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Abstract. Many algorithms for multi-criteria top-k query processing with rank-
ing predicates have been proposed, but little effort has been directed toward
genericity, i.e. supporting any type of access to the lists of predicate scores (sorted
and/or random), or any access cost settings. In this paper we propose a general
approach to exact and approximate generic top-k processing. To this end, we
propose a general framework (GF) for generic top-k processing, able to express
any top-k algorithm and present within this framework a first comparison be-
tween generic algorithms. In previous work, we proposed BreadthRefine (BR),
a generic algorithm that considers the current top-k candidates as a whole in-
stead of focusing on the best candidate for score refinement, then we compared
it with specific top-k algorithms. In this paper, we propose two variants of exist-
ing generic strategies and experimentally compare them with the BR breadth-first
strategy, showing that BR leads to better execution costs. We also extend the no-
tion of θ-approximation to the GF framework and present a first experimental
study of the approximation potential of top-k algorithms on early stopping.

Keywords: Top-k query processing, ranking, multi-criteria information retrieval.

1 Introduction

We address the problem of top-k multi-criteria query processing, where queries are
composed of a set of ranking predicates, each one expressing a measure of similarity
between data objects on some specific criterion. Unlike traditional Boolean predicates,
similarity predicates return a relevance score in a given interval. The query also specifies
an aggregation function that combines the scores produced by the similarity predicate
of each criterion. Query results are ranked following the global score and only the best
k ones are returned.

Ranking predicates acquired an increasing importance in today’s data retrieval ap-
plications, especially with the introduction of new, weakly structured data types: text,
images, maps, etc. Searching such data requires content-based information retrieval
(CBIR) techniques, based on predicates measuring the similarity between data objects,
by using content descriptors such as keyword sets, image descriptors, geographical co-
ordinates, etc. We consider here the case of expensive ranking predicates over data
objects, whose specificity is that their evaluation cost dominates the cost of the other
query processing operations.
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select * from Object o select * from Monument m
order by F(p1(o), ..., pm(o)) order by near(m.address, here()) +
limit k similar(m.photo, myPhoto) +

ftcontains(m.descr, ’Renaissance sculpture’)
limit 1

Fig. 1. General form and example of a top-k query

The general form of the top-k queries that we consider is expressed in Figure 1. The
query asks for the k best objects following the scores produced bym ranking predicates
p1, ..., pm, aggregated by a monotone function F .

Figure 1 also presents a query example coming e.g. from a smartphone touristic
application, where the visitor of a Renaissance monument, after finishing the visit,
searches for another similar monument (the “best” one) on three criteria: near to his
current location, containing a similar detail to some picture taken with the smartphone,
and exposing Renaissance artworks, preferably sculptures. Here, the aggregate function
is a simple sum.

As in this example, expensive ranking predicates come often from the evaluation of
similarity between images, text, locations and other multimedia types, whose content
is described by numerical vectors. This results in expensive searches in highly dimen-
sional spaces, based often on specific multidimensional index structures [3]. Note that
most of the ranked predicates in this case come from binary predicates sim(o1, o2)
evaluating similarity between objects, transformed into unary ranked predicates p(o) =
sim(o, q) evaluating the similarity with a query object q.

In many cases, predicates are evaluated by distant, specialized sites, that provide
specific web services, e.g. map services evaluating spatial proximity, photo sharing sites
allowing search of similar images, specialized web sites proposing rankings for hotels,
restaurants, etc. Internet access to such services results into expensive predicate eval-
uation by distant, independent sites. Moreover, the control over predicate evaluation is
minimal most of the time, reduced to the call of the provided web service.

For each query, a ranking predicate may produce a score for each object. Following,
we call a source the collection of scores produced by a ranking predicate for the set of
data objects. The list of scores may be produced e.g. by accessing a local index structure
that returns results by order of relevance. We consider here the general case, where the
access to the scores of a source is limited to sorted and/or random access. This allows
three possible types for a source S:

– S-source: sorted access only, through the operator getNext(S) returning the pair
(o, s) containing the identifier o of the object with the next highest score s.

– R-source: random access only, through the operator getScore(S, o) returning the
score of a given object o.

– SR-source: a source with both sorted and random access.

The general idea of a top-k algorithm is to avoid computing all the global scores,
by maintaining a list of candidate objects and the interval [L,U ] of possible global



Exact and approximate generic multi-criteria top-k query processing 3

S1 (S) S2 (SR) S3 (R)
(o2, 0.4) (o3, 0.9) (o1, 0.9)
(o1, 0.3) (o1, 0.2) (o2, 0.7)

(o4, 0.25) (o4, 0.15) (o3, 0.8)
(o3, 0.2) (o2, 0.1) (o4, 0.6)

Access Retrieved candidates Uunseen

∅ 3.0
S1/S (o2, 0.4) {(o2, [0.4, 2.4])} 2.4
S2/S (o3, 0.9) {(o2, [0.4, 2.3]), (o3, [0.9, 2.3])} 2.3
S2/R (o2, 0.1) {(o2, [0.5, 1.5]), (o3, [0.9, 2.3])} 2.3
S3/R (o3, 0.8) {(o2, [0.5, 1.5]), (o3, [1.7, 2.1])} 2.3
S2/S (o1, 0.2) {(o2, [0.5, 1.5]), (o3, [1.7, 2.1]), (o1, [0.2, 1.6])} 1.6

Fig. 2. Examples of sources and query execution for the query example

scores for each of them. The initial interval of a candidate is obtained by aggregating
the minimum/ maximum source scores.

The monotonicity of the aggregation function ensures that further source accesses
always decrease the upper bound U and increase the lower bound L. The algorithm
stops when the score of the best k candidates cannot be exceeded by the other objects
anymore.

Figure 2 presents a possible execution for the example query in Figure 1. We sup-
pose S1 is an S-source, S2 an SR-source, S3 an R-source; scores are presented in de-
scending order for S/SR sources and by object identifier for R-sources. Local scores
belong to the [0, 1] interval in this example, so the initial global score interval is [0, 3]
for all objects.

We note candidates the set of candidates and Uunseen the maximum score of unseen
objects (not yet discovered in some source). Initially, candidates = ∅ and Uunseen = 3.

– A sorted access to S1 retrieves (o2, 0.4), so o2’s global score interval becomes
[0.4, 2.4]. Also Uunseen becomes 2.4 because further scores in S1 cannot exceed
0.4.

– Then, a sorted access to S2 retrieves (o3, 0.9). This adds a new candidate (o3),
lowers Uunseen to 2.3 (further S2 scores cannot exceed 0.9), but also lowers the
upper bound of o2 to 2.3, because the maximum score of S2 is now 0.9.

– Next, a random access to S2 for o2 retrieves (o2, 0.1). This changes only the global
score interval of o2.

– A random access to S3 for o3 retrieves (o3, 0.8) and changes the global score inter-
val of o3.

– A sorted access to S2 retrieves (o1, 0.2). This adds a new candidate (o1), lowers
Uunseen to 1.6, but does not lower the maximal global score of the other candidates
because o2 and o3 already know their S2 scores.

The minimum global score of o3 exceeds now both Uunseen and the maximum
global score of all the other candidates and the execution stops since o3 is surely the
best (top-1) object.
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2 Related work and contribution

A large spectrum of top-k query processing techniques [11] has been proposed at dif-
ferent levels: query model, access types, implementation structures, etc. We consider
here the most general case, of simple top-k selection queries, with expensive access
to sources, limited to individual sorted/random probes, without additional information
about local source scores/objects, and out of the database engine.

