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Abstract

In this article we are interested in the semi-group stability for finite difference schemes approximations
of hyperbolic systems of equations in corner domains. We give generalizations of the results of
and [Coul5| from the half space geometry to the quarter space geometry. The most interesting fact is
that the proofs of [CG11] and [Could] can be adaptated with minor changes to apply in the quarter
space geometry. This is due to the fact that both methods in and [Coulh| are based on energy
methods and the construction of auxiliary problems with strictly dissipative boundary conditions which
are known to be suitable for the strong well-posed for initial boundary value problems in the quarter
space.
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1 Introduction

In this article we are interested in finite difference schemes approximation for linear hyperbolic problems in
the quarter space. Such problems read:

L(0)u = Opu + A101u + A209u + 2?23 Aj0ju = f, in [0,00[xQ x RI"2
Biujg,—o = g1, on [0,00[x90 x R*72,

Baujz,—0 = g2, on [0, 00[x0€p x R,

Ujp—g = up, on  x R¥72,

(1)

where € denotes the quarter space Rﬁ_ and 0y (resp. 0€Q2) is the component of the boundary associated
to {z1 = 0} (resp. {z2 =0}). In (1)) the coefficients in the interior, the A; are matrices in M, »,(R) while
the coefficient on the boundary B (resp. Bz) is an element of M, «,, (R) (resp.M,,x2(R)) where p; (resp.
p2) denotes the number of strictly positive eigenvalues of Ay (resp. As).

Finite difference schemes approximations in the quarter space are thus just discretizations of and
have pratical motivations in scientific computations. Indeed, due to the impossibility to modeling the full
space R? during a numerical simulation, all the schemes implemented in a computer lie in a large rectangle
and thus numerically boundary conditions have to be specified even for the numerical approximation of a
Cauchy problem. Thus the theoretical study of such schemes set in a domain with corners also have more
pratical views. About these pratical views we can be more specific and describe, for example the question of
absorbing boundary conditions for wave propagation (see for example [EM77]-[Hig86] and [Ehr10]). These
conditions are non physical ones and aim to minimize, as much as possible, the ”parasite” reflections which
occur when the wave hits the artificial boundaries implemented in the simulation of the Cauchy problem.
Consequently these conditions are choosen in such a way that the reflections against the boundaries modify
or influence as little as possible the approximation in the interior of the box. A similar method is the study
of perfectly matched layer (see for example [Ber94]) which are boundary conditions which will only modify
the approximation in a small neighborhood of the boundary.

In this article we are interested in the stability of difference schemes approximation set in a space with
corner. But before to turn to a more precise description of the notion of stability for schemes with corner
let us recall some elements of comparison with the notion of strong well-posedness for continous problems.

Strong well-posedness means existence and uniqueness of the solution of and that this solution is as
regular (in the L%-norm) as the datas of the problem. Such a control of the solution by the data is refered as
an energy estimate for . In the author knowledge, even for homogeneous initial conditions (that is to say
ug = 0) the strong well-posedness of , under suitable conditions, has not been established yet. The main
contribution about this question is due to [Osh73], in which the author obtains, thanks to the introduction
of a new inversibility condition (we refer to [Osh73| or to [[Benl5|, Chapitre 5] for more details), an energy
estimate for the L?-norm of the solution. However the regularity of the source terms of asked to control
the L2-norm of the solution is not explicit. As a consequence, there is a non explicit number of losses of
derivatives in the energy estimate and we can not conclude to the strong well-posedness.

However in a particular framework, more precisely for strictly dissipative boundary conditions, that is
to say boundary conditions which make the energy decrease, the strong well-posedness (with homogeneous



initial datas) is established see [[BenI5|, Chapitres 4 and 5]. We also refer to [HR] for a result dealing with
three dimensional corners in which, thanks to the strict dissipativity and under an ellipticity assumption
on the spatial symbol of the hyperbolic operator, the authors obtain a result of strong well-posedness for
corners problems with inhomogeneous initial conditions.

We give some more details about the mentioned previous energy estimates. By analogy with the natural
energy estimate in the half space geometry [Kre70], the expected energy estimate for u the solution of
is:

oo 2 e 9]
supe ult ey + 7 [l Byt + 30 [ e it o, 0
2 k=1

2
1 o0 B o0 B
< c(mo%z(m7 / I £t ot + S / e 2“||gk<t,->||ia(mk)dt>,
0 k=1 0

and, in our definition stability for difference schemes approximations of means that some discretized
version of (see Definition for a precise definition) holds for the solution of the scheme.

1.1 Some results about strong well-posed and stability for the half space geom-
etry

Before to describe the obtained stability results, it is interesting to give a brief overview of the known
results on this subject in the simpler geometry of the half space Q= {x = (z1,2")|x1 > 0,2" € Rd_l}. The
associated version of reads:

L(®)u = f, in [0, 00[xQ,

Bujy,—o = g1, on [0,oo[><8(~2, (3)

Uj—p = Ug, ON Q,

and a finite difference scheme approximation of is (for example for a one time step approximation) given
by:
UMt + QU = Atfi*, forn >0, j1 > 1,5 € 297,
U"+1 + BOmUn + BlmU”+1 gt for n>0,>1—4 <j; <0,5 €z, (4)
Uofuo],for j1 >17€1,j € 741,

where @ is a dicretization of the spatial differetiation in the interior, B%Jt and B'* are discretizations of
the boundary condition B and finally where ¢; € N is the stencil of the operator @ in the (—z;)-direction.

Compared to the corner geometry, the theory of semi-group well-posedness for is much more elabo-
rated. Semi-group well-posedness for means existence and uniqueness of a solution u which satisfies the
energy estimate: there exists C' > 0 such that for all v > 0 we have

o
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And, from [Kre70] and [Rau72], we know that the initial boundary value problem in the half space is
semi-group well-posed if and only if the so-called uniform Kreiss-Lopatinskii condition is satisfied. This
conditions means that in the normal modes analysis no stable mode satisfies the homogeneous boundary
condition.

Semi-group stability for the finite difference scheme approximation (4) means (for example) that the

oo

(8 )



solution of satisfies the estimate: there exists C such that for all v > 0, for all At €0, 1]

[eS) e8] 0
sup Az e~ 2mAt Z ||anl||2+ﬁ_|_1 ZAtAxle*%"At Z ||Uj"1||2+z Ate=mAt Z oy |12
n=0 PR 7 n>0 PR n>0 =16
o0 o0
At+1 _
gc( S Arfuol? + 2SS ArAz e A ST e |2
Ji=1-—41 n>1 Ji=1—£
0
+ 30 AtemHAL ST gn 2), (6)
n>1 J1=1-£;
where the || - ||-norm is defined by: forj’ € Z471,
U|I? == H Az Y U
jrezda—1

and where the parameters At , Az, k = 1, ..., d are the parameters of the cartesian discretization of [0, oo[xﬁ.
These parameters are assumed to satisfy some CF'L (COURANT-FRIEDRICHS-LEWY) condition (that is to
say that the ratios A\ := H are constant while At | 0).

Note that if ones formally takes the limit At | 0 in the stability estimate for (U]') then he recovers
the energy estimate for u that is (5)). As a consequence the stability estimate for (U”) is just a discretized
version of ({9 . Once again we have a full characterization of the difference schemes approximations that are
strongly stable : the scheme is strongly stable if and only it satisfies the so-called GKS (Gustafsson-
Kreiss-Sundstrém) condition (see [BGST72]). This condition is in some sense a discrete version of the uniform
Kreiss-Lopatinskii condition.

The sketch of proof to establish the semi-group stability or the semi-group well-posed in the same and is
based in two distinct substeps. In a first time the study is restricted to homogeneous initial conditions and
we show the estimate but without the control of the supremum in the left hand side (and also without
the term ug in the right hand side). This estimate characterized all the problems which are call strongly
well-posed (resp. strongly stable) in the setting of continous (resp. discrete) problems. More precisely this
estimate in the continous setting reads: there exists C' > 0 such that for all v > 0

7/0 fht”“(@')“iz@)dt‘f'/o e gy, =o( )HL2(89)d

1 —2vt 2 007215 2
<o [T e g+ [T e a2yt

and: there exists C' > 0 such that for all v > 0, At € ]0, 1]

00 0
2ynAt 2 —2ynAt
TR o AR 30 GRS A 3 O P
j1=1-41 n>0 j1=1-¢1
YAt 4+ 1 s 0
§C<+7ZAtAx1e_27"At ST AR Atemat N ||g;—ﬁ,||2),
v n>1 J1=1-41 n>1 Jj1=1-41

in the discrete framework.

