
Comparably Evaluating Communication
Performance within Mixed-Criticality Systems

Keegan Napier∗†, Oliver Horst†, Christian Prehofer†
∗ La Trobe University, Australia. kcnapier@students.latrobe.edu.au

†fortiss GmbH, Munich, Germany. {napier, horst, prehofer}@fortiss.org

Abstract— In many mixed-criticality systems, tasks of differ-
ing criticality levels execute upon a common computing platform.
Within such systems, it is imperative that communication between
tasks, and between tasks and shared computing resources, do not
impede upon the correct functionality of highly critical tasks.
To evaluate the performance of communication mechanisms
that offer this functionality, a number of attributes of the
mechanism may be assessed. Currently, there exists no agreed
upon method of evaluating such mechanisms, and so comparing
the performance of differently developed mechanisms is difficult.
Within this paper, we identify attributes that characterise the
performance of mixed-criticality communication, offer suggestion
as to how they may be comparably evaluated, and outline
an evaluation framework that would simplify the process of
comparably evaluating a communication mechanism with these
scenarios.

I. INTRODUCTION

To further reduce the space, weight and power consumption
of embedded and real time systems, there is a trend towards
integrating a number of components with differing criticality
levels onto a single, common hardware platform. Inherently,
tasks with a higher criticality level are accordingly more
instrumental in the correct and safe operation of the system, and
so there must be a higher degree of assurance that such tasks
are not susceptible to failure. A system that has two or more
distinct criticality levels is referred to as a mixed-criticality
system (MCS) [1].

As the complexity of mixed-criticality systems increase, there
is a rising interest in moving from single core processor archi-
tectures to more capable multicore and manycore architectures.
Making this migration, however, introduces the issue of sharing
resources, such as the system bus, memory bus, memories and
caches, between tasks of multiple different criticality levels. It
is necessary that shared resource accesses are managed in such
a way that tasks on one core are not capable of excessively
delaying tasks on other cores that are trying to access the same
resource [2].

Within embedded systems, tasks will require the ability to
communicate with memories and each other through the use
of these shared resources. Therefore, communication must be
managed so that it does not pose a significant risk of causing
critical task failure. Should communication expose a critical
task to an unexpected communication-related execution delay, it
presents the risk that the task will not complete execution before
its hard deadline. Similarly, should the communication within
the system be capable of affecting the functional behaviour of

the critical task in an undesirable way, this presents the risk
that the critical task will malfunction. It is therefore essential
that both temporal and functional properties of critical tasks
are isolated from unexpected communication related faults and
interference.

Providing isolation of critical task execution from commu-
nication within the mixed-criticality system, however, is a
complicated problem with a number of factors, e.g. keeping
critical communication predictable without detracting too much
from performance, that must be considered when developing
a suitable approach. Inherently, this has lead to a wide
variety of approaches to mixed-criticality communication being
developed, each of them aiming to take as many of these
factors into account as possible [3]. Through analysis of these
approaches, it can be construed that there exist a range of
properties that can be evaluated to demonstrate how well the
communication protocol is limiting the impact of these factors.

As there currently exists, to the best of our knowledge, no
standardised method of evaluating communication mechanisms
within mixed-criticality systems, generally only properties that
demonstrate specific results of the designed mechanism are
evaluated, while others are overlooked. This has the added
effect of allowing for these properties to be evaluated in ways
that would produce results that are not directly comparable
with another approach that is evaluating the same property.

In this paper, we focus upon improving the evaluation
methods that researchers are utilising to evaluate their mixed-
criticality communication mechanisms. We investigate how
evaluations are currently being conducted, and use these
investigations to suggest an empirical evaluation framework
that would enable comparable evaluations to be made. Our
contributions can be summarised as follows:

• We analyse a range of evaluations for current mixed-
criticality communication mechanisms. We use this anal-
ysis to produce a set of general properties that indicate
the performance of a communication mechanism within
mixed-criticality systems.

• We promote the need to evaluate each of these general
properties in a more comparable manner, and propose the
use of scenario-based evaluation to achieve this.