This excludes from our context join queries [17, 10] or interaction with other database
operators for query optimization [13, 10, 12]. We consider sequential access only, par-
allel processing is out of the scope of this paper. We exclude also approaches such as
TPUT [5], KLEE [16] or BPA [1], able to get several items at once, or having statistical
information available about scores, or having also the local rank. Algorithms such as
LARA [14], that optimize the management of the candidate list, are orthogonal to our
approach for expensive predicates, which focuses on source access.

In this context, top-k algorithms proposed so far fit with the general method pre-
sented in the example of Figure 2 and propose their own heuristic for deciding the next
access to a score source. However, most algorithms focus on specific source types and
cost settings.

Algorithms such as NRA[7] (No Random Access) and StreamCombine[9] consider
only S-sources. NRA successively consults all the sources in a fixed order, while Stream-
Combine selects at each step the next access based on a notion of source benefit.

Other algorithms consider only SR-sources. The best known is TA[7] (Threshold
Algorithm), which consults sorted sources in a fixed order (like NRA), but fully evalu-
ates the global score of each candidate through random access to the other sources. The
algorithm stops when at least k global scores exceed Uunseen. Among the extensions
of TA we cite QuickCombine[8], which uses the same idea as StreamCombine to select
the next sorted source to probe, and TAz[4], which considers an additional set of R-
sources besides the SR-sources. CA[7] (Combined Algorithm) is a combination of TA
with NRA that considers random accesses being h times more expensive than sorted
ones. It reduces the number of random probes by performing h sorted accesses in each
source before a complete evaluation of the best candidate by random probes.

Also supposing cost asymmetry, a third category of algorithms considers one cheap
S-source (providing candidates) and several expensive R-sources. Upper[4, 15] focuses
on the candidate with the highest upper bound U and performs a random probe for it,
unless U < Uunseen, in which case a sorted access is done. The choice of the next R-
source to probe is based on a notion of source benefit, dynamically computed. MPro[6]
is similar to Upper, but fixes for all the candidates the same order for probing the R-
sources, determined by sampling optimization.

Surprisingly, little effort has been made towards generic top-k processing, i.e. adapted
to any combination of source types and any cost settings. To our knowledge, besides our
BreadthRefine proposal described below, NC[19] (Necessary Choices) is the only other
generic approach, however limited to the case of results with complete scoring. NC
proposes a framework for generic top-k algorithms, a strategy SR that favors sorted
accesses, and a specific algorithm SR/G that uses sampling optimization to find the
parameters that produce the best fit given the source settings.
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Approximate top-k processing has been considered in several approaches, the most
usual one being the approximation by early stopping, i.e. considering the current top-k
objects at some point during the execution as an approximate result. Since early stop-
ping comes with no guarantees on the quality of the result, several constraints provid-
ing such guarantees have been considered. For instance, a variant of the TA algorithm,
called TAθ [7], defines an approximation parameter θ > 1 and the θ-approximation
of the top-k result as being a set Ka of k objects such that ∀x ∈ Ka,∀y /∈ Ka,
θ × score(x) ≥ score(y) (global and local scores are considered to belong to the
[0,1] interval). The intuition behind this condition is that the ratio between the score
of the best missed object in the approximate result (best false negative) and that of the
worst false positive cannot exceed θ. To obtain a θ-approximation, TAθ simply changes
the threshold condition: the algorithm stops when at least k objects have a global score
≥ Uunseen/θ, i.e. TAθ is equivalent to an early stopping of the TA algorithm.

Other approximation algorithms for top-k selection queries are proposed in [18],
for S-source algorithms, or in the KLEE system [16] for top-k processing in distributed
environments. Note that [18] is based on dropping candidates that have low probabil-
ity to be in the top-k and provides probabilistic guarantees for the result, but requires
knowledge about score distribution in sources.

In previous work, we have proposed BR (BreadthRefine) [2], a generic algorithm
that uses a breadth-first strategy for top-k processing in a larger context than NC, i.e.
with incomplete scoring. The BR strategy considers the current top-k as a whole to
be refined, while all the other proposed strategies focus on the best candidate. BR has
been compared to algorithms of the three categories mentioned above and proved that
it successfully adapts to their specific settings, with better cost.

In this paper, we address exact and approximate multi-criteria top-k query process-
ing at a general level, proposing generalizations of existing algorithms to the generic
case and aiming at a comparison of algorithm strategies. More precisely, our contribu-
tions are the following:

– A general framework GF for generic top-k multi-criteria query processing, that
allows expressing any top-k algorithm of our context, thus providing a basis for
comparative analysis and generalization.

– The BR algorithm is generic (adapted to any combination of source types and any
cost settings), but it was only compared to specific top-k algorithms, since the only
other generic approach, introduced by NC, is hardly comparable with BR. As fur-
ther detailed in Section 3, the difficulty to compare with NC comes mainly from
the fact that, unlike BR and most top-k algorithms, NC is not fully heuristic and
strongly depends on a sampling optimization phase. We propose here new, compa-
rable generic variants of the BR, NC and CA algorithms and experimentally com-
pare these generic strategies, showing that BR leads to better execution costs.

– A generalization of θ-approximation computing in the context of GF, and a first
experimental study of the ability of top-k multi-criteria algorithms to produce good
approximate results on early stopping, showing that the BR strategy comes with a
better approximation potential.

We do not directly address here algorithm optimality issues. Fagin et al. demon-
strate in [7] that NRA and TA algorithms are instance optimal, i.e. for any database
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instance, no top-k algorithm can improve the execution cost with more than a constant
factor. They also show that algorithms based on a dynamic choice of the next source to
access (such as BR or, more generally, algorithms expressed in GF) may not be instance
optimal, although they may have in practice better execution costs. Even if BR and the
other generic algorithms we consider are not instance optimal, our goal is to experimen-
tally demonstrate that the BR strategy leads to better performances. Note however that,
as shown in [7], BR could be adapted to become instance optimal by adding source ac-
cesses that guarantee every source to be accessed at least once every C steps, for some
constant C.

The rest of the paper is organized as follows: the next section introduces the generic
framework for top-k multi-criteria processing, then proposes and compares in this con-
text new generic variants for BR, NC and CA. Section 4 presents our approach for top-k
approximation in the general framework, then we report experimental results and end
with conclusions.

3 Generic top-k framework and algorithms

We propose GF, a generic framework for multi-criteria top-k processing (Figure 3). GF
provides a common, general form for expressing any top-k algorithm in our context. It
facilitates comparison between top-k algorithms and strategies expressed in this com-
mon form. For instance, we benefit here from this common framework in the description
of new variants of existing algorithms (NC and CA), compared then with our BR ap-
proach. Another major benefit of GF is that new properties expressed and proved in this
general framework are true for any top-k algorithm - for instance, the θ-approximation
properties presented in Section 4.

As in the example of Figure 2, GF considers a top-k algorithm as a sequence of
accesses to the sources, that progressively discover scoring information about data ob-
jects. The input parameters are the query q and the set of sources S. Query q specifies
the number k of results to return and the monotone aggregation function F , while the
set of sources S materializes the scores returned by the query’s ranking predicates.

In GF, algorithms maintain a set of candidates (initially empty) with their interval of
scores, the threshold Uunseen (initialized with the aggregation of the maximum scores
maxj of the sources), and possibly other local data structures.

