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I. INTRODUCTION

The H ∞ synthesis [START_REF] Zhou | Essentials of Robust Control[END_REF] is a method that formulates performance and robustness objectives as an optimization problem. The first methods developed to synthesize a controller from the H ∞ formulation [START_REF] Gahinet | A linear matrix inequality approach to H∞ control[END_REF], [START_REF] Doyle | Statespace solutions to standard h2 and H∞ control problems[END_REF] met difficulties to reach a large audience since synthesized controllers cannot be implemented efficiently in practice. Indeed, these methods provide full order controllers which have to be truncated by order reduction or stucturation [START_REF] Voinot | Unstationnary control of a launcher using observer-based structures[END_REF].

The synthesis of fixed order controllers, thus workable in real cases, is a challenging problem when meet robustness and performance constraints. The emergence of efficient methods to solve Linear Matrix Inequality problems (LMI) has encouraged formulating these constraints as LMI [START_REF] Boyd | MIMO PID tuning via iterated LMI restriction[END_REF], [START_REF] Sadeghpour | A toolbox for robust PID controller tuning using convex optimization[END_REF], [START_REF] Garpinger | A software tool for robust PID design[END_REF]. However, some problems cannot be cast into LMI and require other optimization methods to be solved, such as convex-concave optimization [START_REF] Hast | PID design by convex-concave optimization[END_REF] or non-smooth optimization [START_REF] Burke | Hifoo-a matlab package for fixed-order controller design and H∞ optimization[END_REF], [START_REF] Apkarian | Nonsmooth H∞ synthesis. Automatic Control[END_REF].

Global optimization [START_REF] Kearfott | An interval branch and bound algorithm for bound constrained optimization problems[END_REF] approaches present a major interest for non-convex problems. Indeed, global optimization methods provide an enclosure of the global optimum of a problem. Furthermore, computation times of global optimization methods are no more prohibitive due to a lot of studies [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF], [START_REF] Bixby | A brief history of linear and mixed-integer programming computation[END_REF] to improve the convergence of global optimization algorithms. We choose to approach the H ∞ sensitivity problem under a structural constraint on the controller with global optimization algorithm based on interval arithmetic to cope with the non-convexity of this problem.

This paper is organized as follows. Section II proposes a definition of the H ∞ problem and the H ∞ sensitivity problem. Section III introduces interval arithmetic and proposes an algorithm to solve the H ∞ sensitivity problem. Section IV compares our results to those obtained with two other H ∞ synthesis methods. Section V concludes this paper. In this section, we recall the H ∞ synthesis problem. Then, we show how performance and robustness constraints can be expressed as H ∞ constraints and we introduce the H ∞ sensitivity problem. Finally, we introduce the notion of structured controller and we formulate the problem we propose to solve.

A. H ∞ problem

The H ∞ synthesis problem can be defined as proposed in [START_REF] Zames | Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses[END_REF]. Given an Linear Time Invariant (LTI) system P and a set K of LTI systems, find a controller from K which is a solution to the problem:

minimize K∈K ||F (P, K)|| ∞ subject to K internally stabilizes P (1) 
where F (P, K) is the Linear Fractional Transform (LFT) that describes the closed loop system represented in Figure 1. In 

F (P, K) =    T w→z1 (s)
. . .

T w→zp (s)    (2) 
where T w→zj (s) = (T w1→zj (s), ..., T wn→zj (s)). T wi→zj (s) represents the channel from the i th external input to the j th error output. s = iω denotes the Laplacian variable, where i is the imaginary unit and ω ≥ 0 the pulsation. Problem 1 was solved with the DGKF algorithm [START_REF] Doyle | Statespace solutions to standard h2 and H∞ control problems[END_REF] based on the resolution of Ricatti equations, and was later reformulated as a Linear Matrix Inequalities problem [START_REF] Gahinet | A linear matrix inequality approach to H∞ control[END_REF].

B. From H ∞ constraints to H ∞ problem
In practice, Problem 1 is formulated from H ∞ constraints. Consider a LTI system G(s) and a controller K(s) in a tracking error regulation loop as shown in Figure 2, where e represents the tracking error signal, u the control, y the measure, r the reference, d the disturbance and n the noise. A signal zi = W i (s)z i denotes the weighted counterpart of the output signal z i .
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The H ∞ norm of a LTI system that maps w ∈ L 2 into z ∈ L 2 represents the maximal gain of this system.

||T || ∞ = max w =0 ||z|| 2 ||w|| 2 = sup ω λ(T (iω)T (iω) * ), ( 3 
)
where λ is the greatest eigenvalue and T (iω) * is the hermitian transpose of T (iω). Thus, minimizing ||T || ∞ means minimizing the maximal response of the system to inputs w.

