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Abstract

In this article we are interested in the semi-group stability for finite difference schemes approximations
of hyperbolic systems of equations in corner domains. We give generalizations of the results of [CG11]
and [Cou15] from the half space geometry to the quarter space geometry. The most interesting fact is
that the proofs of [CG11] and [Cou15] can be adaptated with minor changes to apply in the quarter
space geometry. This is due to the fact that both methods in [CG11] and [Cou15] are based on energy
methods and the construction of auxiliary problems with strictly dissipative boundary conditions which
are known to be suitable for the strong well-posed for initial boundary value problems in the quarter
space.
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1 Introduction

In this article we are interested in finite difference schemes approximation for linear hyperbolic problems in
the quarter space. Such problems read:

L(∂)u := ∂tu+A1∂1u+A2∂2u+
∑d
j=3Aj∂ju = f , in [0,∞[×Ω× Rd−2,

B1u|x1=0 = g1, on [0,∞[×∂Ω1 × Rd−2,
B2u|x2=0 = g2, on [0,∞[×∂Ω2 × Rd−2,
u|t=0 = u0, on Ω× Rd−2,

(1)

where Ω denotes the quarter space R2
+ and ∂Ω1 (resp. ∂Ω2) is the component of the boundary associated

to {x1 = 0} (resp. {x2 = 0}). In (1) the coefficients in the interior, the Aj are matrices in Mn×n(R) while
the coefficient on the boundary B1 (resp. B2) is an element of Mp1×n(R) (resp.Mp2×2(R)) where p1 (resp.
p2) denotes the number of strictly positive eigenvalues of A1 (resp. A2).

Finite difference schemes approximations in the quarter space are thus just discretizations of (1) and
have pratical motivations in scientific computations. Indeed, due to the impossibility to modeling the full
space Rd during a numerical simulation, all the schemes implemented in a computer lie in a large rectangle
and thus numerically boundary conditions have to be specified even for the numerical approximation of a
Cauchy problem. Thus the theoretical study of such schemes set in a domain with corners also have more
pratical views. About these pratical views we can be more specific and describe, for example the question of
absorbing boundary conditions for wave propagation (see for example [EM77]-[Hig86] and [Ehr10]). These
conditions are non physical ones and aim to minimize, as much as possible, the ”parasite” reflections which
occur when the wave hits the artificial boundaries implemented in the simulation of the Cauchy problem.
Consequently these conditions are choosen in such a way that the reflections against the boundaries modify
or influence as little as possible the approximation in the interior of the box. A similar method is the study
of perfectly matched layer (see for example [Ber94]) which are boundary conditions which will only modify
the approximation in a small neighborhood of the boundary.

In this article we are interested in the stability of difference schemes approximation set in a space with
corner. But before to turn to a more precise description of the notion of stability for schemes with corner
let us recall some elements of comparison with the notion of strong well-posedness for continous problems.

Strong well-posedness means existence and uniqueness of the solution of (1) and that this solution is as
regular (in the L2-norm) as the datas of the problem. Such a control of the solution by the data is refered as
an energy estimate for (1). In the author knowledge, even for homogeneous initial conditions (that is to say
u0 ≡ 0) the strong well-posedness of (1), under suitable conditions, has not been established yet. The main
contribution about this question is due to [Osh73], in which the author obtains, thanks to the introduction
of a new inversibility condition (we refer to [Osh73] or to [[Ben15], Chapitre 5] for more details), an energy
estimate for the L2-norm of the solution. However the regularity of the source terms of (1) asked to control
the L2-norm of the solution is not explicit. As a consequence, there is a non explicit number of losses of
derivatives in the energy estimate and we can not conclude to the strong well-posedness.

However in a particular framework, more precisely for strictly dissipative boundary conditions, that is
to say boundary conditions which make the energy decrease, the strong well-posedness (with homogeneous
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initial datas) is established see [[Ben15], Chapitres 4 and 5]. We also refer to [HR] for a result dealing with
three dimensional corners in which, thanks to the strict dissipativity and under an ellipticity assumption
on the spatial symbol of the hyperbolic operator, the authors obtain a result of strong well-posedness for
corners problems with inhomogeneous initial conditions.

We give some more details about the mentioned previous energy estimates. By analogy with the natural
energy estimate in the half space geometry [Kre70], the expected energy estimate for u the solution of (1)
is:

sup
t≥0

e−2γt‖u(t, ·)‖2L2(Ω) + γ

∫ ∞
0

e−2γt‖u(t, ·)‖2L2(Ω)dt+

2∑
k=1

∫ ∞
0

e−2γt‖u|xk=0(t, ·)‖2L2(∂Ωk)dt (2)

≤ C

(
‖u0‖2L2(Ω) +

1

γ

∫ ∞
0

e−2γt‖f(t, ·)‖2L2(Ω)dt+

2∑
k=1

∫ ∞
0

e−2γt‖gk(t, ·)‖2L2(∂Ωk)dt

)
,

and, in our definition stability for difference schemes approximations of (1) means that some discretized
version of (2) (see Definition 2.1 for a precise definition) holds for the solution of the scheme.

1.1 Some results about strong well-posed and stability for the half space geom-
etry

Before to describe the obtained stability results, it is interesting to give a brief overview of the known
results on this subject in the simpler geometry of the half space Ω̃ :=

{
x = (x1, x

′)|x1 > 0, x′ ∈ Rd−1
}

. The
associated version of (1) reads: 

L(∂)u = f , in [0,∞[×Ω̃,

Bu|x1=0 = g1, on [0,∞[×∂Ω̃,

u|t=0 = u0, on Ω̃,

(3)

and a finite difference scheme approximation of (3) is (for example for a one time step approximation) given
by: 

Un+1
j +QUnj = ∆tfn+1

j , for n ≥ 0, j1 ≥ 1, j′ ∈ Zd−1,

Un+1
j +B0,j1Unj +B1,j1Un+1

j = gn+1
j , for n ≥ 0, ≥ 1− `1 ≤ j1 ≤ 0, j′ ∈ Zd−1,

U0
j = u0,j , for j1 ≥ 1− `1, j′ ∈ Zd−1,

(4)

where Q is a dicretization of the spatial differetiation in the interior, B0,j1 and B1,j1 are discretizations of
the boundary condition B and finally where `1 ∈ N is the stencil of the operator Q in the (−x1)-direction.

Compared to the corner geometry, the theory of semi-group well-posedness for (3) is much more elabo-
rated. Semi-group well-posedness for (3) means existence and uniqueness of a solution u which satisfies the
energy estimate: there exists C > 0 such that for all γ > 0 we have

sup
t≥0

e−2γt‖u(t, ·)‖2
L2(Ω̃)

+ γ

∫ ∞
0

e−2γt‖u(t, ·)‖2
L2(Ω̃)

dt+

∫ ∞
0

e−2γt‖u|x1=0(t, ·)‖2
L2(∂Ω̃)

dt (5)

≤ C

(
‖u0‖2L2(Ω̃)

+
1

γ

∫ ∞
0

e−2γt‖f(t, ·)‖2
L2(Ω̃)

dt+

∫ ∞
0

e−2γt‖g1(t, ·)‖2
L2(∂Ω̃)

dt

)
.

And, from [Kre70] and [Rau72], we know that the initial boundary value problem in the half space (3) is
semi-group well-posed if and only if the so-called uniform Kreiss-Lopatinskii condition is satisfied. This
conditions means that in the normal modes analysis no stable mode satisfies the homogeneous boundary
condition.

Semi-group stability for the finite difference scheme approximation (4) means (for example) that the
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solution of (4) satisfies the estimate: there exists C such that for all γ > 0, for all ∆t ∈ ]0, 1]

sup
n≥0

∆x1e
−2γn∆t

∞∑
j1=1−`1

‖Unj1,·‖
2+

γ

γ∆t+ 1

∑
n≥0

∆t∆x1e
−2γn∆t

∞∑
j1=1−`1

‖Unj1,·‖
2+
∑
n≥0

∆te−2γn∆t
0∑

j1=1−`1

‖Unj1,·‖
2

≤ C
( ∞∑
j1=1−`1

∆x1‖u0‖2 +
γ∆t+ 1

γ

∑
n≥1

∆t∆x1e
−2γn∆t

∞∑
j1=1−`1

‖fnj1,·‖
2

+
∑
n≥1

∆te−2γn∆t
0∑

j1=1−`1

‖gnj1,·‖
2
)
, (6)

where the ‖ · ‖-norm is defined by: forj′ ∈ Zd−1,

‖U·‖2 :=

d∏
k=2

∆xk
∑

j′∈Zd−1

|Uj′ |2,

and where the parameters ∆t , ∆xk, k = 1, ..., d are the parameters of the cartesian discretization of [0,∞[×Ω̃.
These parameters are assumed to satisfy some CFL (COURANT-FRIEDRICHS-LEWY) condition (that is to
say that the ratios λk := ∆t

∆xk
are constant while ∆t ↓ 0).

Note that if ones formally takes the limit ∆t ↓ 0 in the stability estimate for (Unj ) then he recovers
the energy estimate for u that is (5). As a consequence the stability estimate for (Unj ) is just a discretized
version of (5). Once again we have a full characterization of the difference schemes approximations that are
strongly stable : the scheme (4) is strongly stable if and only it satisfies the so-called GKS (Gustafsson-
Kreiss-Sundström) condition (see [BGS72]). This condition is in some sense a discrete version of the uniform
Kreiss-Lopatinskii condition.

The sketch of proof to establish the semi-group stability or the semi-group well-posed in the same and is
based in two distinct substeps. In a first time the study is restricted to homogeneous initial conditions and
we show the estimate (5) but without the control of the supremum in the left hand side (and also without
the term u0 in the right hand side). This estimate characterized all the problems which are call strongly
well-posed (resp. strongly stable) in the setting of continous (resp. discrete) problems. More precisely this
estimate in the continous setting reads: there exists C > 0 such that for all γ > 0

γ

∫ ∞
0

e−2γt‖u(t, ·)‖2
L2(Ω̃)

dt+

∫ ∞
0

e−2γt‖u|x1=0(t, ·)‖2
L2(∂Ω̃)

dt

≤ C
(

1

γ

∫ ∞
0

e−2γt‖f(t, ·)‖2
L2(Ω̃)

dt+

∫ ∞
0

e−2γt‖g1(t, ·)‖2
L2(∂Ω̃)

dt

)
,

and: there exists C > 0 such that for all γ > 0, ∆t ∈ ]0, 1]

γ

γ∆t+ 1

∑
n≥0

∆t∆x1e
−2γn∆t

∞∑
j1=1−`1

‖Unj1,·‖
2 +

∑
n≥0

∆te−2γn∆t
0∑

j1=1−`1

‖Unj1,·‖
2

≤ C
(

+
γ∆t+ 1

γ

∑
n≥1

∆t∆x1e
−2γn∆t

∞∑
j1=1−`1

‖fnj1,·‖
2 +

∑
n≥1

∆te−2γn∆t
0∑

j1=1−`1

‖gnj1,·‖
2
)
,

in the discrete framework.
Then in a second time, this estimate characterizing the strong well-posedness (resp. strong stability) is

extended to non homogeneous initial conditions and the supremum is added in the left hand side in view to
obtain (resp. the discretized version of) (5). Once the estimate is demonstrated we tell that the problem
is semi-group well-posed in the continous setting and semi-group stable in the discrete one. Let us note
the important fact that in this second step, the main assumption is to assume that the considered problem
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is strongly well-posed or strongly stable (up to some possibly technical extra assumptions in the discrete
framework).

