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On stochastic calculus with respect to q-Brownian

motion

AURÉLIEN DEYA AND RENÉ SCHOTT

Abstract. Following the approach and the terminology introduced in
[A. Deya and R. Schott, On the rough paths approach to non-commutative
stochastic calculus, J. Funct. Anal., 2013], we construct a product Lévy
area above the q-Brownian motion (for q ∈ [0, 1)) and use this object to
study differential equations driven by the process.

We also provide a detailled comparison between the resulting “rough”
integral and the stochastic “Itô” integral exhibited by Donati-Martin in
[C. Donati-Martin, Stochastic integration with respect to q Brownian
motion, Probab. Theory Related Fields, 2003].

1. Introduction: the q-Brownian motion

The q-Gaussian processes (for q ∈ [0, 1)) stand for one of the most stan-
dard families of non-commutative random variables in the literature. Their
consideration can be traced back to a paper by Frisch and Bourret in the
early 1970s [8]: the dynamics is therein suggested as a model to quantify
some possible non-commutativity phenomenon between the creation and
annihilator operators on the Fock space, the limit case q = 1 morally cor-
responding to the classical probability framework. The mathematical con-
struction and basic stochastic properties of the q-Gaussian processes were
then investigated in the 1990s, in a series of pathbreaking papers by Bożejko,
Kümmerer and Speicher [2, 3, 4].

For the sake of clarity, let us briefly recall the framework of this analysis
and introduce a few notations that will be used in the sequel (we refer the
reader to the comprehensive survey [11] for more details on the subsequent
definitions and assertions). First, recall that the processes under consider-
ation consist of paths with values in a non-commutative probability space,
that is a von Neumann algebra A equipped with a weakly continuous, pos-
itive and faithful trace ϕ . The sole existence of such a trace ϕ on A (to
be compared with the “expectation” in this setting) is known to give the
algebra a specific structure, with “Lp”-norms

‖X‖Lp(ϕ) := ϕ(|X|p)1/p ( |X| :=
√

XX∗ )

closely related to the operator norm ‖.‖:

‖X‖Lp(ϕ) ≤ ‖X‖ , ‖X‖ = lim
p→∞

‖X‖Lp(ϕ) , for all X ∈ A . (1)
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Now recall that non-commutative probability theory is built upon the fol-
lowing fundamental spectral result: any element X in the subset A∗ of self-
adjoint operators in A can be associated with a law that shares the same
moments. To be more specific, there exists a unique compactly supported
probability measure µ on R such that for any real polynomial P ,

∫

R

P (x)dµ(x) = ϕ(P (X)) . (2)

Based on this property, elements in A∗ are usually referred to as (non-
commutative) random variables, and in the same vein, the law of a given

family {X(i)}i∈I of random variables in (A, ϕ) is defined as the set of all of
its joint moments

ϕ
(

X(i1) · · · X(ir)) , i1, . . . , ir ∈ I , r ∈ N .

With this stochastic approach in mind and using the terminology of [2],
the definition of a q-Gaussian family can be introduced along the following
combinatorial description:

Definition 1.1. 1. Let r be an even integer. A pairing of {1, . . . , r} is any
partition of {1, . . . , r} into r/2 disjoint subsets, each of cardinality 2. We
denote by P2({1, . . . , r}) or P2(r) the set of all pairings of {1, . . . , r}.

2. When π ∈ P2({1, . . . , r}), a crossing in π is any set of the form
{{x1, y1}, {x2, y2}} with {xi, yi} ∈ π and x1 < x2 < y1 < y2. The number of
such crossings is denoted by Cr(π).

Definition 1.2. For any fixed q ∈ [0, 1), we call a q-Gaussian family in a
non-commutative probability space (A, ϕ) any collection {Xi}i∈I of random
variables in (A, ϕ) such that, for every integer r ≥1 and all i1, . . . , ir ∈ I,
one has

ϕ
(

Xi1
· · · Xir

)

=
∑

π∈P2({1,...,r})

qCr(π)
∏

{p,q}∈π

ϕ
(

XipXiq

)

. (3)

Therefore, just as with classical (commutative) Gaussian families, the
law of a q-Gaussian family {Xi}i∈I is completely characterized by the set
of its covariances ϕ(XiXj), i, j ∈ I. In fact, when q → 1 and ϕ is - at
least morally - identified with the usual expectation, relation (3) is nothing
but the classical Wick formula satisfied by the joint moments of Gaussian
variables.

When q = 0, such a family of random variables is also called a semicircular
family, in reference to its marginal distributions (see [11, Chapter 8] for more
details on semicircular families, in connection with the so-called free central
limit theorem).

