perp}\right)$, has the following form:

$$
T=\left(\begin{array}{cc}
T_{1} & R \\
0 & T_{2}
\end{array}\right)
$$

with $T_{1} \in B(E), T_{2} \in B\left(E^{\perp}\right)$ and R is a bounded operator from E^{\perp} to E. We denote by $\Gamma_{p}(T)=\sigma_{p}(T) \cap \mathbb{T}$ the point spectrum of $T \in B(H)$ in the unidimensional torus and by $\mathcal{N}(T)$ its null space.

Theorem 2.3. Let $T_{0}, T_{1} \in C_{\rho}(H)(\rho \geq 1)$, if $T_{1}{ }^{H} T_{0}$ then $\Gamma_{p}\left(T_{1}\right) \subseteq \Gamma_{p}\left(T_{0}\right)$ and $\mathcal{N}\left(T_{1}-\lambda I\right) \subseteq \mathcal{N}\left(T_{0}-\lambda I\right)$ for all $\lambda \in \Gamma_{p}\left(T_{1}\right)$.

For the proof of this theorem we need the following lemma.
Lemma 2.4. Let $T \in C_{\rho}(H)$. Then

$$
\left\|(I-\bar{\lambda} T) K_{z}^{\rho}(T)\left(I-\lambda T^{*}\right)\right\| \leq \rho(1+2|1-\rho|+|\rho-2| \rho)\left(1+\rho \frac{|z-\lambda|}{1-|z|}\right)^{2}
$$

for all $z \in \mathbb{D}$ and $\lambda \in \overline{\mathbb{D}}$.
Proof. Let $z \in \mathbb{D}$ and $\lambda \in \overline{\mathbb{D}}$, we have

$$
\left(I-z T^{*}\right)^{-1}\left(I-\lambda T^{*}\right)=I+(z-\lambda) \sum_{n=0}^{+\infty} z^{n} T^{* n+1}
$$

Then by (1.2),

$$
\left\|\left(I-z T^{*}\right)^{-1}\left(I-\lambda T^{*}\right)\right\| \leq 1+\rho \frac{|z-\lambda|}{1-|z|}
$$

Taking into account this inequality and the fact that

$$
K_{z}^{\rho}\left(T_{1}\right)=\left(I-\bar{z} T_{1}\right)^{-1}\left[\rho I+2(1-\rho) \operatorname{Re}\left(\bar{z} T_{1}\right)+(\rho-2)|z|^{2} T_{1} T_{1}^{*}\right]\left(I-z T_{1}^{*}\right)^{-1}
$$

we obtain the desired inequality.

Proof of Theorem 2.3. Let $\lambda \in \Gamma_{p}\left(T_{1}\right)$. Then the operator $T_{1} \in C_{\rho}(H)$ on $\mathcal{N}\left(T_{1}-\right.$ $\lambda I) \oplus \mathcal{N}\left(T_{1}-\lambda I\right)^{\perp}$ takes the form

$$
T_{1}=\left(\begin{array}{cc}
\lambda I_{1} & C \\
0 & \tilde{T}_{1}
\end{array}\right)
$$

Since $|\lambda|=1$, by using Proposition [12, Proposition 3.] we can see that $C=0$. Thus, we have

$$
K_{z}^{\rho}\left(T_{1}\right)=\left(\begin{array}{cc}
\frac{\rho+2(1-\rho) R e(\bar{\lambda} z)+(\rho-2)|\lambda|^{2}|z|^{2}}{|1-\bar{\lambda} z|^{2}} I_{1} & 0 \\
0 & K_{z}^{\rho}\left(\tilde{T}_{1}\right)
\end{array}\right),
$$

Now, if $T_{0} \in C_{\rho}(H)$ be such that $T_{1} \stackrel{H}{\prec} T_{0}$, then there exists $c \geq 1$ such that

$$
K_{z}^{\rho}\left(T_{1}\right) \leq c^{2} K_{z}^{\rho}\left(T_{0}\right), \quad \text { for all } z \in \mathbb{D}
$$

Let $x \in \mathcal{N}\left(T_{1}-\lambda I\right)$ and $y \in \mathcal{R}\left(T_{0}^{*}-\bar{\lambda} I\right)$. The Cauchy-Schwarz inequality yields

$$
\left|\left\langle K_{z}^{\rho}\left(T_{1}\right) x, y\right\rangle\right|^{2} \leq c^{2}\left\langle K_{z}^{\rho}\left(T_{1}\right) x, x\right\rangle\left\langle K_{z}^{\rho}\left(T_{0}\right) y, y\right\rangle
$$

We derive

$$
\frac{\rho I+2(1-\rho) R e(\bar{\lambda} z)+(\rho-2)|\lambda|^{2}|z|^{2}}{|1-\bar{\lambda} z|^{2}}|\langle x, y\rangle|^{2} \leq c^{2}\left\langle K_{z}^{\rho}\left(T_{0}\right) y, y\right\rangle\|x\|^{2}
$$

Since $y \in \mathcal{R}\left(T_{0}^{*}-\bar{\lambda} I\right)$, there exits $u \in H$ such that $y=\left(I-\lambda T_{0}^{*}\right) u$. By Lemma 2.4, we have

$$
\begin{aligned}
\left\langle K_{z}^{\rho}\left(T_{0}\right) y, y\right\rangle & =\left\langle\left(I-\bar{\lambda} T_{0}\right) K_{z}^{\rho}\left(T_{0}\right)\left(I-\lambda T_{0}^{*}\right) u,\left(I-\lambda T_{0}^{*}\right) u\right\rangle \\
& \leq \rho(1+2|1-\rho|+|\rho-2| \rho)\left(1+\rho \frac{|z-\lambda|}{1-|z|}\right)^{2}\|u\|^{2}
\end{aligned}
$$

Let $z=r \lambda$, with $0<r<1$. Then
$\frac{\left|\rho+2(1-\rho) r+(\rho-2) r^{2}\right|}{(1-r)^{2}}|\langle x, y\rangle|^{2} \leq c^{2} \rho(1+2|1-\rho|+|\rho-2| \rho)(1+\rho)^{2}\|u\|^{2}\|x\|^{2}$.
This implies
$\left|\rho+2(1-\rho) r+(\rho-2) r^{2}\left\|\left.\langle x, y\rangle\right|^{2} \leq c^{2}(1-r)^{2} \rho(1+2|1-\rho|+|\rho-2| \rho)(1+\rho)^{2}\right\| u\left\|^{2}\right\| x \|^{2}\right.$.
By letting r to 1 , it follows that $\langle x, y\rangle=0$, and hence $x \in \mathcal{R}\left(T_{0}^{*}-\bar{\lambda} I\right)^{\perp}=$ $\mathcal{N}\left(T_{0}-\lambda I\right)$. So, $\Gamma_{p}\left(T_{1}\right) \subseteq \Gamma_{p}\left(T_{0}\right)$ and $\mathcal{N}\left(T_{1}-\lambda I\right) \subseteq \mathcal{N}\left(T_{0}-\lambda I\right)$.

Remark 2.5. By Theorem 2.3, if $I_{H} \stackrel{H}{\prec} T$ on $C_{\rho}(H),(\rho \geq 1)$ then $T=I_{H}$. This means that I_{H} is a maximal element for the Harnack domination in $C_{\rho}(H)$ and its Harnack part is trivial, for all $\rho \geq 1$.

From Theorem 2.3, we also obtain the following result
Corollary 2.6. If T_{1} and T_{0} are Harnack equivalent in $C_{\rho}(H)$ then $\Gamma_{p}\left(T_{1}\right)=$ $\Gamma_{p}\left(T_{0}\right)$ and $\mathcal{N}\left(T_{1}-\lambda I\right)=\mathcal{N}\left(T_{0}-\lambda I\right)$ for all $\lambda \in \Gamma_{p}\left(T_{0}\right)$.

Remark 2.7. After the authors have obtained Theorem 2.1, they have learned that C. Badea, D. Timotin and L. Suciu [4] have proved using an other method that, in the case of contractions $(\rho=1)$, the domination suffices for the equality of the point spectrum in the torus. But in the case of $\rho>1$ the inclusion in Theorem 2.3 may be strict, for instance, we have

- For $\rho>1$, we have $0_{H} \underset{c}{\underset{ }{H}} I$ in $C_{\rho}(H)$ with $c=\sqrt{\frac{\rho}{\rho-1}}$.
- For $\rho>1$, the operator T defined on \mathbb{C}^{2} by $T=\left(\begin{array}{ll}0 & \rho \\ 0 & 0\end{array}\right)$ satisfies $T \underset{c}{\stackrel{H}{\prec} I}$ in $C_{\rho}(H)$ with $c=\sqrt{\frac{2 \rho}{\rho-1}}$.
Corollary 2.8. Let $T_{0}, T_{1} \in C_{\rho}(H)(\rho \geq 1)$ such that $\Gamma_{p}\left(T_{0}\right)=\Gamma_{p}\left(T_{1}\right)$. Then T_{0} and T_{1} are Harnack equivalent in $C_{\rho}(H)$ if and only if $T_{0}=U \oplus \tilde{T}_{0}$ and $T_{1}=U \oplus \tilde{T}_{1}$ on $H=E \oplus E^{\perp}$, where $E=\oplus_{\lambda \in \Gamma_{p}\left(T_{0}\right)} \mathcal{N}\left(T_{0}-\lambda I\right)=\oplus_{\lambda \in \Gamma_{p}\left(T_{1}\right)} \mathcal{N}\left(T_{1}-\lambda I\right)$, U is an unitary diagonal operator on E and \tilde{T}_{0} and \tilde{T}_{1} are Harnack equivalent in $C_{\rho}\left(E^{\perp}\right)$.
Proof. First we prove that if $\lambda, \mu \in \Gamma_{p}\left(T_{0}\right)$, then $\mathcal{N}\left(T_{0}-\lambda I\right) \perp \mathcal{N}\left(T_{0}-\mu I\right)$ for $\lambda \neq \mu$. Let $x \in \mathcal{N}\left(T_{1}-\lambda I\right)$ and $y \in \mathcal{N}\left(T_{0}-\mu I\right)$. Then

$$
\begin{aligned}
\left\langle K_{z}^{\rho}\left(T_{0}\right) x, y\right\rangle & =\left\langle\left(\left(I-\bar{z} T_{0}\right)^{-1}+\left(I-z T_{0}^{*}\right)^{-1}+(\rho-2) I\right) x, y\right\rangle \\
& =\frac{1}{1-\bar{z} \lambda}\langle x, y\rangle+\frac{1}{1-z \bar{\mu}}\langle x, y\rangle+(\rho-2)\langle x, y\rangle
\end{aligned}
$$

By Cauchy-Schwarz inequality

$$
\left|\left\langle K_{z}^{\rho}\left(T_{0}\right) x, y\right\rangle\right|^{2} \leq\left\langle K_{z}^{\rho}\left(T_{0}\right) x, x\right\rangle\left\langle K_{z}^{\rho}\left(T_{0}\right) y, y\right\rangle .
$$

$$
\begin{aligned}
& \text { Thus } \\
& \qquad \begin{array}{l}
\left|\frac{1}{1-\bar{z} \lambda}+\frac{1}{1-z \bar{\mu}}+(\rho-2)\right|^{2}|\langle x, y\rangle|^{2} \leq \\
\frac{\left(\rho+2(1-\rho) \operatorname{Re}(\bar{\lambda} z)+(\rho-2)|z|^{2}\right)\left(\rho+2(1-\rho) \operatorname{Re}(\bar{\mu} z)+(\rho-2)|z|^{2}\right)}{|1-\bar{z} \lambda|^{2}|1-\bar{\mu} z|^{2}}\|x\|^{2}\|y\|^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } \\
& \qquad \begin{array}{l}
\left.\left.\left|1+\frac{1-\bar{z} \lambda}{1-z \bar{\mu}}+(\rho-2)(1-\bar{z} \lambda)\right| z\right|^{2}\right|^{2}|\langle x, y\rangle|^{2} \leq \\
\frac{\left(\rho+2(1-\rho) \operatorname{Re}(\bar{\lambda} z)+(\rho-2)|z|^{2}\right)\left(\rho+2(1-\rho) \operatorname{Re}(\bar{\mu} z)+(\rho-2)|z|^{2}\right)}{|1-\bar{\mu} z|^{2}}\|x\|^{2}\|y\|^{2}
\end{array}
\end{aligned}
$$

By taking z to λ, we get $\langle x, y\rangle=0$. By [12, Corollary 4.] the subspace E reduces T_{0} and T_{1} and we can now easily derive the desired result.