The principle of H ∞ synthesis is to minimize infinity norm of objective channels T w→zi (s). Error outputs e, u and y are weighted with rational transfer functions W 1 (s), W 2 (s) and W 3 (s), such as non-desired behaviors of the closed loop system are penalized. For example, a non-desired behavior may be an important tracking error signal e at low frequencies (steady state). In this case, W 1 (s) penalizes the sensitivity function T w→e (k, s) at low frequencies but not at high frequencies where noise n occurs. An example of robust constraint would be to minimize the action of actuators at high frequencies. Thus, W 2 (s) would penalize T w→u (s) at these frequencies.

Once weighting functions W i (s) are defined, the objective is to find K(s) that minimizes every objectives ||T w→ zi (s)|| ∞ all at once, so that the closed loop system offers the desired behavior. In addition, K(s) must internally stabilize the closed loop system. In practice, H ∞ performance and robustness constraints are expressed as bounds on the gain of objective channels. These bounds are frequency templates designed from user specifications, and represent the inverse of weighting functions

W i (s): ∀ω, λ(T w→zi (iω)T w→zi (iω) * ) ≤ |W -1 i (s)| ⇐⇒ ||T w→zi (s)W i (s)|| ∞ ≤ 1 ⇐⇒ ||T w→ zi (s)|| ∞ ≤ 1 (4)
H ∞ constraints can be interpreted as a frequency dependent upper bound on the ratio between an error output and inputs. Ensuring that every H ∞ constraints are respected can be formulated as a Constraints Satisfaction Problem (CSP), find K, subject to

         ||T w→ z1 (s)|| ∞ ≤ 1 . . . ||T w→ zp (s)|| ∞ ≤ 1 K(s) internally stabilizes P (5)
This CSP problem can be considered as an optimization problem, that we call the H ∞ sensitivity problem:

minimize K max(||T w→ z1 (s)|| ∞ , ..., ||T w→ zp (s)|| ∞ ) subject to K(s) internally stabilizes P (6) 
Indeed, if the minimum of Problem 6 is lower than one, the solution of Problem 6 is a feasible solution to Problem 5.

The classical way to compute a solution to Problem 5 is to solve the H ∞ problem. The system P (s) is built from G(s) and the weighting functions W i (s) as shown in Figure 2.

Then, a solution to Problem 5 can be computed by solving Problem 9. If ||F (P, K)|| ∞ is lower than one, then K is a solution to Problem 5. Indeed,

||F (P, K)|| ∞ = ||   
T w→ z1 (s) . . .

T w→ zp (s)    || ∞ ≥ max(||T w→ z1 (s)|| ∞ , ..., ||T w→ zp (s)|| ∞ ). (7) 
For example, we can use [START_REF] Doyle | Statespace solutions to standard h2 and H∞ control problems[END_REF] or [START_REF] Gahinet | A linear matrix inequality approach to H∞ control[END_REF] to solve the H ∞ problem. However, these methods give solutions in the space of full-order controllers, which means that the order of the controller is equal to the one of P (s). Moreover, the more H ∞ constraints must be respected, the higher is the order of P (s). Therefore, controllers computed by these two methods are usually high orders.

Remark 1: Due to Equation ( 7), if the minimum of Problem 9 is greater than one, it does not imply that Problem 5 has no solution.

C. Structured H ∞ problem

In practice low-order controllers, possibly mixed with filters, are preferred because their dynamics can be interpreted easily. A structured controller depends on free parameters k ∈ K, where K denotes the space of controller parameters. For example, a PID controller depends on k p , k i and k d .

K(k, s) = k p + k i s + k d s, with k = (k p , k i , k d ) (8)
As F (P, K) represents the system P (s) interconnected with K(k, s), its elements T wi→ zj (k, s) depend on k. The structured H ∞ problem can be formulated as follows:

minimize k∈K ||F (P, K)|| ∞ subject to K(k, s) internally stabilizes P (9)
One method to solve this problem is the non-smooth synthesis [START_REF] Apkarian | Nonsmooth H∞ synthesis. Automatic Control[END_REF]. However, to our knowledge , no methods have been proposed to solve directly Problem 6 under a structural constraint on the controller. This problem can be expressed as follows,

minimize k∈K max(||T w→ z1 (k, s)|| ∞ , ..., ||T w→ zp (k, s)|| ∞ )
subject to K(k, s) internally stabilizes P (10) We propose to solve Problem 10 using a global optimization approach based on interval arithmetic.