• We propose a framework that would enable a researcher
to develop evaluation scenarios for their system in a way
that the same scenario may be executed upon a separate
system.



The remainder of the paper will be organised as follows.
Within Section II, we highlight properties that researchers
commonly demonstrate to be of importance when evaluating
communication within their system. We then suggest execu-
tion scenarios that would enable the measurement of these
communication properties to be stressed in Section III, and
propose an evaluation framework that simplifies the design and
implementation of these scenarios in Section IV. Related work
is detailed in Section V.

II. IMPORTANT COMMUNICATION PROPERTIES

Through the analysis of a diverse range of approaches to de-
sign and implement communication mechanisms within mixed-
criticality systems, we identified a range of properties that
are important to consider when evaluating such a mechanism.
Within this section, we outline each of these properties with
reference to research, and give an overview as to why they are
important. For clarity, we have sorted each of these properties
into the following categories: Predictability and Separation,
Performance, and Scalability.

A. Predictability and Separation
It is a persistent trend throughout mixed-criticality systems

that communication, especially critical communication, must
behave in a predictable manner. Furthering this, the execution
of tasks within the system should be separated from com-
munication, i.e., communication within the system must not
be capable of altering task execution in unexpected ways.
To ensure an implemented communication mechanism offers
suitable levels of predictability and separation, a number of
properties should be present within the mechanism. These
properties are discussed with reference to the field of research
below:

1) Temporal Deadline adherence: First and foremost, critical
transmission and resource access times must adhere to strict
real time temporal deadlines, to avoid delaying the execution
of critical tasks by an unexpected amount of time. Typically,
these deadlines relate to the worst case scenario that would
cause the greatest delays for communication, i.e., the worst
case transmission time. It is therefore essential that as a basis
for evaluating any communication mechanism, that it can be
assured that critical temporal deadlines are consistently met.

2) Shared Resource Interference Management: When consid-
ering multi core architectures, communication delays fundamen-
tally arise due to contention of accessing micro-architectural
resources, e.g., system bus, shared memory. Should a task
experience interference when communicating with any of
these resources, the overall execution time of the task will
increase. [4], [5]. Calculating the worst case execution time of
a critical task must take into account all of the time that the task
may potentially spend waiting due to interference. Nowotsch
et al. [6] emphasise this requirement through their explicit
requirement of incorporating all potential communication
interference into their calculation of the worst case execution
times. For this reason, interference related communication
delays must be predictable, to ensure that the worst case
execution time does not have to be overestimated.

3) Predictable Critical Communication: In addition to
ensuring that interference related communication delays should
be predictable, critical tasks depend on being delayed due to
communication for a predictable amount of time. Cilku et al.
[7][8] suggest a dual-layer arbitration of the system bus, where
highly critical tasks utilise a more predictable TDMA access
scheme to access the shared system bus, while less critical
tasks access the bus via a less predictable round-robin method.
To stress and evaluate how predictably critical tasks are able to
access the shared system bus, they have a single dummy task
executing on each core of a dual-core processor. Each of these
tasks make continuous accesses to shared memory, and they
measure the standard deviation in the average and maximum
execution times of the tasks as they alter how much interference
their accesses cause with one another. Their evaluation shows
the interest in determining how predictable communication
related delays will remain while exposed to varying levels of
interference.

4) Temporal Isolation: Delays that critical tasks face due
to communication related should be temporally isolated from
unexpected external interference. Researchers in the field have
previously empirically demonstrated that their communication
mechanism will consistently meet deadlines under unexpected
circumstances by exposing their system to a variety of
situations that stress the communication of the system in
different unpredictable ways. Brandenburg [9], for example,
demonstrates that critical tasks utilising his shared resource
access scheme will reliably gain access to shared resources
before a calculated worst case access time, regardless of
potential temporal disturbances caused by other tasks on the
system. He does this by artificially causing other tasks to act
in a faulty manner, and create a higher level of contention for
shared resources. The faults that are introduced all aim to have
an effect upon the access times of a particular critical task,
including causing non-critical and critical tasks to make more
frequent requests to access a shared resource, and executing a
higher number of non-critical tasks upon each of the cores.