Example 2.9. Recall that an operator $T \in B(H)$ is called to be quasi-compact operator (or quasi-strongly completely continuous in the terminology of [31) if there exists a compact operator K and an integer m such that $\left\|T^{m}-K\right\|<1$. Since every operator $T \in C_{\rho}(H)(\rho \geq 1)$ is power-bounded, by 31, Theorem 4]; if $T \in C_{\rho}(H)(\rho \geq 1)$ is a quasi-compact operator then $\Gamma(T)=\Gamma_{p}(T)$ and contains a finite number of eigenvalues and each of them is of finite multiplicity.

Now if we assume that T_{0}, T_{1} are two quasi-compact operators which are Harnack equivalent in $C_{\rho}(H),(\rho \geq 1)$, then $T_{0}=U \oplus \tilde{T}_{0}$ and $T_{1}=U \oplus \tilde{T}_{1}$ where U is a unitary diagonal operator on $E=\oplus_{\lambda \in \Gamma_{p}\left(T_{0}\right)} \mathcal{N}\left(T_{0}-\lambda I\right)$ and both operators \tilde{T}_{0} and \tilde{T}_{1} are Harnack equivalent to 0 in $C_{\rho}\left(E^{\perp}\right)$.

Corollary 2.10. Let $T_{0} \in C_{\rho}(H)(\rho \geq 1)$ be a compact normal operator with $w_{\rho}\left(T_{0}\right)=1$. If the operator $T_{1} \in C_{\rho}(H)$ is Harnack equivalent to T_{0}, then $T_{1 \mid E}=$ $T_{0 \mid E}$ where $E=\oplus_{\lambda \in \Gamma_{p}\left(T_{0}\right)} \mathcal{N}\left(T_{0}-\lambda I\right)$, E is a reducing subspace for T_{1} and $T_{1 \mid E^{\perp}}$ is Harnack equivalent to 0, i.e. $w_{\rho}\left(T_{1 \mid E^{\perp}}\right)<1$.
Proof. By Corollary 2.8, for all $\lambda \in \Gamma_{p}(T)$, we have $T_{0}=U \oplus \tilde{T}_{0}$ and $T_{1}=U \oplus \tilde{T}_{1}$ on $E \oplus E^{\perp}$, where $E=\oplus_{\lambda \in \Gamma_{p}\left(T_{0}\right)} \mathcal{N}\left(T_{0}-\lambda I\right)$ and \tilde{T}_{0} and \tilde{T}_{1} are Harnack equivalent in $C_{\rho}\left(E^{\perp}\right)$. Since $T_{0} \in C_{\rho}(H)$ is a compact normal operator we also have

$$
w_{\rho}\left(\tilde{T}_{0}\right)=r\left(\tilde{T}_{0}\right)=\sup \left\{|\lambda|, \lambda \in \sigma\left(T_{0}\right) \backslash \Gamma_{p}\left(T_{0}\right)\right\}<1
$$

This means that \tilde{T}_{0} and \tilde{T}_{1} are Harnack equivalent to 0 .
In the following proposition, we prove that the ρ-contractions belong to the same Harnack parts have the same null space for their operatorial ρ-kernels.

Proposition 2.11. Let $T_{0}, T_{1} \in C_{\rho}(H)$. If T_{0} and T_{1} are Harnack equivalent in $C_{\rho}(H)$ then $\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)$ for all $z \in \mathbb{D}$.
Proof. Since $T_{0} \stackrel{H}{\sim} T_{1}$, then by Theorem 1.1, there exist $c \geq 1$ such that

$$
\begin{equation*}
\frac{1}{c^{2}} K_{z}^{\rho}\left(T_{0}\right) \leq K_{z}^{\rho}\left(T_{1}\right) \leq c^{2} K_{z}^{\rho}\left(T_{0}\right), \quad \text { for all } z \in \mathbb{D} \tag{2.3}
\end{equation*}
$$

If $x \in \mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)$, then by the right side of the inequality equih, we also have

$$
0 \leq\left\langle K_{z}^{\rho}\left(T_{1}\right) x, x\right\rangle \leq c^{2}\left\langle K_{z}^{\rho}\left(T_{0}\right) x, x\right\rangle=0
$$

This implies that $\left\|\sqrt{K_{z}^{\rho}\left(T_{1}\right)} x\right\|=0$, so $K_{z}^{\rho}\left(T_{1}\right) x=0$, hence $\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right) \subseteq$ $\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)$ for all $z \in \mathbb{D}$. The converse inclusion holds by the left-side of the inequality 2.3 .

Proposition 2.12. If $w_{\rho}(T)=1$ and $\Gamma(T)$ is empty then there exists $z_{0} \in \mathbb{T}$ such that $K_{z_{0}}^{\rho}(T)$ is not invertible.
Proof. Assume by absurdum that $K_{z}^{\rho}(T)$ is invertible for all $z \in \mathbb{T}$. We already know from Lemma 3 of [12] that $K_{z}^{\rho}(T)$ is invertible in \mathbb{D}, a continuity argument tells us that there exists a positive real number γ such that $K_{z}^{\rho}(T) \geq \gamma I$ for every $z \in \overline{\mathbb{D}}$. Since $\Gamma(T)$ is empty, we easily deduce that $K_{z}^{\rho}(T)$ is well defined in an open neighbourhood of $\overline{\mathbb{D}}$. Thus we can find $r>1$ such that $K_{z}^{\rho}(r T)=K_{r z}^{\rho}(T) \geq \frac{\gamma}{2} I$ for any $z \in \mathbb{D}$. Hence $1 \leq w_{\rho}(T / r)=\frac{1}{r}$, which is a contradiction.
2.2. Numerical range properties and Harnack domination. Firstly, we give a proposition which is useful in this subsection.

Proposition 2.13. Let $T_{0}, T_{1} \in C_{\rho_{1}}(H)$ and $\rho_{2} \geq \rho_{1}$. Then we have
(i) If $T_{1} \underset{c}{\stackrel{H}{\prec}} T_{0}$ in $C_{\rho_{1}}(H)$, then $T_{1} \underset{c}{\stackrel{H}{\prec}} T_{0}$ in $C_{\rho_{2}}(H)$.
(ii) If $T_{1} \underset{c}{\stackrel{H}{c}} T_{0}$ in $C_{\rho_{1}}(H)$, then $T_{1} \underset{c}{\underset{c}{H}} T_{0}$ in $C_{\rho_{2}}(H)$.

Proof. (i) Since the C_{ρ} classes increase with ρ, the two operators T_{0} and T_{1} belong to $C_{\rho_{2}}(H)$. From Theorem 1.1, we know that there exists $c \geq 1$ such that $K_{z}^{\rho_{1}}\left(T_{1}\right) \leq c^{2} K_{z}^{\rho_{1}}\left(T_{0}\right)$ for all $z \in \mathbb{D}$. As $c \geq 1$, it yields to

$$
K_{z}^{\rho_{2}}\left(T_{1}\right)=K_{z}^{\rho_{1}}\left(T_{1}\right)+\left(\rho_{2}-\rho_{1}\right) I \leq c^{2}\left[K_{z}^{\rho_{1}}\left(T_{0}\right)+\left(\rho_{2}-\rho_{1}\right) I\right]=c^{2} K_{z}^{\rho_{2}}\left(T_{0}\right)
$$

Using again Theorem 1.1, we obtained the desired conclusion.
The assertion (ii) is a direct consequence of (i).
Let $T \in B(H)$, we denote by $W(T)$ the numerical range of T which is the set given by

$$
W(T)=\{\langle T x, x\rangle ; x \in H,\|x\|=1\} .
$$

The following result give relationships between numerical range and Harnack domination.

Theorem 2.14. Let $T_{0}, T_{1} \in C_{\rho}(H)$ with $1 \leq \rho \leq 2$, then we have:
(i) Assume that $\rho=1$ and $T_{1}{ }^{H} \not T_{0}$, then $\overline{W\left(T_{0}\right)} \cap \mathbb{T}=\overline{W\left(T_{1}\right)} \cap \mathbb{T}$.
(ii) Suppose that $1<\rho \leq 2, T_{1}{ }^{H} T_{0}$ and $\Gamma\left(T_{0}\right)=\emptyset$, then $\overline{W\left(T_{0}\right)} \cap \mathbb{T} \subseteq$ $\overline{W\left(T_{1}\right)} \cap \mathbb{T}$.
(iii) If $T_{1} \stackrel{H}{\sim} T_{0}$, then $\overline{W\left(T_{0}\right)} \cap \mathbb{T}=\overline{W\left(T_{1}\right)} \cap \mathbb{T}$.

Proof. (i) Let $\lambda=e^{i \omega} \in \overline{W\left(T_{0}\right)} \cap \mathbb{T}$, then there exists a sequence $\left(x_{n}\right)$ of unit vectors such that $\left\langle T_{0} x_{n}, x_{n}\right\rangle \longrightarrow \lambda$. We have for some $c \geq 1,0 \leq K_{r, \theta}\left(T_{1}\right) \leq$ $c^{2} K_{r, \theta}\left(T_{0}\right)$ for all $z \in \mathbb{D}$. Multiplying these inequalities by the nonnegative function $1-\operatorname{Re}\left(\bar{\lambda} e^{i \theta}\right)$, integrating with respect to the Haar measure m and letting r to 1 , we get $0 \leq I-\operatorname{Re}\left(\bar{\lambda} T_{1}\right) \leq c^{2}\left[I-\operatorname{Re}\left(\bar{\lambda} T_{0}\right)\right]$. We deduce that $1-\operatorname{Re}\left(\bar{\lambda}\left\langle T_{1} x_{n}, x_{n}\right\rangle\right) \longrightarrow 0$. Since $\left\langle T_{1} x_{n}, x_{n}\right\rangle$ belongs to the closed unit disc, it forces $\left\langle T_{1} x_{n}, x_{n}\right\rangle \longrightarrow \lambda$. Hence $\overline{W\left(T_{0}\right)} \cap \mathbb{T} \subseteq \overline{W\left(T_{1}\right)} \cap \mathbb{T}$. Now, let $\lambda \in \overline{W\left(T_{1}\right)} \cap \mathbb{T}$, then there exists a sequence $\left(y_{n}\right)$ of unit vectors such that $\left\langle T_{1} y_{n}, y_{n}\right\rangle \longrightarrow \lambda$. As T_{1} is a contraction, it follows that $1=\lim \left|\left\langle T_{1} y_{n}, y_{n}\right\rangle\right| \leq \underline{\lim }\left\|T_{1} y_{n}\right\| \leq \lim \left\|T_{1} y_{n}\right\| \leq$ 1 , thus $\left\|T_{1} y_{n}\right\| \longrightarrow 1$. It implies $\left\|T_{1} y_{n}-\lambda y_{n}\right\|^{2}=\left\|T_{1} y_{n}\right\|^{2}-2 \operatorname{Re}\left(\bar{\lambda}\left\langle T_{1} y_{n}, y_{n}\right\rangle\right)+$ $1 \longrightarrow 0$. Consequently, we have $\lambda \in \Gamma\left(T_{1}\right)$, by using Theorem 2.1 we see that $\lambda \in \Gamma\left(T_{0}\right) \subseteq \overline{W\left(T_{0}\right)} \cap \mathbb{T}$. So we get the desired equality.
(ii) Taking into account Proposition 2.13, it suffices to treat the case where $\rho=2$. Let $\lambda=e^{i \omega} \in \overline{W\left(T_{0}\right)} \cap \mathbb{T}$, then there exists a sequence $\left(x_{n}\right)$ of unit vectors such that $\left\langle T_{0} x_{n}, x_{n}\right\rangle \longrightarrow \lambda$. Set $y_{n}=\left(I-e^{-i \omega} T_{0}\right) x_{n}$, since $\Gamma\left(T_{0}\right)=\emptyset$ we necessarily have $\gamma=\inf \left\{\left\|y_{n}\right\| ; n \geq 0\right\}>0$. Taking $u_{n}=y_{n} /\left\|y_{n}\right\|$, we can see that

$$
\begin{aligned}
\left\langle K_{e^{i \omega}}^{2}\left(T_{0}\right) u_{n}, u_{n}\right\rangle & =\frac{2}{\left\|y_{n}\right\|^{2}}\left\langle\left(I-\operatorname{Re}\left(e^{-i \omega} T_{0}\right)\right) x_{n}, x_{n}\right\rangle \\
& \leq \frac{2}{\gamma^{2}}\left\langle\left(I-\operatorname{Re}\left(e^{-i \omega} T_{0}\right)\right) x_{n}, x_{n}\right\rangle \longrightarrow 0 .
\end{aligned}
$$