III. GLOBAL OPTIMIZATION APPROACH BASED ON INTERVAL ARITHMETIC

In this section, we show that Problem 10 can be solved in a guaranteed way using global optimization based on interval arithmetic. Moreover, a global optimization approach enables to compute an enclosure of the minimum of the objective function. Thus a certificate of infeasibility of Problem 5 can be obtained. We first introduce interval arithmetic and the notion of inclusion function [START_REF] Jaulin | Applied Interval Analysis[END_REF]. Then, we reformulate Problem 10 as a min/max problem. After that we show how to tackle the maximization part of this min/max problem with interval arithmetic. Finally, we propose a branch and bound algorithm to solve Problem 10.

A. Interval Arithmetic

An Interval is a closed connected subset of R [START_REF] Jaulin | Applied Interval Analysis[END_REF]. Intervals are denoted using boldface letters x. A non-empty interval x can be represented by its endpoints:

x = [x, x] = {x : x ≤ x ≤ x} with x ∈ R ∪ {-∞}, x ∈ R ∪ {+∞} and x ≤ x.
The set of intervals is denoted by IR and the set of n-dimensional interval vectors, also called boxes, is denoted by IR n . The main advantage of interval arithmetic is the reliability of computations, in the sense that a guaranteed enclosure of the result is computed. This inclusion property is the fundamental theorem of interval arithmetic. Let g : R n → R m be a function. An inclusion function g : IR n → IR m of g is defined as follows,

∀x ∈ IR n , g(x) = {g(x), x ∈ x} ⊆ g(x) (11) 
An inclusion function provides an upper and a lower bound on a function over an interval. Several techniques can be used to construct an inclusion function of every factorable function involving +, -, * , sin, exp, max, min, ... [START_REF] Tóth | Interval Method for Competitive Location Problems[END_REF]. Figure 3 illustrates the concept of inclusion function. It is important to note that g(x) in light gray in Figure 3 is an over approximation of g(x) displayed in dark gray, and is not the smallest possible box which encloses g(x).
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B. Interval approach of the problem

The computation of ||.|| ∞ involves dealing with singular values (see Equation ( 3)). Unfortunately, an interval arithmetic approach does not allow to handle efficiently the computation of singular values. However, it is possible to avoid this difficulty by reformulating Problem 10. Indeed, ||T w→zj (k, s)|| ∞ can be formulated as the maximization of a scalar-valued function:

||T w→zj (k, s)|| ∞ = sup ω λ(T w→ zj (k, iω)T w→ zj (k, iω) * ) = sup ω λ(T w1→ zj (k, s), ...T wn→ zj (k, s))    T w1→ zj (k, s)
. . .

T wn→ zj (k, s)    = sup ω n i=1 |T wi→ zj (k, s)| 2 (12) 
Then, Problem 10 can be reformulated as follows:

minimize k sup ω f (k, ω)
subject to K internally stabilizes P

where

f (k, ω) = max( n i=1 |T wi→ z1 (iω, k)| 2 , ..., n i=1 |T wi→ zp (iω, k)| 2 ). (14) 
The internal stability constraint is generally expressed as a LMI [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Such a constraint cannot be mixed properly with a global optimization approach based on interval arithmetic. However, the stability constraint can be dealt with interval arithmetic using the Routh criterion on the characteristic polynomial of the state matrix of F (P, K) [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF]. Indeed, the constraint "K(k, iω) internally stabilizes P " can be reformulated as a set of non-convex constraints on k, denoted R(k) ≤ 0. The loop shaping problem is formulated as a constrained min/max problem that can be solved using a branch and bound algorithm based on interval arithmetic.

C. Enclosure of the objective function

The objective function of Problem 13 involves the computation of f sup (k) = sup ω f (k, ω). To minimize this objective function using a branch and bound algorithm, we need to compute a lower and an upper bound of f sup over a box k. This bound must be as close as possible to the exact range of f sup to ensure the convergence of the branch and bound algorithm.

Using interval arithmetic, an inclusion function f of f (k, ω) can be built. Indeed, the operators +, * , abs, √ , max are well-defined [START_REF] Kearfott | An interval branch and bound algorithm for bound constrained optimization problems[END_REF]. In order to use interval arithmetic, we limit the study of sup ω f (k, ω) to a bounded set Ω.