5) Functional Isolation: Communication should not be
capable of causing an executing task to malfunction. As there
are a range of ways that communication can influence Pellizzoni
et al. [10], for example, suggest that to functionally isolate
task execution from communication, a set of formal properties
that define the permissable communication behaviour of tasks
during runtime must be specified, and all communication should
be monitored during run time to ensure that no properties are
violated. Through monitoring each of these properties during
runtime, they are able to reject any faulty communication
before it propogates through the system, and take any recovery
actions if necessary.

Through analysis of each of these five key attributes related to
providing predictability and separation within a communication
mechanism, the important properties can be summarised to the
following points:

• Critical communication must fundamentally meet all real
time communication related temporal deadlines.



• Communication interference should be handled in a way
that critical task execution is affected predictably.

• Even under varying external disturbances, communication
related delays must remain predictable.

• Task execution behaviour should be functionally and
temorally separated from the communication mechanism.

B. Performance

One of the main research challenges regarding designing
a communication mechanism for use within mixed-criticality
systems, is keeping performance overheads to a minimum,
while still providing the aforementioned predictable properties.
Areas of focus within this field aim to reduce the overhead
that communication in the system puts upon task execution
times, both critical and non-critical. A general overview of
each of the properties that are considered in literature when
determining the performance of a communication mechanism
are outlined below:

1) Communication Medium Utilisation: One of the more pre-
dominant communication-related performance overhead is due
to arbitrating the communication medium in a way that hinders
task execution times. A variety of approaches have therefore
been explored that aim to improve the overall utilisation of the
communication medium to increase performance. Cilku et al.
[7][8] demonstrate that their method of dual-layer arbitration
offers better performance for non-critical communication by
showing that when they execute a bubble sort algorithm upon
each core of a quad-core processor, with two of the cores being
treated as critical and the other two non-critical. They show that
the average execution time of the bubble sort algorithm upon
the non-critical cores utilising their method of bus arbitration
is 3.1 times faster than if all cores were accessing the bus
via a TDMA access scheme. Other approaches aim to offer
non-critical tasks freedom to communicate, provided that the
communication interference they cause for critical tasks can
be bounded. Yun et al. [11] have implemented a memory
access throttling algorithm that will limit non-critical tasks to
a certain number of cache misses before their access to shared
memory is throttled. They evaluate the performance that this
throttling scheme offers non-critical tasks by playing back high
definition video on two of the cores of a quad-core processor
and determining how long each of the cores were throttled
throughout execution.

2) Influence of critical communication upon non-critical
communication: Non-critical tasks do not require strict as-
surance that they will meet their execution deadlines, and so
non-critical communication does not require the same level of
predictability that critical communication does. The objective
of providing non-critical communication is to allow non-critical
tasks to utilise a platform’s communication media as efficiently
as possible, while not causing critical communication to become
unpredictable. This property was explored by Kim et al. [12],
who propose a direct memory access (DMA) scheme that offers
tight bounding for critical task accesses, and better access times
for non-critical tasks. To evaluate the performance benefits
they give to non-critical tasks, they simulate system load

by executing a number of standard embedded benchmarking
programs that put differing levels of strain upon the memory.
They assign programs from the Mälardalen WCET benchmark
suite1 as critical tasks, and programs from the Mibench
embedded benchmarking suite2 as non-critical tasks. For each
execution run, they introduce an increasing number of critical
tasks to the system, and measure how this affects the average
memory access read times for the non-critical tasks. They
then compare their results with average read times from a
more predictable time division multiplexed (TDM) approach
to show that their method offers lower average read times for
non-critical tasks.

From analysis of these properties, it can be ascertained
that when determining the performance of a communication
mechanism, the important properties to be evaluated are:

• The communication medium should utilise the commu-
nication medium as effectively as possible, to reduce
communication overheads.