Then in a second time, this estimate characterizing the strong well-posedness (resp. strong stability) is
extended to non homogeneous initial conditions and the supremum is added in the left hand side in view to
obtain (resp. the discretized version of) (§). Once the estimate is demonstrated we tell that the problem
is semi-group well-posed in the continous setting and semi-group stable in the discrete one. Let us note
the important fact that in this second step, the main assumption is to assume that the considered problem



is strongly well-posed or strongly stable (up to some possibly technical extra assumptions in the discrete
framework).

In the continous setting the full characterization of strongly well-posed problems has been established in
[Kre70] and its extension to non homogeneous initial conditions establishing the semi-group well-posedness
is due to [Rau72] (we also refer to [BGO7] or [CP&I] for an overview/review of the proofs).

In the discrete setting, the first result showing strong stability for a finite difference scheme is due to
[BGS72| and has then been extended to more general finite difference schemes, for example, in [Cou09]-
[Coull]. About the semi-group stability of schemes with non zero initial conditions, the first result applies
to one step in time finite difference schemes and is due to [Wu95]. The method of [Wu95|] has then been
generelized in [CG11]. An other result in the theory of semi-group stability for finite difference schemes with
several time steps this time (but restricted to scalar equations) is obtained in [Coul].

1.2 Generalization of semi-group stability results to corner domains

In this article we give generalizations of the results contained in [CG11] and [Could] from the half space
to the quarter space geometry. More precisely we show that if we assume that the finite difference scheme
approximation is strongly stable (see Definition for a precise definition) then a discretized version of

(see (22)-(24))) can be obtained for all the finite difference schemes that we are able to deal with in the half
space geometry.

As a consequence, the geometry in which the finite difference scheme is set does not prevent to go from
strong stability to semi-group stabilityﬂ

As the reader will see, our proofs follow the main steps of the proofs in [CGII] and [Could]. This fact
may seem to be surprising but it should not. Indeed the proofs in [CGII] and [Coul5] both relies on the
introduction of an auxiliary problem. More precisely in [CG11], the authors first treate the case of one
dimensional schemes. Then to generalize their result to multidimensional schemes they use partial Fourier
transform in the tangential variables to recover the one dimensional case.

In the one dimensional setting, the auxiliary problem used in [CGII] is the finite difference scheme ({4))
but with Dirichlet boundary conditions instead of the discretized boundary conditions involving B%Jt and
BYJ1. The auxiliary problem used in [Coul5] in based on two discrete multipliers coming from the Leray-
Garding method to obtain a priori estimates for hyperbolic PDE (see [?]-[?]). Note that the existence
of such multipliers was the starting point in the analysis of [Rau72] to go from the strong well-posed to
the semi-group stability for initial boundary value problems. Compared with the auxiliary problem used
in [CG11], the auxiliary problem of [Could] is defined on the full space {j € Zd} and thus it permits to
use Laplace- partial Fourier transform (without any extension) to translate some energy estimates for the
solution in terms of the symbol of the discretization operator.

Then the authors use the fact that each auxiliary finite difference scheme admits strictly dissipative
boundary condition to show the semi-group stability from the strong stability.

In the continous setting it is known (see for example [[Benl5], Chapitre 4]) that strictly dissipative bound-
ary conditions are suitable for corner problems as well as for problems in the half space. As a consequence,
as far as strict dissipativity is concerned, the proofs for finite difference schemes in the half space should also
operate for the quarter space geometry and it is effectively the case with sometimes really minor changes.
An other important point in the generalization of [Coul5| to the quarter space geometry is that the auxiliary
problem is set in the full space. Consequently the use of the Laplace- partial Fourier transform (which is
prohibited, without preliminary extension, in the quarter space geometry because there are two ”normal”
directions) also operates because we are in the full space.

This point will not be true anymore for the generalization of [CG11] for quarter spaces because the aux-
iliary problem will not be set in the full space. However we show that in that case it is possible to do the
analysis of [CG11] and specifically the energy method directly for multidimensional schemes. So we will not

n all the article to make the notations as simple as possible we restricted our subject to domains with only one two
dimensional corner. However all the results extended to multi-dimensional corners and/or to domains with several corners.



have to perform any partial Fourier transform and the result extend to the quarter space geometry.

Of course the main assumption in both of the generalization is that the finite difference scheme for the
corner problem is strongly stable. In the author knowledge there is no result concerning the full characteri-
zation of strongly stable schemes in corner domains in the litterature. Moreover in the author opinion this
question could be a challenging one. What is clear is that imposing that each finite difference scheme in
the half spaces {j1 > 1— {1, (j2,5') € Z47 '} and {j1 € Z, jo > 1 — (o, )" € Z~2} satisfies the GKS condition
will be necessary. However the study of [Osh73|] for continous problems tells us that a new condition will
be needed. In analogy with the half space geometry, that seems to be a reasonable conjecture is that to
characterize strong stability in corner domains a discretized version of this condition will also be necessary.

1.3 Organization of the article

The paper is organized as follows. In Section [2] we introduce the notations and some definitions, in particular
we give some new definitions needed to deal with the corner geometry. Then in Section [3| we state the
assumptions and the main results. At last Sections [4] and [5] are devoted to the proofs of each generalization.

2 Finite difference schemes and corner

2.1 General notations and definitions

In all what follows we use the short hand notation [-,-] for the ”intervals of integers”, more precisely for
a,b € R we define [a,b] := [a,b] N Z.

To describe the finite difference scheme that we will consider we define the following subsets of Z2, for
] = (jl,jz) € 72 let:

S ={j€L?|j1,j2 > 1}, €:={j€Z?j1 €[l —£1,0],j2 € [L —¥£,0]} (7)
B ={jel?j1 €[l —01,0,1 <ja}, Bo:={j€Z?1<j1,jo€[l—(0]}, (8)

where ¢ (resp. {3) is a fixed positive integer (that will correspond to the number of space steps of the scheme
towards the ”left” (resp. "bottom”)).

The set .# has to be understood as the discretization of the interior of 2, %, (resp. %) as the dis-
cretization of the boundary 9€; (resp. 9€22) and finally % is a discretization of the corner of 2. Finally, the
full set of resolution & is defined by

%ZZJU%1UL%)QU%.

To state our definition of strong stability we introduce the extended discretizations of the traces %; and
Py defined by:

@1 = {j (S Z2|j1 S [[1 —61,7’1]},1 —62 §j2}7 @2 = {j S ZZ‘I —61 Sjl,jg S [[1 —fg,’f‘gﬂ}, (9)

where once again ry (resp. r2) is a fixed positive integer (that will correspond to the number of space steps
of the scheme towards the "right” (resp. "top”)).

Let Axzy, Azo,...Axzyq > 0 be the space steps of discretization, we define Az := Az Ax,, and let At be
the time step discretization. In a classical setting let us assume that At, Az, ..., Axy are related by the
CFL numbers which are defined by Ay := AATCZ for k € [1,d]. Let us recall that the Ay are kept constant as
At | 0. Note that it implies, in particular, that for all k1, ks € [1,d] we have Axy, ~ Axg,.

We introduce the following weighted norm on ¢2(Z%). Let 3 C Z? and u € £2(J x Z9=2) we define:

d

2

lull3 = (H Awk) lullZeaxza-2)> and [lullly == Az Azafull3.
k=3
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Figure 1: The set of resolution and the dependency set of Us o for 1 =3, fo =2 and r =1y = 1.

We also denote (-,-)5 (resp. ((-,-))5) the scalar product associated to || - ||5 (resp. ||||||§)
The finite difference scheme approximation of that we are considering reads:

S QIUMTT = AtfpTY for j € J x 2972,n >0,

Un+s+1 + Zerl B1 ,J1an+a gfjerl’ forj € By x Zd_27n >0,

Un+s+1 + Es-i—l Bo,]zUn+a _ g;}tﬁ»l’ fOI‘j c ;@2 % Zd_2,n > 07 (10)
Uj’.““‘"“ + Yt Co U;M =R forj e € x 2972 n >0,

Ul =ty j, for j € # x 7972,n € [0, 5].

Note that has s 4+ 1 time steps. The operator Q7 appearing in the first equation of is defined by:

Z Z Z AR TG T (11)

p1=—41 po=—ALy ' =—1'

where y1 == (p1, pia, p') € N%, the coefficients A* € M,,»,(R) and where for k& € [1,2], Tt* (resp. T'*')
denotes the py (resp. p')-shift operator, that is:

’
Yu € ZQ(Zd% (Tlflu)J = uj1+lt17j27j" (TgQU)J = uj17j2+/$2,j' and (T/H U)J = ujl’j27jl+ul.

Also note that in we used the short hand notation: for ¢, r" € N2,

ZZZ

¢ k=3 u=—"b

Thus, in view of its definition, the scheme has stencil ¢; + r1 in the j;-direction and £ + r5 in the
Jja-direction. So to compute the sequence (U}')je.# it is needed to know the boundary values (U') e, u, -
This was expected from the analysis of finite difference schemes in the half space. But, and it is a new fact
induced by the quarter space geometry, we also need the corner values (U ")Je«g see . . for a definition
of this sets). Also note that in this formulation, the finite difference Scheme can be explicit or implicit
in time.