Thus, we obtain the following equation:

∀k ∈ IR n , f sup (k) = sup ω∈Ω f (k, ω) : k ∈ k ⊆ f (k, Ω).
Unfortunately, the bounds obtained using the inclusion function directly over Ω are not close enough to f sup (k). That is why we subdivide Ω into several boxes ω i such as Ω = i ω i . Thus, we have the following result:

∀k ∈ IR n , f sup (k) ⊆ max i f (k, ω i ), max i f (k, ω i ) . f (k, ω) ω f sup (k) f sup (k) ω i × f (k, ω i ) Fig. 4. Computation of f sup (k).
Figure 4 illustrates the previous equation. Ω is discretized with non-overlapping intervals and f is evaluated for each of them. The highest lower bound and upper bound of the evaluations represented by dotted lines in Figure 4 give a guaranteed enclosure of f sup (k). Indeed, the function f sup , defined as follows, is an inclusion function of f sup :

∀k ∈ IR n , f sup (k) = max i f (k, ω i ), max i f (k, ω i ) .

D. Global Optimization Algorithm

We propose to solve Problem 13 with a branch and bound algorithm [START_REF] Kearfott | An interval branch and bound algorithm for bound constrained optimization problems[END_REF], [START_REF] Ninin | Global Optimization based on Interval Analysis: Affine Relaxation and Limited Memory[END_REF]. We denote µ the global minimum of Problem 13, K ⊆ K the initial domain of controller variables, lb µ and ub µ a lower and an upper bound of µ.

The principle of a branch and bound algorithm is to split K into smaller subsets and eliminate them if they do not satisfy the stability constraint or if it is certified that they do not contain the global solution. When the algorithm ends, we obtain:

• k * the best feasible solution found, • [lb µ , ub µ ] a reliable enclosure of the minimum µ,

• A certificate of infeasibility to Problem 5 if no feasible solution has been found or lb µ > 1.

1: while |ub µ -lb µ | ≥ and L = ∅ do 2:
Extract a box k from L 3:

Contract k using [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF].

4:

Bissect k into k 1 and k 2 .

5:

for i = 1, 2 do 6:
Compute f sup (k i ).

7:

if f sup (k i ) ≤ ub µ then 8:
Add k i in L.

9:

end if 10:

Choose k ∈ k i that respects R(k) ≤ 0.

11:

if f sup (k) < ub µ then 12:
Update ub µ and k * = k. Update lb µ = min k∈L f sup (k).

16: end while Algorithm 1: Branch and Bound algorithm.

Algorithm 1 works as follows. A list of boxes L is initialized with K. At Line 2, the box k with the lowest lower bound f sup (k) is chosen from L. At Line 3, k is contracted on its feasible region using [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF]. If the result is not empty, k is bisected in two non-overlapping boxes k 1 and k 2 . For k 1 and k 2 , f sup (k i ) is computed at Line 6 using Section III-C. If f sup (k) > ub µ , it is proved that the global minimum cannot belong to k, else the box is added to L. At Line 10, if possible, a point k that stabilizes P (s) is chosen in k. If f sup (k) is lower than the current value ub µ , k is a better solution and ub µ is updated. When Algorithm 1 stops, L contains a set of boxes that contain the global minimizer; [lb µ , ub µ ] provides a guaranteed enclosure of the global minimum µ; k * is the best known solution.

If (lb µ > 1) or if (L = ∅) ∧ (k * = ∅), it is certified that Problem 5 has no solution.

IV. EXAMPLE

The methodology is applied on a simple example and compared with methods presented in [START_REF] Apkarian | Nonsmooth H∞ synthesis. Automatic Control[END_REF] and [START_REF] Gahinet | A linear matrix inequality approach to H∞ control[END_REF]. We use the Matlab Robust Control toolbox where both of them are implemented.

A. Problem and results

We consider the second order LTI system:

G(s) = 1 s 2 + 1.4s + 1 ,
and a PID with a derivative filtering:

K(k, s) = k p + k i s + k d s 1 + s .
The vector of controller parameters is k = (k p , k i , k d ). Each parameter belongs to [-10, 10], then K = [-10, 10] 3 and the frequency domain is Ω = [10 -3 , 10 3 ]. We consider the regulation scheme of Figure 2 without input signals d and n.

It means that we have one input signal r and three weighted outputs z1 , z2 and z3 . Weighting functions are the following ones

W 1 (s) = 10s+100 1000s+1 , W 2 (s) = 10s+1 s+10 , W 3 (s) = 100s+1 s+10 . (15) 
The templates of their inverses appear as dotted lines in Figure 5. We compute a controller that is a solution of Problem 5.