• Non-critical communication should be implemented in
such a way that it does not need to adhere to the same
strict requirements of critical communication

C. Scalability
Due to the increase in complexity of mixed-criticality sys-

tems, one important property of a communication mechanism
is how well it scales with a system that grows in complexity.
An overview of properties that should be assessed with regards
to scalability are detailed below.

1) Resource Arbitration Scaling: As an increasing number
of tasks are added to the system, providing predictable shared
resource interference can cause an increasing amount of
execution overhead for tasks executing upon the system. Kelter
et al. [13] highlight that for shared resource access arbitration
within real time systems, the effect that the method of providing
predictable interference has upon the real time execution
deadline must be taken into consideration. They execute
a variety of multi core embedded real-time benchmarking
programs upon a single multi core ARM architecture and
evaluate how each of a given set of resource arbitration methods
perform as they are scaled to a higher number of cores. They
demonstrate that shared resource access arbitration methods
that offer higher average bus utilisation give a better average
case execution performance as the number of cores within
the system scale. However, they also show that these methods
that offer the highest bus utilisation and lowest average case
execution times often have a larger maximum overestimate on
the calculated WCET of the executed tasks.

2) Multi/Many Core Scalability: As mixed-criticality sys-
tems are expanded to be executed upon multi/many core archi-
tectures, determining how well a communication mechanism
scales when the number of processing cores that the system is
executing upon increases is important. Sigrist et al. [14], for
example, demonstrates how the overhead of differing mixed-
criticality scheduling algorithms affects the range of task sets

1http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
2http://www.eecs.umich.edu/mibench/

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.eecs.umich.edu/mibench/


that they can assuredly schedule so that all tasks will meet
their deadlines. As scaling to a larger number of cores enables
more tasks to execute in parallel, this causes there to be more
contention for shared communication resources. Therefore,
when assessing the multi/many core scalability of a mixed-
criticality communication algorithm, the focus is upon how
this additional contention affects average case and worst case
critical communication times.

There are two important aspects of a mixed-criticality
communication mechanism that should be evaluated when
determining how scalable it is:

• The employed shared resource arbitration method should
utilize the communication medium well, even if the
number of tasks executing upon the system grows.

• The increase in average and worst case execution times of
tasks upon the system as the number of tasks executing
in parallel should be assessed.

III. EVALUATING IMPORTANT PROPERTIES

As it was outlined within Section II, there are a number of
potential properties that can be evaluated when assessing the
performance of the communication within a mixed-criticality
system. There currently exists no standardised method of
evaluating mixed-criticality communication performance, which
has lead to a wide variation in how researchers are evaluating
the performance of their systems. Due to the wide variation of
attributes that are available to a researcher when evaluating the
communication within their system, it is quite common that a
researcher will:

• Evaluate only specific properties that their particular
communication method excels in and disregard others,

• And/or evaluate these properties in a way that differs to
how other research has evaluated these attributes.

Within this section, we discuss possible evaluation strategies
for the properties presented in Section II. For each of these
properties, we suggest potential scenarios that would strain the
system in a way that each property can be accurately measured.
We are focussing exclusively on an empiral measurement of the
properties through a common evaluation framework, presented
in Section IV. We favor this approach as it is easy applicable
to new systems and thus suport our comparable evaluation goal.
However, it should be noted that in certain cases an analytic
approach might be favourable to exactly evaluate a property.

A. Predictability and Separation

1) Temporal Deadline Adherence: As it is imperative that
critical tasks do not miss execution deadlines, throughout
the entire evaluation process, there should be no critical
communication related deadlines missed. As demonstrated
by Brandenburg [9] and Bate et al. [15], exposing a mixed-
criticality system to a variety of different communication com-
posure is one method of assessing whether all deadlines will be
met in a range of circumstances. To alter the communication
composure, the ratio of critical to non-critical tasks can be
changed, and the frequency with which each of these tasks
are attempting communication upon the system. It should be

mentioned however, that should no critical deadlines be missed
throughout any of the evaluation scenarios, this will not be
enough to formally prove that critical communication related
deadlines will not be missed under any circumstances. Analytic
approaches could help here to provide formal proofs that critical
deadlines will not be missed.