A new feature for finite difference scheme in corner domains is that, if we have computed the solution
(U}')je at some time n then, the order of computation of the U JTL+1 is not as canonical as in the half space

geometry. Indeed for finite difference schemes in the half space the only possible way to compute (Uj"'H)



from (UJ") is to determine the U;LH for j in the interior and then to compute the U;LH for j in the discretiza-
tion of the boundary. This determines (U ;”1) and the order also of resolution of the scheme in a unique way.

In corner domains we always have to determine first the U]n'H for j € .#. But we have some degrees of
freedom in the order of determination of the U;LH for j € $1 U Py UE. These degrees of freedom lead to
different expressions of the boundary and corner operators By J ', By J2 and €932, Some of this several
possible expressions are described in paragraph

We conclude this section by the definition of strongly stable finite difference schemes in the quarter space:

Definition 2.1 (Strong stability) We say that the difference scheme is strongly stable for homoge-
neous initial conditions if there exists C > 0 such that for all v > 0 and At €]0, 1], the solution (UT') of
with ug ; = 0 satisfies the estimateﬂ'

2
B Z Atef2“/nAt|||Un”|§2+Z Z AtA‘Ig_ke*Q’YnAtHUn”%k <

’)/At +1 n>s+1 k=1n>s+1
At + 1 2
o[22 S At a2 430 S Atz ge A gl + ST AtAzpe A A,
v n>s+1 k=1n>s+1 n>s+1

Before we turn to the statement of our main result it may be interesting to give some comments about
the notion of strong stability given in Definition Indeed many definitions of stability are possible, and
to the author knowledge, any definition of strong stability has been proposed for difference schemes for a
boundary value problem in the quarter space. Remark that when one takes the limit At | 0 in then he
(formally) recovers the expected energy estimate for initial boundary value problems in the quarter space

(2)-

2.2 Boundary and corner conditions

In this paragraph we give several possible expressions for the boundary and corner operators By J ' By 92
and C?J192 appearing in and we then describe the influence of these expressions on the order of
determination of the U;‘H for j€ BHUBLUE.

The first possible choice is the simplest one. It is also the one that most looks like the boundary conditions
in the half space. We first define for the boundary operators:

qi1 qi12 q
forj€ %, By =5 3 N BYmhTOTRT, (13)

p1=0 p2=0 p'=—¢}

q21  q22 qé

for j € By, BS? = > N BYMETHTRTH, (14)

H1=0 p2=0 p'=—q

where q11,q12,q21 and goz are fixed positive integers, ¢f, ¢5 € N9~2 and where the B‘f’”’jl, B‘;“’j"‘ are fixed
matrices in M,,»,,(R). And we then define the corner operator by:

Cc1 C2 C/
forjee, CoM = N N N ol TR T, (15)

1=0 p2=0 p’'=—c’

for ¢y, co two positive fixed integers and ¢ € N=2. The coefficients C?#71:32 are fixed matrices in M, «n(R).

2Let us remark that by definition of the CFL numbers A\; and A2 we have Az; ~ Axzs and as a consequence one
can equivalently use (12) with the last term in the right hand side changed by >° .. AtAz1e=2mA R |Z (or even

Don>stl Atze_QV”AtHh”Hgg) as an estimate for strongly stable finite difference schemes.



With these definitions the terms U;LH for j € %1 U %2 U% only depend on the U for j € # and the
U;LH for j € #. So the U;”rl for j € $1 U P> UE can be determined in any order.

A second possibility is to keep and for the equations defining the boundary operators but to
change by:

< c1 ca
for j €€, CTIvi2 = Z (Z Z Qs sda i e (16)

p=—c" \p1=0p2=0
Cc12 C21
+ § § CU S J2T,u1 T#z + 2 E CU M1 ]2T#1T#2 T/,u
p1=—401 p2=0 11=0 pa=—Ls

where ¢12 and ¢y are fixed integers and CZ" gz ot 132 are fixed matrices in M,y (R). With this new
definition of C5t1d1.d2  Ostlaide Uﬁrl now involves some terms of the discretized boundaries %; and %,
(more precisely the an+1 for j € ([1 — ¢1,0] x 1,1+ c12]) U([[1,1 + co1] X [1 — £2,0])) and thus it is needed

to determine the U;H'l for j € %1 U B before to determine the Uj"'*'1 for j € €.

The last possibility that we will describe here is to go back to for the equation defining the corner
operator and to change the equations defining the boundary operators by:

4 q11  q12

for jl c [[1 —6170]}, Blo'vjl — Z Z Z Ba,quTulTltz + Z Z Bi‘,’%’lelfng2 T/,u/’ (17)
w=—gq, \p1=0p2=0 p1=—2L1 pra=—"La
. q; q21 422
for jo € [[1—52,0]], Bg’” — Z Z Z BU’”ZT’“T“? 4+ Z Z BoquTmle T/u (18)
w=—q, \p1=0p2=0 pr=—L1 pa=—4

where BY fg‘] ', By ’!2’” € M, x»(R). In that case, the boundary terms depend of the corner terms and thus
the boundary terms have to be computed after the corner ones.
We summarize the previous discussion in the following definition:

Definition 2.2 We say that the finite difference scheme approximation :

o admits decoupled boundary and corner conditions if the boundary operators are given by and
and if the corner operator is given by ;

© 1s traces to corner if the boundary operators are given by and and if the corner operator is

given by ;

o is corner to traces if the boundary operators are given by and and if the corner operator is

given by .
3 Main results
In all this article we will assume that the boundaries %; and %5 are non characteristic for the scheme (10]).

In view to state this assumption, let us introduce the following ”"tangential” operators from ¢?(Z) to (?(Z):
for z € C and

s+1
for py € [—41, 1], A" (2 ZZ Z Z A% ”TWT/” (19)
p2=—ALy p'=
s+1

for piy € [—la, 7], AL (2 Z Z Z AT HTE T (20)

pr=—Ly p'=—~'

As already mentioned in the introduction, our first semi-group stability result holds for explicit with only
one time step finite differences schemes (but with an arbitrary number of equations). In we thus set



s =0 and Q' = I to obtain (setting also Q° := Q):

UMt + QU = Atf1H, for j € & x Z972,n > 0,

UMt + By Ur 4 By U = it for j € By x 2972, n > 0,

UMt + By2UN 4 By UM = gyt for j € By x 2972, n >0, (21)
UPtt 4 QO 4 QOB U = B for j € € x 2972 n > 0,

UJQ = ug,j, for j € # x 742,

In this framework the operators defined in and becomes:

T2 T'l

T1 T'l
APR) = 20mo b D D AVPIET, and AB() = S0+ Y Y AMTRT,
==Ly p/ ==t pr=—tly p=—t
And, to save some notations, we also define A}* := A}*(1). The first non characteristicity assumption then
reads:

Assumption 3.1 We assume that there exist two constants c1,co > 0 such that:
Vu € (29, | AT ul| > erllull, and A5l > cfjul-

As in [CGTII] we assume that the operator of discretization in the interior @@ does not increase the £2-norm
of the solution.

Assumption 3.2 We assume that for all u € (2(Z%), we have ||Qu|| < ||lu|.
Under these assumptions the generalization of [CGII] to the corner space geometry is the following:

Theorem 3.1 Under Assumptions and assume that the difference scheme approzimation 18
strongly stable in the sense of Deﬁm’tion and ﬁnallgﬂ assume that r1,r9 > 1, then 18 also semi-group
stable. More precisely, there exists C > 0 such that for all v > 0 and At €]0,1] the solution of satisfies
the estimate:

2
aupe MY+ 3 AT + 3 Y Aty e P < (22)
nz0 VAt +1 n>0 k=1n>0 g

2 ’YAt+1 —2~nm 2
C | MuollZp + ——— Y AtAze™ 2| 1%

n>1

2
FOYY At e A, 3 At A

k=1n>1 n>1

Our second main result is the generalization of [Could] for corner domains. This result is thus, on the
one hand, restricted to scalar equations (that is n = 1) but, on the other hand, it can be applied to finite
difference schemes with several time steps. To stress that in this framework we are dealing with scalar
equations we rewrite the coefficients defining (10]), that is Q7*, B{*’*, B3***/* and C?#+, and the solution
(U}) of with lowercase letters. We thus write:

S QUulTT = At for j € # x 7972 n >0,

u;-’+s+1 + Z?;lo Bf’jlu;”” = gf‘]'-rs"'l, for j € B x Z972,n >0,

u?+3+1 + Z;ilo Bg’j2u?+‘7 = ggjs"'l, for j € By x Z972,n > 0, (23)
u;H'sH + Z(S;:O C’"’jl’hu;”" = h}”‘SH, for j € € x 22,0 > 0,

ul = up,j, for j € # x 2972, n € [0, 5].