Since $T_{1} \stackrel{H}{\prec} T_{0}$, there exists $c \geq 1$ such that

$$
\begin{equation*}
K_{z}^{2}\left(T_{1}\right) \leq c^{2} K_{z}^{2}\left(T_{0}\right), \quad \text { for all } z \in \mathbb{D} \tag{2.4}
\end{equation*}
$$

On the one hand, if $\lambda \in \Gamma\left(T_{1}\right)$ we have obviously $\lambda \in \bar{W}\left(T_{1}\right)$. On the other hand, if $\lambda \notin \Gamma\left(T_{1}\right)$ we can extended (2.4) at $z=\lambda$ and we get

$$
0 \leq\left\langle K_{e^{i \omega}}^{2}\left(T_{1}\right) u_{n}, u_{n}\right\rangle \leq c^{2}\left\langle K_{e^{i \omega}}^{2}\left(T_{0}\right) u_{n}, u_{n}\right\rangle \longrightarrow 0
$$

hence $\left\langle K_{e^{i \omega}}^{2}\left(T_{1}\right) u_{n}, u_{n}\right\rangle \longrightarrow 0$. Observe that $\inf \left\{\left\|\left(I-e^{-i \omega} T_{1}\right)^{-1} u_{n}\right\| ; n \geq 0\right\} \geq \frac{1}{3}$. Set $v_{n}=\left(1 /\left\|\left(I-e^{-i \omega} T_{1}\right)^{-1} u_{n}\right\|\right)\left(I-e^{-i \omega} T_{1}\right)^{-1} u_{n}$, we obtain

$$
\left\langle\left(I-\operatorname{Re}\left(e^{-i \omega} T_{1}\right)\right) v_{n}, v_{n}\right\rangle \leq \frac{9}{2}\left\langle K_{e^{i \omega}}^{2}\left(T_{1}\right) u_{n}, u_{n}\right\rangle \longrightarrow 0 .
$$

We deduce that $\left\langle\operatorname{Re}\left(e^{-i \omega} T_{1}\right) v_{n}, v_{n}\right\rangle \longrightarrow 1$. As $T_{1} \in C_{2}(H)$, it yields to:

$$
1 \geq\left|\left\langle T_{1} v_{n}, v_{n}\right\rangle\right|^{2}=\left|\left\langle\operatorname{Re}\left(e^{-i \omega} T_{1}\right) v_{n}, v_{n}\right\rangle\right|^{2}+\left|\left\langle\operatorname{Im}\left(e^{-i \omega} T_{1}\right) v_{n}, v_{n}\right\rangle\right|^{2},
$$

and we derive successively that $\left\langle\operatorname{Im}\left(e^{-i \omega} T_{1}\right) v_{n}, v_{n}\right\rangle \longrightarrow 0$ and $\left\langle T_{1} v_{n}, v_{n}\right\rangle \longrightarrow \lambda$. Thus $\lambda \in \overline{W\left(T_{1}\right)} \cap \mathbb{T}$ and it ends the proof of (ii).
(iii) As before, we may suppose that $\rho=2$. Assume that $T_{1} \stackrel{H}{\sim} T_{0}$ and $\lambda \in$ $\overline{W\left(T_{0}\right)} \cap \mathbb{T}$. By Corollary 2.2, we have $\Gamma\left(T_{0}\right)=\Gamma\left(T_{1}\right)$. So, if $\lambda \in \Gamma\left(T_{0}\right)$ then $\lambda \in \overline{W\left(T_{1}\right)} \cap \mathbb{T}$. Now, if $\lambda \notin \Gamma\left(T_{0}\right)$, we proceed as in the second item (ii) to prove that $\lambda \in \overline{W\left(T_{1}\right)} \cap \mathbb{T}$. Interchanging the roles of T_{0} and T_{1} gives the desired equality.
Remark 2.15. (1) The condition $\Gamma\left(T_{0}\right)=\emptyset$, in (ii), cannot be relaxed. In fact, we have $T_{1}=0_{H} \underset{c}{\stackrel{H}{\prec}} I=T_{0}$ in $C_{\rho}(H)(1<\rho \leq 2)$ with $c=\sqrt{\frac{\rho}{\rho-1}}$ but $\overline{W\left(T_{0}\right)} \cap \mathbb{T}=\{1\}$ and $\overline{W\left(T_{1}\right)} \cap \mathbb{T}=\emptyset$.
(2) When T is a contraction, we have $\overline{W(T)} \cap \mathbb{T}=\Gamma(T)$ (see for instance the end of the proof of (i)). So, the assertion (i) of Theorem 2.14 restore, in the case of domination, the equality of the spectral values in the torus obtained by C. Badea, D. Timotin and L. Suciu in [4] by another way.

Corollary 2.16. Let $T_{0} \in C_{\rho}(H)$ with $1 \leq \rho \leq 2$. If $\overline{W\left(T_{0}\right)}=\overline{\mathbb{D}}$, and satisfies $\Gamma\left(T_{0}\right)=\emptyset$ when $\rho \neq 1$, then $\overline{W\left(T_{1}\right)}=\overline{\mathbb{D}}$ for every $T_{1} \in C_{\rho}(H)$ such that $T_{1}{ }^{H} T_{0}$. Furthermore, in the case of Harnack equivalence, we have $\overline{W\left(T_{1}\right)}=\overline{\mathbb{D}}$ as soon as $\overline{W\left(T_{0}\right)}=\overline{\mathbb{D}}$.

Proof. By Theorem 2.14, Proposition 2.13 and the convexity theorem of ToeplitzHausdorff, we obtain the desired conclusions.
2.3. Harnack parts in the space of compact operators. Recall that the conorm $\gamma(A)$ of an operator $A \in B(H)$ is defined by setting

$$
\gamma(A)=\inf \left\{\|A x\| ; x \in\left(\mathcal{N}(A)^{\perp} \text { and }\|x\|=1\right\}\right.
$$

The Moore-Penrose inverse of A, denoted by A^{\dagger}, if it exists, is the unique solution of the following equations:

$$
A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger} \text { and }\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

It is well known that A has an Moore-Penrose inverse if and only if the range $\mathcal{R}(A)$ of A is closed. We denote by $\mathcal{K}(H)$ the set of all compact operators. The
next result gives a characterization of Harnack equivalence in $C_{\rho}(H) \cap \mathcal{K}(H)$ for operators with no spectral values in \mathbb{T} (we can reduce the problem to this case, see Remark 2.18 bellow).

Theorem 2.17. Let $T_{0} \in C_{\rho}(H) \cap \mathcal{K}(H)$ with $w_{\rho}\left(T_{0}\right)=1$ and $\Gamma_{p}\left(T_{0}\right)$ is empty. Then $T_{1} \in C_{\rho}(H) \cap \mathcal{K}(H)$ is Harnack equivalent to T_{0} if and only if we have: $\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)$ for all $\left.z \in \mathbb{T}, \inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right)>$ 0 and $\left.\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{0}\right)^{\dagger}} K_{z}^{\rho}\left(T_{1}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{0}\right)^{\dagger}}\right)>0$.

Proof. Set $E_{T_{0}}(z)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)$ and $E_{T_{1}}(z)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)$. Let $T_{0}, T_{1} \in C_{\rho}(H) \cap$ $\mathcal{K}(H)$ such that $T_{0} \stackrel{H}{\sim} T_{1}$. Since $\Gamma_{p}\left(T_{0}\right)$ is empty, by Corollary 2.2, the operators T_{0} and T_{1} admit no eigenvalues in \mathbb{T}. Hence, $K_{z}^{\rho}\left(T_{0}\right)$ and $K_{z}^{\rho}\left(T_{1}\right)$ are uniformly bounded in \mathbb{D} and may be extended to positive operators on $\overline{\mathbb{D}}$. Furthermore, if we proceed as in the proof of Proposition 2.11, we deduce that $E_{T_{0}}(z)=E_{T_{1}}(z):=E(z)$ for all $z \in \mathbb{T}$. Let $P(z)$ denotes the orthogonal projection on $E(z)$ and $Q(z)=I-P(z)$. Since T_{0} is compact operator with $r\left(T_{0}\right)<1$, for any $z \in \overline{\mathbb{D}}$ both of the series $\sum_{n=1}^{+\infty} \bar{z}^{n} T_{0}^{n}$ and $\sum_{n=1}^{+\infty} z^{n} T_{0}^{* n}$ are convergent to a compact operator in the operator norm, so we can write $K_{z}^{\rho}\left(T_{0}\right)=\rho I+R_{z}\left(T_{0}\right)$ where $R_{z}\left(T_{0}\right)$ is a compact operator. We derive that $E_{T_{0}}(z)$ is a finite dimensional space, that the range $\mathcal{R}\left(K_{z}^{\rho}\left(T_{0}\right)\right)$) of $\left.K_{z}^{\rho}\left(T_{0}\right)\right)$ is closed and we have $\left.\mathcal{R}\left(\sqrt{\left.K_{z}^{\rho}\left(T_{0}\right)\right)}\right)=\mathcal{R}\left(K_{z}^{\rho}\left(T_{0}\right)\right)\right)=E_{T_{0}}(z)^{\perp}$. Of course, analogous properties hold for $K_{z}^{\rho}\left(T_{1}\right)$. Therefore, the Moore-Penrose inverses of $K_{z}^{\rho}\left(T_{0}\right)$ and $K_{z}^{\rho}\left(T_{1}\right)$ are well defined. From Theorem 1.1, we know that there exists $c \geq 1$ such that

$$
\frac{1}{c^{2}} K_{z}^{\rho}\left(T_{0}\right) \leq K_{z}^{\rho}\left(T_{1}\right) \leq c^{2} K_{z}^{\rho}\left(T_{0}\right)
$$

Firstly, we show that $\left.E_{1}(z):=\mathcal{N}\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right)=E(z)$. Let $x \in E_{1}(z)$ and write $x=x_{1}+x_{2}$ with respect to the orthogonal decomposition $H=E(z) \oplus E(z)^{\perp}$. We can see that $x_{2}=\sqrt{\left.K_{z}^{\rho}\left(T_{1}\right)\right)} y_{2}$ where $y_{2} \in E(z)^{\perp}$ and then

$$
\begin{aligned}
0 & =\left\langle K_{z}^{\rho}\left(T_{0}\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} x, \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} x\right\rangle=\left\langle K_{z}^{\rho}\left(T_{0}\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} x_{2}, \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} x_{2}\right\rangle \\
& =\left\langle K_{z}^{\rho}\left(T_{0}\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} \sqrt{\left.K_{z}^{\rho}\left(T_{1}\right)\right)} y_{2}, \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} \sqrt{\left.K_{z}^{\rho}\left(T_{1}\right)\right)^{\prime}} y_{2}\right\rangle \\
& =\left\langle K_{z}^{\rho}\left(T_{0}\right) y_{2}, y_{2}\right\rangle .
\end{aligned}
$$

Hence $y_{2} \in E_{T_{0}}(z) \cap E_{T_{0}}(z)^{\perp}=\{0\}$ which implies $x=x_{1} \in E(z)$. The converse inclusion is obvious.

Now, observe that

$$
\begin{aligned}
& Q(z)=K_{z}^{\rho}\left(T_{1}\right)^{\dagger} K_{z}^{\rho}\left(T_{1}\right)=\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{1}\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} \\
& \leq c^{2} \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} .
\end{aligned}
$$

Since the null space of the right hand operator is $E(z)$, the previous inequality implies that $\left.\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right)>\frac{1}{c^{2}}$. In the same manner, we prove that $\left.\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{0}\right)^{\dagger}} K_{z}^{\rho}\left(T_{1}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{0}\right)^{\dagger}}\right)>0$.