Notations

– For a candidate c, we note [L(c), U(c)] its current interval of scores.
– We note Uk (respectively Lk) the current subset of k candidates with the best k

upper (lower) bound scores3.
– We note Uk the current k-th highest upper bound score among the candidates, i.e.
Uk = minc∈Uk(U(c)), respectively Lk the current k-th highest lower bound score,
Lk = minc∈Lk

(L(c)).
– We note χ ∈ U1 the candidate with the current best upper bound score.

3 With random selection among candidates with the same score if necessary
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GF (q, S)
candidates← ∅; Uunseen ← F(max1, ...,maxm); ... //other local variables
repeat //choice between sorted or random access

if SortedAccessCondition() then //sorted access
Sj ← BestSortedSource() //choice of a sorted source
(o, s)← getNext(Sj) //sorted access to the selected source
Update candidates, Uunseen and other local variables

else //random access
c← ChooseCandidate() //choice of a candidate
Sj ← BestRandomSource(c) //choice of a random source
s← getScore(Sj , c) //random access to the selected source
Update candidates and other local variables

endif
until StopCondition()
return candidates

Fig. 3. The GF generic top-k framework

Note that the monotonicity of the aggregation function guarantees that the threshold
and the upper bound of candidate scores only decrease, while their lower bound only
increase during the algorithm.

One source access is performed at each iteration, the access type being decided by
the SortedAccessCondition predicate. In the case of a sorted access, a source Sj is cho-
sen by the BestSortedSource function, then is accessed through getNext. The returned
object-score couple is used to update the threshold, the set of candidates and the local
variables. The retrieved object is added/updated in the candidates set and objects not
yet retrieved in Sj update their upper bounds.

Update also includes the discarding of non-viable candidates. A candidate c with
U(c) < Lk is called non-viable because it will never be in the top-k result since at least
k candidates surely have better scores.

In the case of a random access, the ChooseCandidate function selects a candidate
c, then BestRandomSource gives a random source to probe for it. After the random
access through getScore, the candidates set and local variables are updated (among
candidates, only c changes).

The end of the algorithm is controlled by the generic StopCondition predicate,
which depends on the type of top-k result expected (e.g. with complete or incomplete
scoring). The earliest end is obtained with predicate

StopCondition ≡ (|candidates| = k ∧ Lk ≥ Uunseen) (1)

i.e. only k candidates are viable and there is no viable unseen object. Since this result
may have incomplete scoring, additional conditions are necessary to ensure properties
such as ordering or complete scoring of the results.

It is simple to demonstrate that this condition is necessary and sufficient for a correct
top-k result. Sufficiency is trivial, the k remaining candidates form a correct top-k,
because their scores are at least Lk, while the score of non viable candidates and that of
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unseen objects is ≤ Lk. Necessity comes from the fact that if condition (1) is not true,
either |candidates| < k (and then we do not have k candidates to form the result), or
|candidates| > k (and then any of the viable candidates still may have a final score
that corresponds to a top-k object), or Lk < Uunseen (and then an unseen object may
belong to the top-k).

It is easy to see that any top-k algorithm in our context can be expressed in GF.
Indeed, for a given query and set of sources, each algorithm is equivalent to the se-
quence of accesses to the sources it produces, which can be obtained with a sequence
of decisions about the access type, the source and the candidate for random probes.

Note that this is not true for instance with the NC framework [19], in which one
chooses first a candidate among the k highest upper bound scores, then a source in
which the candidate has not been yet retrieved. This is not compatible with algorithms
that fix the order of accessing sources, such as NRA: a source in which candidates with
the current k highest upper bound scores have been already found cannot be selected
for the next step.

As an example, the NRA algorithm can be expressed in GF with SortedAccessCon-
dition ≡ true (only S-sources), a local variable keeping the last accessed source and a
function BestSortedSource returning the next source in a round robin order.

Note that algorithms with SR-sources only, like TA, may avoid maintaining interval
scores, because the global score of each candidate is immediately computed; however,
this optimization is not relevant in our context, where cost is given by the access to the
sources and not by the updates to local data structures.

Given its ability to express any top-k algorithm, the GF framework is a valuable tool
for comparing top-k strategies. Following, we express in GF and compare three generic
algorithms: a new variant of BR and new, generic and comparable variants of the NC
and CA algorithms.

3.1 BreadthRefine

BreadthRefine (BR) [2] proposes a generic algorithm framework that can be instantiated
to several variants. The main idea of the BR strategy is to maintain the set of current
top-k candidates Uk as a whole, instead of focusing on the best candidate χ, which is
the common approach.

BR was successfully compared with state of the art non-generic algorithms in their
specific settings. We complete here this comparison by considering also two other
generic top-k strategies, adapted for that purpose to our context.

The BR framework can be expressed in the more general GF framework by instan-
tiating SortedAccessCondition and ChooseCandidate to realize the BR strategy.

– SortedAccessCondition ≡ (|candidates| < k or Uunseen > Uk or CostCondi-
tion())
The SortedAccessCondition in the BR strategy combines three conditions: a sorted
access is scheduled if (i) there are not yet k candidates, or (ii) an unseen object could
belong to the current top-k Uk (Uunseen > Uk), or (iii) a generic CostCondition fa-
vors sorted access in the typical case where a random access is more expensive than
a sorted one.
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Condition (ii) targets the decrease of Uunseen through sorted accesses and is the
heart of the BR strategy for sorted sources. The common strategy for sorted access
focuses only on the best candidate χ, and to be sure that χ (and not some unseen
object) has the best upper score, a sorted access is scheduled if Uunseen > U(χ) to
decrease Uunseen below U(χ). The BR strategy focuses on the whole current top-
k: it maintains the whole Uk free of unseen objects, by scheduling a sorted access
if Uunseen > Uk.

– The BR strategy is completed by the ChooseCandidate function for refinement
by random probes. All the existing algorithms facing this choice systematically
select the best current candidate χ. Instead, the BR strategy maintains the k best
candidates as a whole by first selecting the least refined candidate in Uk.

BR considers top-k with incomplete scoring, thus StopCondition is given by (1).

BR-Cost* Several instantiations of the BR framework have been proposed in [2]. The
one producing the best costs is BR-Cost, that fully implements the BR strategy and
uses a CostCondition inspired from CA: if r is the ratio between the average costs of
random and sorted accesses, then successive random probes must be separated by at
least r sorted accesses.

In BR-Cost, BestSortedSource and BestRandomSource adopt a benefit-oriented
strategy, inspired by StreamCombine [9] for choosing a sorted source, or by algorithms
with controlled random probes such as Upper [4] for random access.

– For a sorted access, the benefit of source Sj isBsj = (∂F/∂Sj)×Nj×δj/Cs(Sj),
where (∂F/∂Sj) is the weight of Sj in the aggregation function, Nj the number
of candidates in Uk not yet seen in Sj , δj the expected decrease of the score in Sj
and Cs(Sj) the cost of a sorted access in Sj . Since (∂F/∂Sj) cannot be computed
for any monotone function F , we consider here, for simplicity, only the case of
weighted sum, in which (∂F/∂Sj) = coefj > 0, where coefj is the coefficient
corresponding to source Sj in the weighted sum. The value of δj can be obtained,
e.g. by making one access ahead, with negligible extra cost.
The intuition behind this formula is that the benefit measures the potential refine-
ment of the candidates score intervals, relative to the access cost. The sorted access
to Sj refines not only the score interval of the retrieved object, but also that of ob-
jects not yet found in Sj ; for these objects the upper bound decreases by coefj×δj .
This formula, borrowed from StreamCombine [9], only considers theNj candidates
of the current top-k not yet found in Sj .