2) Shared Resource Interference Management: To assess
how predictably and efficiently communication interference
will be handled, there are three properties of interest, especially
if communication interference within the system rises:

• The worst experienced critical communication latency
• The average critical communication latency
• The standard deviation of critical communication latencies

To reliably increase the amount of interference that critical tasks
within the system are experiencing, we propose the following
scenario: Separate tasks are executing upon differing cores of
a platform, with each communicating a payload at specific
time intervals (similar to [7]). Gradually, in successive runs of
the scenario, the timing that the payloads are transmitted will
overlap to produce an increasing amount of interference.

3) Temporal Isolation: Through observation of research,
highlighting that critical communication cannot be tempo-
rally affected by external factors is not commonly done
using empirical results alone. Brandenburg [9], for example,
demonstrates temporal isolation through a combination of
mathematical proofs demonstrating that accesses from other
tasks in the system can only affect critical tasks to a certain
extent; and through runtime evaluation, by demonstrating that
should other tasks upon the system start communicating in
a faulty manner, critical tasks communication latencies will
remain unaffected. Taking from this example, developing
a scenario that demonstrates that critical communication is
temporally isolated is a challenge. To measure this, tasks
within the scenario, both critical and non-critical, would need
to begin communicating in a faulty manner to demonstrate that
critical tasks are continuing to meet their worst case execution
deadlines. To guarantee that task execution is temporally
isolated, a combination of an empirical and analytical approach
should be employed.

4) Functional Isolation: Similarly to temporal isolation,
functional isolation is not easily guaranteed through runtime
analysis alone as there are a wide range of ways in which
functional isolation may be breached (tasks sending false
messages, shared resources being left in an unsynchronised
state etc.). Pellizzoni et al. [10], for example, describes and
models all acceptable communication behaviour within the
system to ensure that task execution will not affect any tasks
in the system in a detrimental manner. They do not, however,
reinforce these claims with an empirical evaluation. Beside
utilizing scenarios to determine whether critical communication
within the system will be functionally isolated, we also think
of questionnaire or analytic approaches that aim to determine
whether the communication is suitably isolated.



B. Performance

1) Impact Upon Critical Communication: Measuring the
impact that non-critical communication has upon critical
communication can be achieved by introducing a higher ratio
of non-critical to critical traffic and observing how this affects
the average case communication related latency that critical
tasks experience. A scenario that would offer suitable testing
conditions for this consists of a set of critical tasks, and an
increasing number of non-critical tasks. The communication
latency that critical tasks experience can be measured after each
addition of a non-critical task to determine whether non-critical
traffic is having an adverse effect.

2) Communication Delay: Non-critical communication typ-
ically will experience delays within the system due to giving
priority to critical communication. To determine the delays
that are caused due to critical communication, the change in
non-critical communication related latencies are measured as
an increasing amount of critical traffic is introduced to the
system. To measure this, similarly to what was described within
[12], a scenario that contains a set number of non-critical tasks
and an increasing number of critical tasks can be utilised,
and the effect that the increasing critical traffic has upon the
non-critical communication delays can be observed.

C. Scalability

1) Scalability on Multi/Many Core Architectures: To evalu-
ate how well a mixed-criticality algorithm scales to a higher
number of cores, there are three key properties to assess as
the system is expanded to cover a wider number of cores:
The overestimation in the calculated worst case execution time
for critical tasks when compared to the observed worst case
execution time, the average execution time of critical tasks,
and how effectively the communication medium is utilised
throughout the evaluation period.

To provide a scenario that provides a common means of
evaluating scalability, we adapt the evaluation approach utilised
within [13], which was designed for assessing the scalability
of single criticality real time resource arbitration schemes. The
scenario will consist of a specific set of standard benchmarking
tasks taken from common embedded benchmarking suites to
provide the system with a realistic workload. Each of these
tasks are divided into critical and non-critical tasks depending
on whether the work within the benchmarking task is deemed
to be of a critical nature.