In the continous setting the full characterization of strongly well-posed problems has been established in
[Kre70] and its extension to non homogeneous initial conditions establishing the semi-group well-posedness
is due to [Rau72] (we also refer to [BG07] or [CP81] for an overview/review of the proofs).

In the discrete setting, the first result showing strong stability for a finite difference scheme is due to
[BGS72] and has then been extended to more general finite difference schemes, for example, in [Cou09]-
[Cou11]. About the semi-group stability of schemes with non zero initial conditions, the first result applies
to one step in time finite difference schemes and is due to [Wu95]. The method of [Wu95] has then been
generelized in [CG11]. An other result in the theory of semi-group stability for finite difference schemes with
several time steps this time (but restricted to scalar equations) is obtained in [Cou15].

1.2 Generalization of semi-group stability results to corner domains

In this article we give generalizations of the results contained in [CG11] and [Cou15] from the half space
to the quarter space geometry. More precisely we show that if we assume that the finite difference scheme
approximation is strongly stable (see Definition 2.1 for a precise definition) then a discretized version of (2)
(see (22)-(24)) can be obtained for all the finite difference schemes that we are able to deal with in the half
space geometry.

As a consequence, the geometry in which the finite difference scheme is set does not prevent to go from
strong stability to semi-group stability.1

As the reader will see, our proofs follow the main steps of the proofs in [CG11] and [Cou15]. This fact
may seem to be surprising but it should not. Indeed the proofs in [CG11] and [Cou15] both relies on the
introduction of an auxiliary problem. More precisely in [CG11], the authors first treate the case of one
dimensional schemes. Then to generalize their result to multidimensional schemes they use partial Fourier
transform in the tangential variables to recover the one dimensional case.

In the one dimensional setting, the auxiliary problem used in [CG11] is the finite difference scheme (4)
but with Dirichlet boundary conditions instead of the discretized boundary conditions involving B0,j1 and
B1,j1 . The auxiliary problem used in [Cou15] in based on two discrete multipliers coming from the Leray-
Gȧrding method to obtain a priori estimates for hyperbolic PDE (see [?]-[?]). Note that the existence
of such multipliers was the starting point in the analysis of [Rau72] to go from the strong well-posed to
the semi-group stability for initial boundary value problems. Compared with the auxiliary problem used
in [CG11], the auxiliary problem of [Cou15] is defined on the full space

{
j ∈ Zd

}
and thus it permits to

use Laplace- partial Fourier transform (without any extension) to translate some energy estimates for the
solution in terms of the symbol of the discretization operator.

Then the authors use the fact that each auxiliary finite difference scheme admits strictly dissipative
boundary condition to show the semi-group stability from the strong stability.

In the continous setting it is known (see for example [[Ben15], Chapitre 4]) that strictly dissipative bound-
ary conditions are suitable for corner problems as well as for problems in the half space. As a consequence,
as far as strict dissipativity is concerned, the proofs for finite difference schemes in the half space should also
operate for the quarter space geometry and it is effectively the case with sometimes really minor changes.
An other important point in the generalization of [Cou15] to the quarter space geometry is that the auxiliary
problem is set in the full space. Consequently the use of the Laplace- partial Fourier transform (which is
prohibited, without preliminary extension, in the quarter space geometry because there are two ”normal”
directions) also operates because we are in the full space.

This point will not be true anymore for the generalization of [CG11] for quarter spaces because the aux-
iliary problem will not be set in the full space. However we show that in that case it is possible to do the
analysis of [CG11] and specifically the energy method directly for multidimensional schemes. So we will not

1In all the article to make the notations as simple as possible we restricted our subject to domains with only one two
dimensional corner. However all the results extended to multi-dimensional corners and/or to domains with several corners.
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have to perform any partial Fourier transform and the result extend to the quarter space geometry.

Of course the main assumption in both of the generalization is that the finite difference scheme for the
corner problem is strongly stable. In the author knowledge there is no result concerning the full characteri-
zation of strongly stable schemes in corner domains in the litterature. Moreover in the author opinion this
question could be a challenging one. What is clear is that imposing that each finite difference scheme in
the half spaces

{
j1 ≥ 1− `1, (j2, j′) ∈ Zd−1

}
and

{
j1 ∈ Z, j2 ≥ 1− `2, j′ ∈ Zd−2

}
satisfies the GKS condition

will be necessary. However the study of [Osh73] for continous problems tells us that a new condition will
be needed. In analogy with the half space geometry, that seems to be a reasonable conjecture is that to
characterize strong stability in corner domains a discretized version of this condition will also be necessary.

1.3 Organization of the article

The paper is organized as follows. In Section 2 we introduce the notations and some definitions, in particular
we give some new definitions needed to deal with the corner geometry. Then in Section 3 we state the
assumptions and the main results. At last Sections 4 and 5 are devoted to the proofs of each generalization.

2 Finite difference schemes and corner

2.1 General notations and definitions

In all what follows we use the short hand notation J·, ·K for the ”intervals of integers”, more precisely for
a, b ∈ R we define Ja, bK := [a, b] ∩ Z.

To describe the finite difference scheme that we will consider we define the following subsets of Z2, for
j = (j1, j2) ∈ Z2 let:

I :=
{
j ∈ Z2|j1, j2 ≥ 1

}
, C :=

{
j ∈ Z2|j1 ∈ J1− `1, 0K, j2 ∈ J1− `2, 0K

}
(7)

B1 :=
{
j ∈ Z2|j1 ∈ J1− `1, 0K, 1 ≤ j2

}
, B2 :=

{
j ∈ Z2|1 ≤ j1, j2 ∈ J1− `2, 0K

}
, (8)

where `1 (resp. `2) is a fixed positive integer (that will correspond to the number of space steps of the scheme
towards the ”left” (resp. ”bottom”)).

The set I has to be understood as the discretization of the interior of Ω, B1 (resp. B2) as the dis-
cretization of the boundary ∂Ω1 (resp. ∂Ω2) and finally C is a discretization of the corner of Ω. Finally, the
full set of resolution R is defined by

R := I ∪B1 ∪B2 ∪ C .

To state our definition of strong stability we introduce the extended discretizations of the traces B1 and
B2 defined by:

B1 :=
{
j ∈ Z2|j1 ∈ J1− `1, r1K, 1− `2 ≤ j2

}
, B2 :=

{
j ∈ Z2|1− `1 ≤ j1, j2 ∈ J1− `2, r2K

}
, (9)

where once again r1 (resp. r2) is a fixed positive integer (that will correspond to the number of space steps
of the scheme towards the ”right” (resp. ”top”)).

Let ∆x1,∆x2, ...∆xd > 0 be the space steps of discretization, we define ∆x := ∆x1∆x2, and let ∆t be
the time step discretization. In a classical setting let us assume that ∆t, ∆x1, ...,∆xd are related by the
CFL numbers which are defined by λk := ∆t

∆xk
for k ∈ J1, dK. Let us recall that the λk are kept constant as

∆t ↓ 0. Note that it implies, in particular, that for all k1, k2 ∈ J1, dK we have ∆xk1
∼ ∆xk2

.
We introduce the following weighted norm on `2(Zd). Let I ⊆ Z2 and u ∈ `2(I× Zd−2) we define:

‖u‖2I :=

(
d∏
k=3

∆xk

)
‖u‖2`2(I×Zd−2), and |||u|||2I := ∆x1∆x2‖u‖2I.
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Figure 1: The set of resolution and the dependency set of U2,2 for `1 = 3, `2 = 2 and r1 = r2 = 1.

We also denote 〈·, ·〉I (resp. 〈〈·, ·〉〉I) the scalar product associated to ‖ · ‖I (resp. |||·|||2I).
The finite difference scheme approximation of (1) that we are considering reads:

∑s+1
σ=0Q

σUn+σ
j = ∆tfn+s+1

j , for j ∈ I × Zd−2, n ≥ 0,

Un+s+1
j +

∑s+1
σ=0B

σ,j1
1 Un+σ

j = gn+s+1
1,j , for j ∈ B1 × Zd−2, n ≥ 0,

Un+s+1
j +

∑s+1
σ=0B

σ,j2
2 Un+σ

j = gn+s+1
2,j , for j ∈ B2 × Zd−2, n ≥ 0,

Un+s+1
j +

∑s+1
σ=0 C

σ,jUn+σ
j = hn+s+1

j , for j ∈ C × Zd−2, n ≥ 0,

Unj = un,j , for j ∈ R × Zd−2, n ∈ J0, sK.

(10)

Note that (10) has s+ 1 time steps. The operator Qσ appearing in the first equation of (10) is defined by:

Qσ :=

r1∑
µ1=−`1

r2∑
µ2=−`2

r′∑
µ′=−`′

Aσ,µTµ1

1 Tµ2

2 T′µ
′
, (11)

where µ := (µ1, µ2, µ
′) ∈ Nd, the coefficients Aµ ∈ Mn×n(R) and where for k ∈ J1, 2K, Tµk

k (resp. T′µ
′
)

denotes the µk (resp. µ′)-shift operator, that is:

∀u ∈ `2(Zd), (Tµ1

1 u)j := uj1+µ1,j2,j′ , (Tµ2

2 u)j := uj1,j2+µ2,j′ and (T′µ
′
u)j := uj1,j2,j′+µ′ .

Also note that in (11) we used the short hand notation: for `′, r′ ∈ Nd−2,

r′∑
µ′=−`′

:=

d−2∑
k=3

rk∑
µk=−`k

.

Thus, in view of its definition, the scheme (10) has stencil `1 + r1 in the j1-direction and `2 + r2 in the
j2-direction. So to compute the sequence (Unj )j∈I it is needed to know the boundary values (Unj )j∈B1∪B2

.
This was expected from the analysis of finite difference schemes in the half space. But, and it is a new fact
induced by the quarter space geometry, we also need the corner values (Unj )j∈C (see (8)-(7) for a definition
of this sets). Also note that in this formulation, the finite difference scheme (10) can be explicit or implicit
in time.

A new feature for finite difference scheme in corner domains is that, if we have computed the solution
(Unj )j∈R at some time n then, the order of computation of the Un+1

j is not as canonical as in the half space

geometry. Indeed for finite difference schemes in the half space the only possible way to compute (Un+1
j )
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from (Unj ) is to determine the Un+1
j for j in the interior and then to compute the Un+1

j for j in the discretiza-

tion of the boundary. This determines (Un+1
j ) and the order also of resolution of the scheme in a unique way.

In corner domains we always have to determine first the Un+1
j for j ∈ I . But we have some degrees of

freedom in the order of determination of the Un+1
j for j ∈ B1 ∪B2 ∪ C . These degrees of freedom lead to

different expressions of the boundary and corner operators Bσ,j11 , Bσ,j22 and Cσ,j1,j2 . Some of this several
possible expressions are described in paragraph 2.2.