– For a random access, the benefit of source Sj is Brj = coefj × (crtmaxj −
minj)/Cr(Sj), where crtmaxj and minj are respectively the current maximum
score and the minimum score in Sj and Cr(Sj) is the cost of a random probe in
Sj . Note that crtmaxj decreases in SR-sources (after sorted accesses), but remains
constant (equal to maxj) in R-sources. Note also that coefj × (crtmaxj −minj)
measures the reduction of the candidate’s score interval size after a random probe
in Sj , i.e. here also, the benefit expresses the refinement of the score interval of the
accessed object, relative to the access cost.
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Fig. 4. Scores in a sorted source Sj

We propose here BR-Cost*, an improved variant of BR-Cost, using a different
method for estimating r, in this case as a ratio of benefits instead of a ratio of access
costs. We measure r as the ratio between the average benefit of making a sorted access
vs a random one.

As for BestSortedSource and BestRandomSource, we consider the benefit of an
access to a source as being related to its impact on the evolution toward the final top-
k, measured by the decrease of the size of the interval of scores of the candidates.
More precisely, the benefit of an access to a source is defined as the ratio between the
refinement produced on all the candidate score intervals and the cost of that access.

Note that this definition corresponds to that used by BestRandomSource for ran-
dom access, because only one candidate is impacted by a random probe, but generalizes
the benefit used by BestSortedSource, by considering the decrease of score intervals
for all the candidates, not only for those of the current top-k. This corresponds to an
uniform model for the benefit of accessing any type of source and is more adapted for
computing an average benefit. This approach also favors the comparison with the NC
strategy.

Consider the case of a S-source Sj in Figure 4 at the moment when the current score
is crtmaxj and Nrj objects have not been yet accessed. A sorted access to Sj refines
the score of the retrieved object, but also produces a decrease δj of crtmaxj that affects
the upper bound of the remaining Nrj − 1 objects. For the retrieved object, the width
of the score interval decreases with coefj × (crtmaxj −minj). For each one of the
remaining Nrj − 1 objects, the upper bound decreases with coefj × δj .

In conclusion, the benefit of a sorted access to Sj is:

Bs(Sj) = coefj × (crtmaxj −minj + (Nrj − 1)× δj)/Cs(Sj) (2)

Benefit varies in time; if δj does not vary much, benefit globally decreases because
crtmaxj and Nrj decrease. We approximate the average benefit by considering δj ≈
(maxj −minj)/N , crtmaxj ≈ (maxj −minj)/2 and Nrj ≈ N/2:

Bs(Sj) ≈ coefj × (maxj −minj)/Cs(Sj) (3)

Note that the instant benefitBs(Sj) may also be computed at any moment if the total
number of objects in the database is known or can be estimated. The instant benefit
could be used e.g. as an alternative value for BestSortedSource, or for computing a
variable ratio r in the BR-Cost* algorithm. Following, we only consider a fixed ratio r,
based on the average source benefit.
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Benefit for a random access is computed in a similar way, but in this case only
the score interval of the selected candidate changes. If Sj is a SR-source, the benefit,
respectively the average benefit of a random access are:

Brs(Sj) = coefj × (crtmaxj −minj)/Cr(Sj) (4)

Brs(Sj) ≈ coefj × (maxj −minj)/2Cr(Sj) (5)

For a R-source crtmaxj = maxj all the time, therefore

Br(Sj) = Br(Sj) = coefj × (maxj −minj)/Cr(Sj) (6)

The global benefit SB (RB) of processing sorted (random) accesses is defined as
the sum of average benefits of the sources allowing this kind of access.

SB =
∑

Sj∈SS∪SSR

Bs(Sj)

RB =
∑
Sj∈SR

Br(Sj) +
∑

Sj∈SSR

Brs(Sj)

where SS , SR and SSR are respectively the disjoint sets of S-sources, R-sources
and SR-sources.

In conclusion, after developing the terms of SB and RB following formulas (3),
(5) and (6) above, the access ratio r used by BR-Cost* becomes:

r = SB/RB =

∑
Sj∈SS∪SSR

Aj

Cs(Sj)∑
Sj∈SR

Aj

Cr(Sj)
+
∑
Sj∈SSR

Aj

2Cr(Sj)

(7)

where Aj = coefj × (maxj −minj) is the amplitude of the interval produced by Sj
in the aggregated score.

Example As an example, we present in Figure 5 the first steps of BR-Cost* for the
query in Figure 1 over the sources in Figure 2. We have SS = {S1},SR = {S3},SSR
= {S2}. The candidates set is sorted by decreasing value of the upper bound, i.e. the
first k ones form Uk. Let us consider that k = 2, Cs(S1) = Cs(S2) = 1 and Cr(S2) =
Cr(S3) = 2. We have ∀j, coefj = 1, maxj = 1, minj = 0, so Aj = 1. The access ratio r
= SB/RB = (1/1+1/1)/(1/2+1/4) = 8/3, so a random probe is allowed only after at least
r sorted accesses, i.e. 3 sorted accesses before a random one.

– First access is sorted, because |candidates| < k. Benefits for S1 and S2 computed
by BestSortedSource are both 0, becauseNj = 0 (no top-k candidates yet). Remind
that BR-Cost* uses the same BestSortedSource as BR-Cost, based on benefit Bsj
= coefj ×Nj × δj/Cs(Sj). Source S1 is then randomly chosen.

– The second access is also sorted (|candidates| < k), but this time N2 = 1 (o2 not
yet read in S2), while N1 = 0. Since δ2 = 1-0.9 = 0.1, we have Bs2 = 0.1/1 = 0.1,
while Bs1 = 0, so S2 is chosen.
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Access Retrieved candidates Uunseen

S1/S (o2, 0.4) {(o2, [0.4, 2.4])} 2.4
S2/S (o3, 0.9) {(o2, [0.4, 2.3]), (o3, [0.9, 2.3])} 2.3
S2/S (o1, 0.2) {(o3, [0.9, 2.3]), (o2, [0.4, 1.6]), (o1, [0.2, 1.6])} 1.6
S3/R (o3, 0.8) {(o3, [1.7, 2.1]), (o2, [0.4, 1.6]), (o1, [0.2, 1.6])} 1.6
S1/S (o1, 0.3) {(o3, [1.7, 2]), (o2, [0.4, 1.6]), (o1, [0.5, 1.5])} 1.5

... ... ... ...

Fig. 5. First steps of BR-Cost* for k=2 over the example sources in Figure 2

– Now |candidates|=k, but CostCondition requires a third sorted access before a
random probe become possible. We have N1 = 1 (o3 not yet retrieved in S1),
N2 = 1 (o2 not yet retrieved in S2), δ1 = 0.4-0.3 = 0.1, δ2 = 0.9-0.2 = 0.7, so Bs1
= 0.1 and Bs2 = 0.7, i.e. S2 is chosen for a sorted access.

– Since CostCondition allows now random probes andUk =Uunseen = 1.6, SortedAc-
cessCondition returns false and a random access is scheduled. ChooseCandidate
returns the least refined candidate in Uk = {o3, o2}. Both objects have been read
in one source, but o3 is returned, because it has a larger interval than o2. Since
crtmax2 = 0.2 and crtmax3 = 1, benefits of random sources are Br2 = 0.2/2 =
0.1 and Br3 = 1/2=0.5. Anyway, o3 has already been read in S2, so S3 is the only
possible choice for a random probe of o3.