To perform an evaluation of scalability using this scenario,
the task set is first executed upon a single core, to determine
their average case execution time without communication
interference coming from tasks running in parallel. The scenario
will then be performed further times, with the task set being
divided across 2, 4 and 8 cores in subsequent runs to determine
how the average case execution time of each critical task differs
as more parallelism is introduced to the system.

IV. EVALUATION FRAMEWORK

In this section, we present a concept for an evaluation
framework that will enable a researcher to design and reuse

Figure 1. Block overview of Evaluation Framework

prebuilt evaluation scenarios for evaluating their specific
communication mechanism. Each of the components that the
framework is comprised of are described, focusing upon how
each aims to enable reproduceable evaluation scenarios to
be constructed. Figure 1 shows a block diagram overview of
components that the framework is composed of, and a typical
workflow that would enable a user to utilise a scenario to
evaluate a communication property.

Scenarios will be created or added using the included
scenario management software. This scenario management
software will enable a user to construct scenarios from premade
components, or import a scenario that another user has
previously utilised in their evaluation. Each scenario that is
created will consist of a set of stimuli tasks and stress tasks.
Each of these tasks will have a different purpose throughout
the evaluation process. Stimuli tasks will be specialised tasks,
created by the user within the scenario management software,
that will be utilised to stimulate the communication within
the system in a particular way. For example, should the
scenario require a task to flood the communication media with
requests, a stimuli can be created that exhibits this behaviour
during runtime. Tracepoints will automatically be inserted into
the stimuli task upon creation, which will trace important
communication information throughout execution, allowing for
a specific result to be compiled by the measurement component.
Stress tasks will be more standard tasks that can be inserted into
the scenario to simulate a realistic system load. Each stress task



will run a single program, for instance, a program taken from an
embedded benchmarking suite. Multiple stress components can
be integrated into a single scenario, allowing for distinctive
and complex system loads to be created. The collection of
tracepoint data will be transmitted to an external computing
source, which runs the included measurement software. The
measurement software is responsible for analysing tracepoints
and presenting the analysed data to the user in a usable way.

We have currently implemented a prototypic version of
the framework upon an Intel® Core 2 Duo platform. We are
looking, however, to extend this implementation to an 8 core
ARMv8 architecture to enable us to demonstrate a wider range
of scenarios with the framework, and evaluate the framework’s
performance. Currently, we are able to create and insert stress
and stimuli components into a scenario to be executed, and
then trace basic communication properties of this scenario.
These tracepoints are processed and output as both a formatted
CSV file, and PGF plot. The framework is abstracts from the
communication mechanism so that only a few C functions are
required to be updated by the user to port the framework to
their specific communication mechanism.

V. RELATED WORK

Although research into the field of providing communication
for mixed-criticality systems has generated a range of different
approaches, few have utilised or devised comparative evaluation
methods. There are however previously utilised scenario-based
methods of evaluation to commonly evaluate the properties of
mixed-criticality scheduling schemes.

Harbin et al. [16] have designed a singular scenario based
upon industry requirements to be used as a benchmark for stress-
ing and evaluating the communication related performance of
real-time mixed-criticality networks-on-chip. They thoroughly
describe the benchmark that they have used, however, a single
scenario does not give an evaluator the flexibility to demonstrate
particular properties of their communication.

Bate et al. [15] have utilised a scenario based evaluation
method to comparably evaluate the performance of a variety of
mixed-criticality scheduling schemes. They generate scenarios
that simulate realistic workloads for the system and measure an
array of important properties relating to the scheduling scheme.
As their scenarios are generated, however, a truly comparable
result could only be made should the evaluator have access to
the exact scenario that they were utilising.