Conversely, set $\left.\gamma=\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right)>0$. We have seen that

$$
\left.E_{1}(z)=\mathcal{N}\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right)=E_{T_{0}}(z)
$$

for any $z \in \mathbb{T}$. Hence, since $\sqrt{A^{\dagger}}=\sqrt{A^{\dagger}}$ for any positive operator with closed range, we have successively the following inequalities

$$
\left.\gamma Q(z) \leq \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}
$$

and

$$
\begin{aligned}
\gamma K_{z}^{\rho}\left(T_{1}\right) & =\gamma Q(z) K_{z}^{\rho}\left(T_{1}\right) Q(z)=\gamma \sqrt{K_{z}^{\rho}\left(T_{1}\right)} Q(z) \sqrt{K_{z}^{\rho}\left(T_{1}\right)} \\
& \left.\leq \sqrt{K_{z}^{\rho}\left(T_{1}\right)} \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} \sqrt{K_{z}^{\rho}\left(T_{1}\right)} \\
& =Q(z) K_{z}^{\rho}\left(T_{0}\right) Q(z)=K_{z}^{\rho}\left(T_{0}\right) .
\end{aligned}
$$

Thus we have shown that $T_{1} \stackrel{H}{\prec} T_{0}$. In a similar way we can prove that $T_{0} \stackrel{H}{\prec} T_{1}$ and the proof is ended.

Remark 2.18. 1) The condition " $\Gamma_{p}\left(T_{0}\right)$ is empty" can be relaxed. In this case, we can use Corollary 2.8 and apply Theorem 2.17 for \tilde{T}_{0} and \tilde{T}_{1} as in the decomposition of T_{0} and T_{1} respectively, given by the Corollary 2.8 .
2) According to Theorem 1.5 of [23], we can see that the conorm conditions

$$
\begin{aligned}
& \left.\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right)>0 \\
& \text { and } \left.\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{0}\right)^{\dagger}} K_{z}^{\rho}\left(T_{1}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{0}\right)^{\dagger}}\right)>0
\end{aligned}
$$

are equivalent to the spectral conditions

$$
\begin{aligned}
& \left.0<\inf \left\{t \in \sigma\left(K_{z}^{\rho}\left(T_{1}\right)^{\dagger} K_{z}^{\rho}\left(T_{0}\right)\right)\right) \backslash\{0\}\right\} \\
& \text { and } \left.0<\inf \left\{t \in \sigma\left(K_{z}^{\rho}\left(T_{0}\right)^{\dagger} K_{z}^{\rho}\left(T_{1}\right)\right)\right) \backslash\{0\}\right\} .
\end{aligned}
$$

Remark 2.19. The following example shows that the null spaces condition

$$
\begin{equation*}
\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right) \text { for all } z \in \mathbb{T} \tag{2.5}
\end{equation*}
$$

is not sufficient in general to ensure that T_{1} is Harnack equivalent to T_{0} in Theorem 2.17. We consider the two following operators acting on \mathbb{C}^{2} which are given by the matrices

$$
T_{0}=\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
0 & \frac{1}{2}
\end{array}\right) \text { and } T_{1}=\left(\begin{array}{cc}
\frac{1}{2}+\frac{i}{2} & 1 \\
0 & \frac{1}{2}-\frac{i}{2}
\end{array}\right) .
$$

For any $z \in \overline{\mathbb{D}}$, we have

$$
K_{z}^{2}\left(T_{0}\right)=\left(\begin{array}{ll}
\frac{2-\Re(z)}{\left|1-\frac{z}{2}\right|^{2}} & \frac{\bar{z}}{\left(1-\frac{\bar{z}}{2}\right)^{2}} \\
\frac{z}{\left(1-\frac{z}{2}\right)^{2}} & \frac{2-\Re(z)}{\left|1-\frac{z}{2}\right|^{2}}
\end{array}\right)
$$

and

$$
K_{z}^{2}\left(T_{1}\right)=\left(\begin{array}{cc}
\frac{2 \sqrt{2}\left(\sqrt{2}-\Re\left(z e^{-i \frac{\pi}{4}}\right)\right)}{\left|\sqrt{2}-e^{-i \frac{\pi}{4}} z\right|^{2}} & \frac{2 \bar{z}}{\left(\sqrt{2}-\bar{z} e^{i \frac{\pi}{4}}\right)\left(\sqrt{2}-\bar{z} e^{-i \frac{\pi}{4}}\right)} \\
\frac{2 z}{\left(\sqrt{2}-z e^{-i \frac{\pi}{4}}\right)\left(\sqrt{2}-z e^{i \frac{\pi}{4}}\right)} & \frac{2 \sqrt{2}\left(\sqrt{2}-\Re\left(z e^{i \frac{\pi}{4}}\right)\right)}{\left|\sqrt{2}-e^{i \frac{\pi}{4}} z\right|^{2}}
\end{array}\right) .
$$

An easy computation gives

$$
\delta_{T_{0}}(\theta):=\operatorname{det}\left(K_{e^{i \theta}}^{2}\left(T_{0}\right)\right)=16 \frac{(1-\cos \theta)(3-\cos \theta)}{\left|2-e^{i \theta}\right|^{4}}
$$

and

$$
\delta_{T_{1}}(\theta):=\operatorname{det}\left(K_{e^{i \theta}}^{2}\left(T_{1}\right)\right)=8 \frac{(1-\cos \theta)^{2}}{\left|\sqrt{2}-e^{i\left(\theta-\frac{\pi}{4}\right)}\right|^{2}\left|\sqrt{2}-e^{i\left(\theta+\frac{\pi}{4}\right)}\right|^{2}} .
$$

Since $\operatorname{Tr}\left(K_{e^{i \theta}}^{2}\left(T_{0}\right)\right)>0$ and $\delta_{T_{0}}(\theta) \geq 0$ for any $\theta \in \mathbb{R}$, from [10] we derive that $T_{0} \in C_{2}\left(\mathbb{C}^{2}\right)$. The same argument is valid for T_{1}. Moreover, we easily see that $\mathcal{N}\left(K_{1}^{2}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{1}^{2}\left(T_{0}\right)\right)=\mathbb{C}(1,-1)$ and $\mathcal{N}\left(K_{z}^{2}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{z}^{2}\left(T_{0}\right)\right)=\{0\}$ for any $z \in \mathbb{T} \backslash\{1\}$. Suppose that T_{0} is Harnack dominated by T_{1}, using Theorem 1.1 we see that there exists $c \geq 1$ such that $K_{z}^{2}\left(T_{0}\right) \leq c^{2} K_{z}^{2}\left(T_{1}\right)$ for any $z \in \mathbb{T}$. Hence $\delta_{T_{0}}(\theta) \leq c^{4} \delta_{T_{1}}(\theta)$ which implies

$$
2 \frac{3-\cos \theta}{\left|2-e^{i \theta}\right|^{4}} \leq c^{4} \frac{(1-\cos \theta)}{\left|\sqrt{2}-e^{i\left(\theta-\frac{\pi}{4}\right)}\right|^{2}\left|\sqrt{2}-e^{i\left(\theta+\frac{\pi}{4}\right)}\right|^{2}}
$$

for any $\theta \in[-\pi, \pi] \backslash\{0\}$. Letting θ goes to 0 , we get $4 \leq 0$ a contradiction. Finally, T_{1} and T_{0} satisfy the null spaces condition 2.5 but are not Harnack equivalent. In the sequel, we give a situation where the null spaces condition 2.5 ensures the Harnack equivalence (see Corollary 2.23).

The next proposition is concerned with the dimension of $E_{T}(z)=\mathcal{N}\left(K_{z}^{\rho}(T)\right)$ for any compact operator T in $C_{\rho}(H)$ with $\Gamma_{p}(T)=\emptyset$. We set $d_{T}(z)=\operatorname{dim}\left(E_{T}(z)\right)$ for any $z \in \mathbb{T}$. Notice that $d_{T}(z)$ is well defined $\left(\Gamma_{p}(T)=\emptyset\right)$ and is always finite since T is assumed to be compact.
Proposition 2.20. Let $T \in C_{\rho}(H) \cap \mathcal{K}(H)$ with $\Gamma_{p}(T)$ is empty. Then, we have

$$
\sup _{z \in \mathbb{T}} d_{T}(z)<+\infty
$$

Proof. We proceed by absurdum and suppose that $\sup _{z \in \mathbb{T}} d_{T}(z)=+\infty$. Then there exists a sequence $\left(z_{n}\right) \subseteq \mathbb{T}$, converging to $z \in \mathbb{T}$, such that $d_{T}\left(z_{n}\right) \uparrow+\infty$. We easily see that we can find a strictly increasing sequence of positive integers $\left(n_{p}\right)$ for which $d_{T}\left(z_{n_{p}}\right)>p$. Let E be an arbitrary subspace of H of dimension d. Observe that we have $E^{\perp} \cap E_{T}\left(z_{n_{p}}\right) \neq\{0\}$ for any $p>d$. Otherwise, we easily see that $E_{T}\left(z_{n_{p}}\right)=P_{E_{T}\left(z_{n_{p}}\right)}(E)$ (where $P_{E_{T}\left(z_{n_{p}}\right)}$ is the orthogonal projection $E_{T}\left(z_{n_{p}}\right)$), a fact which is impossible to verify for any $p>d$. Thus, we can choose a unit vector u_{p} in $E^{\perp} \cap E_{T}\left(z_{n_{p}}\right)$ for every $p>d$. Replacing $\left(n_{p}\right)$ by one of its subsequences if necessary, we can assume that u_{p} is weakly convergent to a vector $u \in E^{\perp}$. Since $R_{\alpha}(T)$ is compact for any $\alpha \in \mathbb{T}$ and the map $\alpha \mapsto R_{\alpha}(T)$ is norm continuous on \mathbb{T}, we derive
$0=\left\langle K_{z_{n_{p}}}^{\rho}(T) u_{p}, u_{p}\right\rangle=\rho+\left\langle R_{z_{n_{p}}}(T) u_{p}, u_{p}\right\rangle \rightarrow \rho+\left\langle R_{z}(T) u, u\right\rangle \geq\left\langle K_{z}^{\rho}(T) u, u\right\rangle \geq 0$.
It implies both that $u \in E_{T}(z)$ and that $u \neq 0$. We have obtained that $E_{T}(z) \cap$ $E^{\perp} \neq\{0\}$ for an arbitrary finite-dimensional subspace E, a contradiction since $E_{T}(z)$ is of finite dimension.

The following supremum-infimum formula was used in [8]. It will be useful in the sequel. Let E be a subspace of H, we denote by $E(1)$ the unit sphere of E.

Lemma 2.21. Let $A \in B(H)$ be a operator with finite dimensional kernel and closed range. Then we have

$$
\gamma(A)=\sup \left\{\inf \left\{\langle | A|x, x\rangle ; x \in F^{\perp}(1)\right\} ; F \subseteq H, \operatorname{dim} F \leq \operatorname{dim}(\mathcal{N}(A))\right\}
$$

Proof. The right hand side in the previous equality will be denoted by $\gamma^{\prime}(A)$. From the definition, we easily deduce that $\gamma(A)=\gamma(|A|)$. Recall that the range of A is closed if and only if the range of $|A|$ is closed and we always have $\mathcal{N}(A)=$ $\mathcal{N}(|A|)$. Thus, we are reduced to prove Lemma 2.21 when A is supposed to be a positive operator $(\langle A x, x\rangle \geq 0$ for any $x \in H)$. Let $\varepsilon>0$, then there exists a unit vector u in $\mathcal{N}(A)^{\perp}$ such that $\langle A u, u\rangle \leq\|A u\| \leq \gamma(A)+\varepsilon$. Set $L=\mathcal{N}(A)+\mathbb{C} u$ and $d=\operatorname{dim}(\mathcal{N}(A))$, then we have

$$
d+1-\operatorname{dim}\left(L \cap F^{\perp}\right)=\operatorname{dim}\left(\frac{L}{L \cap F^{\perp}}\right)=\operatorname{dim}\left(\frac{L+F^{\perp}}{F^{\perp}}\right) \leq \operatorname{dim}\left(\frac{H}{F^{\perp}}\right) \leq d
$$

for every subspace $F \subseteq H$ such that $\operatorname{dim}(F) \leq d$. Therefore, for any such subspace F, we have $\operatorname{dim}\left(L \cap F^{\perp}\right) \geq 1$ and we can find a unit vector $y \in L \cap F^{\perp}$. We write $y=x+\alpha u$ where $x \in \mathcal{N}(A)$ and $\alpha \in \mathbb{C}$. Since $y \in F^{\perp}(1)$, we have

$$
\inf \left\{\langle | A|x, x\rangle ; x \in F^{\perp}(1)\right\} \leq\langle A y, y\rangle=|\alpha|^{2}\langle A u, u\rangle \leq \gamma(A)+\varepsilon
$$

Taking the supremum over all subspaces F of dimension less than d, we get $\gamma^{\prime}(A) \leq \gamma(A)+\varepsilon$. As ε is arbitrary, we derive that $\gamma^{\prime}(A) \leq \gamma(A)$. Then, the equality $\gamma^{\prime}(A)=\gamma^{\prime}(A)$ is obtained by considering the particular case where $F=\mathcal{N}(A)$.