– CostCondition forces again at least three sorted accesses. For the benefit, we have
N1 = 1 (o3 not yet retrieved in S1), N2 = 1 (o2 not yet retrieved in S2), δ1 = 0.4-0.3
= 0.1, δ2 = 0.2-0.15 = 0.05, so Bs1 = 0.1 and Bs2 = 0.05, i.e. S1 is chosen for a
sorted access.

– Execution continues in a similar way until StopCondition is satisfied.

3.2 Necessary Choices

As mentioned above, Necessary Choices (NC) [19] was the first proposal for a generic
algorithm, yet constrained to the case of complete top-k scoring. In this context, NC
identifies necessary accesses at some moment, as being those for candidates in Uk.
Algorithms in the general NC framework do only necessary accesses: each step selects
an element in Uk with incomplete scoring and performs an access for it.

In this framework, NC proposes an algorithm SR/G that favors sorted against ran-
dom accesses for each candidate. SR/G is guided by two parameters:D = {d1, ..., dm},
which indicates a depth of sorted access in each S- or SR-source, and H , which indi-
cates a fixed order of probes in the random (R and SR) sources for all the candidates.
The meaning of D is that sorted access to a source Sj where crtmaxj ≥ dj has always
priority against random probes.

Among all the possible pairs (D, H), SR/G selects the optimal one by using sam-
pling optimization. The optimization process converges iteratively: for some initial H ,
one determines the optimal D, then an optimal H for this D, etc.

Despite its genericity, NC is hardly comparable with BR. In the context of incom-
plete top-k scoring adopted by BR, NC’s analysis of necessary accesses is no longer
valid. Source sampling used by SR/G is not always possible and does not guarantee
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similar score distribution. We propose here a variant of SR/G, adapted to the context
of BR by considering incomplete scoring and a heuristic approximation of (D, H) in-
spired by BR-Cost*. The intention is to compare the strategies proposed by BR-Cost*
and SR/G in a context as similar as possible.

The SR/G variant we propose is expressed in the GF framework as follows:

– Besides D and H , a local variable keeps the best candidate, i.e. the candidate in Uk
with incomplete scoring having the highest upper bound. SR/G does a first sorted
access to some source; the best object is initialized with this first retrieved object
and updated after each iteration. Note that at least one object in Uk has incomplete
scoring if the StopCondition has not been yet reached.

– SortedAccessCondition returns true if the set of sorted sources in which the best
candidate has not been yet retrieved and where crtmaxj ≥ dj is not empty.

– BestSortedSource returns one of the sources in this set.
– ChooseCandidate returns the best candidate.
– BestRandomSource returns the first random source not yet probed for the best

candidate, following the order defined by H .
– StopCondition, for incomplete scoring, is given by (1).

We propose an heuristic approximation of D and H , based on the notion of source
benefit used for BR-Cost*.

For H we consider the descending order of the random source benefit computed
with (5) and (6).

Estimation of D is based on three hypotheses:

1. The number of sorted accesses to a source must be proportional to the source benefit
given by (3).

2. Sorted accesses until depth dj in each source should produce a decrease of the
threshold enough for discriminating the top-k result, which is at least untilUunseen =
Rk, where Rk is the k-th highest real score of an object.

3. If nj = N − Nrj is the number of sorted accesses in Sj for reaching depth dj
(see Figure 4), the relation between nj and dj depends on the score distribution in
sources, generally unknown and approximated here with uniform distribution.

If we note∆j = maxj−dj the score decrease to reach depth dj , the three hypothe-
ses above give:

1. ∀j, nj = C ×Bs(Sj), where C is a constant.
2. Umax −Rk =

∑
coefj ×∆j , where Umax = F(max1, ...,maxm) is the highest

possible aggregated score.
3. ∀j, nj/N = (maxj − dj)/(maxj −minj).

Resolving this equation system produces the following estimation for the depth:

dj = maxj −
A2
j

coefj × Cs(Sj)
× Umax −Rk∑

j A
2
j/Cs(Sj)

(8)

Real score Rk may be estimated by various methods. This is not important in our
experimental evaluation, since we precompute the Rk value, hence considering the best
case for SR/G.
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Access Retrieved candidates Uunseen

S1/S (o2, 0.4) {(o2, [0.4, 2.4])} 2.4
S2/S (o3, 0.9) {(o2, [0.4, 2.3]), (o3, [0.9, 2.3])} 2.3
S2/S (o1, 0.2) {(o3, [0.9, 2.3]), (o2, [0.4, 1.6]), (o1, [0.2, 1.6])} 1.6
S1/S (o1, 0.3) {(o3, [0.9, 2.2]), (o2, [0.4, 1.6]), (o1, [0.5, 1.5])} 1.5
S1/S (o4, 0.25) {(o3, [0.9, 2.15]), (o2, [0.4, 1.6]), (o1, [0.5, 1.5]), (o4, [0.25, 1.45])} 1.45
S1/S (o3, 0.2) {(o3, [1.1, 2.1]), (o2, [0.4, 1.6]), (o1, [0.5, 1.5]), (o4, [0.25, 1.45])} 1.4
S3/R (o3, 0.8) {(o3, [1.9, 1.9]), (o2, [0.4, 1.6]), (o1, [0.5, 1.5]), (o4, [0.25, 1.45])} 1.4
S2/S (o4, 0.15) {(o3, [1.9, 1.9]), (o2, [0.4, 1.55]), (o1, [0.5, 1.5]), (o4, [0.4, 1.4])} 1.35

... ... ... ...

Fig. 6. First steps of NC for k=2 over the example sources in Figure 2

Example We take the same example as for BR-Cost*, in the same conditions, to illus-
trate the first steps of the new variant of NC (see Figure 6).

We first compute D = {d1, d2} and H . For the two sources with sorted access (S1

and S2) we have similar parameters, maxj = Aj = 1, coefj = 1, Cs(Sj) = 1, Umax =
3 and Rk = 1.4 (the real score of the second best object, which is o1). Formula 8 gives
d1 = d2 = 1 - (3-1.4)/2 = 0.2. For H , we have Br(S3) = 1/2 and Brs(S2) = 1/4, so the
order given by H is [S3, S2].

– A first sorted access is done, S1 is randomly chosen for that.
– o2 is the best object and among the missing accesses for it, the sorted one in S2 has

priority, because crtmax2 = 1 > d2, so S2 is selected for a sorted access.
– o2 is again the best object and for the same reason as above, S2 is selected again

for a sorted access (crtmax2 = 0.9 > d2).
– Now o3 is the best object and among the missing accesses for it, the sorted one in
S1 has priority, because crtmax1 = 0.4 > d1, so S1 is selected for a sorted access.

– o3 is again the best object and for the same reason as above, S1 is selected again
for a sorted access.

– o3 is still the best object and for the same reason as above, S1 is selected again for
a sorted access.

– o3 is still the best object, but no more sorted access for it is possible, so the last
access for it is considered - the random access for o3 is scheduled in S3.

– o3 being now fully evaluated, o2 is the new best object. The sorted access for o2
in S2 still has priority, because crtmax2 = 0.2 ≥ d2, so S2 is selected for a sorted
access.

– o2 is again the best object, but the sorted access to S2 has not priority anymore,
because crtmax2 = 0.15 < d2. The remaining access for o2 (random probe in
S3) is scheduled. Then execution continues in a similar way until StopCondition is
satisfied.