3If 71 or r2 equals zero then Theorem remains true. This fact is straightforward direct use of the arguments of [CGII]
to treat the case r1 = 0 that we will not reproduce here.
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The semi-group stability result then needs extra (or just some modifications) of Assumptions and
The first assumption is made to ensure the solvability of in the case that it defines an implicit (in
time) scheme.

Assumption 3.3 The operator Q°T1 appearing in is an isomorphism on (*(Z%). Moreover, for all
source terms f; € (3(F x Z472), g1 € 2(%1 x ZY72), goj € (*(PBo x Z272) and h € (2(€ x Z42), the
finite difference scheme:

Q ;= f, forj € . x 7972,

uj+ BTy = g1, forj e By x 202,

wj + Byt Py = go g, forj € By x L2,

uj + Cs+1’j1’j2uj =hj, forje C x deQ,
admits a unique solution (uj) € (*(# x Z172).
We also assume the following modifications of Assumptions and
Assumption 3.4 For all n:= (n1,m2,7") € RY, the equation

s+1

Z@T(eml,eim,...,emd) =0, where Q‘T Z Z a’
o=0

k=1 pr=—"L
admits s + 1 simple roots zg, ..., zq satisfying that for all k € [0,d], |zk] < 1.

Let us recall that Assumption [3:4] implies that the finite difference scheme associated to the Cauchy problem
is strongly stable (see ()).
Our last assumption is a modification of Assumption

Assumption 3.5 For 2 € C, Y € R¥2; k € [1,2], ur € [~lr, ] and n3_1 € R we define:

T3—k

. -/ !
(Z 77 N3— k E E aPHelB—kH3—k ot "H

H3—k=—f3_k

Then a7™, at*, ay® and a? are nonzero on {z € C||z| > 1} x R and have nonzero degree compared with
z for all (', m3—x).

Then the result generalizing [Could] from the half space to corner spaces is the following:

Theorem 3.2 Under Assumptions and (3.5 Assume that the difference scheme approzimation
is strongly stable in the sense of Definition then 1s also semi-group stable. More precisely, there

exists C > 0 such that for all v > 0 and At €]0,1] the solution of satisfies the estimate:

swpe MGy + ZAte—M“uwm@ P At e A< (24)
nz k=1n>0

- 2 ’yAt—‘rl —2yn n
C D Muallz + 5 Y At A

n>s+1
2
+ 30D AtAwy e lgr %, + Y AtAzgeT AR |2
k=1n>s+1 n>s+1

Remark The proof of Theorem in fact needs a weaker definition of strong stability. More precisely,
Theorem remains true if one assumes that the scheme is strongly stable in the sense of Definition
with #; and %, instead of #; and %,. However, this is not the case for the proof of Theorem

We now turn to the proofs of Theorems [3.1] and [3:2}

11



4 Proof of Theorem [3.1]

Following [CG11] the finite difference scheme with discrete Dirichlet conditions on each boundary and at the
corner will be a suitable (in the sense that we can demonstrate that the semi-group, interior and extended
traces norms of its solutions are controlable by the source terms) auxiliary problem.

4.1 Finite difference schemes with discrete Dirichlet boundary and corner con-
ditions

Let us introduce the auxiliary finite difference scheme of in which we just substitute the boundary and
corner conditions by Dirichlet conditions:

UM + QU = Atf7+, for je 7 x Z47%,n >0,

U;L‘H = gf‘}‘l, for j € B, x 2972 . n >0,

Uttt =gyt for j € By x 22, n >0, (25)
U]?”l = h?“, for j € € x 272, n >0,

U]Q = ug,j, for j € # x 7472,

The aim of this paragraph is to show that the solution of satisfies the same estimate as in Theorem
equation (22)).

Theorem 4.1 Under Assumptions and there exists C > 0 such that for all v > 0 and At €]0,1]
the solution U of satisfies:

2
Supe MR, S AU + 30 ST At e AU, (26)
n20 VAt +1 n>0 k=1n>0 §

2 ’YAt +1 _ 2
< C | luoll?, + == Ate=2ma| 7%,
n>1

2
+ Z Z AtA:E;g,ke_z"’"AtHgZH%k + Z AtAxQQ_Q’YTLAtthH%

k=1n>1 n>1

The proof of Theorem is splitted in two parts. In a first time we show that holds for homogeneous
schemes in the interior and in a second time, we show that holds for inhomogeneous schemes in the
interior but homogeneous for all the others conditions.

Remark Theorem is a key step in the proof of Theorem However this result is also interesting for
itself. Indeed, it shows that as far as the semi-group stability is concerned, Dirichlet boundary conditions wich
are (with Neumann boundary conditions) the simplest ones to use are suitable. This fact is interesting because
Dirichlet boundary conditions can lead to severe consistency issues for the finite scheme approximation
for example when they are imposed while there exists an outgoing modes (that is a mode which transports
the information from the interior of the domain to the boundaries or to the corner).

4.1.1 Homogeneous schemes in the interior

In this paragraph we show that the solution of the scheme (25) with homogeneous source term in the interior
(that is = 0) admits a suitable estimate to show that (25]) is strongly stable. More precisely we will show
the following lemma:

12



Lemma 4.1 Under Assumptions and there exists C > 0 such that for all v > 0 and At €]0,1] the
solution of (with f7 = 0) satisfies the estimate:

2
supe AU ¢ DAt A US4 Y 0D AtAzy e AU (27)
n20 vAt +1 n>0 k=1n>0 g

2
<C | Mluolly + D> AtAws re™ "2 lgi |5, + D AtAwse™ " 1"

k=1n>1 n>1

Proof : Following [CGII], we introduce Q := —(I 4+ Q). Note that from the definition of Q (see (1)) we

have:
71 T2

G=- > apTr - Y gy (29
p1=—4L1 p2=—"L2
From Assumption [3.2] we deduce that:
|QU . +2(Qu™.U™)  <o. (29)

We then introduce (W}') the extension of (U') by zero for j; < —{; or jo < —f3. In particular in view
of we have @W}‘ = @UJ” on . and CNQW]” =0 for j; < —ry — ¥y or jo < —ry — f5. We also define the
following subsets of Z?:

Sy = {jEZQ‘jlG[[l—gl—’l“l,—€1ﬂ7j2€H1—£2_T27_€2H}a (30)
Sz, = {jeZ’ljel—t—ri,—0] j2 €[l —ta,00[},
Ez, = {JjE€T’jr €1 —11,00[j2 €1 —tlo—ras,—Ls]}.

Some computations give:

QW™ 13,511 and j>1-rs—ts (31)

QW™ |1Z, + QW™ % + 1QW"IIZ,, +IIQW™ %, +1QW"IZ,, +I1QW"[%, + 1QU"|%,

QW™ |2

and

<éwn’wn>zz - <©Wn’wn>jlz1fel and jo>1—£s
- {awa) {aey, e, (@),
Then for J € {¥, $B1, B, 7} we write:
IQW™ 3 +2(QW™ W) = QW™ + W3 — U™ .

In particular, for J = .#, using the definition of the scheme , we can simplify the previous expression in
the following way:

1QU™ 1% +2(Qu™,um) = 1QUII% — U™ % = U™ — U™ 13-
This term will permit to obtain the supremum in time in the estimate of Lemma

From equations (29),(31)),(30) and the two previous relations we obtain, thanks to the fact that we have
Dirichlet boundary and corner conditions, that:

IO O ST AW, + QW+ W < gt I, + a2, + 153
Je{€¢,%.1,%2}
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Figure 2: Error terms induced by the extension by zero for £ =3, ¢, =2, r; =2 and 75 = 1.

In particular we have:

IO = U™ % + QW™ Z,, + 1QW™ + W5, + QW™ + W™5 < g%, + ll9511%, + 17”117
U = U5 + 1QW™ I, + 1QW™ + W%, + QW™ + W% < llgtl1%, + 9511, + Ih"1I%-

Emy

(32)
The following lemma is a straightforward generalization of [[CG11]- Lemma 2.2] from finite to infinite
dimension. It is however the keystone of the analysis.