We conclude this section by the definition of strongly stable finite difference schemes in the quarter space:

Definition 2.1 (Strong stability) We say that the difference scheme (10) is strongly stable for homoge-
neous initial conditions if there exists C > 0 such that for all γ > 0 and ∆t ∈]0, 1], the solution (Unj ) of (10)

with u0,j ≡ 0 satisfies the estimate2:

γ

γ∆t+ 1

∑
n≥s+1

∆te−2γn∆t|||Un|||2R +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t‖Un‖2

Bk
≤ (12)

C

γ∆t+ 1

γ

∑
n≥s+1

∆te−2γn∆t|||fn|||2I +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑

n≥s+1

∆t∆x2e
−2γn∆t‖hn‖2C

 .

Before we turn to the statement of our main result it may be interesting to give some comments about
the notion of strong stability given in Definition 2.1. Indeed many definitions of stability are possible, and
to the author knowledge, any definition of strong stability has been proposed for difference schemes for a
boundary value problem in the quarter space. Remark that when one takes the limit ∆t ↓ 0 in (12) then he
(formally) recovers the expected energy estimate for initial boundary value problems in the quarter space
(2).

2.2 Boundary and corner conditions

In this paragraph we give several possible expressions for the boundary and corner operators Bσ,j11 , Bσ,j22

and Cσ,j1,j2 appearing in (10) and we then describe the influence of these expressions on the order of
determination of the Un+1

j for j ∈ B1 ∪B2 ∪ C .
The first possible choice is the simplest one. It is also the one that most looks like the boundary conditions

in the half space. We first define for the boundary operators:

for j ∈ B1, B
σ,j1
1 :=

q11∑
µ1=0

q12∑
µ2=0

q′1∑
µ′=−q′1

Bσ,µ,j11 Tµ1

1 Tµ2

2 T′µ
′
, (13)

for j ∈ B2, B
σ,j2
2 :=

q21∑
µ1=0

q22∑
µ2=0

q′2∑
µ′=−q′2

Bσ,µ,j22 Tµ1

1 Tµ2

2 T′µ
′
, (14)

where q11, q12, q21 and q22 are fixed positive integers, q′1, q
′
2 ∈ Nd−2 and where the Bσ,µ,j11 , Bσ,µ,j22 are fixed

matrices in Mn×n(R). And we then define the corner operator by:

for j ∈ C , Cσ,j1,j2 :=

c1∑
µ1=0

c2∑
µ2=0

c′∑
µ′=−c′

Cσ,µ,j1,j2Tµ1

1 Tµ2

2 T′µ
′
, (15)

for c1, c2 two positive fixed integers and c′ ∈ Nd−2. The coefficients Cσ,µ,j1,j2 are fixed matrices in Mn×n(R).

2Let us remark that by definition of the CFL numbers λ1 and λ2 we have ∆x1 ∼ ∆x2 and as a consequence one
can equivalently use (12) with the last term in the right hand side changed by

∑
n≥s+1 ∆t∆x1e−2γn∆t‖hn‖2C (or even∑

n≥s+1 ∆t2e−2γn∆t‖hn‖2C ) as an estimate for strongly stable finite difference schemes.
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With these definitions the terms Un+1
j for j ∈ B1 ∪B2 ∪ C only depend on the Unj for j ∈ R and the

Un+1
j for j ∈ I . So the Un+1

j for j ∈ B1 ∪B2 ∪ C can be determined in any order.

A second possibility is to keep (13) and (14) for the equations defining the boundary operators but to
change (15) by:

for j ∈ C , Cσ,j1,j2 :=

c′∑
µ′=−c′

(
c1∑

µ1=0

c2∑
µ2=0

Cσ,µ,j1,j2Tµ1

1 Tµ2

2 (16)

+

−1∑
µ1=−`1

c12∑
µ2=0

Cσ,µ,j1,j2B1
Tµ1

1 Tµ2

2 +

c21∑
µ1=0

−1∑
µ2=−`2

Cσ,µ,j1,j2B2
Tµ1

1 Tµ2

2

T′µ
′
,

where c12 and c21 are fixed integers and Cσ,µ,j1,j2B1
, Cσ,µ,j1,j2B2

are fixed matrices in Mn×n(R). With this new

definition of Cs+1,j1,j2 , Cs+1,j1,j2Un+1
1,1 now involves some terms of the discretized boundaries B1 and B2

(more precisely the Un+1
j for j ∈ (J1− `1, 0K× J1, 1 + c12K)∪(J1, 1 + c21K× J1− `2, 0K)) and thus it is needed

to determine the Un+1
j for j ∈ B1 ∪B2 before to determine the Un+1

j for j ∈ C .

The last possibility that we will describe here is to go back to (15) for the equation defining the corner
operator and to change the equations defining the boundary operators by:

for j1 ∈ J1− `1, 0K, Bσ,j11 :=

q′1∑
µ′=−q′1

 q11∑
µ1=0

q12∑
µ2=0

Bσ,µ,j11 Tµ1

1 Tµ2

2 +

−1∑
µ1=−`1

−1∑
µ2=−`2

Bσ,µ,j11,C Tµ1

1 Tµ2

2

T′µ
′
, (17)

for j2 ∈ J1− `2, 0K, Bσ,j22 :=

q′2∑
µ′=−q′2

 q21∑
µ1=0

q22∑
µ2=0

Bσ,µ,j22 Tµ1

1 Tµ2

2 + +

−1∑
µ1=−`1

−1∑
µ2=−`2

Bσ,µ,j22,C Tµ1

1 Tµ2

2

T′µ
′
, (18)

where Bσ,µ,j11,C , Bσ,µ,j22,C ∈ Mn×n(R). In that case, the boundary terms depend of the corner terms and thus
the boundary terms have to be computed after the corner ones.

We summarize the previous discussion in the following definition:

Definition 2.2 We say that the finite difference scheme approximation (10):
� admits decoupled boundary and corner conditions if the boundary operators are given by (13) and (14)

and if the corner operator is given by (15);
� is traces to corner if the boundary operators are given by (13) and (14) and if the corner operator is

given by (16);
� is corner to traces if the boundary operators are given by (17) and (18) and if the corner operator is

given by (15).

3 Main results

In all this article we will assume that the boundaries B1 and B2 are non characteristic for the scheme (10).
In view to state this assumption, let us introduce the following ”tangential” operators from `2(Z) to `2(Z):
for z ∈ C and

for µ1 ∈ J−`1, r1K, Aµ1

1 (z) :=

s+1∑
σ=0

zσ
r2∑

µ2=−`2

r′∑
µ′=−`′

Aσ,µTµ2

2 T′µ
′
, (19)

for µ2 ∈ J−`2, r2K, Aµ2

2 (z) :=

s+1∑
σ=0

zσ
r1∑

µ1=−`1

r′∑
µ′=−`′

Aσ,µTµ1

1 T′µ
′
. (20)

As already mentioned in the introduction, our first semi-group stability result holds for explicit with only
one time step finite differences schemes (but with an arbitrary number of equations). In (10) we thus set
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s = 0 and Q1 = I to obtain (setting also Q0 := Q):

Un+1
j +QUnj = ∆tfn+1

j , for j ∈ I × Zd−2, n ≥ 0,

Un+1
j +B0,j1

1 Unj +B1,j1
1 Un+1

j = gn+1
1,j , for j ∈ B1 × Zd−2, n ≥ 0,

Un+1
j +B0,j2

2 Unj +B1,j2
2 Un+1

j = gn+1
2,j , for j ∈ B2 × Zd−2, n ≥ 0,

Un+1
j + C0,j1,j2Unj + C0,j1,j2Unj = hn+1

j , for j ∈ C × Zd−2, n ≥ 0,

U0
j = u0,j , for j ∈ R × Zd−2.

(21)

In this framework the operators defined in (19) and (20) becomes:

Aµ1

1 (z) := zδµ1=0 +

r2∑
µ2=−`2

r′∑
µ′=−`′

A0,µTµ2

2 T′µ
′
, and Aµ2

2 (z) := zδµ2=0 +

r1∑
µ1=−`1

r′∑
µ′=−`′

A0,µTµ1

1 T′µ
′
,

And, to save some notations, we also define Aµkk := Aµkk (1). The first non characteristicity assumption then
reads:

Assumption 3.1 We assume that there exist two constants c1, c2 > 0 such that:

∀u ∈ `2(Zd), ‖Ar11 u‖ ≥ c1‖u‖, and ‖Ar22 u‖ ≥ c1‖u‖.

As in [CG11] we assume that the operator of discretization in the interior Q does not increase the `2-norm
of the solution.

Assumption 3.2 We assume that for all u ∈ `2(Zd), we have ‖Qu‖ ≤ ‖u‖.

Under these assumptions the generalization of [CG11] to the corner space geometry is the following:

Theorem 3.1 Under Assumptions 3.1 and 3.2, assume that the difference scheme approximation (21) is
strongly stable in the sense of Definition 2.1 and finally3 assume that r1, r2 ≥ 1, then (21) is also semi-group
stable. More precisely, there exists C > 0 such that for all γ > 0 and ∆t ∈]0, 1] the solution of (21) satisfies
the estimate:

sup
n≥0

e−2γn∆t|||Un|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Un|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖Un‖2

Bk
≤ (22)

C

|||u0|||2R +
γ∆t+ 1

γ

∑
n≥1

∆t∆xe−2γn∆t|||fn|||2I

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gn1 ‖2Bk

+
∑
n≥1

∆te−2γn∆t‖hn‖2C

 .

Our second main result is the generalization of [Cou15] for corner domains. This result is thus, on the
one hand, restricted to scalar equations (that is n = 1) but, on the other hand, it can be applied to finite
difference schemes with several time steps. To stress that in this framework we are dealing with scalar
equations we rewrite the coefficients defining (10), that is Qσ,µ, Bσ,µ,j11 , Bσ,µ,j22 and Cσ,µ,j , and the solution
(Unj ) of (10) with lowercase letters. We thus write:

∑s+1
σ=0Q

σun+σ
j = ∆tfn+s+1

j , for j ∈ I × Zd−2, n ≥ 0,

un+s+1
j +

∑s+1
σ=0B

σ,j1
1 un+σ

j = gn+s+1
1,j , for j ∈ B1 × Zd−2, n ≥ 0,

un+s+1
j +

∑s+1
σ=0B

σ,j2
2 un+σ

j = gn+s+1
2,j , for j ∈ B2 × Zd−2, n ≥ 0,

un+s+1
j +

∑s+1
σ=0 C

σ,j1,j2un+σ
j = hn+s+1

j , for j ∈ C × Zd−2, n ≥ 0,

unj = un,j , for j ∈ R × Zd−2, n ∈ J0, sK.

(23)

3If r1 or r2 equals zero then Theorem 3.1 remains true. This fact is straightforward direct use of the arguments of [CG11]
to treat the case r1 = 0 that we will not reproduce here.
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The semi-group stability result then needs extra (or just some modifications) of Assumptions 3.1 and 3.2.
The first assumption is made to ensure the solvability of (23) in the case that it defines an implicit (in

time) scheme.

Assumption 3.3 The operator Qs+1 appearing in (23) is an isomorphism on `2(Zd). Moreover, for all
source terms fj ∈ `2(I × Zd−2), g1,j ∈ `2(B1 × Zd−2), g2,j ∈ `2(B2 × Zd−2) and h ∈ `2(C × Zd−2), the
finite difference scheme: 

Qs+1uj = fj , for j ∈ I × Zd−2,

uj +Bs+1,j1
1 uj = g1,j , for j ∈ B1 × Zd−2,

uj +Bs+1,j2
2 uj = g2,j , for j ∈ B2 × Zd−2,

uj + Cs+1,j1,j2uj = hj , for j ∈ C × Zd−2,

admits a unique solution (uj) ∈ `2(R × Zd−2).