We are now in a position to introduce the family of processes at the core
of our study:

Definition 1.3. For any fixed q ∈ [0, 1), we call q-Brownian motion (q-Bm)
in some non-commutative probability space (A, ϕ) any q-Gaussian family
{Xt}t≥0 in (A, ϕ) with covariance function given by the formula

ϕ
(

XsXt

)

= s ∧ t . (4)
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The existence of such a non-commutative process (in some non-commutative
space (A, ϕ)) has been established by Bożejko and Speicher in [3]. In the
same spirit as above, the q-Bm distribution can be regarded as a straight-
forward extension of two well-known processes:

• When q → 1, one recovers the classical Brownian-motion dynamics, with
independent, stationary and normally-distributed increments.

• The 0-Brownian motion coincides with the celebrated free Brownian mo-
tion, whose freely-independent increments are known to be closely related to
the asymptotic behaviour of large random matrices, following Voiculescu’s
breakthrough results [14].

Thus, we have here at our disposal a family of processes which, as far as
distribution is concerned, provides a natural “smooth” interpolation between
two of the most central objects in probability theory: the standard and the
free Brownian motions. It is then natural to wonder whether the classical
stochastic properties satisfied by each of these two processes can be “lifted”
on the level of this interpolation, or in other words if the properties known
for q = 0 and q → 1 can be extended to every q ∈ [0, 1). Of course, any
such extension potentially offers an additional piece of evidence in favor
of this interpolation model, as a privileged link between the free and the
commutative worlds.

Some first results in this direction, focusing on the stationarity property
and the marginal-distribution issue, can be found in [2]:

Proposition 1.4. For any fixed q ∈ [0, 1), let {Xt}t≥0 be a q-Brownian
motion in some non-commutative probability space (A, ϕ). Then for all
0 ≤ s < t, the random variable Xt − Xs has the same law as

√
t − s X1, in

the sense of identity (2). In particular, any q-Brownian motion {Xt}t≥0 is
a 1

2-Hölder path in A, i.e.

sup
s<t

‖Xt − Xs‖
|t − s|1/2

≤ ‖X1‖ < ∞ . (5)

Moreover, the law µq of X1 is absolutely continuous with respect to the
Lebesgue measure; its density is supported on

[ −2√
1−q

, 2√
1−q

]

and is given,

within this interval, by the formula

µq(dx) =
1

π

√

1 − q sin θ
∞
∏

n=1

(1−qn)|1−qne2iθ|2 , where x =
2 cos θ√

1 − q
with θ ∈ [0, π] .

A next natural step is to examine the possible extension, to all q ∈ [0, 1), of
the stochastic integration results associated with the free/classical Brownian
motion. Let us here recall that the foundations of stochastic calculus with
respect to the free Brownian motion (that is, for q = 0) have been laid in
a remarkable paper by Biane and Speicher [1]. Among other results, the
latter study involves the construction of a free Itô integral, as well as an
analysis of the free Wiener chaoses generated by the multiple integrals of
the free Brownian motion.

These lines of investigation have been followed by Donati-Martin in [7] to
handle the general q-Bm case, with the construction of a q-Itô integral and
a study of the q-Wiener chaos. Let us also mention the results of [5] related
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to the extension of the fourth-moment phenomenon that prevails in Wiener
chaoses.

In this paper, we intend to go further with the analysis related to the
q-Brownian motion. To be more specific, we propose, in the continuation
of [6], to adapt some of the main rough-path principles to this setting. The
aim here is to derive a very robust integration theory allowing, in particu-
lar, to consider the study of differential equations driven by the q-Bm, i.e.
sophisticated dynamics of the form

dYt = f(Yt) · dXt · g(Yt) , (6)

for smooth functions f, g.

In fact, thanks to the general (non-commutative) rough-path results proved
in [6] (and which we will recall in Section 2), the objective essentially reduces
to the exhibition of a so-called product Lévy area above the q-Bm, that is
a kind of iterated integral of the process involving the product structure of
A. Let us briefly recall that the definition of such an object (which appears
as quite natural in this algebra setting) has been introduced in [6] as a way
to overcome the possible non-existence problems arising from the study of
more general Lévy areas, in the classical Lyons’ sense [10] (see [13] for a
description of the non-existence issue in the free case).