We also need the next lemma.
Lemma 2.22. We have the two following properties:
(i) Let $A \in B(H)$ be a nonzero operator with closed range, then $\gamma\left(A^{\dagger}\right)=$ $\|A\|^{-1}$.
(ii) Let A and B be two positive operators, and suppose that $\mathcal{N}(A)=\mathcal{N}(B)$, then

$$
\gamma(\sqrt{B} A \sqrt{B}) \geq \gamma(A) \gamma(B)
$$

Proof. (i) Since $\mathcal{R}(A)$ is closed if and only if $\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{\dagger}\right)$ is closed and $\left(A^{\dagger}\right)^{\dagger}=$ A, it follows from Proposition 1.3 of [23] that

$$
\gamma\left(A^{\dagger}\right)=\frac{1}{\left\|\left(A^{\dagger}\right)^{\dagger}\right\|}=\frac{1}{\mid A \|}
$$

(ii) Firstly we observe that $\mathcal{N}(\sqrt{B} A \sqrt{B})=\mathcal{N}(A)$. Indeed let $x \in \mathcal{N}(\sqrt{B} A \sqrt{B})$, then we have $0=\langle\sqrt{B} A \sqrt{B} x, x\rangle=\|\sqrt{A} \sqrt{B} x\|^{2}$ which implies that $\sqrt{B} x \in$ $\mathcal{N}(\sqrt{A})=\mathcal{N}(\sqrt{B})$. Hence $x \in \mathcal{N}(B)=\mathcal{N}(A)$. Thus, we have $\mathcal{N}(\sqrt{B} A \sqrt{B}) \subseteq$ $\mathcal{N}(A)$. The converse inclusion is immediate.

Now, let x be a unit vector in $\mathcal{N}(A)^{\perp}=\overline{\mathcal{R}(A)}$. We see that $\sqrt{B} x$ is a nonzero vector in $\overline{\mathcal{R}(\sqrt{B})}=\overline{\mathcal{R}(B)}=\overline{\mathcal{R}(A)}$. Using Theorem 1.5 of [23], we see that
$\gamma(T)=\inf \{t ; t \in \sigma(T) \backslash\{0\}\}=\inf \left\{t ; t \in W\left(T_{\mid \overline{\mathcal{R}}(T)}\right)\right\}$ for any positive operator T. Then, we obtain

$$
\left\langle A\left(\frac{\sqrt{B} x}{\|\sqrt{B} x\|}\right), \frac{\sqrt{B} x}{\|\sqrt{B} x\|}\right\rangle \geq \gamma(A)
$$

and hence $\langle\sqrt{B} A \sqrt{B} x, x\rangle \geq \gamma(A)\langle B x, x\rangle \geq \gamma(A) \gamma(B)$. Since $\overline{\mathcal{R}(\sqrt{B} A \sqrt{B})}=$ $\overline{\mathcal{R}(A)}$, taking the infimum over all such x gives the desired inequality.

The previous lemmas enable us to give a situation where the null spaces condition 2.5 is equivalent to Harnack equivalence in $C_{\rho}(H) \cap \mathcal{K}(H)$.
Corollary 2.23. Let $T_{0} \in C_{\rho}(H) \cap \mathcal{K}(H)$ with $w_{\rho}\left(T_{0}\right)=1$ and $\Gamma_{p}\left(T_{0}\right)$ is empty. Assume that $\operatorname{dim}\left(\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)\right)$ is constant over \mathbb{T}. Then $T_{1} \in C_{\rho}(H) \cap \mathcal{K}(H)$ is Harnack equivalent to T_{0} if and only if we have: $\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)$ for all $z \in \mathbb{T}$.

Proof. The direct implication follows immediately from Theorem 2.17. We now prove the converse implication. For simplicity, we write $\gamma_{T_{0}}(z)=\gamma\left(K_{z}^{\rho}\left(T_{0}\right)\right)$ (resp. $\left.\gamma_{T_{1}}(z)=\gamma\left(K_{z}^{\rho}\left(T_{1}\right)\right)\right)$ for every $z \in \mathbb{T}$. Let z_{1} and z_{2} be two points of the torus and let F be a subspace of dimension less than $d:=\operatorname{dim}\left(\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)\right.$) (for arbitrary $z \in \mathbb{T}$ by assumption). If y belongs to $F^{\perp}(1)$, we can write

$$
\left.\left.\left.\left.\left.\inf _{x \in F^{\perp}(1)}\left\{\left\langle K_{z_{1}}^{\rho}\left(T_{0}\right)\right) x, x\right\rangle\right\} \leq\left\langle K_{z_{1}}^{\rho}\left(T_{0}\right)\right) y, y\right\rangle \leq \| K_{z_{1}}^{\rho}\left(T_{0}\right)\right)-K_{z_{2}}^{\rho}\left(T_{0}\right)\right) \|+\left\langle K_{z_{2}}^{\rho}(T)\right) y, y\right\rangle .
$$

We derive

$$
\left.\left.\left.\left.\inf _{x \in F^{\perp}(1)}\left\{\left\langle K_{z_{1}}^{\rho}\left(T_{0}\right)\right) x, x\right\rangle\right\} \leq \| K_{z_{1}}^{\rho}(T)\right)-K_{z_{2}}^{\rho}(T)\right) \|+\inf _{x \in F^{\perp}(1)}\left\{\left\langle K_{z_{2}}^{\rho}\left(T_{0}\right)\right) x, x\right\rangle\right\} .
$$

By taking the supremum over all such F and using Lemma 2.21, we obtain

$$
\left.\left.\gamma_{T_{0}}\left(z_{1}\right) \leq \| K_{z_{1}}^{\rho}(T)\right)-K_{z_{2}}^{\rho}(T)\right) \|+\gamma_{T_{0}}\left(z_{2}\right)
$$

Exchanging z_{1} and z_{2}, we get

$$
\left.\left.\left|\gamma_{T_{0}}\left(z_{1}\right)-\gamma_{T_{0}}\left(z_{2}\right)\right| \leq \| K_{z_{1}}^{\rho}\left(T_{0}\right)\right)-K_{z_{2}}^{\rho}\left(T_{0}\right)\right) \| .
$$

Hence, the function $\gamma_{T_{0}}$ is continuous on \mathbb{T}. Since T_{0} is compact, the range of $\left.K_{z}^{\rho}\left(T_{0}\right)\right)$ is closed and consequently $\gamma_{T_{0}}(z)>0$ for any $z \in \mathbb{T}$. The same properties are also satisfied by T_{1}. Thus, we have

$$
\gamma_{T_{0}}:=\inf _{z \in \mathbb{T}} \gamma_{T_{0}}(z)>0 \text { and } \gamma_{T_{1}}:=\inf _{z \in \mathbb{T}} \gamma_{T_{1}}(z)>0 .
$$

By continuity and compacity, we also have

$$
M\left(T_{0}\right)=\sup _{z \in \mathbb{T}}\left\|K_{z}^{\rho}\left(T_{0}\right)\right\|<+\infty \text { and } M\left(T_{1}\right)=\sup _{z \in \mathbb{T}}\left\|K_{z}^{\rho}\left(T_{1}\right)\right\|<+\infty .
$$

Noticing that $\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)^{\dagger}\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{0}\right)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(T_{1}\right)^{\dagger}\right)$ and applying Lemma 2.22, we get
$\left.\left.\gamma\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right) \geq \gamma\left(K_{z}^{\rho}\left(T_{0}\right)\right)\right) \gamma\left(K_{z}^{\rho}\left(T_{1}\right)^{\dagger}\right)=\gamma_{T_{0}}(z)\left\|K_{z}^{\rho}\left(T_{1}\right)\right\|^{-1}$.

The operators T_{0} and T_{1} play the same role, thus we finally obtain

$$
\left.\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}} K_{z}^{\rho}\left(T_{0}\right)\right) \sqrt{K_{z}^{\rho}\left(T_{1}\right)^{\dagger}}\right) \geq \gamma_{T_{0}} M\left(T_{1}\right)^{-1}>0
$$

and

$$
\inf _{z \in \mathbb{T}} \gamma\left(\sqrt{K_{z}^{\rho}\left(T_{0}\right)^{\dagger}} K_{z}^{\rho}\left(T_{1}\right)\right) \sqrt{\left.K_{z}^{\rho}\left(T_{0}\right)^{\dagger}\right)} \geq \gamma_{T_{1}} M\left(T_{0}\right)^{-1}>0
$$

We conclude by using again Theorem 2.17.
The following result gives a simple criterion for a unitary conjugate of T to be Harnack equivalent to T in $\in C_{\rho}(H) \cap \mathcal{K}(H)$ when $\operatorname{dim}\left(\mathcal{N}\left(K_{z}^{\rho}(T)\right)\right)$ is constant over \mathbb{T}.

Corollary 2.24. Let $T \in C_{\rho}(H) \cap \mathcal{K}(H)$ with $w_{\rho}(T)=1, \Gamma_{p}(T)$ is empty and such that $\operatorname{dim}\left(\mathcal{N}\left(K_{z}^{\rho}(T)\right)\right)$ is constant over \mathbb{T}. Let U be a unitary operator, then $U^{*} T U$ is Harnack equivalent to T if and only if $U\left(\mathcal{N}\left(K_{z}^{\rho}(T)\right)\right) \subseteq \mathcal{N}\left(K_{z}^{\rho}(T)\right)$ for all $z \in \mathbb{T}$. Moreover, the set of unitary operators $U \in B(H)$ such that $U^{*} T U^{H} T$ form a multiplicative group.
Proof. We have $K_{z}^{\rho}\left(U^{*} T U\right)=U^{*} K_{z}^{\rho}(T) U$ and $\mathcal{N}\left(K_{z}^{\rho}\left(U^{*} T U\right)\right)=\mathcal{N}\left(K_{z}^{\rho}(T) U\right)=$ $U^{*} \mathcal{N}\left(K_{z}^{\rho}(T)\right)$. As we have seen in the proof of Theorem 2.17, we can write $K_{z}^{\rho}(T)=\rho I+R_{z}^{\rho}(T)$, where $R_{z}^{\rho}(T)$ is compact. Thus $\mathcal{N}\left(K_{z}^{\rho}(T)\right)$ is finite dimensional. Assume that $U\left(\mathcal{N}\left(K_{z}^{\rho}(T)\right)\right) \subseteq \mathcal{N}\left(K_{z}^{\rho}(T)\right)$ for all $z \in \mathbb{T}$. Then, the restriction of U to $\mathcal{N}\left(K_{z}^{\rho}(T)\right)$ is injective, and hence is surjective. Then $U \mathcal{N}\left(K_{z}^{\rho}(T)\right)=\mathcal{N}\left(K_{z}^{\rho}(T)\right)=U^{*} \mathcal{N}\left(K_{z}^{\rho}(T)\right)$ and $\mathcal{N}\left(K_{z}^{\rho}\left(U^{*} T U\right)\right)=\mathcal{N}\left(K_{z}^{\rho}(T)\right)$ for all $z \in \mathbb{T}$. By Corollary 2.23 we conclude that $U^{*} T U^{H} T$. Conversely, assume that $U^{*} T U \stackrel{H}{\sim} T$. By Proposition 2.11, we derive that $\mathcal{N}\left(K_{z}^{\rho}(T)\right)=\mathcal{N}\left(K_{z}^{\rho}\left(U^{*} T U\right)\right)=$ $\mathcal{N}\left(K_{z}^{\rho}(T) U\right)=U^{*} \mathcal{N}\left(K_{z}^{\rho}(T)\right)$, which implies $U\left(\mathcal{N}\left(K_{z}^{\rho}(T)\right)\right) \subseteq \mathcal{N}\left(K_{z}^{\rho}(T)\right)$ for all $z \in \mathbb{T}$.

As we have seen before, the condition $U\left(\mathcal{N}\left(K_{z}^{\rho}(T)\right)\right) \subseteq \mathcal{N}\left(K_{z}^{\rho}(T)\right)$ for a unitary operator U is equivalent to $U\left(\mathcal{N}\left(K_{z}^{\rho}(T)\right)\right)=\mathcal{N}\left(K_{z}^{\rho}(T)\right)$. As a direct consequence we see that the set of unitary operators $U \in B(H)$ such that $U^{*} T U^{H} T$ form a multiplicative group.