We also assume the following modifications of Assumptions 3.2 and 3.1:

Assumption 3.4 For all η := (η1, η2, η
′) ∈ Rd, the equation

s+1∑
σ=0

Q̂σ(eiη1 , eiη2 , ..., eiηd)zσ = 0, where Q̂σ(κ) :=

d∑
k=1

rk∑
µk=−`k

aσ,µκµkk ,

admits s+ 1 simple roots z0, ..., zd satisfying that for all k ∈ J0, dK, |zk| ≤ 1.

Let us recall that Assumption 3.4 implies that the finite difference scheme associated to the Cauchy problem
is strongly stable (see ()).

Our last assumption is a modification of Assumption 3.1.

Assumption 3.5 For z ∈ C, η′ ∈ Rd−2; k ∈ J1, 2K, µk ∈ J−`k, rkK and η3−k ∈ R we define:

aµkk (z, η′, η3−k) :=
∑
σ=0

zσ
r3−k∑

µ3−k=−`3−k

aσ,µeiη3−kµ3−keiη
′·µ′ .

Then a−`11 , ar11 , a−`22 and ar22 are nonzero on {z ∈ C| |z| ≥ 1}×Rd−1 and have nonzero degree compared with
z for all (η′, η3−k).

Then the result generalizing [Cou15] from the half space to corner spaces is the following:

Theorem 3.2 Under Assumptions 3.3-3.4 and 3.5. Assume that the difference scheme approximation (23)
is strongly stable in the sense of Definition 2.1 then (23) is also semi-group stable. More precisely, there
exists C > 0 such that for all γ > 0 and ∆t ∈]0, 1] the solution of (10) satisfies the estimate:

sup
n≥0

e−2γn∆t|||un|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||un|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖un‖2

Bk
≤ (24)

C

 s∑
n=0

|||un|||2R +
γ∆t+ 1

γ

∑
n≥s+1

∆te−2γn∆t|||fn|||2I

+

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑

n≥s+1

∆t∆x2e
−2γn∆t‖hn‖2C

 .

Remark The proof of Theorem 3.1 in fact needs a weaker definition of strong stability. More precisely,
Theorem 3.1 remains true if one assumes that the scheme is strongly stable in the sense of Definition 2.1
with B1 and B2 instead of B1 and B2. However, this is not the case for the proof of Theorem 3.2.

We now turn to the proofs of Theorems 3.1 and 3.2.
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4 Proof of Theorem 3.1

Following [CG11] the finite difference scheme with discrete Dirichlet conditions on each boundary and at the
corner will be a suitable (in the sense that we can demonstrate that the semi-group, interior and extended
traces norms of its solutions are controlable by the source terms) auxiliary problem.

4.1 Finite difference schemes with discrete Dirichlet boundary and corner con-
ditions

Let us introduce the auxiliary finite difference scheme of (21) in which we just substitute the boundary and
corner conditions by Dirichlet conditions:

Un+1
j +QUnj = ∆tfn+1

j , for j ∈ I × Zd−2, n ≥ 0,

Un+1
j = gn+1

1,j , for j ∈ B1 × Zd−2, n ≥ 0,

Un+1
j = gn+1

2,j , for j ∈ B2 × Zd−2, n ≥ 0,

Un+1
j = hn+1

j , for j ∈ C × Zd−2, n ≥ 0,

U0
j = u0,j , for j ∈ R × Zd−2.

(25)

The aim of this paragraph is to show that the solution of (25) satisfies the same estimate as in Theorem 3.1
equation (22).

Theorem 4.1 Under Assumptions 3.1 and 3.2, there exists C > 0 such that for all γ > 0 and ∆t ∈]0, 1]
the solution U of (25) satisfies:

sup
n≥0

e−2γn∆t|||Un|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Un|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖Un‖2

Bk
(26)

≤ C

|||u0|||2R +
γ∆t+ 1

γ

∑
n≥1

∆te−2γn∆t|||fn|||2I

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

 .

The proof of Theorem 4.1 is splitted in two parts. In a first time we show that (26) holds for homogeneous
schemes in the interior and in a second time, we show that (26) holds for inhomogeneous schemes in the
interior but homogeneous for all the others conditions.

Remark Theorem 4.1 is a key step in the proof of Theorem 3.1. However this result is also interesting for
itself. Indeed, it shows that as far as the semi-group stability is concerned, Dirichlet boundary conditions wich
are (with Neumann boundary conditions) the simplest ones to use are suitable. This fact is interesting because
Dirichlet boundary conditions can lead to severe consistency issues for the finite scheme approximation (21)
for example when they are imposed while there exists an outgoing modes (that is a mode which transports
the information from the interior of the domain to the boundaries or to the corner).

4.1.1 Homogeneous schemes in the interior

In this paragraph we show that the solution of the scheme (25) with homogeneous source term in the interior
(that is fnj ≡ 0) admits a suitable estimate to show that (25) is strongly stable. More precisely we will show
the following lemma:
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Lemma 4.1 Under Assumptions 3.1 and 3.2 there exists C > 0 such that for all γ > 0 and ∆t ∈]0, 1] the
solution of (25) (with fnj ≡ 0) satisfies the estimate:

sup
n≥0

e−2γn∆t|||Un|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Un|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖Un‖2

Bk
(27)

≤ C

|||u0|||2R +

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gn3−k‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

 .

Proof : Following [CG11], we introduce Q := −(I + Q̃). Note that from the definition of Q (see (11)) we
have:

Q̃ = −
r1∑

µ1=−`1

Aµ1

1 Tµ1

1 = −
r2∑

µ2=−`2

Aµ2

2 Tµ2

2 . (28)

From Assumption 3.2 we deduce that:

‖Q̃Un‖2Z2 + 2
〈
Q̃Un, Un

〉
Z2
≤ 0. (29)

We then introduce (Wn
j ) the extension of (Unj ) by zero for j1 ≤ −`1 or j2 ≤ −`2. In particular in view

of (28) we have Q̃Wn
j = Q̃Unj on I and Q̃Wn

j = 0 for j1 ≤ −r1 − `1 or j2 ≤ −r2 − `2. We also define the

following subsets of Z2:

EC :=
{
j ∈ Z2|j1 ∈ J1− `1 − r1,−`1K, j2 ∈ J1− `2 − r2,−`2K

}
, (30)

EB1 :=
{
j ∈ Z2|j1 ∈ J1− `1 − r1,−`1K, j2 ∈ J1− `2,∞J

}
,

EB2 :=
{
j ∈ Z2|j1 ∈ J1− `1,∞J, j2 ∈ J1− `2 − r2,−`2K

}
.

Some computations give:

‖Q̃Wn‖2Z2 = ‖Q̃Wn‖2j1≥1−r1−`1 and j2≥1−r2−`2 (31)

= ‖Q̃Wn‖2EC
+ ‖Q̃Wn‖2C + ‖Q̃Wn‖2EB1

+ ‖Q̃Wn‖2B1
+ ‖Q̃Wn‖2EB2

+ ‖Q̃Wn‖2B2
+ ‖Q̃Un‖2I ,

and 〈
Q̃Wn,Wn

〉
Z2

=
〈
Q̃Wn,Wn

〉
j1≥1−`1 and j2≥1−`2

=
〈
Q̃Wn,Wn

〉
C

+
〈
Q̃Wn,Wn

〉
B1

+
〈
Q̃Wn,Wn

〉
B2

+
〈
Q̃Un, Un

〉
I
.

Then for I ∈ {C ,B1,B2,I } we write:

‖Q̃Wn‖2I + 2
〈
Q̃Wn,Wn

〉
I

= ‖Q̃Wn +Wn‖2I − ‖Un‖2I.

In particular, for I = I , using the definition of the scheme (25), we can simplify the previous expression in
the following way:

‖Q̃Un‖2I + 2
〈
Q̃Un, Un

〉
I

= ‖QUn‖2I − ‖Un‖2I = ‖Un+1‖2I − ‖Un‖2I .

This term will permit to obtain the supremum in time in the estimate of Lemma 4.1.
From equations (29),(31),(30) and the two previous relations we obtain, thanks to the fact that we have

Dirichlet boundary and corner conditions, that:

‖Un+1‖2I − ‖Un‖2I +
∑

I∈{C ,B1,B2}

‖Q̃Wn‖2EI
+ ‖Q̃Wn +Wn‖2I ≤ ‖gn1 ‖2B1

+ ‖gn2 ‖2B2
+ ‖hn‖2C .
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Figure 2: Error terms induced by the extension by zero for `1 = 3, `2 = 2, r1 = 2 and r2 = 1.

In particular we have:{
‖Un+1‖2I − ‖Un‖2I + ‖Q̃Wn‖2EB1

+ ‖Q̃Wn +Wn‖2B1
+ ‖Q̃Wn +Wn‖2C ≤ ‖gn1 ‖2B1

+ ‖gn2 ‖2B2
+ ‖hn‖2C ,

‖Un+1‖2I − ‖Un‖2I + ‖Q̃Wn‖2EB2
+ ‖Q̃Wn +Wn‖2B2

+ ‖Q̃Wn +Wn‖2C ≤ ‖gn1 ‖2B1
+ ‖gn2 ‖2B2

+ ‖hn‖2C .

(32)
The following lemma is a straightforward generalization of [[CG11]- Lemma 2.2] from finite to infinite

dimension. It is however the keystone of the analysis.

Lemma 4.2 There exist two constants c1, c2 > 0 such that for all n ∈ N we have:

‖Q̃Wn‖2EB1
+ ‖Q̃Wn +Wn‖2B1

+ ‖Q̃Wn +Wn‖2C ≥ c1‖Wn‖2
B1
,

‖Q̃Wn‖2EB2
+ ‖Q̃Wn +Wn‖2B2

+ ‖Q̃Wn +Wn‖2C ≥ c2‖Wn‖2
B2
.

The proof of this Lemma is given in paragraph 4.4.

We apply Lemma 4.2 to (32), by definition of (Wn
j ) we obtain:

‖Un+1‖2I − ‖Un‖2I + ‖Un‖2
B1

+ ‖Un‖2
B2
≤ C

(
‖gn1 ‖2B1

+ ‖gn2 ‖2B2
+ ‖hn‖2C

)
,

we multiply this equation by ∆xe−2γn∆t and sum for n ∈ J0, NK. It follows, from the definition of the CFL
numbers that:

e−2γN∆t
∣∣∣∣∣∣UN+1

∣∣∣∣∣∣2
I

+
e2γ∆t − 1

∆t

N∑
n=1

∆te−2γn∆t|||Un|||2I +

2∑
k=1

1

λk

N∑
n=0

∆t∆x3−k‖Un‖2Bk

≤ C

|||u0|||2R +

2∑
k=1

1

λk

∑
n≥0

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥0

∆t∆x2e
−2γn∆t‖hn‖2C

 .