Lemma 4.2 There exist two constants c1,ca > 0 such that for all n € N we have:
[Qw™|
[QwW™|

2 OWT WG, QW WL > e W
L IOWT WG, QW WL > e W

The proof of this Lemma is given in paragraph [£.4]
We apply Lemma to , by definition of (W}*) we obtain:
U™ = U™ 1% + 10" 155 + 10" 1555 < C (Il 12, + g5 12, + I1h"11%) .
1 2

we multiply this equation by Aze=27"At and sum for n € [0, N]. It follows, from the definition of the CFL
numbers that:

) 627At 1 N ) 2 1 N
PN, 4 = DO AT AU + 37 - > AtAws U5,
n=1 k=1

n=0

2
1
< O Mol + 30 - 3 Atawgwe g, + 3 Atdaae
k=1 n>0 n>0

We then take the supremum in N in the previous equation to obtain that for At < 1:

2
21t sup AU A Y AteAUTE + 30D T AtAwy k]|U[5- (33)
nz n>1 k=1n>0

2
< C Mol + D07 AtAzs e gi |12, + > AtAzge=2mA 1" |12

k=1n>0 n>0

14



Then we remark that < 1 and use the initial condition to obtain:

A/AtJrl <7 'yAt+1

sup e~2mAY U |%, 4+ At = Z Ate™2mAY U™, + Z > AtAwg i |UM12- (34)

k=1n>0

2
< O | lluoll% + Y | AtAws—llgRllZ, + > AtAzs e >4 g7 |2,

k=1 n>1

+ AtAD R + Y AtAzae AR5
n>1

At last using the fact that we have Dirichlet boundary conditions we can bound the right hand side by:
—2yn n |2 —29n n n
sup e P AU + —x g D At AU, + S5 Aty (U7 (3)
nz0 n>0 k=1n>0
<C().

To conclude the proof of Lemma we add in the term:

- 2 yAt _ 2
}: WP€QWAWMWWJ+‘Z?IT§:€ AT
(€, B, B5) 20 v n>0

so that the left hand side of is greater (because ,Yzﬁ_l < 1) than the left hand side of . Then we
remark, thanks to the fact that we have Dirichlet conditions at the boundaries and the corner, that:

U™ 1% = Az Azy Y |UF? = Z AtAzo| R 2,
JEE JE‘K
ni|2 1 n n2
U™, = — > AtAxs|gt |2, and [[U||2, = Z AtAzilgy 1%,
A
Liee 2 jew

which are exactly the weighted norms of the source terms appearing in the right hand side of . We then
conclude by using the injection ¢! C £°.

O

4.1.2 Homogeneous Dirichlet conditions

We now turn to schemes which only have a nonzero source term in the interior. The result is the following:

Lemma 4.3 Under Assumptions and there exists C > 0 such that for all v > 0 and At €]0,1] the
solution of (with g7, g5, h™, ug = 0) satisfies the estimate:

Slipo ef2vnAt”UJ’_nH2% I S ZAt 72"/nAt|||Un|”@ + ZZAtACEg ke 2’YnAt||Un||
n=z

At+1 k=1n>0
W T
n>1
Proof : First we compute:
T35 = UM% = T+ QU™ + Atf™1% — U5,

= QUL +2(QUU™)  +28HQU™, ), + AL|f.
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Proceeding as in the proof of Lemma we define (W) the extension of (U') by zero for j; < —¢; or
jo < —¥l5. If r1 and r4 are nonzero then holds and we can repeat exactly the same computations as those
made in the proof of Lemma This leads us to the following inequality (where we strongly used the fact
that the conditions at the boundaries and at the corner are homogeneous Dirichlet):

N = [T + 107 2+ 10712 < C (ALQU™, 7)., + A2 f)

1%
As in the proof of Lemma we multiply the previous inequality by Aze=?7"A* and sum over n € [0, NJ.
This gives from the definition of the CFL numbers and by Cauchy-Schwartz inequality:

2 N

N
1
Z Ate—Z'ynAthnm?ﬂ + Z Z AtA.%Bfk@_?mAtHUnH;jk
n=1 k=1n=0

N N
< c (At S Ate B Y e2”"“At||mw”||y||¢Azf”||f> .
n=0 n=0

eQ’yAt _

e A [

To conclude we use Young’s inequality (with parameter < 1) in the last term of the right hand side and

it follows that:

2At

27yat 1 N 2 N
2 e
crmson|, oy DL A + 375 Aty e
n=1 k=1n=0
2At —2y(n+1)At
Comry Z e B EDATAL| £
The result is obtained from the inequality < _1 <~ < At —7 and by taking the supremum in N (recall

once again that the initial condition is zero).

4.2 Reinforcement of traces estimates

The solution of the auxiliary problem 7 (U j")7 and more especifically its traces will act like an error term
in the final error analysis in the proof of Theorem [3.1] More precisely we will have to control the terms
B1Uj 4, y» B2Uj, 1 o and finally CUj ; 5, which may involve more terms than those controled by (26). It
is typically the case if some of the parameters (for example g11 or goo) are larger than r; and ro. As a
consequence to perform the final error analysis, we need to obtain a better control of the traces in . The
result is the following:

Theorem 4.2 Under Assumptions and let Py, Py be two fized integers, then there exists C' > 0
such that for all v > 0 the solution (U') of satisfies:

Py

T U P v ZAte‘“"“HiU"n@+ZZAtMs CD D W e
n= k=1n>0 Ge=1—0),

At+1 Con .
< C | lluolly + T2 ST Atem DAL ey 2

n>1

2
— A — A
+ ZZAtA:C3—k6 2yn tHgZ”?%k +ZAtA1'26 2yn tth”(Qg

k=1n>1 n>1

The proof follows, once again, the proof given in [CG1I] up to some little difficulties induced by the corner
geometry.
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Proof : Let us define the shifted sequence V" := U} Then, for all n > 0, (V) solves the equation:

Ji+1,52,5""

VI QU = ML e S
‘Gn—i-l = gnjﬁ_l,j?’j/ ajl € HLOO[[ and (anj/) € [1 - e230]] X Zd727
Vit =gt 2J1 € [1 =41, —1] and (ja, '/) € [1, 00[xZ2,

1 1
V”+ = h s i1 € [1 =1, —1] and (ja, j') € [1 — £2,0] x Z4=2,
V""’1 U{’,Ej,, ;71 =0 and (j2,5') € [[1,00[[><Zd 2,
Vn+1 g;:i_lj%] ajl = 0 and (j?vj/) S IIl - e270]] X Zd727
Vjo = U0,j141,j2,5’ JEZR.

So we can apply Theorem {.1|to (V") to obtain the estlmateﬁ

At +1 e .
AtA$ e 2"/nAt|| i ||€2 (z4-2) < C <|||u0|||=2%+ﬁyZAte 2( +1)AtH|f Hl; (37)

n>1

2
+ 30N AtAzs e |gr |12,

k=1n>1
o0
+ 3 AtAze A2+ 3 AtArs S |U{fj2,,||§2(zd3>.
n>1 n>1 J2=1

We then apply again Theorem to estimate the last term in the right hand side of (this is effectively
possible because 71 > 1) and we obtain the following control of U ,; .

AtAzse US40, P gy < C <|||u0|||;+ZAte DAY % (38)

n>1

2
+ D AtAwg e ARG, + > Atsze‘Q””Atlh"ll?g> :

k=1n>1 n>1

We can then repeat exactly the same reasoning to the sequence V” = V/l 1, to obtain the analogous of
. but for ,,1+2 . By 1nduct10n we can then show that for all P1 >ry + 1 (note that the case Py < rq is
already included in Theorem . We thus obtain that:

Py
—29n At+1 — n n
AtAwpe™ "8 37 UG N7 gen < C (lluou@N}jAte PR £ (39)
Jp— 32,3 1

2
TS AtAry e A g, + 3 Atsze-Qv"Afnh%) ,

k=1n>1 n>1

which combined with Theorem give the desired version of for Py < 7y.
To obtain for arbitrary P, it is sufficient to reiterate the same arguments but with the shifted

sequence W' := ﬁ jat1,; and this completes the proof of Theorem @

O

4Note that the term in the right hand side is not sharp because of the shift but it will be sufficient for our discussion.
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4.3 End of the proof by error estimate

With Theorem [4.2 in hand the proof of Theorem [3.1]is just an error analysis. More precisely, let (U}) be
the solution of (10), we decompose U}* := V* + W where (V") and (W) solve respectively:

VI QU = AtfpT | forn > 0,5 € 5 x 2972,

Vj”+1 = gf}“l , forn>0,j € B x 72972,

Vj"+1 = g;}rl , forn >0,j € By x 7972,

Vj""'l = h}”‘l , forn>0,j €€ x 7472,

VP = uo,; , for j € # x 7972,

and

Wit 4+ QW =0 , forn>0,j €. x 72,
Wit 4 S, BYWIST =gt forn> 0,5 € % x 2972,
Wit Y, o Be W = ggtt L forn> 0,5 € By x 272,
Wt 4 S Coini W7 =nitt forn > 0,5 €€ x 2972,
WJQZO , for j € # x 7472,

where the sequences g7, g2 and h are defined by: for all m <0,

1,52,5"

1
Vje B x L2 G ==Y BYVe (40)
o=0

Ji,1,5"

1
v] c %2 X Zd727 g;j = 72337]2‘/?14-0
o=0
" 1
and Vj € € x 2472, B} i= = > COMPVIe
o=0