In the case of contractions, the characterization of Harnack equivalence in $\mathcal{K}(H)$ is simpler.
Theorem 2.25. Let $T_{0} \in C_{1}(H) \cap \mathcal{K}(H)$ with $\left\|T_{0}\right\|=1$. Then $T_{1} \in C_{1}(H) \cap \mathcal{K}(H)$ is Harnack equivalent to T_{0} if and only if $E:=\mathcal{N}\left(I-T_{0}^{*} T_{0}\right)=\mathcal{N}\left(I-T_{1}^{*} T_{1}\right)$ and $T_{0 \mid E}=T_{1 \mid E}$.
Proof. According to Corollary 2.8, we are reduced to prove Theorem 2.25 with the extra assumption $\Gamma_{p}\left(T_{0}\right)$ is empty. Let $T_{0}, T_{1} \in C_{1}(H) \cap \mathcal{K}(H)$ such that $T_{0} \stackrel{H}{\sim} T_{1}$. On the one hand, the fact that

$$
K_{z}\left(T_{0}\right)=\left(I-z T_{0}^{*}\right)^{-1}\left[I-|z|^{2} T_{0}^{*} T_{0}\right]\left(I-\bar{z} T_{0}\right)^{-1}
$$

easily implies that

$$
\mathcal{N}\left(K_{z}\left(T_{0}\right)\right)=\left(I-\bar{z} T_{0}\right)\left(\mathcal{N}\left(I-T_{0}^{*} T_{0}\right)\right) \quad \text { for all } z \in \mathbb{T},
$$

and similarly

$$
\mathcal{N}\left(K_{z}\left(T_{1}\right)\right)=\left(I-\bar{z} T_{1}\right)\left(\mathcal{N}\left(I-T_{1}^{*} T_{1}\right)\right) \quad \text { for all } z \in \mathbb{T} .
$$

From Proposition 2.11, we get

$$
\left(I-\bar{z} T_{0}\right)\left(\mathcal{N}\left(I-T_{0}^{*} T_{0}\right)\right)=\left(I-\bar{z} T_{1}\right)\left(\mathcal{N}\left(I-T_{1}^{*} T_{1}\right)\right) \quad \text { for all } z \in \mathbb{T} .
$$

We put $E=\mathcal{N}\left(I-T_{0}^{*} T_{0}\right)$. Let $x \in \mathcal{N}\left(I-T_{1}^{*} T_{1}\right)$ and $z \in \mathbb{T}$. Then $\left(I-z T_{1}\right) x=$ $\left(I-z T_{0}\right) y(z)$ with $y(z) \in E$, hence $y(z)=\left(I-z T_{0}\right)^{-1}\left(I-z T_{1}\right) x$ has an analytic extension in a neighbourhood of $\overline{\mathbb{D}}$. It follows that $x=y(0)=\int_{0}^{2 \pi} y\left(e^{i \theta}\right) d m(\theta) \in$ E, since E is closed. This proves $\mathcal{N}\left(I-T_{1}^{*} T_{1}\right) \subseteq E$. Now the equality holds by interchanging the roles of T_{0} and T_{1}. Furthermore, for all $x \in E$ we have

$$
y(z)=\left(I-z T_{0}\right)^{-1}\left(I-z T_{1}\right) x \in E \quad \text { for all } z \in \overline{\mathbb{D}} .
$$

Notice that $y(z)=x+\sum_{n=1}^{+\infty} z^{n} T_{0}^{n-1}\left(T_{0}-T_{1}\right) x$. On the other hand, we have

$$
T_{0}^{n-1}\left(T_{0}-T_{1}\right) x=\int_{0}^{2 \pi} e^{-i n \theta} y\left(e^{i \theta}\right) d m(\theta) \in E \quad \text { for all } n \geq 1
$$

and

$$
\left\langle\left(I-T_{0}^{*} T_{0}\right) T_{0}^{n-1}\left(T_{0}-T_{1}\right) x, T_{0}^{n-1}\left(T_{0}-T_{1}\right) x\right\rangle=0 \quad \text { for all } n \geq 1
$$

Thus

$$
\left\|T_{0}^{n-1}\left(T_{0}-T_{1}\right) x\right\|^{2}=\left\|T_{0}^{n}\left(T_{0}-T_{1}\right) x\right\|^{2} \quad \text { for all } n \geq 1
$$

So

$$
\left\|\left(T_{0}-T_{1}\right) x\right\|=\left\|T_{0}^{n}\left(T_{0}-T_{1}\right) x\right\|^{2} \longrightarrow 0
$$

because $r\left(T_{0}\right)<1$. This implies that $T_{0} x=T_{1} x$ for all $x \in E$.
Conversely, if $E=\mathcal{N}\left(I-T_{0}^{*} T_{0}\right)=\mathcal{N}\left(I-T_{1}^{*} T_{1}\right)$ and $T_{0 \mid E}=T_{1 \mid E}$, then for all $z \in \mathbb{T}$, we have
$\mathcal{N}\left(K_{z}\left(T_{0}\right)\right)=\left(I-z T_{0}\right)\left(\mathcal{N}\left(I-T_{0}^{*} T_{0}\right)\right)=\left(I-z T_{1}\right)\left(\mathcal{N}\left(I-T_{1}^{*} T_{1}\right)\right)=\mathcal{N}\left(K_{z}\left(T_{1}\right)\right)$.
Since $\Gamma_{p}\left(T_{0}\right)=\varnothing$, it follows that for any $z \in \mathbb{T}$, we have

$$
d_{T_{0}}(z)=d:=\operatorname{dim}\left(\mathcal{N}\left(I-T_{0}^{*} T_{0}\right)\right)
$$

Then, we can apply Corollary 2.23 and we obtain $T_{0} \stackrel{H}{\sim} T_{1}$.
Remark 2.26. In the case of classical contraction, observe that the null spaces condition 2.5 is always equivalent to the Harnack equivalence.

For each $n \geq 1$, let

$$
J_{n}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \ldots & \ddots & 1 \\
0 & 0 & \ldots & \ldots & 0
\end{array}\right)
$$

denotes the (nilpotent) Jordan block of size n. By Theorem 2.25 and the fact that $\mathcal{N}\left(I-J_{n}^{*} J_{n}\right)=\operatorname{span}\left\{e_{2}, \ldots, e_{n}\right\}$, the Harnack part of J_{n} is given by

Corollary 2.27. The Harnack part of J_{n} in $C_{1}\left(\mathbb{C}^{n}\right)$ is precisely the set of all matrices of the form

$$
M=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \ldots & \ddots & 1 \\
z & 0 & \ldots & \ldots & 0
\end{array}\right),
$$

where z is in the open unit disc.
In the case of compact operators, we deduce from Theorem 2.14 the next result.
Proposition 2.28. Let $T_{0}, T_{1} \in C_{\rho}(H) \cap \mathcal{K}(H)$ with $1 \leq \rho \leq 2$, then we have:
(i) Assume that $\rho=1$ and $T_{1} \stackrel{H}{\prec} T_{0}$, then $W\left(T_{0}\right) \cap \mathbb{T}=W\left(T_{1}\right) \cap \mathbb{T}$.
(ii) Suppose that $1<\rho \leq 2, T_{1} \stackrel{H}{\prec} T_{0}$ and $\Gamma\left(T_{0}\right)=\emptyset$, then $W\left(T_{0}\right) \cap \mathbb{T} \subseteq$ $W\left(T_{1}\right) \cap \mathbb{T}$.
(iii) If $T_{1} \stackrel{H}{\sim} T_{0}$, then $W\left(T_{0}\right) \cap \mathbb{T}=W\left(T_{1}\right) \cap \mathbb{T}$.

Proof. According to Theorem 2.14, it suffices to prove that $\overline{W(T)} \cap \mathbb{T}=W(T) \cap \mathbb{T}$ for each $T \in C_{2}(H) \cap \mathcal{K}(H)$. Indeed, let $\lambda \in \overline{W(T)} \cap \mathbb{T}$, then λ is a limit of scalar products $\left\langle T x_{n}, x_{n}\right\rangle$ for some sequence $\left(x_{n}\right)$ of unit vectors. Therefore, there exist a subsequence $\left(x_{j(n)}\right)$ of $\left(x_{n}\right)$ such that $x_{j(n)}$ converges to some x in the weak star topology. Since T is a compact operator, we have $T x_{j(n)} \longrightarrow T x$ in the norm topology, this implies that $\lambda=\langle T x, x\rangle$, and hence $x \neq 0$. Consequently, $\frac{\lambda}{\|x\|^{2}} \in W(T) \subseteq \overline{\mathbb{D}}$. So $\frac{1}{\|x\|^{2}} \leq 1$ and hence $\|x\|^{2} \geq 1$, but we also have $\|x\|^{2} \leq 1$, it tells us that $\|x\|=1$ and $\lambda \in W(T)$.
2.4. Weak stability and Harnack domination. One says that an operator is weakly stable if $\lim _{n \rightarrow+\infty} T^{n}=0$ in the weak topology of $B(H)$. Also we have that this is equivalent to T^{*} is weakly stable. This notion plays an important role in analysis of operators (see for instance [18] and [21]).

We give the following proposition which is useful to study this property.
Proposition 2.29. Let H be a separable Hilbert space. Then, we have
(i) Let $T \in C_{\rho}(H)$ and denote by V its minimal isometric ρ-dilation. Then, for every $m \geq 1$, we have

$$
\left\|\sum_{k=1}^{m} V^{* k+1} x_{k}\right\| \leq\left\|\sum_{k=1}^{m} T^{* k} x_{k}\right\| \leq \rho\left\|\sum_{k=1}^{m} V^{* k} x_{k}\right\|
$$

for any m-tuple $\left(x_{1}, \cdots, x_{m}\right)$ of vectors of H.
(ii) Assume that T_{1} be Harnack dominated by T_{0} in $C_{\rho}(H)$ for a constant $c \geq 1$. If V_{i} acting on $K_{i} \supseteq H$ is the minimal isometric ρ-dilation of T_{i} $(i=0,1)$, then we have

$$
\left\|\sum_{k=1}^{m} V_{1}^{k} x_{k}\right\| \leq c\left\|\sum_{k=1}^{m} V_{0}^{k} x_{k}\right\|
$$

for any m-tuple $\left(x_{1}, \cdots, x_{m}\right)$ of vectors of H.
Proof. (i) Let $h=\sum_{i=0}^{n} V^{i} h_{i}$ with $h_{i} \in H$, then we have

$$
\begin{aligned}
\left\langle\sum_{k=1}^{m} T^{* k} x_{k}, V h\right\rangle & =\sum_{k=1}^{m} \sum_{i=0}^{n}\left\langle T^{* k} x_{k}, V^{i+1} h_{i}\right\rangle=\frac{1}{\rho} \sum_{k=1}^{m} \sum_{i=0}^{n}\left\langle T^{* k} x_{k}, T^{i+1} h_{i}\right\rangle \\
& =\sum_{k=1}^{m} \sum_{i=0}^{n}\left\langle V^{* k+i+1} x_{k}, h_{i}\right\rangle=\left\langle\sum_{k=1}^{m} V^{* k+1} x_{k}, h\right\rangle
\end{aligned}
$$

Since the subset of all elements h having the above form is dense in K, we get

$$
\begin{aligned}
\left\|\sum_{k=1}^{m} T^{* k} x_{k}\right\| & =\sup _{\|h\|=1}\left|\left\langle\sum_{k=1}^{m} T^{* k} x_{k}, h\right\rangle\right| \geq \sup _{\|h\|=1}\left|\left\langle\sum_{k=1}^{m} T^{* k} x_{k}, V h\right\rangle\right| \\
& \geq \sup _{\|h\|=1} \mid\left\langle\sum_{k=1}^{m} V^{* k+1} x_{k}, h\right\rangle=\left\|\sum_{k=1}^{m} V^{* k+1} x_{k}\right\|
\end{aligned}
$$

and the left-hand side inequality is obtained. The right-hand side inequality is obvious.
(ii) Now, suppose that $T_{1} \underset{c}{\stackrel{H}{\prec}} T_{0}$ in $C_{\rho}(H)$ and V_{i} acting on $K_{i} \supseteq H$ is the minimal isometric ρ-dilation of $T_{i}(i=0,1)$. Using Theorem 1.1, we know that there exists an operator $S \in B\left(K_{0}, K_{1}\right)$ such that $S(H) \subset H,\left.S\right|_{H}=I, S V_{0}=V_{1} S$ and $\|S\| \leq c$. Let $\left(x_{1}, \cdots, x_{m}\right)$ be a m-tuple of vectors of H. Observe that $S V_{0}^{k}=V_{1}^{k} S$ for any positive integer k, thus we get

$$
\left\|\sum_{k=1}^{m} V_{1}^{k} x_{k}\right\|=\left\|\sum_{k=1}^{m} V_{1}^{k} S x_{k}\right\|=\left\|S\left[\sum_{k=1}^{m} V_{0}^{k} x_{k}\right]\right\| \leq c\left\|\sum_{k=1}^{m} V_{0}^{k} x_{k}\right\| .
$$

Lemma 2.30. A ρ-contraction T is weakly stable if and only if the minimal isometric ρ-dilation of T is weakly stable.