We then take the supremum in N in the previous equation to obtain that for ∆t ≤ 1:

e2γ∆t sup
n≥1

e−2γn∆t|||Un|||2I + γ
∑
n≥1

∆te−2γn∆t|||Un|||2I +

2∑
k=1

∑
n≥0

∆t∆x3−k‖Un‖2Bk
(33)

≤ C

|||u0|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥0

∆t∆x2e
−2γn∆t‖hn‖2C

 .
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Then we remark that γ
γ∆t+1 ≤ γ, γ∆t

γ∆t+1 ≤ 1 and use the initial condition to obtain:

sup
n≥0

e−2γn∆t|||Un|||2I +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Un|||2I +

2∑
k=1

∑
n≥0

∆t∆x3−k‖Un‖2Bk
(34)

≤ C

|||u0|||2R +

2∑
k=1

∆t∆x3−k‖g0
k‖2Bk

+
∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk


+ ∆t∆x2‖h0‖2C +

∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

 .

At last using the fact that we have Dirichlet boundary conditions we can bound the right hand side by:

sup
n≥0

e−2γn∆t∆t|||Un|||2I +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Un|||2I +

2∑
k=1

∑
n≥0

∆t∆x3−k‖Un‖2Bk
(35)

≤ C () .

To conclude the proof of Lemma 4.1 we add in (35) the term:∑
I∈{C ,B1,B2}

sup
n≥0

e−2γn∆t|||Un|||2I +
γ∆t

γ∆t+ 1

∑
n≥0

e−2γn∆t|||Un|||2I

so that the left hand side of (33) is greater (because γ∆t
γ∆t+1 < 1) than the left hand side of (27). Then we

remark, thanks to the fact that we have Dirichlet conditions at the boundaries and the corner, that:

|||Un|||2C = ∆x1∆x2

∑
j∈C

|Unj |2 =
1

λ1

∑
j∈C

∆t∆x2|hnj |2,

|||Un|||2B1
=

1

λ1

∑
j∈C

∆t∆x2|gn1,j |2, and |||Un|||2B2
=

1

λ2

∑
j∈C

∆t∆x1|gn2,j |2,

which are exactly the weighted norms of the source terms appearing in the right hand side of (27). We then
conclude by using the injection `1 ⊂ `∞.

�

4.1.2 Homogeneous Dirichlet conditions

We now turn to schemes which only have a nonzero source term in the interior. The result is the following:

Lemma 4.3 Under Assumptions 3.1 and 3.2 there exists C > 0 such that for all γ > 0 and ∆t ∈]0, 1] the
solution of (10) (with gn1 , g

n
2 , h

n, u0 ≡ 0) satisfies the estimate:

sup
n≥0

e−2γn∆t‖Unj ‖2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Un|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖Unj ‖2Bk

≤ C γ∆t+ 1

γ

∑
n≥1

∆te−2γn∆t|||fn|||2I

Proof : First we compute:

‖Un+1‖2I − ‖Un‖2I := ‖(I + Q̃)Un + ∆tfn‖2I − ‖Un‖2I ,

= ‖Q̃Un‖2I + 2
〈
Q̃Un, Un

〉
I

+ 2∆t 〈QUn, fn〉I + ∆t2‖fn‖2I .
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Proceeding as in the proof of Lemma 4.1, we define (Wn
j ) the extension of (Unj ) by zero for j1 ≤ −`1 or

j2 ≤ −`2. If r1 and r2 are nonzero then 4.2 holds and we can repeat exactly the same computations as those
made in the proof of Lemma 4.1. This leads us to the following inequality (where we strongly used the fact
that the conditions at the boundaries and at the corner are homogeneous Dirichlet):

‖Un+1‖2I − ‖Un‖2I + ‖Un‖2
B1

+ ‖Un‖2
B2
≤ C

(
∆t 〈QUn, fn〉I + ∆t2‖fn‖2I

)
.

As in the proof of Lemma 4.1, we multiply the previous inequality by ∆xe−2γn∆t and sum over n ∈ J0, NK.
This gives from the definition of the CFL numbers and by Cauchy-Schwartz inequality:

e−2γN∆t
∣∣∣∣∣∣UN+1

∣∣∣∣∣∣2
I

+
e2γ∆t − 1

∆t

N∑
n=1

∆te−2γn∆t|||Un|||2I +

2∑
k=1

N∑
n=0

∆t∆x3−ke
−2γn∆t‖Un‖2

Bk

≤ C

(
∆t

N∑
n=0

∆te−2γn∆t|||fn|||2I +

N∑
n=0

e−2γn∆t∆t‖
√

∆xUn‖I ‖
√

∆xfn‖I

)
.

To conclude we use Young’s inequality (with parameter e2γ∆t−1
2∆t ) in the last term of the right hand side and

it follows that:

e−2γN∆t
∣∣∣∣∣∣UN+1

∣∣∣∣∣∣2
I

+
e2γ∆t − 1

2∆t

N∑
n=1

∆te−2γn∆t|||Un|||2I +

2∑
k=1

N∑
n=0

∆t∆x3−ke
−2γn∆t‖Un‖2

Bk

≤ C
2∆t

e2γ∆t + 1

N∑
n=0

e−2γ(n+1)∆t∆t|||fn|||2I .

The result is obtained from the inequality e2γ∆t−1
2∆t ≤ γ ≤ γ

γ∆t+1 and by taking the supremum in N (recall

once again that the initial condition is zero).

4.2 Reinforcement of traces estimates

The solution of the auxiliary problem (25), (Unj ), and more especifically its traces will act like an error term
in the final error analysis in the proof of Theorem 3.1. More precisely we will have to control the terms
B1U

·
1,j2,j′

, B2U
·
j1,1,j′

and finally CU ·1,1,j′ which may involve more terms than those controled by (26). It
is typically the case if some of the parameters (for example q11 or q22) are larger than r1 and r2. As a
consequence to perform the final error analysis, we need to obtain a better control of the traces in (26). The
result is the following:

Theorem 4.2 Under Assumptions 3.1 and 3.2, let P1, P2 be two fixed integers, then there exists C > 0
such that for all γ > 0 the solution (Unj ) of (25) satisfies:

sup
n≥0

e−2γn∆t|||Un|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Un|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t

Pk∑
jk=1−`k

‖Unjk,·‖
2
`2(Zd−1)(36)

≤ C

|||u0|||2R +
γ∆t+ 1

γ

∑
n≥1

∆te−2γ(n+1)∆t|||fn|||2I

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

 .

The proof follows, once again, the proof given in [CG11] up to some little difficulties induced by the corner
geometry.
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Proof : Let us define the shifted sequence V nj := Unj1+1,j2,j′
. Then, for all n ≥ 0, (V nj ) solves the equation:

V n+1
j +QV nj = ∆tfn+1

j1+1,j2,j′
, j ∈ I ,

V n+1
j = gn+1

2,j1+1,j2,j′
, j1 ∈ J1,∞J and (j2, j

′) ∈ J1− `2, 0K× Zd−2,

V n+1
j = gn+1

1,j1+1,j2,j′
, j1 ∈ J1− `1,−1K and (j2, j

′) ∈ J1,∞J×Zd−2,

V n+1
j = hn+1

1,j1+1,j2,j′
, j1 ∈ J1− `1,−1K and (j2, j

′) ∈ J1− `2, 0K× Zd−2,

V n+1
j = Un+1

1,j2,j′
, , j1 = 0 and (j2, j

′) ∈ J1,∞J×Zd−2,

V n+1
j = gn+1

2,1,j2,j′
, j1 = 0 and (j2, j

′) ∈ J1− `2, 0K× Zd−2,

V 0
j = u0,j1+1,j2,j′ , j ∈ R.

So we can apply Theorem 4.1 to (V nj ) to obtain the estimate4:

∆t∆x2e
−2γn∆t‖V nr1,·‖

2
`2
j2,j
′ (Zd−2) ≤ C

(
|||u0|||2R +

γ∆t+ 1

γ

∑
n≥1

∆te−2γ(n+1)∆t|||fn|||2I (37)

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C +

∑
n≥1

∆t∆x2

∞∑
j2=1

‖Un1,j2,·‖
2
`2(Zd−3

)
.

We then apply again Theorem 4.1 to estimate the last term in the right hand side of (37) (this is effectively
possible because r1 ≥ 1) and we obtain the following control of Unr1+1,·:

∆t∆x2e
−2γn∆t‖Unr1+1,·‖2`2

j2,j
′ (Zd−2) ≤ C

(
|||u0|||2R +

γ∆t+ 1

γ

∑
n≥1

∆te−2γ(n+1)∆t|||fn|||2I (38)

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

)
.

We can then repeat exactly the same reasoning to the sequence Ṽ nj := V nj1+1,j2,j′
to obtain the analogous of

(39) but for Unr1+2,·. By induction we can then show that for all P1 ≥ r1 + 1 (note that the case P1 ≤ r1 is
already included in Theorem 4.1). We thus obtain that:

∆t∆x2e
−2γn∆t

P1∑
j1=r1+1

‖Unj1,·‖
2
`2
j2,j
′ (Zd−2) ≤ C

(
|||u0|||2R +

γ∆t+ 1

γ

∑
n≥1

∆te−2γ(n+1)∆t|||fn|||2I (39)

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

)
,

which combined with Theorem 4.1 give the desired version of (36) for P2 ≤ r2.
To obtain (36) for arbitrary P2 it is sufficient to reiterate the same arguments but with the shifted

sequence Wn
j := Unj1,j2+1,j′ and this completes the proof of Theorem 4.2.

�
4Note that the term in the right hand side is not sharp because of the shift but it will be sufficient for our discussion.
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4.3 End of the proof by error estimate

With Theorem 4.2 in hand the proof of Theorem 3.1 is just an error analysis. More precisely, let (Unj ) be
the solution of (10), we decompose Unj := V nj +Wn

j where (V nj ) and (Wn
j ) solve respectively:

V n+1
j +QV nj = ∆tfn+1

j , for n ≥ 0, j ∈ I × Zd−2,

V n+1
j = gn+1

1,j , for n ≥ 0, j ∈ B1 × Zd−2,

V n+1
j = gn+1

2,j , for n ≥ 0, j ∈ B2 × Zd−2,

V n+1
j = hn+1

j , for n ≥ 0, j ∈ C × Zd−2,

V 0
j = u0,j , for j ∈ R × Zd−2,

and 

Wn+1
j +QWn

j = 0 , for n ≥ 0, j ∈ I × Zd−2,

Wn+1
j +

∑1
σ=0B

σ,j1
1 Wn+σ

1,j2
= g̃n+1

1,j , for n ≥ 0, j ∈ B1 × Zd−2,

Wn+1
j +

∑1
σ=0B

σ,j2
2 Wn+σ

j1,1
= g̃n+1

2,j , for n ≥ 0, j ∈ B2 × Zd−2,

Wn+1
j +

∑1
σ=0 C

σ,j1,j2Wn+σ
1,1 = h̃n+1

j , for n ≥ 0, j ∈ C × Zd−2,

W 0
j = 0 , for j ∈ R × Zd−2,

where the sequences g̃1, g̃2 and h̃ are defined by: for all n ≤ 0,

∀j ∈ B1 × Zd−2, g̃n1,j := −
1∑

σ=0

Bσ,j11 V n+σ
1,j2,j′

, (40)

∀j ∈ B2 × Zd−2, g̃n2,j := −
1∑

σ=0

Bσ,j22 V n+σ
j1,1,j′

,

and ∀j ∈ C × Zd−2, h̃nj := −
1∑

σ=0

Cσ,j1,j2V n+σ
1,1,j′ .