By construction, (V") satisfies the estimate so we only have to estimate (W}'). We use the fact that
is assumed to be strongly stable is the sense of Definition to obtain the estimate:

2
fy - n nin2 _ n n
AT O AW G+ YD AtAws e AW < (41)
7 n20 k=1n>0

2

YN —2ynAt||7
C YN AtAws e A G5, + D AtAzpe” A B2
k=1n>1 n>1

We now turn to the estimate of the right hand side of , thanks to the reinforced traces estimate for
(V]"), that is to say (36). From (0) we have to estimate |B{”'V{"I?|2, |B32V' 7|2 and |C7772 V7|2

1,72 Ji, b b . .
and we have to distinguish three cases depending of the definition of the operators By’', By and C7J1:72

(see paragraph [2.2)):

o admits decoupled boundary and corner conditions:
In this framework, independently of o, we have that:

o for j € %, Bf’ﬁfo;;" involves the |V3"\2 for j1 € [1,14 qu], J2 € [j2, j2 + qual;

for j € Bo, B‘f’jQVﬁﬁ" involves the |V3,"\2 for j1 € [j1,51 + gl J2 € [1,1 + gaal;

e finally for j € 7, C"’jl’jZVﬁ"” involves the |V3"|2 for jy € [1,14 1], j2 € [1,1 + c2].
Consequently:
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e the error term ||g}'[|%;, involves the [V}*|? for ji € [1,1+ qui], j2 > 1;

the error term ||g7]|%,, involves the |Vj"\2 for j1 > 1, ja € [1,1 + go2];

2

e and finally the error term ||E?H<2g involves the |[V|2 for j; € [1,1+ ¢1], j2 € [1,1 + e2].
As first noticed in [CGIT] if , > ¢11 then we use 7 while if r; < g11+1 we use with P, = q11 +1.
In both cases we obtain:

—29n -n At + 1 — n n
> At g, < O (uollly + T 30 A (42)
n>0 T
2
+ DD AtAwg e gr G, + > Amxze-mmnhn\@).
k=1n>1 n>1

The estimate for the term depending on [[g5]|%;, in the right hand side of ( (1) follows exactly the same
discussion upon 73 and gg2. This permits to show that ) >0 AtAz e A |gp ||% is bounded by the right
hand side of .

Flnally to estimate the term depending on ||ﬁ"||<g in the right hand side of (41)) we use the fact that in
(1), Hh"||<g and |[g7']|%;, have the same weight in terms of At and Azy. As a consequence 6)) gives the
de51red bound (that is the right hand side of . if r1 > ¢q, while if 1 < ¢;+1 we use w1th P =c +1.

We thus have shown that:

—2ynAt n —2ynAt n
TR o AT I SO Y Aty e TR, < (43)
k=1n>0
At +1
¢ (mnif + IELEL S ey e,
n>1

2
+ D AtAwg e MR G, + > Amme-mmwu?g) :

k=1n>1 n>1

o (|10]) is of type traces to corner: From Definition the terms depending on ||'gvg||2%k in the right hand
side of (41)) are bounded as in the previous case.
In view of the definition of C7172, the norm ||h?(|% involves the |V/*|* for

(j1,72) € ([L,1 + ] x [, 14+ co]) U([1, 14 c1a] x [1 = £2,0]) U ([1 — 41,0] x [1,1 + co2]) -

To estlmate the terms [V}*|* for (j1,j2) € [1,14 e1] x [1,1+ ¢2] (resp.[1,1 + c11] x [1 — £2,0]) we use
. or (36 applied to Py = 1+ ¢; (resp. P1 = 1+ ¢11) depending of the sign of r1 — ¢; (resp. 71 — c11).
Finally to estlmate |V” 2 for (j1,72) € [1 — £1,0] x 1,1+ 622}] we remark that CFL condition §2 = $L and

we then use or (36)) applied to P, = 1 + cg9, estimate ) follows.

o is of type corner to traces: In the case, the proof of the estimate follows exactly the same
arguments as when admits decoupled boundary and corner conditions so it will not be treated here.

In view of (10} to conclude the proof of Theorem [3.1{ we just have to show that Sup,, <o € 2WAt|||I/V"|||
can be bounded by the left hand side of . The proof follows exactly the same arguments as in [[CG11],
paragraph 2.3 and Appendix A] so we will not give the details here.

O

4.4 Proof of Lemma [4.2

We will only show here the first equality in Lemma the proof of the second one is totally equivalent. Let
us rewrite the first equality in Lemma [4.2] as:

—r1

0
Yo OWE gy + D QW™ + W) e gay = ¢ Z W5 o2 za-sy-  (44)

Ji=1-r1—£1 ji=1-41 Ji=1-41
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In view of the definitions of Q and (W), we have that:

-7 —r1
ATI7N 2 _ 1 n k n
Yo QW ey = Y AW+ Y AL :
ji=l-r1—£1 ji=1-r1—4£1 k<ri

£2(Z4-1)
—r

= AT Wy, N a-ry + Z

Jj1=2—r1—4£1

TN kyrn
AYW,  + E ATWI L
k<ri

£2(zd-1)

As a consequence, equation (44]) can be rewritten under the form:

L Wiy, |

Py TILWy, + AWy, 1P+ LW+ Lo (W, s W )P

71
> Z W} 22 za-1y;
Ji=1—4

where . := A]' and where the % are linear and bounded on ¢2(Z4~1)* (the precise expression of these
operators is not usefull for what follows).

Then we proceed by indution on r; and contradiction. Firstly we assume that for all k£ € N, there exist
two sequences XF, X5 € ¢2(Z371) such that ||X{“H?2(2d,1) + HX;“H?Z(ZOZ,I) =1 and satisfying:
1
=
Thus we have that [|.£XF | s2ze-1) | 0 which implies, by Assumption that || X{|;2(za-1) 4 0 and thus
L1 XF |l g2(za-1y L 0 because £ is bounded.

We thus deduce that [|.£X5|s2za-1) | 0 and finally that || X5|s2(za-1y | 0. This is a contradiction with
the fact that ”X{CH%(ZH) + ||X§||?2(Zd,1) =1. So holds for r; = 1. The induction step follows exactly
the same proof and will be omitted.

VEEN, || X% ga ) + 1 LX5 + LXT |7 gary <

5 Proof of Theorem 3.2

Following [Coul5] the proof of Theorem is based on an energy-dissipation balance law which is obtained
from the introduction of a multiplier inspired of the multiplier of the Leray-Garding method [?]-[?] (see also
[Rau72] for an analogous approach in the continous framework). We will use exactly the same multiplier
as in [Could]. Using the fact that this multiplier only depends on the discretization in the interior of the
domain, we will show that this multiplier gives ”strictly dissipative” boundaries and corner conditions and
thus permits to introduce an auxiliary problem (posed in the full space, and as a consequence differing from
the one used in Section [4) whose solution admits suitable (for the final error analysis) control of the traces
to show the semi-group stability of .

Before we turn to a precise statement of the auxiliary problem, let us recall the definition of the multiplier
used in [Could] and the energy-dissipation balance law that it induces for finite difference schemes in the
full space.

We define:
s+1 s+1
L:=) T§Q%, and M =Y oTFQ", (45)
o=0 o=0

where T§ is the time-shifting operator.

Then we have the following balance law:

Lemma 5.1 ([Coul5| Proposition 2) Under Assumptions and [3.]) then there exist a continous co-
ercive quadratic form E and a continous nonnegative quadratic form D on (*(Z%,R)**! such that for all
(V™) >0 with values in (*(Z%,R) and all n € N we have:

2((Mv"™, Lv"))z2 = (s + 1)|||Lvn|||%z +(To— DE@"™,....;v" ) + D(v™, ..., 0" t*).
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Note that we do not require that the sequence (v;‘) solves any finite difference scheme. Indeed Lemma

only depends on the coefficient of the discretization in the interior. This observation will be required to
extend the proof of [Could| to corner domains.

5.1 Homogeneous initial conditions and auxiliary problem with strictly dissi-
pative boundary and corner conditions

As the proof of Theorem the proof of Theorem uses the linearity of to treat separately the
case of homogeneous initial conditions and the case of nonzero initial conditions. For homogeneous initial
conditions the proof is a straightforward generalization of the proof in the half space. This proof is given in
the following paragraph for a sake of completness. For nonzero initial conditions the proof needs to introduce
an auxiliary problem which is posed in the full space and admits strictly dissipative boundary and corner
conditions (compared with the proof in the half space where only one strictly dissipative boundary condition
is needed).