At this point, we would like to draw the reader’s attention to the fact
that the construction in [7] of a q-Itô integral as an element of L2(ϕ) would
not be not sufficient for our purpose. Indeed, the rough-path techniques are
based on Taylor-expansion procedures, which, for obvious stability reasons,
forces us to consider an algebra norm in the computations. As a result, any
satisfying notion of product Lévy area requires some control with respect to
the operator norm, that is in L∞(ϕ) (along (1)), and not only with respect to
the L2(ϕ)-norm (see Section 2 and especially Definition 2.2 for more details
on the topology involved in this control).

In the particular case of the free Bm (q = 0), the Burkholder-Gundy
inequality established by Biane and Speicher in [1, Theorem 3.2.1] immedi-
ately gives rise to operator-norm controls on the free Itô integral, which we
could readily exploit in [6] to deal with rough paths in the free situation.
Unfortunately, and at least for the time being, no similar operator-norm
control has been shown for the q-Itô integral when q ∈ (0, 1). With our
rough-path objectives in mind, we will be able to overcome this difficulty
though, by resorting to a straightforward L∞(ϕ)-construction of a product
Lévy area - the latter object being actually much more specific than a gen-
eral Itô integral. This is the purpose of the forthcoming Section 3, which
leads to the main result of the paper. Injecting this construction into the
general rough-path theory will immediately answer our original issue, that
is the derivation of a robust stochastic calculus for the q-Bm.

It is then possible to compare, a posteriori, the resulting rough integral
with more familiar q-Itô or q-Stratonovich integrals, through a standard
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L2(ϕ)-analysis and the involvement of the so-called second-quantization op-
erator. This comparison will be the topic of Section 4. Let us however insist,
one more time, on the fact that this sole L2(ϕ)-analysis would not have been
sufficient for the rough-path theory (and the powerful rough-path results)
to be applied in this situation.

Our construction of a product Lévy area will only rely on the consideration
of the law of the q-Bm, that is on the process as given by Definition 1.3. In
other words, no reference will be made to any particular representation of
the process as a map with values in some specific algebra (just as classical
probability theory builds upon the law of the Brownian motion and not upon
its representation). The only reference to some particular representation of
the q-Brownian motion (namely its standard representation on the q-Fock
space) will occur in Section 4, as a way to compare our rough objects with
the constructions of [7], based on the Fock space.

Besides, we have chosen in this study to focus on the case where q ∈ [0, 1)
and introduce the q-Brownian motion as a natural interpolation between the
free and the standard Brownian motions. We are aware that the definition
of a q-Bm can also be extended to every q ∈ (−1, 0), that is up to the “an-
ticommutative” situation q → −1. In fact, we must here specify that the
positivity assumption on q will be used in an essential way for the construc-
tion of the product Lévy area (see for instance (24)), and at this point, we
do not know if such an object could also be exhibited in the case q < 0.

As we already sketched it in the above description of our results, the
study is organized as follows. In Section 2, we will recall the general non-
commutative rough-path results obtained in [6] and at the core of the present
analysis. Section 3 is devoted to the construction of the main object involved
in the rough-path procedure, that is a product Lévy area above the q-Bm.
Finally, Section 4 focuses on the L2(ϕ)-comparison of the rough construc-
tions with more standard Itô/Stratonovich definitions.

Acknowledgements. We are very grateful to two anonymous referees for
their attentive reading and insightful suggestions.

2. General rough-path results in C∗-algebras

Our strategy to develop a robust L∞(ϕ)-stochastic calculus for the q-Bm
is based on the non-commutative rough-path considerations of [6, Section
4]. Therefore, before we can turn to the q-Bm situation, it is necessary for
us to recall the main results of the theoretical analysis carried out in [6].
This requires first a few brief preliminaries on functional calculus in a C∗-
algebra (along the framework of [1]), as well as precisions on the topologies
involved in the study. Special emphasis will be put on the cornerstone of
the rough-path machinery, the product Lévy area, around which the whole
integration procedure can be naturally expanded.

Note that the considerations of this section apply to a general C∗-algebra
A, that we fix from now on. In particular, no additional trace operator will
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be required here. As before, we denote by ‖.‖ the operator norm on A,
and A∗ will stand for the set of self-adjoint operators in A. We also fix an
arbitrary time horizon T > 0 for the whole section.

2.1. Tensor product. Let A⊗A be the algebraic tensor product generated
by A, and just as in [1], denote by ♯ the natural product interaction between
A and A ⊗ A, that is the linear extension of the formula

(U1 ⊗ U2)♯X = X♯(U1 ⊗ U2) := U1XU2 , for all U1, U2, X ∈ A .