By construction, (V nj ) satisfies the estimate (36) so we only have to estimate (Wn
j ). We use the fact that

(21) is assumed to be strongly stable is the sense of Definition 2.1 to obtain the estimate:

γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Wn|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖Wn‖2

Bk
≤ (41)

C

 2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖g̃nk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖h̃n‖2C

 .

We now turn to the estimate of the right hand side of (41), thanks to the reinforced traces estimate for
(V nj ), that is to say (36). From (40) we have to estimate |Bσ,j11 V n+σ

1,j2
|2, |Bσ,j22 V n+σ

j1,1
|2 and |Cσ,j1,j2V n+σ

1,1 |2

and we have to distinguish three cases depending of the definition of the operators Bσ,j11 , Bσ,j22 and Cσ,j1,j2

(see paragraph 2.2):

� (10) admits decoupled boundary and corner conditions:
In this framework, independently of σ, we have that:

• for j ∈ B1, Bσ,j11 V n+σ
1,j2

involves the |V n
j̃
|2 for j̃1 ∈ J1, 1 + q11K, j̃2 ∈ Jj2, j2 + q12K;

for j ∈ B2, Bσ,j21 V n+σ
j1,1

involves the |V n
j̃
|2 for j̃1 ∈ Jj1, j1 + q21K, j̃2 ∈ J1, 1 + q22K;

•• finally for j ∈ C , Cσ,j1,j2V n+σ
1,1 involves the |V n

j̃
|2 for j̃1 ∈ J1, 1 + c1K, j̃2 ∈ J1, 1 + c2K.

Consequently:
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• the error term ‖g̃n1 ‖2B1
involves the |V nj |2 for j1 ∈ J1, 1 + q11K, j2 ≥ 1;

the error term ‖g̃n2 ‖2B2
involves the |V nj |2 for j1 ≥ 1, j2 ∈ J1, 1 + q22K;

•• and finally the error term ‖h̃n1‖2C involves the |V nj |2 for j1 ∈ J1, 1 + c1K, j2 ∈ J1, 1 + c2K.
As first noticed in [CG11] if r1 ≥ q11 then we use (26), while if r1 ≤ q11 +1 we use (36) with P1 = q11 +1.

In both cases we obtain:∑
n≥0

∆t∆x2e
−2γn∆t‖g̃n1 ‖2B1

≤ C
(
|||u0|||2R +

γ∆t+ 1

γ

∑
n≥1

∆te−2γ(n+1)∆t|||fn|||2I (42)

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

)
.

The estimate for the term depending on ‖g̃n2 ‖2B2
in the right hand side of (41) follows exactly the same

discussion upon r2 and q22. This permits to show that
∑
n≥0 ∆t∆x1e

−2γn∆t‖g̃n2 ‖2B2
is bounded by the right

hand side of (42).

Finally to estimate the term depending on ‖h̃n‖2C in the right hand side of (41) we use the fact that in

(41), ‖h̃n‖2C and ‖g̃n1 ‖2B1
have the same weight in terms of ∆t and ∆x2. As a consequence (26) gives the

desired bound (that is the right hand side of (42)) if r1 ≥ c1, while if r1 ≤ c1 +1 we use (36) with P1 = c1 +1.
We thus have shown that:

γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||Wn|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖Wn‖2

Bk
≤ (43)

C

(
‖u0‖2I +

γ∆t+ 1

γ

∑
n≥1

∆te−2γ(n+1)∆t|||fn|||2I

+

2∑
k=1

∑
n≥1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑
n≥1

∆t∆x2e
−2γn∆t‖hn‖2C

)
.

� (10) is of type traces to corner: From Definition 2.2, the terms depending on ‖g̃nk ‖2Bk
in the right hand

side of (41) are bounded as in the previous case.

In view of the definition of Cσ,j1,j2 , the norm ‖h̃n1‖2C involves the |V nj |2 for

(j1, j2) ∈ (J1, 1 + c1K× J1, 1 + c2K) ∪ (J1, 1 + c11K× J1− `2, 0K) ∪ (J1− `1, 0K× J1, 1 + c22K) .

To estimate the terms |V nj |2 for (j1, j2) ∈ J1, 1 + c1K × J1, 1 + c2K (resp.J1, 1 + c11K × J1 − `2, 0K) we use
(26) or (36) applied to P1 = 1 + c1 (resp. P1 = 1 + c11) depending of the sign of r1 − c1 (resp. r1 − c11).
Finally to estimate |V nj |2 for (j1, j2) ∈ J1− `1, 0K× J1, 1 + c22K we remark that CFL condition x2

λ1
= x1

λ2
and

we then use (26) or (36) applied to P2 = 1 + c22, estimate (43) follows.

� (10) is of type corner to traces: In the case, the proof of the estimate (43) follows exactly the same
arguments as when (10) admits decoupled boundary and corner conditions so it will not be treated here.

In view of (10) to conclude the proof of Theorem 3.1 we just have to show that supn≤0 e
−2γn∆t|||Wn|||2R

can be bounded by the left hand side of (43). The proof follows exactly the same arguments as in [[CG11],
paragraph 2.3 and Appendix A] so we will not give the details here.

�

4.4 Proof of Lemma 4.2

We will only show here the first equality in Lemma 4.2, the proof of the second one is totally equivalent. Let
us rewrite the first equality in Lemma 4.2 as:

−r1∑
j1=1−r1−`1

‖Q̃Wn
j1,·‖

2
`2(Zd−1) +

0∑
j1=1−`1

‖(Q̃Wn +Wn)j1,·‖2`2(Zd−1) ≥ c
r1∑

j1=1−`1

‖Wn
j1,·‖

2
`2(Zd−1). (44)
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In view of the definitions of Q̃ and (Wn
j ), we have that:

−r1∑
j1=1−r1−`1

‖Q̃Wn
j1,·‖

2
`2(Zd−1) =

−r1∑
j1=1−r1−`1

∣∣∣∣∣
∣∣∣∣∣Ar11 W

n
j1+r1,· +

∑
k<r1

AkWn
j1+k,·

∣∣∣∣∣
∣∣∣∣∣
2

`2(Zd−1)

,

= ‖Ar11 W
n
1−`1,·‖

2
`2(Zd−1) +

−r1∑
j1=2−r1−`1

∣∣∣∣∣
∣∣∣∣∣Ar11 W

n
1−`1,· +

∑
k<r1

Ak1Wn
j1+k,·

∣∣∣∣∣
∣∣∣∣∣
2

`2(Zd−1)

.

As a consequence, equation (44) can be rewritten under the form:

‖LWn
1−`1,·‖

2
`2(Zd−1) + ‖LWn

2−`1,· + L1W
n
1−`1,·‖

2 + ...+ ‖LWn
r1,· + L`1+r1−1(Wn

1−`1,·, ...,W
n
r1−1,·)‖2

≥
r1∑

j1=1−`1

‖Wn
j1,·‖

2
`2(Zd−1),

where L := Ar11 and where the Lk are linear and bounded on `2(Zd−1)k (the precise expression of these
operators is not usefull for what follows).

Then we proceed by indution on r1 and contradiction. Firstly we assume that for all k ∈ N, there exist
two sequences Xk

1 , X
k
2 ∈ `2(Zd−1) such that ‖Xk

1 ‖2`2(Zd−1) + ‖Xk
2 ‖2`2(Zd−1) = 1 and satisfying:

∀k ∈ N, ‖LXk
1 ‖2`2(Zd−1) + ‖LXk

2 + L1X
k
1 ‖2`2(Zd−1) ≤

1

k
.

Thus we have that ‖LXk
1 ‖`2(Zd−1) ↓ 0 which implies, by Assumption 3.1, that ‖Xk

1 ‖`2(Zd−1) ↓ 0 and thus

‖L1X
k
1 ‖`2(Zd−1) ↓ 0 because L1 is bounded.

We thus deduce that ‖LXk
2 ‖`2(Zd−1) ↓ 0 and finally that ‖Xk

2 ‖`2(Zd−1) ↓ 0. This is a contradiction with

the fact that ‖Xk
1 ‖2`2(Zd−1) + ‖Xk

2 ‖2`2(Zd−1) = 1. So (44) holds for r1 = 1. The induction step follows exactly

the same proof and will be omitted.

5 Proof of Theorem 3.2

Following [Cou15] the proof of Theorem 3.2 is based on an energy-dissipation balance law which is obtained
from the introduction of a multiplier inspired of the multiplier of the Leray-Gȧrding method [?]-[?] (see also
[Rau72] for an analogous approach in the continous framework). We will use exactly the same multiplier
as in [Cou15]. Using the fact that this multiplier only depends on the discretization in the interior of the
domain, we will show that this multiplier gives ”strictly dissipative” boundaries and corner conditions and
thus permits to introduce an auxiliary problem (posed in the full space, and as a consequence differing from
the one used in Section 4) whose solution admits suitable (for the final error analysis) control of the traces
to show the semi-group stability of (21).

Before we turn to a precise statement of the auxiliary problem, let us recall the definition of the multiplier
used in [Cou15] and the energy-dissipation balance law that it induces for finite difference schemes in the
full space.

We define:

L :=

s+1∑
σ=0

Tσ
0Q

σ, and M :=

s+1∑
σ=0

σTσ
0Q

σ, (45)

where Tσ
0 is the time-shifting operator.

Then we have the following balance law:

Lemma 5.1 ([Cou15] Proposition 2) Under Assumptions 3.3 and 3.4 then there exist a continous co-
ercive quadratic form E and a continous nonnegative quadratic form D on `2(Zd,R)s+1 such that for all
(vn)n≥0 with values in `2(Zd,R) and all n ∈ N we have:

2 〈〈Mvn, Lvn〉〉Z2 = (s+ 1)|||Lvn|||2Z2 + (T0 − I)E(vn, ..., vn+s) +D(vn, ..., vn+s).
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Note that we do not require that the sequence (vnj ) solves any finite difference scheme. Indeed Lemma 5.1
only depends on the coefficient of the discretization in the interior. This observation will be required to
extend the proof of [Cou15] to corner domains.

5.1 Homogeneous initial conditions and auxiliary problem with strictly dissi-
pative boundary and corner conditions

As the proof of Theorem 3.1, the proof of Theorem 3.2 uses the linearity of (21) to treat separately the
case of homogeneous initial conditions and the case of nonzero initial conditions. For homogeneous initial
conditions the proof is a straightforward generalization of the proof in the half space. This proof is given in
the following paragraph for a sake of completness. For nonzero initial conditions the proof needs to introduce
an auxiliary problem which is posed in the full space and admits strictly dissipative boundary and corner
conditions (compared with the proof in the half space where only one strictly dissipative boundary condition
is needed).

5.1.1 Proof of Theorem 3.2 for homogeneous initial conditions

We first show Theorem 3.2 for homogeneous initial conditions that is:

Lemma 5.2 Under Assumptions 3.3-3.4 and 3.5, assume that the difference scheme approximation (21) is
strongly stable in the sense of Definition 2.1 then u the solution of (23) with homogeneous initial conditions
satisfies that there exists C > 0 such that for all γ > 0 and ∆t ∈]0, 1] we have the following estimate:

sup
n≥0

e−2γn∆t|||un|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||un|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖un‖2

Bk
≤ (46)

C

γ∆t+ 1

γ

∑
n≥s+1

∆te−2γn∆t|||fn|||2I +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t‖gnk ‖2Bk

+
∑

n≥s+1

∆t∆x2e
−2γn∆t‖hn‖2C

 .