Sigrist et al. [14] similarly utilises a set of generated
scenarios that cause the system to experience a workload with
a normalised level of utilisation to evaluate a set of mixed-
criticality scheduling schemes. Throughout the execution of
each of these scenarios, they measure overheads produced by
each scheduling scheme. For a separate researcher to evaluate
their scheduling method comparably against their results, they
would need to again, have access to the generated scenarios
that they utilised within their evaluation.

VI. CONCLUSION

To summarise the contributions of this paper, we have
identified a range of attributes that may be utilised to indicate

the performance of communication within mixed-criticality
systems, outlined how each of these attributes may be evaluated
through the use of scenarios, and portrayed a more simplified
method of evaluating using scenarios through the construction
of an evaluation framework.

For future work, our aim is to make each of the scenarios
more concise, and to implement the evaluation framework so
that it may be used across a range of platforms.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement n° 645119.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,” in Real-Time Systems Symposium,
2007. RTSS 2007. 28th IEEE International. IEEE, 2007.

[2] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore systems,”
in Proceedings of the Conference on Design, Automation and Test in
Europe. European Design and Automation Association, 2010.

[3] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2013.

[4] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, and H. Theiling,
“Multicore in real-time systems–temporal isolation challenges due to
shared resources,” in Workshop on Industry-Driven Approaches for Cost-
effective Certification of Safety-Critical, Mixed-Criticality Systems, 2014.

[5] D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke, “Temporal isolation
on multiprocessing architectures,” in Proceedings of the 48th Design
Automation Conference. ACM, 2011.

[6] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement,” in Real-Time Systems (ECRTS),
2014 26th Euromicro Conference on. IEEE, 2014.

[7] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro, “A memory
arbitration scheme for mixed-criticality multicore platforms,” in Proc.
2nd Workshop on Mixed Criticality Systems (WMC), RTSS, 2014.

[8] ——, “A TDMA-based arbitration scheme for mixed-criticality multi-
core platforms,” in Event-based Control, Communication, and Signal
Processing (EBCCSP), 2015 International Conference on. IEEE, 2015.

[9] B. B. Brandenburg, “A synchronous IPC protocol for predictable access
to shared resources in mixed-criticality systems,” in Real-Time Systems
Symposium (RTSS), 2014 IEEE. IEEE, 2014.

[10] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and L. Sha,
“Handling mixed-criticality in SoC-based real-time embedded systems,” in
Proceedings of the seventh ACM international conference on Embedded
software. ACM, 2009.

[11] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on.
IEEE, 2012.

[12] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and
J. Oh, “A predictable and command-level priority-based DRAM controller
for mixed-criticality systems,” in 21st IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2015.

[13] T. Kelter, T. Harde, P. Marwedel, and H. Falk, “Evaluation of re-
source arbitration methods for multi-core real-time systems,” in OASIcs-
OpenAccess Series in Informatics, vol. 30. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2013.

[14] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele, “Mixed-
criticality runtime mechanisms and evaluation on multicores,” in Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2015 IEEE. IEEE, 2015.

[15] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed criticality
systems,” in 2015 27th Euromicro Conference on Real-Time Systems.
IEEE, 2015.

[16] J. Harbin, T. Fleming, L. S. Indrusiak, and A. Burns, “GMCB: An
industrial benchmark for use in real-time mixed-criticality networks-on-
chip,” Proc. WATERS, 27th ECRTS, 2015.


	Introduction
	Important Communication Properties
	Predictability and Separation
	Temporal Deadline adherence
	Shared Resource Interference Management
	Predictable Critical Communication
	Temporal Isolation
	Functional Isolation

	Performance
	Communication Medium Utilisation
	Influence of critical communication upon non-critical communication

	Scalability
	Resource Arbitration Scaling
	Multi/Many Core Scalability


	Evaluating Important Properties
	Predictability and Separation
	Temporal Deadline Adherence
	Shared Resource Interference Management
	Temporal Isolation
	Functional Isolation

	Performance
	Impact Upon Critical Communication
	Communication Delay

	Scalability
	Scalability on Multi/Many Core Architectures


	Evaluation Framework
	Related Work
	Conclusion
	Acknowledgment
	References