5.1.1 Proof of Theorem for homogeneous initial conditions
We first show Theorem for homogeneous initial conditions that is:

Lemma 5.2 Under Assumptions and[3.5, assume that the difference scheme approzimation is
strongly stable in the sense of Definition then u the solution of with homogeneous initial conditions
satisfies that there exists C > 0 such that for all v > 0 and At €]0,1] we have the following estimate:

2
supe Sty — ST A A + 3 ST ArAag e A (46)
n>0 Y n>0 k=1n>0

At +1 _ 2 _
C [T ST A 4 Y0 Y AtAws e A gp |2,
T St k=1n>s+1

+ > AtAmpe AR
n>s+1

Proof : By strong stability of (recall that we assumed u,, = 0 for n € [0, s]) it is sufficient to show that
SUp,, >0 e‘zV”At|||u"|||2% can be bounded by the right hand side of (46). As in the proof of Theorem we
introduce (w}) the extension of (u}) by zero for j € Z?\ Z (recall that we have Lw! = 0 for j; < —¢; —7, or
J2 £ —ly —ry and Lw} = Luj for j € #, and so do for M). Applying Lemma using the nonnegativity
of D it follows that:

(To—DEw", ..., w"*) < 2((Mw", Lw")) g » = (s+ D|Lw" (|5, +24¢ (Mu”, f7)) 5 = (s+ DAL 1%,

where Z := # U Ep, U Ep, U S (see for the definition of the &5). Multiplying by e~27(n+s+1DAt and
summing over n € [0, N] gives:

N
e~ D WNHSEDAL P N+L | Nbst1) 4] =278t Z e E)AL R ) < I sy +1on, (47)
n=1

with
N
— n+s n n nin2
Ly = 3 ertmbeinar (2<<Mw  Lw™)) 5 — (5 + 1) Law |||@\j),
n=0
N
Ton = 30 At B0 (20, 1), — (s + DAL
n=0
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and we will estimate these terms separately. First remark that by definition of L, M and (w]") the terms
Lw™ and Mw"™ only involve the u?“’ for j € %, U %y and o € [0,s + 1]. By CFL condition we can
always exchange in the equation defining Ig\ SN the factor Az; or Azy by At (see Section [ for similar
arguments) and we can thus use the trace estimate given by the strong stability of and the trivial bound
Ig\%N < Iﬁ\ﬂ,oo to show that Ig\]’N is bounded by the right hand side of .

We now turn to Iy n. For j € .# we remark that Mw] only involves the ’U,;H_U for j € # and o € [0, s+1].
As a consequence At[|Mw™|| , only involves the At[|u""||,, for o € [0,s+1]. We use this time the interior
estimate given by the strong stability assumption on to bound these terms. Applying exactly the same
computations as in [CoulB] we show that I y is also bounded by the right hand side of (46).

To conclude, we go back to the left hand side of and from the coercivity of ¥ we have that:

6—27(N+s+1)AtH|UN+5+1H‘ < I@\j,N +IJ,N7

and follows by taking the supremum in V.
O

Remark Note that compared to the proof of Theorem it is here crucial (in view to obtain a suitable
estimate for Iﬁ\ » n) that the strong stability provides a control of the extended traces on %, and %, and
not only a control of the traces on %, and %,.

5.1.2 Auxiliary problem

In this paragraph we use the multiplier M to introduce an auxiliary problem defined in the full space for
which we can show a semi-group estimate and an extended traces estimate (which will be used in the end of
the proof as it has been done in Section [4] to control the error terms).

More precisely the result is the following:

Theorem 5.1 ([Coul5|, Theorem 2) Under Assumptions|3.3 and[3.3, for all Py, P, € N, there exists

C > 0 such that the solution (u}) of:

Luj =0, forn>0,j€ .7 x 732

Mu? = gttt forn > 0,51 0,52 > 1,5/ € 2772,

Mu} = ggjsﬂ, Jorn >0,y >1,j, <1,j' € 2972, (48)
Mu = hIHH forn > 0,51 0,55 < 0,5 € 2072

ul = Up,j, forn €[0,s],j € 24,

satisfies that for all v > 0, At €]0,1]:

2 Py
supe "Mtz 4 g 3o At B+ 30D AtAw e ST u ey
n=0 v n>0 k=1n>0 Ge=1—ly

s 2
2 — A
< O Munllze +> 0 D0 AtAzs e 3 gk i s
n=0

k=1n>s+1 Jk<0,j3—k2>1

+ Z AtA$2€72’mAt Z Hh?k,js—kv"

n>s+1 J1<0,j2<0

32 (Zd72) . (49)

Before we turn to the proof of Theorem let us give some arguments explaining why essentially the
same as the proof of Theorem 2 in [Could] will effectively operate even if the auxiliary problems differ.
Indeed compared to the auxiliary problem introduced in [Coul5], the auxiliary problem is defined by
Muj} = ggjsﬂ and not Lu7 = 0 in the quarter space ji1 > 1,j2 < 1,j' € 7972, Moreover the proof of
given in [Could| relies on partial Fourier transform which are not a priori suitable in the geometry of the
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quarter space due to the fact that ”there are too many normal directions”.

However, using the fact that (u}) the solution of is defined in the full space Z¢ any extension will
be needed to perform partial Fourier transform and consequently, in this particular setting, we will be able
to perform two partial Fourier transforms to obtain the estimate (49)) (one transform by trace that have to
be controled). The fact that ( ™) does not solve Luj = 0 in the quarter space j; > 1,j2 <1 g€ 7972 will
not be an issue neither. Indeed in [Coulf) the maln part of the proof leading to . ) does not strongly use
the equation solved by (u}). Indeed here are the main points in the proof of [Couls.

Firstly one uses Lemma to obtain an estimate of sup,,~qe 27"At\\|u"H|ZQ, > >0 Ate‘QV”At\Hu"\H%g
and 37,5 e 270 DAY Ly,

Then to remplace >, -, e 2y(ntstl) At|||Lun|sz by Zk 1 2onzo AtAT3_e —Enat Z n=t1—ay, U5 |?2(Zd*1)
in this estimate, the arguments are the following. In a first time one works in the regime yAt large and only
needs algebraic properties of L (but does not use the fact that (u}) solves a precise difference scheme) and
thus in this regime we will be able to apply the same proof as in [Could].

Then, in the regime yAt small, the first step is to use the estimate to show that Laplace-Fourier transform
of (u;‘) is well-defined. Then by algebraic computations and using the fact that (u?) solves the boundary
conditions (but not the fact that it solves Lu? = 0 on any quarter space) one obtains that some algebraic
quantity involving the Laplace-Fourier transform of (u}) and the symbol of L is bounded by the right hand
side of . To conclude its remains to show that the considered algebraic quantity controls the extended
traces for any con51dered sequence. This last point is independent of the defintion of ( ™) and so it will also

works if (u}) solves

Proof : Firstly we apply Lemma to , in view to demonstrate the analogous estimate than in [Coul5].
From the nonnegativity of D it follows that:

(To = DE(u", o) + (s + DI Lu"lz2 < 2 ({08 Lu™) 1o opxqroop + 2 (95 Lu™D oo x]—o0.0]
+ 2 <<hn, L’un>>]]700’01]2 )

(S+1) )

we then use three times Cauchy-Schwartz combined with Young inequality (with parameter to obtain:

(To = DB, oy ) + T2 Eu 120 < 6 (197 13- 000 + 195 11 cope1-cmiop + 1A o) -
We then multiply the latter inequality by e=2Y(**s+DAt and sum from n = 0 to N. Reiterating the same
kind of computations as in Section [4 we obtain, from the coercivity of E the following estimate:

upe N+ g 3 AT + 3 e < (50)
n>0 + n>0
c Z\\\un\\\z2+z D AtAwg e Y T gkl e
k=1n>s+1 Jk<0,j3-k>1
+ Z AtAw?e_szAt Z H JksJ3—ks 42(2‘172)
n>s+1 J1<0,52<0

Using the definition of the CFL numbers we can rewrite the weight Ax1Azs as AtAxy or AtAx,. So
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can also be rewritten under the form:

sup e 2'ynAt|||un|”;‘2 + At+ : ZAt 72AmAt|||un|”Z +ZZAtA‘T3 i Z -2y n+s+1)AtHLqu ”[2(Zd 1)
n>0 k=1n>0 JKEL
A
¢ Z|||Un|||zz+z Z AtAxy_ e 2mAt Z ||92,jk,j3,k-||§2(zd—2)
k=1n>s+1 k<043 k21
—2ynA
+ Z AtAmge ynit Z || Gk d3— s ||32(Zd—2)

n>s+1 71<0,52<0

To conclude the proof of Theorem [5.1| u it is sufficient to explain how implies a good control of the ex-
tended traces values Zk 1 Zn>0 AtAzs_pe2mAtl Z

2
in=1—t, 145, N2 (zamry-

Following [Could] in view to do this it is sufficient to distinguish two cases depending on the value of
~vAt. The proof in the framework vAt large is totally analogous (because as already mentioned it only uses
algebraic properties of the operator L) to the one given in [Coul5] and will not be repeated here. Let us
recall that when At is large we, in fact, obtain the control of infinitely many traces:

2
D) IVICHES S A N
k=1n>0 JREL

s 2

) _
C D Munllze +>0 >° AtAwge™ 80 370 gy, ooy liazas)
n=0 k=1n>s+1 Ik=0.js—k 21
+ > AtAmpe A N B e |
n>srl 71<0,j2<0

and not only a control of finitely many traces.