Proof : By strong stability of (23) (recall that we assumed un ≡ 0 for n ∈ J0, sK) it is sufficient to show that

supn≥0 e
−2γn∆t|||un|||2R can be bounded by the right hand side of (46). As in the proof of Theorem 4.1 we

introduce (wnj ) the extension of (unj ) by zero for j ∈ Z2 \R (recall that we have Lwnj = 0 for j1 ≤ −`1−r1 or
j2 ≤ −`2 − r2 and Lwnj = Lunj for j ∈ I , and so do for M). Applying Lemma 5.1, using the nonnegativity
of D it follows that:

(T0−I)E(wn, ..., wn+s) ≤ 2 〈〈Mwn, Lwn〉〉R\I −(s+1)|||Lwn|||2R\I +2∆t 〈〈Mun, fn〉〉I −(s+1)∆t2|||fn|||2I ,

where R := R ∪ EB1 ∪ EB2 ∪ EC (see (30) for the definition of the EI). Multiplying by e−2γ(n+s+1)∆t and
summing over n ∈ J0, NK gives:

e−2γ(N+s+1)∆tE(wN+1, ..., wN+s+1) + (1− e−2γ∆t)

N∑
n=1

e−2γ(n+s)∆tE(vn, ...vn+s) ≤ IR\I ,N + II ,N , (47)

with

IR\I ,N :=

N∑
n=0

e−2γ(n+s+1)∆t
(

2 〈〈Mwn, Lwn〉〉R\I − (s+ 1)|||Lwn|||2R\I
)
,

II ,N :=

N∑
n=0

∆te−2γ(n+s+1)∆t
(

2 〈〈Mun, fn〉〉I − (s+ 1)∆t|||fn|||2I
)
,
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and we will estimate these terms separately. First remark that by definition of L, M and (wnj ) the terms

Lwn and Mwn only involve the un+σ
j for j ∈ B1 ∪ B2 and σ ∈ J0, s + 1K. By CFL condition we can

always exchange in the equation defining IR\I ,N , the factor ∆x1 or ∆x2 by ∆t (see Section 4 for similar

arguments) and we can thus use the trace estimate given by the strong stability of (21) and the trivial bound
IR\I ,N ≤ IR\I ,∞ to show that IR\I ,N is bounded by the right hand side of (46).

We now turn to II ,N . For j ∈ I we remark that Mwnj only involves the un+σ
j for j ∈ R and σ ∈ J0, s+1K.

As a consequence ∆t|||Mwn|||I only involves the ∆t|||un+σ|||R for σ ∈ J0, s+1K. We use this time the interior
estimate given by the strong stability assumption on (21) to bound these terms. Applying exactly the same
computations as in [Cou15] we show that II ,N is also bounded by the right hand side of (46).

To conclude, we go back to the left hand side of (47) and from the coercivity of E we have that:

e−2γ(N+s+1)∆t
∣∣∣∣∣∣vN+s+1

∣∣∣∣∣∣ ≤ IR\I ,N + II ,N ,

and (46) follows by taking the supremum in N .

�

Remark Note that compared to the proof of Theorem 3.1 it is here crucial (in view to obtain a suitable
estimate for IR\I ,N ) that the strong stability provides a control of the extended traces on B1 and B2 and
not only a control of the traces on B1 and B2.

5.1.2 Auxiliary problem

In this paragraph we use the multiplier M to introduce an auxiliary problem defined in the full space for
which we can show a semi-group estimate and an extended traces estimate (which will be used in the end of
the proof as it has been done in Section 4 to control the error terms).

More precisely the result is the following:

Theorem 5.1 ([Cou15], Theorem 2) Under Assumptions 3.3-3.4 and 3.5, for all P1, P2 ∈ N, there exists
C > 0 such that the solution (unj ) of:

Lunj = 0, for n ≥ 0, j ∈ I × Zd−2,

Munj = gn+s+1
1,j , for n ≥ 0, j1 ≤ 0, j2 ≥ 1, j′ ∈ Zd−2,

Munj = gn+s+1
2,j , for n ≥ 0, j1 ≥ 1, j2 ≤ 1, j′ ∈ Zd−2,

Munj = hn+s+1
j , for n ≥ 0, j1 ≤ 0, j2 ≤ 0, j′ ∈ Zd−2

unj = un,j , for n ∈ J0, sK, j ∈ Zd,

(48)

satisfies that for all γ > 0, ∆t ∈ ]0, 1]:

sup
n≥0

e−2γn∆t|||un|||2Z2 +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||un|||2Z2 +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t

Pk∑
jk=1−`k

‖unjk,·‖
2
`2(Zd−1)

≤ C

 s∑
n=0

|||un|||2Z2 +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t

∑
jk≤0,j3−k≥1

‖gnk,jk,j3−k·‖
2
`2(Zd−2)

+
∑

n≥s+1

∆t∆x2e
−2γn∆t

∑
j1≤0,j2≤0

‖hnjk,j3−k,·‖
2
`2(Zd−2)

 . (49)

Before we turn to the proof of Theorem 5.1 let us give some arguments explaining why essentially the
same as the proof of Theorem 2 in [Cou15] will effectively operate even if the auxiliary problems differ.
Indeed compared to the auxiliary problem introduced in [Cou15], the auxiliary problem (48) is defined by
Munj = gn+s+1

2,j and not Lunj = 0 in the quarter space j1 ≥ 1, j2 ≤ 1, j′ ∈ Zd−2. Moreover the proof of (49)
given in [Cou15] relies on partial Fourier transform which are not a priori suitable in the geometry of the
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quarter space due to the fact that ”there are too many normal directions”.

However, using the fact that (unj ) the solution of (48) is defined in the full space Zd any extension will
be needed to perform partial Fourier transform and consequently, in this particular setting, we will be able
to perform two partial Fourier transforms to obtain the estimate (49) (one transform by trace that have to
be controled). The fact that (unj ) does not solve Lunj = 0 in the quarter space j1 ≥ 1, j2 ≤ 1, j′ ∈ Zd−2 will
not be an issue neither. Indeed, in [Cou15] the main part of the proof leading to (49) does not strongly use
the equation solved by (unj ). Indeed here are the main points in the proof of [Cou15].

Firstly one uses Lemma 5.1 to obtain an estimate of supn≥0 e
−2γn∆t|||un|||2Z2 ,

∑
n≥0 ∆te−2γn∆t|||un|||2Z2

and
∑
n≥0 e

−2γ(n+s+1)∆t|||Lun|||2Z2 .

Then to remplace
∑
n≥0 e

−2γ(n+s+1)∆t|||Lun|||2Z2 by
∑2
k=1

∑
n≥0 ∆t∆x3−ke

−2γn∆t
∑Pk
jk=1−`k ‖u

n
jk,·‖

2
`2(Zd−1)

in this estimate, the arguments are the following. In a first time one works in the regime γ∆t large and only
needs algebraic properties of L (but does not use the fact that (unj ) solves a precise difference scheme) and
thus in this regime we will be able to apply the same proof as in [Cou15].

Then, in the regime γ∆t small, the first step is to use the estimate to show that Laplace-Fourier transform
of (unj ) is well-defined. Then by algebraic computations and using the fact that (unj ) solves the boundary
conditions (but not the fact that it solves Lunj = 0 on any quarter space) one obtains that some algebraic
quantity involving the Laplace-Fourier transform of (unj ) and the symbol of L is bounded by the right hand
side of (49). To conclude its remains to show that the considered algebraic quantity controls the extended
traces for any considered sequence. This last point is independent of the defintion of (unj ) and so it will also
works if (unj ) solves (48).

Proof : Firstly we apply Lemma 5.1 to (48), in view to demonstrate the analogous estimate than in [Cou15].
From the nonnegativity of D it follows that:

(T0 − I)E(un, ..., un+s) + (s+ 1)|||Lun|||2Z2 ≤ 2 〈〈gn1 , Lun〉〉K−∞,0K×J1,∞J + 2 〈〈gn2 , Lun〉〉J1,∞J×K−∞,0K

+ 2 〈〈hn, Lun〉〉K−∞,0K2 ,

we then use three times Cauchy-Schwartz combined with Young inequality (with parameter (s+1)
6 ) to obtain:

(T0 − I)E(un, ..., un+s) +
(s+ 1)

2
|||Lun|||2Z2 ≤ 6

(
‖gn1 ‖2K−∞,0K×J1,∞J + ‖gn2 ‖2J1,∞J×K−∞,0K + ‖hn‖2K−∞,0K2

)
.

We then multiply the latter inequality by e−2γ(n+s+1)∆t and sum from n = 0 to N . Reiterating the same
kind of computations as in Section 4 we obtain, from the coercivity of E the following estimate:

sup
n≥0

e−2γn∆t|||un|||2Z2 +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||un|||2Z2 +
∑
n≥0

e−2γ(n+s+1)∆t|||Lun|||2Z2 ≤ (50)

C

 s∑
n=0

|||un|||2Z2 +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t

∑
jk≤0,j3−k≥1

‖gnk,jk,j3−k·‖
2
`2(Zd−2)

+
∑

n≥s+1

∆t∆x2e
−2γn∆t

∑
j1≤0,j2≤0

‖hnjk,j3−k,·‖
2
`2(Zd−2)

 .

Using the definition of the CFL numbers we can rewrite the weight ∆x1∆x2 as ∆t∆x2 or ∆t∆x1. So (50)
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can also be rewritten under the form:

sup
n≥0

e−2γn∆t|||un|||2Z2 +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||un|||2Z2 +

2∑
k=1

∑
n≥0

∆t∆x3−k
∑
jk∈Z

e−2γ(n+s+1)∆t‖Lunjk,·‖
2
`2(Zd−1) ≤

C

 s∑
n=0

|||un|||2Z2 +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t

∑
jk≤0,j3−k≥1

‖gnk,jk,j3−k·‖
2
`2(Zd−2)

+
∑

n≥s+1

∆t∆x2e
−2γn∆t

∑
j1≤0,j2≤0

‖hnjk,j3−k,·‖
2
`2(Zd−2)

 . (51)

To conclude the proof of Theorem 5.1 it is sufficient to explain how (51) implies a good control of the ex-

tended traces values
∑2
k=1

∑
n≥0 ∆t∆x3−ke

−2γn∆t
∑Pk
jk=1−`k ‖u

n
jk,·‖

2
`2(Zd−1).

Following [Cou15] in view to do this it is sufficient to distinguish two cases depending on the value of
γ∆t. The proof in the framework γ∆t large is totally analogous (because as already mentioned it only uses
algebraic properties of the operator L) to the one given in [Cou15] and will not be repeated here. Let us
recall that when γ∆t is large we, in fact, obtain the control of infinitely many traces:

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t

∑
jk∈Z
‖unjk,·‖

2
`2(Zd−1) ≤

C

 s∑
n=0

|||un|||2Z2 +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t

∑
jk≤0,j3−k≥1

‖gnk,jk,j3−k·‖
2
`2(Zd−2)

+
∑

n≥s+1

∆t∆x2e
−2γn∆t

∑
j1≤0,j2≤0

‖hnjk,j3−k,·‖
2
`2(Zd−2)

 ,

and not only a control of finitely many traces.