3.3 Combined Algorithm

Although Combined Algorithm (CA) [7], limited to SR-sources, is not a generic algo-
rithm, it was a first attempt towards genericity, by proposing to combine NRA and TA
strategies to adapt to the case of different costs for random and sorted access.
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Access Retrieved candidates Uunseen

S1/S (o2, 0.4) {(o2, [0.4, 2.4])} 2.4
S1/S (o1, 0.3) {(o2, [0.4, 2.4]), (o1, [0.3, 2.3])} 2.3
S2/S (o3, 0.9) {(o2, [0.4, 2.3]), (o1, [0.3, 2.2]), (o3, [0.9, 2.2])} 2.2
S2/S (o1, 0.2) {(o3, [0.9, 2.2]), (o2, [0.4, 1.6]), (o1, [0.5, 1.5])} 1.5
S3/R (o3, 0.8) {(o3, [1.7, 2]), (o2, [0.4, 1.6]), (o1, [0.5, 1.5])} 1.5

... ... ... ...

Fig. 7. First steps of CA-gen for k=2 over the example sources in Figure 2

We propose here CA-gen, a generic variant of CA adapted to any source types. Like
for CA, if r is the ratio between the average costs of random and sorted access, each
sorted (S- and SR-) source is accessed r times, before performing all the random probes
for the best candidate in Uk with incomplete scoring in random sources. Note that the
best candidate may be different of χ.

Unlike CA, but similar to BR, CA-gen does not produce complete scoring for the
best candidate, since its score may still be unknown in some sorted sources. Like for
BR, the stop condition corresponds to incomplete top-k scoring.

– The cycle of r sorted accesses in each source can be simulated in GF with local
variables indicating the next source to access and the number of accesses already
performed in the cycle.

– SortedAccessCondition returns true if the cycle is not yet finished.
– BestSortedSource simply returns the next source.
– ChooseCandidate returns the best candidate, as defined above.
– BestRandomSource returns the first random source not yet probed for the best

candidate. If no such source exists, the cycle stops.
– StopCondition, for incomplete scoring, is given by (1).

Example We take the same example as for BR-Cost* and NC, in the same conditions,
to illustrate the first steps of CA-gen (see Figure 7).

The access ratio r = Cr(Sj)/Cs(Sj) = 2, so two sorted accesses are scheduled in
each source before fully evaluating the best object.

– r = 2 sorted accesses to S1, then to S2 are done.
– o3 is the best object and we schedule all the random probes for it. The only possible

one is the access to S3, because o3 has been already read in S2 through a previous
sorted access. Note that o3 is not fully evaluated after this step because its value in
S1 is missing and cannot be obtained by random access.

– Execution continues in the same way, by cycles of two sorted accesses in each
source followed by random probes for the best object, until StopCondition is satis-
fied.

4 Approximation by early stopping

Top-k processing in our context is usually expensive because of predicate evaluation,
therefore reducing the execution cost by accepting approximate results is a promising
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approach. We adopt the method proposed by TAθ [7], based on relaxing the threshold
condition in TA with a factor θ > 1, i.e. the algorithm stops when the score of at
least k candidates exceeds Uunseen/θ. This produces a θ-approximation of the top-
k result, i.e. a set Ka of k objects such that ∀x ∈ Ka,∀y /∈ Ka, θ × score(x) ≥
score(y). As explained in the related work section, a θ-approximation guarantees that
the ratio between the score of the best missed object in the approximate result (best
false negative) and that of the worst false positive cannot exceed θ.

Note that this method is equivalent to an early stopping of the exact algorithm, i.e.
TA and TAθ have the same execution until the end of TAθ, which occurs first.

We generalize here the TAθ approach to the case of incomplete scoring within the
GF framework, i.e. to any top-k algorithm in our context, and thus enable the com-
parison of the behavior of top-k algorithms in the case of approximate results by early
stopping.

Note that TAθ considers that all source scores belong to the [0, 1] interval. In the
general case, in order to preserve the meaning of θ-approximations, we simply consider
that scores in source Sj belong to a [0,maxj ] interval.

Consider an approximate solution Ka composed of k candidates with possibly in-
complete scoring at some point during the execution of the algorithm in the GF frame-
work. Then the condition for detecting Ka as being surely a θ-approximation of the
top-k result is given by the following theorem.

Theorem 1. An approximate solution Ka composed of k candidates with incomplete
scoring during the execution of a top-k algorithm is surely a θ-approximation of the
top-k result iff

θ ×minc∈Ka(L(c)) ≥ maxc/∈Ka
(U(c)) (9)

Proof. At the given moment during the execution, minc∈Ka(L(c)) represents the min-
imum possible score for a candidate in Ka, while maxc/∈Ka

(U(c)) is the maximum
possible score for an object not in Ka (including unseen objects).

We first show that if condition (9) is true, then Ka is a θ-approximation of the exact
result.

For any candidate c, we have L(c) ≤ score(c) ≤ U(c). More generally, for any
unseen object o, we have U(o) = Uunseen, its maximum possible score. Then ∀x ∈
Ka, score(x) ≥ L(x) ≥ minc∈Ka

(L(c)) and ∀y /∈ Ka,maxc/∈Ka
(U(c)) ≥ U(y) ≥

score(y). If the theorem condition holds, then ∀x ∈ Ka, y /∈ Ka, θ × score(x) ≥
score(y), i.e. Ka is a θ-approximation.

We demonstrate the reverse implication by using proof by contradiction: if condition
(9) is not true, then Ka is not surely a θ-approximation.

Consider now x = argminc∈Ka(L(c)) the candidate with the worst minimal score
in Ka and y = argmaxc/∈Ka

(U(c)) the object with the best maximal score outside of
Ka. If the theorem condition does not hold for Ka, then θ × L(x) < U(y), so it is
possible that θ × score(x) < score(y), i.e. Ka may not be a θ-approximation.

In the GF context, algorithms manage only the set of candidates discovered in sorted
sources. Considering Ka ⊂ candidates, the stop condition (1) becomes:

θ ×minc∈Ka
(L(c)) ≥ max(Uunseen,maxc∈candidates−Ka

(U(c))) (10)
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The difference with Theorem 1 is that here Uunseen gives the upper bound score for
all the objects not yet discovered and thus not members of candidates.

Theorem 2. Eliminating non-viable candidates does not affect the stop condition (10).

Proof. Suppose that at some moment a non viable candidate x affects the stop con-
dition. Since x /∈ Ka, x can only impact the right side of the inequality and only if
U(x) > Uunseen and U(x) > U(y),∀y ∈ candidates − Ka. But U(x) < Lk (x
non-viable), so all the objects in candidates −Ka are non-viable and Lk > Uunseen,
which in accordance to (1) means that at the current moment the exact top-k has been
already found, i.e. the algorithm is already stopped.

To estimate the precision of an approximate solution, we propose a distance measure
based on two principles:

– Order of elements in the top-k solution is not important.
– Only wrong elements (false positives) in the approximate solution affect precision,

i.e. the quality of the approximate result is given by the quality of the false positives.

Distance is measured by the difference between the real scores of wrong elements
andRk, the k-th score in the exact solution, normalized to the [0, 1] interval by dividing
it by Rk. Indeed, Rk is the maximum possible distance to Rk, since the lowest possible
global score is 0.