Proof. Let us assume that T is weakly stable and $[V, K]$ is the minimal isometric ρ-dilation of T. Hence T^{*} is also weakly stable, i.e $T^{* n} h \longrightarrow 0$ in the weak topology. Since T^{*} has the Blum-Hanson property, for each $h \in H$ and every increasing sequence $\left(k_{n}\right)_{n \geq 0}$ of positive integers, we have

$$
\frac{1}{N} \sum_{n=0}^{N} T^{* k_{n}} h \longrightarrow 0
$$

in the norm topology. For each N, set $x_{k}=h / N$ if there exists an integer n such that $k=k_{n}$ and $x_{k}=0$ otherwise, and use Proposition 2.29 (i). We derive

$$
\frac{1}{N} \sum_{n=1}^{N} V^{* k_{n}+1} h \longrightarrow 0
$$

It is enough to ensure that

$$
\begin{equation*}
\frac{1}{N} \sum_{n=0}^{N} V^{* l_{n}} x \longrightarrow 0 \tag{2.6}
\end{equation*}
$$

for any increasing sequence $\left(l_{n}\right)_{n \geq 0}$ of positive integers and any $x \in H$. Now, let $x=\sum_{i=1}^{m} V^{i} x_{i}$ with $x_{i} \in H$, we easily deduce from (2.6) that

$$
\frac{1}{N} \sum_{n=1}^{N} V^{* l_{n}} x \longrightarrow 0
$$

Since the subset of all elements x having the above form is dense in K and that the sequence of operators $1 / N\left[\sum_{n=1}^{N} V^{* l_{n}}\right]$ is a sequence of contractions, we derive that V^{*} has the Blum-Hanson property. Thus, the sequence $\left(V^{* n} x\right)$ weakly converge to 0 for any $x \in K$. Hence V is weakly stable.

Conversely, assume that V is weakly stable. Then for each $(x, y) \in H^{2}$ and any $n \geq 1$, we have $\left\langle T^{n} x, y\right\rangle=\rho\left\langle V^{n} x, y\right\rangle \longrightarrow 0$. Hence, T is weakly stable.

Corollary 2.31. Let T_{0} and T_{1} be two operators in $C_{\rho}(H)$. Then, we have:
(i) Assume that T_{1} be Harnack dominated by T_{0} in $C_{\rho}(H)$ and that T_{0} is weakly stable (resp. stable). Then T_{1} is also weakly stable (resp. stable).
(ii) Let T_{0} and T_{1} be Harnack equivalent in $C_{\rho}(H)$. Then T_{0} is weakly stable (resp. stable) if and only if T_{1} is weakly stable (resp. stable).

Proof. (i) Assume that T_{0} is weakly stable. Using Lemma 2.30, we see that the minimal isometric ρ-dilation V_{0} is weakly stable. Applying Proposition 2.29 (ii) and using the Blum-Hanson property as in the proof of Lemma 2.30, we deduce than V_{1} is weakly stable. Using again Lemma 2.30, we obtain the weak stability of T_{1}.

Now, suppose that T_{0} is stable. We deduce from Lemma 3.5 of [11] that V_{0} is stable. From Proposition 2.29 (ii) we derive that V_{1} is stable. Then, by Lemma 3.5 of [11] we obtain the stability of T_{1}.

The assertion (ii) is a direct consequence of (i).
Remark 2.32.1) Concerning the stability of two Harnack equivalent ρ-contractions, the assertion (ii) is exactly Corollary 3.6 of [11].
2) Since any ρ-contraction T is similar to a contraction and power bounded, by [21, Proposition 8.5], the residual spectrum $\sigma_{r}(T)$ of T is included in \mathbb{D}. By [21, Proposition 8.4] it follows that if any ρ-contraction T is weakly stable then $\sigma_{p}(T) \subseteq \mathbb{D}$. In this case, according to Lemma 2.30 , if V is the minimal isometric ρ-dilation of T, then $\Gamma(V)=\sigma_{c}(V)$. So, if there exist $\lambda \in \sigma_{p}(T)$ such that $|\lambda|=1$ then T is not weakly stable and this ρ-contraction is in the Harnack part of an operator with ρ-numerical radius one.

3. Examples of Harnack parts for some nilpotent matrices with NUMERICAL RADIUS ONE

In the sequel, we describe the Harnack parts of some nilpotent matrices with numerical radius one. We begin by the nilpotent matrix of order two in the dimension two.

Theorem 3.1. Let $T_{0}=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right) \in C_{2}\left(\mathbb{C}^{2}\right)$, then the Harnack part of T_{0} is reduced to $\left\{T_{0}\right\}$.

Proof. Let $T_{1} \in C_{2}\left(\mathbb{C}^{2}\right)$ such that $T_{1} \stackrel{H}{\sim} T_{0}$, then by Theorem 1.1. there exists $c \geq 1$ such that

$$
\begin{equation*}
\frac{1}{c^{2}} K_{z}^{2}\left(T_{0}\right) \leq K_{z}^{2}\left(T_{1}\right) \leq c^{2} K_{z}^{2}\left(T_{0}\right), \quad \text { for all } z \in \mathbb{D} \tag{3.1}
\end{equation*}
$$

By Corollary 2.2, the operator T_{1} admits no eigenvalues in \mathbb{T}. Hence, $K_{z}^{2}\left(T_{0}\right)$ and $K_{z}^{2}\left(T_{1}\right)$ are uniformly bounded in \mathbb{D} and may be extended to a positive operator on $\overline{\mathbb{D}}$.

We have

$$
K_{z}^{2}\left(T_{0}\right)=2\left(\begin{array}{ll}
1 & \bar{z} \\
z & 1
\end{array}\right),
$$

thus $\operatorname{det}\left(K_{z}^{2}\left(T_{0}\right)\right)=4\left(1-|z|^{2}\right)$ and $d_{T_{0}}(z)=1$ over \mathbb{T}. Let $v(z)=\binom{1}{-z}$, then $K_{z}^{2}\left(T_{0}\right) v(z)=0$ on \mathbb{T}. This implies by (3.1) that

$$
\begin{equation*}
0=K_{1, \theta}^{2}(T) v\left(e^{i \theta}\right)=K_{1, \theta}^{2}(T) e_{1}-e^{i \theta} K_{1, \theta}^{2}(T) e_{2}=0 \quad \text { for all } \theta \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

Multiplying successively (3.2) by 1 and $e^{-i \theta}$, and integrating with respect to the Haar measure m on the torus, we obtain: $T e_{2}=2 e_{1}$ and $T^{*} e_{1}=2 e_{2}$. Thus T takes the form

$$
T=\left(\begin{array}{ll}
0 & 2 \\
b & 0
\end{array}\right)
$$

with $b \in \mathbb{C}$. Since $w(T) \leq 1$, we have

$$
\left|2 x_{2} \overline{x_{1}}+b x_{1} \overline{x_{2}}\right| \leq\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2} .
$$

If we take $x_{1}=\frac{\sqrt{2}}{2}$ and $x_{2}=\frac{\sqrt{2}}{2} e^{i \theta}$, we get

$$
\left|1+b e^{-2 i \theta}\right| \leq 1
$$

In particular, for $\theta=\frac{\arg b}{2}$

$$
1+|b| \leq 1
$$

This implies that $b=0$ and $T=T_{0}$.
In the following result, we describe the Harnack part of a nilpotent matrix of order two in $C_{2}\left(\mathbb{C}^{n}\right)$, $n \geq 3$, with numerical radius one.

Theorem 3.2. Let $T_{0} \in C_{2}\left(\mathbb{C}^{n}\right), n \geq 3$ such that

$$
T_{0}=\left(\begin{array}{cccc}
0 & 0 & \ldots & a \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

with $|a|=2$, then the Harnack part of T_{0} is the set of all matrices of $C_{2}\left(\mathbb{C}^{n}\right)$ of the form

$$
T_{1}=\left(\begin{array}{ccc}
0 & 0 & a \tag{3.3}\\
0 & B & 0 \\
0 & 0 & 0
\end{array}\right)
$$

with $B \in C_{2}\left(\mathbb{C}^{n-2}\right)$ such that $w(B)<1$.
Proof. Let $T \in C_{2}\left(\mathbb{C}^{n}\right)$ such that $T_{1} \stackrel{H}{\sim} T_{0}$. By Corollary 2.2 , the operator T_{1} admits no eigenvalues in \mathbb{T}. Hence, $K_{z}^{2}\left(T_{0}\right)$ and $K_{z}^{2}\left(T_{1}\right)$ are uniformly bounded in \mathbb{D} and may be extended to a positive operators on $\overline{\mathbb{D}}$. We have

$$
K_{z}^{2}\left(T_{0}\right)=\left(\begin{array}{ccc}
2 & 0 & a \bar{z} \\
0 & 2 I_{n-2} & 0 \\
\bar{a} z & 0 & 2
\end{array}\right)
$$

where I_{n-2} denotes the identity matrix on the linear space spanned by the vectors e_{2}, \ldots, e_{n-1} of the canonical basis of \mathbb{C}^{n}. Then $\operatorname{det}\left(K_{z}^{2}\left(T_{0}\right)\right)=2^{n-2}\left(4-|a|^{2}|z|^{2}\right)$. Let $v(z)=-a \bar{z} e_{1}+2 e_{n}$, then $K_{z}^{2}\left(T_{0}\right) v(z)=0$ on \mathbb{T}. Thus by proposition 2.11, $K_{z}^{2}\left(T_{1}\right) v(z)=0$ on \mathbb{T}. This implies that

$$
\begin{equation*}
-a e^{-i \theta} K_{1, \theta}^{2}\left(T_{1}\right) e_{1}+2 K_{1, \theta}^{2}\left(T_{1}\right) e_{n}=0 \quad \text { for all } \theta \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

Multiplying successively (3.4) by $1, e^{i \theta}, e^{-i \theta}$ and $e^{2 i \theta}$, and integrating with respect to m, we obtain:

$$
\begin{equation*}
T_{1}^{*} e_{1}=\bar{a} e_{n}, T_{1} e_{n}=a e_{1}, T_{1}^{*} e_{n}=0 \text { and } T_{1} e_{1}=0 \tag{3.5}
\end{equation*}
$$

By (3.5), the matrix T_{1} take the form (3.3). Hence

$$
K_{z}^{2}\left(T_{1}\right)=\left(\begin{array}{ccc}
2 & 0 & a \bar{z} \tag{3.6}\\
0 & K_{z}^{2}(B) & 0 \\
\bar{a} z & 0 & 2
\end{array}\right)
$$

By Theorem 2.17, we know that $\mathcal{N}\left(K_{z}^{2}\left(T_{1}\right)\right)=\mathcal{N}\left(K_{z}^{2}\left(T_{0}\right)\right)$ for all $z \in \mathbb{T}$, it forces $\mathcal{N}\left(K_{z}^{2}(B)\right)$ to be equal to $\{0\}$ for every $z \in \mathbb{T}$. It is clear that B belongs to $C_{2}\left(\mathbb{C}^{n-2}\right)$ and according to Proposition 2.12 we should have $w(B)<1$, we derive that B is Harnack equivalent to 0 .