We now turn to the case γ∆t small. As the reader will see the proof in this framework will not need any
adaptation of the proof given in [Cou15]. However as the proof of [Cou15] relies on partial Fourier transform
(which was the only point that we needed to adapt in the proof of Theorem 3.1) it seems important, in the
author opinion, to give some comments about the previous claim.

Firstly the estimate (51) shows that the Laplace in time and partial Fourier transforms in spaces (j1, j
′)

and (j2, j
′) of (unj ) are well-defined. We denote these transforms by ûj2

1
and ûj1

2
respectively. We introduce

τ := γ + iθ the dual variable of time for the Laplace transform and ηk := (jk, j
′) the dual variable of

space for the partial Fourier transform in space (jk, j
′). To save some notations we also denote ηk,∆ :=

(jk, j
′) · (∆xk,∆x′).

The following lemma gives a control of ûj2
1

and ûj1
2

up to some multiplication by the associated symbols
of L and M in term of the right hand side of (49) if γ∆t < lnR0 for some fixed R0 > 1:

Lemma 5.3 There exists C > 0 such that for all γ > 0, ∆t ∈ ]0, 1] satisfying γ∆t < lnR0, we have that for
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k ∈ J1, 2K:

∑
jk∈Z

∫
R×Rd−1

∣∣∣∣∣∣
rk∑

µk=−`k

aµk(eτ∆t, η∆,3−k)ûjk
3−k

(τ, η3−k)

∣∣∣∣∣∣
2

dθdη3−k

+
∑
jk≤0

∫
R×Rd−1

∣∣∣∣∣∣
rk∑

µk=−`k

eτ∆t∂za
µk(eτ∆t, η∆,3−k)ûjk

3−k
(τ, η3−k)

∣∣∣∣∣∣
2

dθdη3−k

≤ C

 s∑
n=0

|||un|||2Z2 +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t

∑
jk≤0,j3−k≥1

‖gnk,jk,j3−k·‖
2
`2(Zd−2)

+
∑

n≥s+1

∆t∆x2e
−2γn∆t

∑
j1≤0,j2≤0

‖hnjk,j3−k,·‖
2
`2(Zd−2)

 .

Then the following lemma gives the control of the trace of any sequence in term of the left hand side of the
inequality appearing in Lemma 5.3. More precisely, we have:

Lemma 5.4 Under Assumptions 3.3-3.4 and 3.5, for k ∈ J1, 2K and for any fixed Pk ∈ N, there exists
CPk > 0 such that for all z ∈ C such that 1 ≤ |z| ≤ R0, for all η3−k ∈ Rd−1 and for all sequence
(wjk)jk∈Z ∈ `2(Z,C) we have:

Pk∑
jk=−`k−rk

|wjk |2 ≤ CPk

∑
jk∈Z

∫
R×Rd−1

∣∣∣∣∣∣
rk∑

µk=−`k

aµk(eτ∆t, η∆,3−k)wjk+µk

∣∣∣∣∣∣
2

dθdη3−k

+
∑
jk≤0

∫
R×Rd−1

∣∣∣∣∣∣
rk∑

µk=−`k

eτ∆t∂za
µk(eτ∆t, η∆,3−k)wjk+µk

∣∣∣∣∣∣
2

dθdη3−k

 .

With Lemmas 5.3 and 5.4 in hand let us describe how to conclude the proof of Theorem 5.1. For k ∈ J1, 2K,
we apply Lemma 5.4 with z := eτ∆t and to the sequences (ûjk

3−k
(τ, η3−k))jk∈Z. We then integrate the

estimate of Lemma 5.4 with respect to (θ, η3−k) and choose the real part of τ small enougt to apply Lemma
5.3. We thus have:

Pk∑
jk=−`k−rk

∫
R×Rd−1

|wjk |2dθdη3−k ≤ C

 s∑
n=0

|||un|||2Z2 +

2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t

∑
jk≤0,j3−k≥1

‖gnk,jk,j3−k·‖
2
`2(Zd−2)

+
∑

n≥s+1

∆t∆x2e
−2γn∆t

∑
j1≤0,j2≤0

‖hnjk,j3−k,·‖
2
`2(Zd−2)

 .

To come back in terms of the sequence (unjk,·) we apply Plancherel formula in the left hand side and use the
fact that γ∆t is small to obtain that:

Pk∑
jk=−`k−rk

∑
n≥0

∆te−2γn∆t‖ujk,·‖2`2(Zd−1) ≤
Pk∑

jk=−`k−rk

∑
n≥0

1− e−2γ∆t

2γ∆t
∆te−2γn∆t‖ujk,·‖2`2(Zd−1)

=

Pk∑
jk=−`k−rk

∫
R×Rd−1

|wjk |2dθdη3−k,

which concludes the proof of Theorem 5.1.

�
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Remark We conclude this paragraph by giving some elements of proof for Lemmas 5.3 and 5.4. The proof of
5.4 is the most technical one but since it only depends on the tangential operators aµk , we will not reiterate it
here. The proof of Lemma 5.3 uses the fact that the considered sequence solves an explicit scheme. However
this point is only used to establish the estimate (51). As we have already seen this estimate also holds for
our choice of auxiliary scheme and consequently we can reiterate exactly the proof given in [Cou15] to show
Lemma 5.3.

5.2 End of the proof by error estimate

The case of finite difference schemes with homogeneous initial conditions has already been treated in Para-
graph 5.1. So without loss of generality we can assume that in (23) the sequences (fnj ), (gn1,j), (g

n
2,j) and

(hnj ) are zero. We denote the associated solution by (unj ).By linearity of (23) we decompose (unj ) into
unj := vnj + wnj where (vnj ) is the solution of the auxiliary problem with strictly dissipative boundary and
corner conditions: 

Lvnj = 0, for n ≥ 0, j ∈ I × Zd−2,

Mvnj = 0, for n ≥ 0, j1 ≤ 0, j2 ≥ 1, j′ ∈ Zd−2,

Mvnj = 0, for n ≥ 0, j1 ≥ 1, j2 ≤ 1, j′ ∈ Zd−2,

Mvnj = 0, for n ≥ 0, j1 ≤ 0, j2 ≤ 0, j′ ∈ Zd−2,

vnj = ũn,j , for n ∈ J0, sK, j ∈ Zd,

(52)

where (ũn,j) is the extension of (un,j) by zero for j 6= R; and where (wnj ) is the solution of (23) with
homogeneous initial conditions (but inhomogeneous boundary and corner conditions):

Lwnj = 0, for n ≥ 0, j ∈ I × Zd−2,

wn+s+1
j +

∑s+1
σ=0B

σ,j1
1 wn+σ

j = g̃n+s+1
1,j , for j ∈ B1 × Zd−2, n ≥ 0,

wn+s+1
j +

∑s+1
σ=0B

σ,j2
2 wn+σ

j = g̃n+s+1
2,j , for j ∈ B2 × Zd−2, n ≥ 0,

wn+s+1
j +

∑s+1
σ=0 C

σ,j1,j2wn+σ
j = h̃n+s+1

j , for j ∈ C × Zd−2, n ≥ 0,

wnj = 0, for j ∈ R × Zd−2, n ∈ J0, sK.

(53)

where g̃n+s+1
k,j and h̃n+s+1

j are the errors at the boundaries and at the corner induced by the sequence (vnj ).
More precisely they are defined by:

for k ∈ J1, 2K, g̃n+s+1
k,j := −vn+s+1

j −
s+1∑
σ=0

Bσ,jkk vn+σ
j , for j ∈ Bk × Zd−2, (54)

and h̃n+s+1
j := −vn+s+1

j −
s+1∑
σ=0

Cσ,j1,j2vn+σ
j , for j ∈ C × Zd−2.

Using the fact that (53) admits homogeneous initial conditions we can apply the estimate obtained in
Paragraph 5.1.1. We thus have:

sup
n≥0

e−2γn∆t|||wn|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||wn|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖wn‖2

Bk
≤ (55)

C

 2∑
k=1

∑
n≥s+1

∆t∆x3−ke
−2γn∆t‖g̃nk ‖2Bk

+
∑

n≥s+1

∆t∆x2e
−2γn∆t‖h̃n‖2C

 ,

and we want to estimate the errors terms g̃n+s+1
k,j and h̃n+s+1

j in terms of the initial datas. In view of (54)
from the triangle inequality we deduce that to conclude it is sufficient to control the norms of the terms
−vn+s+1

j +
∑s+1
σ=0B

σ,jk
k vn+σ

j and −vn+s+1
j +

∑s+1
σ=0 C

σ,j1,j2vn+σ
j by the initial datas. To do this we used the

strengthened traces and corner estimates obtained for (vnj ) in Theorem 5.1.
As it has been done in the proof of Theorem 3.1 (see Paragraph 4.3) a discussion depending on the kind

of the boundaries and corner conditions in (10) is needed. However as the arguments are totally similar to
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these described in the proof of Theorem 3.1 we will only here describe the proof when (10) admits decoupled
traces and corner conditions (the proofs in the others cases are the same up to different values of P1 and P2

(see again Paragraph 4.3)).

Note that in view of the definition of Bσ,j11 when (10) admits decoupled traces and corner conditions,

for fixed n and j ∈ B1 × Zd−2, the term −vn+s+1
j +

∑s+1
σ=0B

σ,j1
1 vn+σ

j only involve the vn+σ

j̃
for j̃ ∈ J1 −

`1, q11K × J1,∞J×Zd−2 and σ ∈ J0, s + 1K. The triangle inequality and the estimate (49) applied to P1 :=
max {r1, 1 + q11} then give (recall that (52) is homogeneous at the boundary):

∑
n≥s+1

∆t∆x2e
−2γn∆t‖g̃n1 ‖2B1

≤ C
∑
n≥0

∆t∆x2e
−2γn∆t

P1∑
j1=1−`1

‖vnj1,·‖
2
`2(Zd−1)

≤ C

s∑
n=0

|||ũn,·|||2Z2 .

We then apply exactly the same arguments to estimate g̃n+s+1
2,j (choosing P2 = max {r2, 1 + q22} in (49))

and we to obtain that: ∑
n≥s+1

∆t∆x1e
−2γn∆t‖g̃n2 ‖2B2

≤ C
s∑

n=0

|||ũn,·|||2Z2 .

Finally to deal with h̃n+s+1
j we reiterate a last time the previous reasoning with P1 = max {r1, 1 + c11} in

the estimate (49) to obtain:

∑
n≥s+1

∆t∆x2e
−2γn∆t‖h̃n‖2C ≤ C

s∑
n=0

|||ũn,·|||2Z2 .

As a consequence we have that

sup
n≥0

e−2γn∆t|||wn|||2R +
γ

γ∆t+ 1

∑
n≥0

∆te−2γn∆t|||wn|||2R +

2∑
k=1

∑
n≥0

∆t∆x3−ke
−2γn∆t‖wn‖2

Bk
≤

C

s∑
n=0

|||ũn,·|||2Z2 ,

and the same estimate holds for (vnj ) (by (49) for P1 = r1 and P2 = r2). We thus obtain (24) by the triangle

inequality and from the fact that, in view of its definition, |||ũn,·|||2Z2 = |||ũn,·|||2R.

�

References
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