The distance between an element o ∈ Ka and the real top-k result K is defined as
follows:

dist(o,K) =

{
(Rk − score(o))/Rk, if o /∈ K
0, if o ∈ K

(11)

The global distance between an approximate solution Ka and K is defined as the
average of the individual distances between elements of Ka and K.

dist(Ka,K) =
1

k

∑
o∈Ka

dist(o,K) (12)

We measure the quality of an approximate solution Ka as being 1− dist(Ka,K).
The relation between our distance measure and θ-approximations is given by the

following theorem.

Theorem 3. If Ka is a θ-approximation of the real solution K, then dist(Ka,K) ≤
θ − 1. Moreover, the θ − 1 value is optimal in the general case, i.e. it is the smallest
upper bound of dist(Ka,K) that can be guaranteed.

Proof. If Ka = K then dist(Ka,K) = 0 and the inequality is true. Otherwise, con-
sidering x ∈ K − Ka, then score(x) ≥ Rk. Ka being a θ-approximation of K,
∀o ∈ Ka, θ × score(o) ≥ score(x) ≥ Rk, so Rk − score(o) ≤ (θ − 1)score(o).

In conclusion, dist(Ka,K) = 1
k

∑
o∈Ka

dist(o,K) = 1
k

∑
o∈Ka−K

Rk−score(o)
Rk

≤
1
k

∑
o∈Ka−K

(θ−1)score(o)
Rk

= θ−1
kRk

∑
o∈Ka−K score(o) ≤

θ−1
kRk

kRk = θ − 1.
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Moreover, no distance smaller than θ − 1 can be guaranteed. Indeed, in the general
case it is possible for K to be composed of k objects of score s, while the approximate
solution Ka may be a set of k objects of score s/θ. Given the definition, this possible
Ka is a θ-approximation of K, with dist(Ka,K) = θ − 1.

We propose in this paper a comparative study of the approximation potential of
multi-criteria top-k algorithms.

We draw cost-distance curves for these algorithms and compare their shapes. A
point on the cost-distance curve indicates the quality of the approximate result on early
stopping at that moment/cost. Since arbitrary early stopping comes with no guarantees
on the precision of the approximate result, we also produce θ-approximations in each
case and compare costs for measured and guaranteed precision.

5 Experiments

We experimentally compare the BR strategy with that of the other generic algorithms
in terms of execution cost. Then, we compare the approximation potential of various
categories of state-of-the-art top-k algorithms, both generic and specific.

Data sets and parameters

We use synthetic sources, independently generated as lists of scores in the [0, 1] inter-
val for the N objects, then organized for S, R or SR access, depending on the source
type. We consider two types of score distribution in a source: uniform or exponential
(p(x) = λe−λx), for λ = 1 and restricted to the [0, 1] interval. Exponential distribution
illustrates S-sources where scores have fast decrease at the beginning, potentially more
discriminant than sources with uniform distribution. The choice of synthetic data is mo-
tivated by the need for an experimental testbed with a relatively high number of criteria
(up to 18 in our tests), which was not provided by the real data sets we could find.

We measure the execution costs for each algorithm as the sum of costs of all the
source accesses for computing the top-k result. We consider that all the sorted (random)
accesses have the same cost Cs (Cr). Each result in the experiments is the average of 10
measures over different randomly generated sources. We consider weighted sum as the
aggregation function, with coefficients randomly generated for each of the 10 measures.

The following parameters are considered in the experiments:

– The number of database objects is N = 10 000.
– Queries are looking for the best k = 50 objects.
– We consider 6 S-sources, 6 R-sources and 6 SR-sources.
– We consider the most common cost settings, with random accesses more expensive

than sorted ones: Cr=10, Cs=1.
– Two configurations for data distribution in sources are considered: uniform for all

the sources or mixed, i.e. exponential distribution for half of the sorted sources (3
S-sources and 3 SR-sources), uniform for the other sources.
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(a) All source types (b) No R-sources (c) No S-sources

Fig. 8. Execution cost comparison

Comparison of the execution cost

We compare the execution cost of BR-Cost* with the NC variant and CA-gen in three
configurations of source types: no R-sources, no S-sources, and all the source types. We
also add to the comparison the reference non-generic algorithms compatible with that
setting. In each configuration, uniform and mixed data distribution are considered.

– All source types (S, R and SR).
Figure 8.a shows that BR-Cost* behaves visibly better (10%) than both NC and
CA-gen for uniform distribution, while the difference becomes important for mixed
distribution: approximately 37% better than NC and 40% better than CA-gen.

– No R-sources (only S and SR).
Note that here cost and source settings are in favor of algorithms that realize only
sorted access (NRA) or strongly favors them (NC). Figure 8.b shows that in the
uniform distribution case BR-Cost* and NC are the best, with very close costs,
much better than CA-gen (around 33%), which is even outperformed by NRA. For
mixed distribution, BR-Cost* is clearly much better than NC and CA-gen (almost
60%), which are outperformed by NRA.

– No S-sources (only R and SR).
Figure 8.c shows that in all the cases BR-Cost* outperforms the other algorithms
and that NC and CA-gen are less adapted to this setting, performing worse than Up-
per. The benefit of using BR-Cost* is bigger in the mixed distribution case (around
28% better than NC and CA-gen) compared to uniform distribution (24%). Com-
pared to Upper, the benefit is similar in both cases, around 15%.

In conclusion, BR-Cost* successfully adapts to various source types and data distri-
bution settings, and outperforms not only the other generic approaches, but also specific
algorithms designed for that case. We also note a weakness for the other generic strate-
gies in one of the studied cases: no S-sources for NC and no R-sources for CA-gen.
Paradoxically, mixed distribution does not improve cost in most cases; we guess that
discriminant distributions are counter-balanced here by the lack of correlation between
sources and by their relatively high number.
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(a) All source types, uniform distribution (b) All source types, mixed distribution

Fig. 9. Approximation with Uk, all source types

Approximation potential

We measure the potential of approximation by early stopping of the top-k algorithms
by drawing their cost-distance curves.

Distance between approximate and real solution is computed with formulas (11)-
(12). We measure this distance in several points during the algorithm’s normal exe-
cution, every 2000 cost units (or every 1000 for the no R-source case, where cost is
smaller), then we extrapolate a curve relying these points. Each point on the curve rep-
resents the distance between the approximate solution and the real one if the algorithm
stops at that moment. A curve ”below” another one indicates a better approximation
potential.

The form of the curve also indicates approximation stability. A monotone descend-
ing curve means stable approximation, that improves if execution continues, while non-
monotony indicates an algorithm badly adapted for approximation by early stopping.

For each cost-distance curve we measure the end point that corresponds to a θ-
approximation obtained with the stop condition (10). We consider two values, θ =
1.05 and θ = 1.01, that correspond to a guaranteed distance of 0.05, respectively 0.01
(see Theorem 3). We compare the position of these points with that of the intersection
between the curve and the corresponding distance.

We consider two cases for the approximate solution. The first one is the set Uk of k
candidates with the highest upper bound. This is a natural choice for the approximate
solution, since Uk is the set of candidates that top-k algorithm focus on during exe-
cution. More precisely, all the algorithms proposed so far base their strategies on Uk,
either for deciding a sorted access, or for the choice of a candidate for random probes.
Intuitively, candidates with high upper bounds must be ”refined” because their upper
bound make them potentially belong to the final top-k. The algorithm must decide if
they really belong to the result or not - if not, the algorithm cannot end without refining
the candidate’s score to make it non-viable.