To do so, we solve Problem 1 with [START_REF] Gahinet | A linear matrix inequality approach to H∞ control[END_REF], Problem 9 with [START_REF] Apkarian | Nonsmooth H∞ synthesis. Automatic Control[END_REF] and Problem 10 with a global optimization approach. These methods are denoted respectively by H ∞ full, H ∞ struct and Global Optimization (GO) struct in the first column of Table I second column indicates computation times in second. The H ∞ norm of P (s) interconnected with the controller appears in the third column (see Figure 2). The value of the objective function of the sensitivity problem is indicated in the last column. The H ∞ full method gives a 5 th order controller denoted K H∞f ull , H ∞ struct provides the following solution: In the sequel, S H∞f ull = (I + G(s)K H∞f ull (s)) -1 denotes the sensitivity function defined with K H∞f ull , S H∞struct and S go are defined the same way replacing K H∞f ull by K H∞struct and K GO in the expression. Similarly, we defined the complementary sensitivity functions T H∞f ull = G(s)K H∞f ull (s)(I + G(s)K H∞f ull (s)) -1 , T H∞struct (s) and T go (s).

K H∞struct (k, s) = 0.

B. Discussion

H ∞ full method gives a result rapidly due to the convexity of the problem. As H ∞ structured method is based on local optimization, we run it 350 times with random start points such that the computation time is close to the one of GO structured. Considering ||F (P, K)|| ∞ criterion, H ∞ full gives a better result than H ∞ struct because K H∞f ull has a higher order. GO struct gives the worst result, but this method minimizes max i (||T w→ zi || ∞ ) instead of ||F (P, K)|| ∞ contrary to the other two methods. However, if we look at max i (||T w→ zi || ∞ ) criterion, one can remark that only the GO method is able to compute a solution lower than 1, i.e. to provide a controller that respects all the three frequency constraints ||T w→zi (s, k)|| ∞ ≤ 1, i ∈ {1, 2, 3}. This can be explained by the fact that both K(k, s) and G(s) act like low-pass filters and their outputs u and y are both weighted. This leads to coupled terms in P (s), thus P (s)P (s) * has got non-negligible terms outside its diagonal. Therefore, minimizing ||P (s)|| ∞ is a different problem than minimizing max Although the proportional and derivative coefficients of controllers computed by H ∞ struct and GO struct methods present significant differences, their Bode diagrams, shown in Figure 6 controller computed by H ∞ full shows a more complex behavior due to the high order. Despite the fact that controllers obtained with the three different methods present almost similar performances, this example shed a light on the fact that GO approach is not sensitive to coupled constraints, contrary to classical approaches which aim to minimize ||P (s)|| ∞ .

In this example, we chose fractional weighting functions W i (s) to compare our method with H ∞ full and H ∞ struct. However GO method can be extended to the case where the weighting functions W i (s) are not rational, provided that we have an inclusion function of f . One can remark that if weighting functions are not rational, P (s) is not linear anymore and the internal stability cannot be ensure with the Routh criterion. Nonetheless, internal stability of P (s) is not needed in practice, it suffices that K(s) internally stabilizes the closed loop system (i.e. without weighting functions on objective channels). Furthermore, an interval arithmetic approach allows to deal with parametric uncertainties. Indeed, if G(p, s) depends on uncertain parameters p defined as intervals, it is still possible to compute f (k, p, s) and therefore to run Algorithm 1. Ensuring a performance constraint with parametric uncertainties has already been investigated with interval arithmetic for SISO system [START_REF] Malan | Robust analysis and design of control systems using interval arithmetic[END_REF], but our approach is more general and can be applied to MIMO systems.

V. CONCLUSION

In this paper, we have introduced a method based on global optimization to solve the sensitivity problem given a structured controller. We show how to compute a guaranteed enclosure of the minimum of the loop shaping problem. Thus, it is possible to provide a certificate of infeasibility of the sub-optimal problem. We illustrated the advantage of a global optimization method compared to two classical approaches with an academic example. Indeed, our approach considers each weighted outputs separately so that our synthesis method is not sensitive to coupled constraints. Moreover, the approach proposed in this paper offers new prospects. It is possible to take parameters uncertainties into account without modification of the method. In addition, our method does not restrict the expression of weighting functions as rational ones. Even if the computation time can be improved, the proposed approach opens up new ways to synthesize and analyze robust controllers.
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  that presents the results obtained. The stop criterion of GO struct method is = 0.1. The

	Method	Cpu (s) ||F (P, K)||∞	max
	H∞ full	2	1.0258	1.01611
	H∞ struct	80	1.0411	1.04109
	GO struct	83	1.0811	0.99782
			TABLE I	
			RESULTS OBTAINED.	

i (||T w→ zi ||∞)