We now turn to the case vAt small. As the reader will see the proof in this framework will not need any
adaptation of the proof given in [Coulb|]. However as the proof of [Coul5| relies on partial Fourier transform
(which was the only point that we needed to adapt in the proof of Theorem [3.1)) it seems important, in the
author opinion, to give some comments about the previous claim.

Firstly the estimate (51) shows that the Laplace in time and partial Fourier transforms in spaces (j1,5’)
and (j2,j') of (u}) are well-defined. We denote these transforms by 1y, " and ujlz respectively. We introduce
T = v +1if the dual variable of time for the Laplace transform and 7 := (jg,j’) the dual variable of
space for the partial Fourier transform in space (jg,j’). To save some notations we also denote 7y A :=
(s ) - (A, Aa).

The following lemma gives a control of u;, ! and Ej\lz up to some multiplication by the associated symbols
of L and M in term of the right hand side of if vyAt < In Ry for some fixed Ry > 1:

Lemma 5.3 There exists C > 0 such that for all v > 0, At € 10, 1] satisfying YAt < In Ry, we have that for
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ke [1,2]:
2

Tk
—~ 3—k
S LY e s )| dod
RxRd—1

JLEL pr=—4_y
2
Tk k
At . At —~ 3—
+§ / g e" 0. (e A s—k)Uy, (T,m3—k)| dOdnz_y
: RxRd—1
7k <0 pre=—Lg

s 2
2 _
SO D Munlllze +D° Y0 AtAws_e ™20 gy, g M@
n=0

k=1n>s+1 Jk<0,j3—k>1

+ Z AtAacge_QV"At Z ||h?k,j3—k,-||?2(zd*2)

n>s+1 71<0,52<0

Then the following lemma gives the control of the trace of any sequence in term of the left hand side of the
inequality appearing in Lemma More precisely, we have:

Lemma 5.4 Under Assumptions and 3.8, for k € [1,2] and for any fized Py € N, there exists
Cp, > 0 such that for all z € C such that 1 < |z| < Ry, for all n3_, € R4 and for all sequence
(wj,)jrez € £*(Z,C) we have:

2

Pk Tk
2 TAL
E lw; | < Chp, E / - g at* (€™ NA 3—k) Wi, 4 | AOdN3_k
Je=—tr—rk juez ? BXR HE=—Lg

2

Tk
+ Z / Z eTAtazau’k (eTAt7 nA,ka)wijruk d0d7]3,k
RxRd—1

Jk<0 pr=—Lg

With Lemmas and in hand let us describe how to conclude the proof of Theorem [5.1, For k € [1, 2],

we apply Lemma [5.4| with z := e7®? and to the sequences (@3_k(7, N3—k))jecz. We then integrate the

estimate of Lemma with respect to (6,73_) and choose the real part of 7 small enougt to apply Lemma
We thus have:

Py, s 2
2 —2ynA
> / P < O S+ Y0 X AtAwe S Y ok s
n=0

Jr=—Lp—1k k=1n>s+1 Jr<0,j3—k>1

+ Z Atsze_QvnAt Z ”h?mjsza"

n>stl 71<0,j2<0

2
02(74-2)

To come back in terms of the sequence (u?k) we apply Plancherel formula in the left hand side and use the
fact that vAt is small to obtain that:

Py Py
Z ZAte_QWAt||Ujk,»||§2(zd71) Z Z

Je=—Lr—r) n>0 Jk=—Lk—rK n2>0

Py
> / |wj,|*dBdns—r,
RxRd-1

Jk=—Lk—Tk

1— e—2’yAt

2vAtL

IN

Ate™ 73w 17 a1y

which concludes the proof of Theorem [5.1]
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Remark We conclude this paragraph by giving some elements of proof for Lemmas[5.3|and[5.4] The proof of
[6-4]is the most technical one but since it only depends on the tangential operators a*, we will not reiterate it
here. The proof of Lemma[5.3] uses the fact that the considered sequence solves an explicit scheme. However
this point is only used to establish the estimate . As we have already seen this estimate also holds for
our choice of auxiliary scheme and consequently we can reiterate exactly the proof given in [Coul5| to show
Lemma 5.3

5.2 End of the proof by error estimate

The case of finite difference schemes with homogeneous initial conditions has already been treated in Para-
graph So without loss of generality we can assume that in (23 the sequences (f1), (g1 ;), (g5 ;) and
(h}) are zero. We denote the associated solution by (u}).By hnearlty of (23]) we decompose (u?

j) into
u? = v}’ + w} where (v}) is the solution of the auxiliary problem with strlctly dissipative boundary and

corner conditions:
Lo =0, forn >0,j € . x 7972,
Muv? =0, forn>0,j; <0,jo >1,5" € Z2,
Muvl =0, forn>0,j; >1,j, <1,j' € Z%2, (52)
Mu} =0, forn>0,j <0,j2 <0,j" € Z%2,
v} =pj, fornel0,s],je€ VA

where (i, ;) is the extension of (uy, ;) by zero for j # %; and where (w}) is the solution of with
homogeneous initial conditions (but inhomogeneous boundary and corner conditions):

Lw} =0, forn >0,j € F x 7472,
1 s po + +s+1 ; d—2
w;’+3+ +>.0 0 le;b ":gf,jq , for j € 1 x Z*,n >0,
w]”“+1 + 3, By ;”r” = 'jg;rsﬂ, for j € By x Z972,n >0, (53)
w}’““ + ZZJ;IO C"Wl’”w;”“” = h}””l, for j € € x 272, n >0,
wi =0, for j € # x 2972, n € [0, 5].
where 'gVZ“H and h"T5*! are the errors at the boundaries and at the corner induced by the sequence (v}).

More premsely they are defined by:

s+1
for k€ [1,2], gptst!i=—ol Tt =N " BII for j € By x 2472, (54)
o=0
s+1
Tnts+l . nts+l ,j1,j2,,n+o . d—2
and I = —v; ZC’ Byl for j €€ X L0
o=0

Using the fact that admits homogeneous initial conditions we can apply the estimate obtained in
Paragraph [5.1.1] We thus have:

sup e Iy + WHZM S + 3 5 At e Tl < (59
k=1n>0

2

C D Atdwy e G, + Y AtAwe AR

k=1n>s+1 n>s+1

and we want to estimate the errors terms ﬁg““ and h""'”‘1 in terms of the initial datas. In view of .
from the triangle inequality we deduce that to conclude it is sufficient to control the norms of the terms
"Jrsﬂ + ZSH BY 7y 077 and — ;“LSH + EZE) Co31:329" %% by the initial datas. To do this we used the
strengthened traces and corner estimates obtained for (v}) in Theorem
As it has been done in the proof of Theorem (see Paragraph a discussion depending on the kind

of the boundaries and corner conditions in (10 is needed. However as the arguments are totally similar to
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these described in the proof of Theorem we will only here describe the proof when admits decoupled
traces and corner conditions (the proofs in the others cases are the same up to different values of P; and P,

(see again Paragraph [4.3)).

Note that in view of the definition of BY J1 when admits decoupled traces and corner conditions,

for fixed n and j € %, x Z?~2, the term —v;”rsﬂ + ZZJ;B B‘f’jlz};”“’ only involve the v-;?“’ for j e [1 —

01, q11] x [1,00[xZ%2 and o € [0,s + 1]. The triangle inequality and the estimate applied to P; :=
max {r1,1 + ¢11} then give (recall that is homogeneous at the boundary):

Py
> AtAme GG, < C Y AtAzge A Nl (1R
n>s+1 n>0 ji=1-41
S
~ 2
< O M, iz
n=0

We then apply exactly the same arguments to estimate ﬁ;ﬁsﬂ (choosing P> = max {re,1+ g2} in )
and we to obtain that:

S
> AtAze AL, < C Y i, 7.

n>s+1 n=0

Finally to deal with s+l we reiterate a last time the previous reasoning with P, = max{ry,1+¢11} in
the estimate to obtain:

S
Y AtAze A RE < C Y i, Iz

n>s+1 n=0

As a consequence we have that
5 2
—2ynAt n|||2 —2ynAt n||2 —2ynAt|, n2
sup e w + — Ate w + AtAzs_e w"||5- <
supe e + ST 3 I + 32 3 Aty e ur | <

k=1n>0
S
~ 2
> M-Iz
n=0

and the same estimate holds for (v7) (by for P, = r; and P, = ry). We thus obtain by the triangle
inequality and from the fact that, in view of its definition, |H17n|||22 = |||2n,.

2
%
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