The second proposal for an approximate solution is the set of k candidates with
the highest lower bound Lk. Intuitively, belonging to Lk means that the candidate was
already refined with good scores in some sources. This may be a good indication that
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(a) No R-sources, uniform distribution (b) No R-sources, mixed distribution

Fig. 10. Approximation with Uk, no R-sources

the candidate belongs to the final top-k, better than for Uk where high upper bounds
may be the result of little refinement, thus with high uncertainty.

Approximation with Uk Figures 9-11 present the cost-distance curves for uniform and
mixed data distributions in the three cases of source types. Final costs for algorithms
may be less visible in these figures, but they can also be retrieved in Figure 8.

– All source types.
We compare the generic algorithms BR-Cost*, the NC variant and CA-gen.
For uniform distribution (Figure 9.a), BR-Cost* approximation distance quickly
decreases and the algorithm has clearly better approximation properties than CA-
gen (much higher distance, only decreasing at the end) or NC (totally unstable).
Mixed distribution (Figure 9.b) accentuates the problems of NC and CA-gen (which
becomes unstable), while BR-Cost* keeps a good curve shape. However, θ-approximation
significantly reduces the cost saving for BR-Cost*, e.g. for θ=1.05 algorithm stops
at cost 160 000, while the corresponding distance of 0.05 is already reached at cost
70 000.

– No R-sources (only S and SR).
Besides the three generic algorithms, we also consider here the NRA algorithm.
Excepting NC, algorithms produce in this case stable approximations. For uniform
distribution (Figure 10.a), BR-Cost* and NRA have very close curves, i.e. close ap-
proximation potential, but BR-Cost* produces θ-approximations with better costs.
Similarly, CA-gen has good approximation potential, especially in the second half
of the execution, but θ-approximations are more expensive than for NRA. NC is
more stable than in the previous case and and its low execution time helps it pro-
ducing less expensive θ−approximations.
For mixed distribution (Figure 10.b), BR-Cost* improves its potential compared to
NRA, while NC becomes highly unstable.

– No S-sources (only R and SR).
Besides the three generic algorithms, we also study here the Upper and TAz algo-
rithms. Despite the fact that it is much more expensive (around six times the cost of
BR-Cost*), TAz is considered because of the good approximation potential of al-
gorithms with many SR-sources, which reduce as much as possible the uncertainty
of the candidates’ scores.
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(a) No S-sources, uniform distribution (b) No S-sources, mixed distribution

Fig. 11. Approximation with Uk, no S-sources

For both uniform (Figure 11.a) and mixed distribution (Figure 11.b), behavior is
very similar. CA-gen, NC and Upper are highly unstable, while BR-Cost* and TAz
have very close curves, with very good approximation potential. However, because
of its high execution cost, θ-approximations of TAz are much more expensive than
for BR-Cost* (because of their high values, final cost and θ-approximations for
TAz are not visible in the figure).

In conclusion, BR-Cost* has clearly the best approximation potential with Uk among
the generic algorithms, with good properties for the different data distributions. The
other generic algorithms are badly adapted to approximation with Uk: NC and CA-gen
are systematically unstable.

We guess that the good approximation properties of BR-Cost* come from its breadth-
first strategy. Handling the current top-k Uk as a whole, instead of focusing on the best
candidate only, produces a more stable evolution of Uk toward the final solution.

The price to pay for guaranteed precision in θ-approximations is important for al-
gorithms with good approximation curves - we notice a significant difference with the
potential cost for the same approximation quality. The cost of θ-approximations ap-
pears to be dependent on the total cost of the algorithm: for algorithms with very close
cost-distance curves, higher total costs systematically lead to higher θ-approximation
costs.

Approximation with Lk Figures 12-14 present the cost-distance curves for the ap-
proximation with the best k lower bound scores Lk, in the three cases of source types.
The sub-figure for each case presents, besides the curves, a zoom on the final part of the
execution, where the curves are very close.

– All source types.
For both uniform (Figure 12.a) and mixed distribution (Figure 12.b), the curves for
all the algorithms are very close, stable, with good approximation potential.
BR-Cost* and CA-gen have slightly better curves than NC, the difference being
visible in the mixed distribution case and on the final part of the uniform case.
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(a) All source types, uniform distribution (b) All source types, mixed distribution

Fig. 12. Approximation with Lk, all source types

Comparison of θ-approximations follows the conclusion of the previous point,
algorithms with better execution costs produce better θ-approximations, i.e. BR-
Cost* is the best, while CA-gen and NC are very close.
We notice that cost-distance curves with Lk are better than those with Uk in all
the cases. This also leads to an increased difference between the cost with θ-
approximation and the potential one.

– No R-sources.
Conclusions are similar to the all source types case for both curve shapes and θ-
approximations, but differences between algorithms are more important here.
For uniform distribution (Figure 13.a), BR-Cost* has globally the best shape, fol-
lowed very closely by NC and NRA, while CA-gen is slightly, but visibly worse.
For mixed distribution (Figure 13.b), the superiority of BR-Cost* is clearer, the
other algorithms being close and having sections on which they have better approx-
imation potential than the others.

– No S-sources.
We find similar conclusions in this case too, with the remark that generic algorithms
have globally better curve shapes than Upper and TAz.
For uniform distribution (Figure 14.a), BR-Cost*, CA-gen and NC are very close,
with CA-gen slightly better on the middle part and NC slightly worse on the final
part. Upper has globally the least favorable approximation potential, TAz becoming
worse at the end only because of its higher cost.
For mixed distribution (Figure 14.b), BR-Cost* and CA-gen have clearly the best
potential, followed by NC. Unlike for uniform distribution, Upper is here globally
better than TAz.

In conclusion, we notice that approximation with Lk has better quality than with Uk
for all the algorithms. Compared with the Uk case, approximation is always stable with
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(a) No R-sources, uniform distribution (b) No R-sources, mixed distribution

Fig. 13. Approximation with Lk, no R-sources

Lk and has better precision at the same execution cost. Even if BR-Cost* has globally
the best properties, the approximation potential of generic algorithms is very close in
this case.

However, θ-approximations are not improved by Lk and lead to an increased differ-
ence between the potential cost and that for guaranteed precision.

6 Conclusion

In this paper we proposed a generic framework GF for top-k processing over expen-
sive ranking predicates, able to express any top-k algorithm. We compared within this
framework our generic algorithm BR with generic variants that we proposed for algo-
rithms NC and CA, adapted to a similar context. Comparison of the algorithm strategies
within GF was completed with experimental measures indicating that the breadth-first
strategy of BR adapts itself very well to various source type configurations and data dis-
tributions, leading to better execution cost than the other generic or specific strategies.

We also presented a study of the approximation potential of top-k algorithms by
early stopping, by proposing a generalization of θ-approximation in the context of the
GF framework and an experimental comparison between algorithms for two common
approximation sets: candidates with best k upper bounds (Uk) and with best k lower
bounds (Lk). By comparing cost-distance curves we concluded that the BR strategy
globally has the best approximation potential, with a clear advantage on the others in
the Uk approximation case. However, Lk approximation produces better results for all
the algorithms and greatly reduces the differences between them. We noticed that θ-
approximation is weakly correlated with the approximation potential and significantly
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(a) No S-sources, uniform distribution (b) No S-sources, mixed distribution

Fig. 14. Approximation with Lk, no S-sources

depends on the total execution cost. This cancels the difference between Uk and Lk
approximation and favors again the BR strategy, which produces better total costs.
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