Conversely, Let $T_{1} \in C_{2}\left(\mathbb{C}^{n}\right)$ given by (3.3), then we can write $K_{z}^{2}\left(T_{1}\right)$ under the form given by (3.6). Since $B \in C_{2}\left(\mathbb{C}^{n-2}\right)$ with $w(B)<1, B$ is Harnack equivalent to 0 in $C_{2}\left(\mathbb{C}^{n-2}\right)$. Then by Theorem 1.1, there exists $c \geq 1$ such that

$$
2 \frac{1}{c^{2}} I_{n-2} \leq K_{z}^{2}(B) \leq 2 c^{2} I_{n-2}, \quad \text { for all } z \in \mathbb{D}
$$

Thus

$$
\frac{1}{c^{2}} K_{z}^{2}\left(T_{0}\right) \leq K_{z}^{2}\left(T_{1}\right) \leq c^{2} K_{z}^{2}\left(T_{0}\right), \quad \text { for all } z \in \mathbb{D}
$$

This means that T_{1} is Harnack equivalent to T_{0}.
Theorem 3.3. Let $T_{0}=\left(\begin{array}{lll}0 & a & 0 \\ 0 & 0 & a \\ 0 & 0 & 0\end{array}\right)$ such that $|a|=\sqrt{2}$, then the Harnack part of T_{0} is the set of all matrices of $C_{2}\left(\mathbb{C}^{3}\right)$ of the form

$$
T_{1}=a\left(\begin{array}{ccc}
0 & e^{-i \theta} & 0 \\
0 & 0 & e^{i \theta} \\
0 & 0 & 0
\end{array}\right), \quad \theta \in \mathbb{R}
$$

Proof. Let $T_{1} \in C_{2}\left(\mathbb{C}^{3}\right)$ such that $T_{1} \stackrel{H}{\sim} T_{0}$. By Corollary 2.2, the operator T_{1} admits no eigenvalues in \mathbb{T}. Hence, $K_{z}^{2}\left(T_{0}\right)$ and $K_{z}^{2}\left(T_{1}\right)$ are uniformly bounded in \mathbb{D} and may be extended to positive operators on $\overline{\mathbb{D}}$. Furthermore, by [7, Theorem 5.2] $T_{1}^{2} \stackrel{H}{\sim} T_{0}^{2}$, then by Theorem 3.2, the operator T_{1}^{2} takes the following form

$$
T_{1}^{2}=\left(\begin{array}{ccc}
0 & 0 & a^{2} \\
0 & b & 0 \\
0 & 0 & 0
\end{array}\right)
$$

with $|b|<1$. If $b \neq 0$ then $\mathcal{N}\left(T_{1}^{2}\right)=\mathbb{C} e_{1}$ is invariant by T_{1}, so $T_{1} e_{1}=x e_{1}$ but $0=T_{1}^{2} e_{1}=x^{2} e_{1}$, this implies that $x=0$ and $T_{1} e_{1}=0$. Similarly, $\mathbb{C}^{3} \neq \mathcal{R}\left(T_{1}\right) \supseteq$ $\mathcal{R}\left(T_{1}^{2}\right)=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ which is invariant by T_{1}, so $T_{1} e_{2}=u e_{1}+v e_{2}$ for some $u, v \in \mathbb{C}$. On the other hand, we have

$$
K_{z}^{2}\left(T_{0}\right)=\left(\begin{array}{ccc}
2 & a \bar{z} & a^{2} \bar{z}^{2} \\
\bar{a} z & 2 & a \bar{z} \\
\bar{a}^{2} z^{2} & \bar{a} z & 2
\end{array}\right),
$$

thus $\operatorname{det}\left(K_{z}^{2}\left(T_{0}\right)\right)=4\left(2-|a|^{2}|z|^{2}\right)$, so $d_{T_{0}}(z)=1$ on \mathbb{T}. Let $v(z)=-a^{2} \bar{z} e_{1}+2 z e_{3}$, then $\mathcal{N}\left(K_{z}^{2}\left(T_{0}\right)\right)=\mathbb{C} v(z)$ on \mathbb{T}. Thus by Proposition 2.11, $K_{z}^{2}(T) v(z)=0$ on \mathbb{T}. This implies that

$$
\begin{equation*}
-a^{2} e^{-i \theta} K_{1, \theta}^{2}\left(T_{1}\right) e_{1}+2 e^{i \theta} K_{1, \theta}^{2}\left(T_{1}\right) e_{3}=0 \quad \text { for all } \theta \in \mathbb{R} \tag{3.7}
\end{equation*}
$$

Using (3.7) in a similar way than before, we get

$$
\begin{equation*}
2 T_{1} e_{3}=a^{2} T_{1}^{*} e_{1} \quad \text { and } \quad 2 T_{1}^{*} e_{3}=a^{2} T_{1} e_{1} \tag{3.8}
\end{equation*}
$$

By this we deduce that

$$
\left\langle T_{1} e_{3}, e_{1}\right\rangle=\frac{a^{2}}{2}\left\langle T_{1}^{*} e_{1}, e_{1}\right\rangle=\frac{a^{2}}{2}\left\langle e_{1}, T_{1} e_{1}\right\rangle=0
$$

and

$$
\left\langle T_{1} e_{3}, e_{3}\right\rangle=\frac{a^{2}}{2}\left\langle T_{1}^{*} e_{1}, e_{3}\right\rangle=\frac{a^{2}}{2}\left\langle e_{1}, T e_{3}\right\rangle=0 .
$$

The matrix T_{1} takes the form

$$
T_{1}=\left(\begin{array}{ccc}
0 & u & 0 \\
0 & v & w \\
0 & 0 & 0
\end{array}\right)
$$

By (3.8), $2 w=a^{2} T^{*} e_{1}=a^{2} \bar{u} e_{2}$, hence

$$
\begin{equation*}
\bar{a} w=a \bar{u} . \tag{3.9}
\end{equation*}
$$

This implies that u and v must be not equal to 0 . Now the fact that

$$
T_{1}^{2}=\left(\begin{array}{ccc}
0 & u v & u w \\
0 & v^{2} & w v \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & a^{2} \\
0 & b & 0 \\
0 & 0 & 0
\end{array}\right)
$$

implies that $v=b=0$ and

$$
\begin{equation*}
u w=a^{2} . \tag{3.10}
\end{equation*}
$$

By (3.9) and (3.10) we can deduce that $u=a e^{-i \theta}$ and $w=a e^{i \theta}, \theta \in \mathbb{R}$.
Conversely, let $T \in C_{2}\left(\mathbb{C}^{3}\right)$ given as above, then

$$
K_{z}^{2}\left(T_{1}\right)=\left(\begin{array}{ccc}
2 & u \bar{z} & a^{2} \bar{z}^{2} \\
\bar{u} z & 2 & w \bar{z} \\
\bar{a}^{2} z^{2} & \bar{w} z & 2
\end{array}\right)
$$

Observe that

$$
T_{1}=U_{\theta}^{*} T_{0} U_{\theta} \quad \text { with } \quad U_{\theta}=\left(\begin{array}{ccc}
e^{i \theta} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{i \theta}
\end{array}\right), \quad \theta \in \mathbb{R}
$$

We easily verify that U_{θ} satisfies the hypotheses of Corollary 2.24. Hence T_{1} is Harnack equivalent to T_{0}.

Remark 3.4. In the last example, observe that the Harnack part of T_{0} is exactly the orbit $\left\{U_{\theta}^{*} T_{0} U_{\theta} ; \theta \in \mathbb{R}\right\}$ under the action of the group given in Corollary 2.24 .

References

1. T. Ando and K. Nishio, Convexity properties of operator radii associated with unitary ρ-dilations, Michigan Math. J. 20 (1973), 303-307.
2. T. Ando, I. Suciu and D. Timotin, Characterization of some Harnack parts of contractions, J. Operator Theory 2 (1979), 233-245.
3. C. Badea and G. Cassier, Constrained von Neumann inequalities, Adv. Math. 166 (2002), no. 2, 260-297.
4. C. Badea, D. Timotin and L. Suciu, Classes of contractions and Harnack domination, Rev. Mat. Iberoam. 33 (2017), no. 2, 469-488.
5. C. A. Berger, A strange dilation theorem, Notices Amer. Math. Soc. 12 (1965), 590.
6. G. Cassier Ensembles K-spectraux et algbres duales d'opérateurs Preprint LAFP N2 (1991).
7. G. Cassier Mapping formula for functional calculus, Julia's lemma for operator and applications Acta Sci. Math. (Szeged) 74 (2008), no. 3-4, 783-805.
8. G. Cassier Dilation operator curve associated with an operator and its applications Preprint.
9. G. Cassier and T. Fack, Un noyau pour divers calculs fonctionnels, C. R. Acad. Sci. Paris Sér. I 317 (1993), 683-688.
10. G. Cassier and T. Fack, Contractions in von Neumann algebras, J. Funct. Anal. 55 (1996), no. 2, 297-338.
11. G. Cassier and N. Suciu, Mapping theorems and Harnack ordering for ρ-contractions, Indiana Univ. Math. J. 55 (2006), no. 2, 483-523.
12. G. Cassier and E. H. Zerouali, Operator matrices in class C_{ρ}, Linear Algebra Appl. 420 (2007), 361-376.
13. C. Davis, The shell of a Hilbert-space operator, Acta Sci. Math. (Szeged) 29 (1968), 69-86.
14. M. A. Dritschel, S. McCullough and H. J. Woerdeman, Model theory for ρ-contractions, $\rho \leq 2$, J. Operator Theory 41 (1999), no. 2, 321-350.
15. E. Durszt, On unitary ρ-dilations of operators, Acta Sci. Math. (Szeged) 27 (1966), 247250.
16. C. K. Fong and J. A. R. Holbrook, Unitarily invariant operator norms, Canad. J. Math. 35 (1983), no. 2, 274-299.
17. C. Foiaş, On Harnack parts of contractions, Rev. Roum. Math. Pures et Appl. XIX (1974), no. 3, 315-318.
18. S. R. Foguel, A counterexample to a problem of B. Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 790.
19. J. A. R. Holbrook, On the power-bounded operators of Sz.-Nagy and Foiaş, Acta Sci. Math. (Szeged) 29 (1968), 299-310.
20. J. A. R. Holbrook, Inequalities governing the operator radii associated with unitary ρ dilations, Michigan Math. J. 18 (1971), 149-159.
21. C. S. Kubrusly, An introduction to Models and Decompositions in Operator Theory, Birkhauser, Boston, 1997.
22. V. A. Khatskevich, Yu. L. Shmul'yan and V. S. Shul'man, Preorder and equivalences in the operator sphere, Sibirsk. Mat. Zh. 32 (1991), no. 3 (in Russian); English transl. : Siberian Math. J. 32 (1991), no. 3, 496-506.
23. M. Mbekhta, Conorme et inverse généralisé dans les C^{*}-algèbres, Canad. Math. Bull.Vol. 35 (1992) no. 4, 515-522.
24. T. Nakazi and K. Okubo, ρ-contraction and 2×2 matrix, Linear Algebra Appl. 283 (1998), no. 1-3, 165-169.
25. G. Popescu, Hyperbolic geometry on noncommutative balls, Doc. Math. 14 (2009), 595-651.
26. B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, Acta Sci. Math. (Szeged) 15 (1953), 87-92(French).
27. B. Sz.-Nagy and C. Foiaş, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math . (Szeged) 27 (1966), 17-25.
28. B. Sz.-Nagy and C. Foiaş, Similitude des opérateurs de class \mathcal{C}_{ρ} à des contractions, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A1063-A1065 (French).
29. B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic analysis of operators on Hilbert space. Second edition. Revised and enlarged edition. Universitext. Springer, New York, 2010.
30. J. P. Williams, Schwarz norms for operators, Pacific J. Math. 24 (1968), 181-188.
31. K. Yosida, S. Kakutani, Operator-theoretical treatment of Markov's process and mean ergodic theorem, Ann. of Math., 42 (1941), 188-228.
${ }^{1}$ Université de Lyon 1; Institut Camille Jordan CNRS UMR 5208; 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne.

E-mail address: cassier@math.univ-lyon1.fr
${ }^{2}$ Département de Mathématiques et informatique, Ecole Nationale Polytechnique d'Oran (Ex. EnSET d'Oran); B.P. 1523 Oran-El M'Naouar, Oran, Algérie. E-mail address: mohammed.benharrat@enp-oran.dz
${ }^{3}$ Département de Mathématiques, Université de Mostaganem; Algérie.
E-mail address: belmsou@yahoo.fr

[^0]: Date: 14/12/2016.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47A12, 47A20, 47A65; Secondary 15A60.
 Key words and phrases. ρ-contractions, Harnack parts, operator kernel, compact operators, operator radii, numerical range.