In a similar way, set, for all U1, U2, U3, X ∈ A,

X♯(U1 ⊗U2 ⊗U3) := (U1XU2)⊗U3 , (U1 ⊗U2 ⊗U3)♯X := U1 ⊗(U2XU3) .

Our developments will actually involve the projective tensor product A⊗̂A
of A, that is the completion of A ⊗ A with respect to the norm

‖U‖ = ‖U‖A⊗̂A := inf
∑

i

‖Ui‖‖Vi‖ ,

where the infimum is taken over all possible representation U =
∑

i Ui⊗Vi of
U. It is readily checked that for all U ∈ A⊗A and X ∈ A, one has ‖U♯X‖ ≤
‖U‖‖X‖, and so the above ♯-product continuously extends to A⊗̂A. These
considerations can, of course, be generalized to the n-th projective tensor

product A⊗̂n, n ≥ 1, and we will still denote by ‖.‖ the projective tensor

norm on A⊗̂n.
Along the same terminology as in [1], we will call any process with values

in A⊗̂A, resp. A⊗̂A⊗̂A, a biprocess, resp. a triprocess.

2.2. Functional calculus in a C∗-algebra. Following again the presenta-
tion of [1], let us introduce the class of functions f defined for every integer
k ≥ 0 by

Fk := {f : R → C : f(x) =

∫

R

eıξxµf (dξ) with

∫

R

|ξ|i µf (dξ) < ∞ for every i ∈ {0, . . . , k}},

(7)

and set, if f ∈ Fk, ‖f‖k :=
∑k

i=0
∫

R
|ξ|i µf (dξ). Then, with all f ∈ F0 and

X ∈ A∗, we associate the operator f(X) along the formula

f(X) :=

∫

R

eıξXµf (dξ) ,

where the integral in the right-hand side is uniformly convergent in A. This
straightforward operator extension of functional calculus happens to be com-
patible with Taylor expansions of f , a central ingredient towards the appli-
cation of rough-path techniques. The following notion of tensor derivatives
naturally arises in the procedure (see the subsequent Examples 2.5 and 2.6):

Definition 2.1. For every f ∈ F1, resp. f ∈ F2, we define the tensor
derivative, resp. second tensor derivative, of f by the formula: for every
X ∈ A∗,

∂f(X) :=

∫ 1

0
dα

∫

R

ıξ [eıαξX ⊗ eı(1−α)ξX ] µf (dξ) ∈ A⊗̂A ,

resp. ∂2f(X) := −
∫∫

α,β≥0
α+β≤1

dα dβ

∫

R

ξ2 [eıαξX⊗eıβξX⊗eı(1−α−β)ξX ] µf (dξ) ∈ A⊗̂A⊗̂A .
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2.3. Filtration and Hölder topologies. From now on and for the rest of
Section 2, we fix a process X : [0, T ] → A∗ and assume that X is γ-Hölder
regular, that is

sup
0≤s<t≤T

‖Xt − Xs‖
|t − s|γ < ∞ ,

for some fixed coefficient γ ∈ (1/3, 1/2).

With this process in hand, we denote by {At}t∈[0,T ] = {AX
t }t∈[0,T ] the

filtration generated by X, that is, for each t ∈ [0, T ], At stands for the
closure (with respect to the operator norm) of the unital subalgebra of A
generated by {Xs}0≤s≤t.

For any fixed interval I ⊂ [0, T ], a process Y : I → A is said to be adapted
if for each t ∈ I, Yt ∈ At. In the same way, a biprocess U : [0, T ] → A⊗̂A,
resp. a triprocess U : [0, T ] → A⊗̂A⊗̂A, is adapted if for each t ∈ [0, T ],
Ut ∈ At⊗̂At, resp. Ut ∈ At⊗̂At⊗̂At.

Let us now briefly recall the topologies involved in the rough-path pro-
cedure, as far as time-roughness is concerned (and following Gubinelli’s ap-

proach [9]). For V := A⊗̂n (n ≥ 1), let C1(I; V ) be the set of continuous
V -valued maps on I, and C2(I; V ) the set of continuous V -valued maps on
the simplex S2 := {(s, t) ∈ I2 : s ≤ t} that vanish on the diagonal. The in-
crements of a path g ∈ C1(I; V ) will be denoted by δgst := gt −gs (s ≤ t) and
for every α ∈ (0, 1), we define the α-Hölder spaces Cα

1 (I; V ), resp. Cα
2 (I; V ),

as

Cα
1 (I; V ) :=

{

h ∈ C1(I; V ) : N [h; Cα
1 (I; V )] := sup

s<t∈I

‖δhst‖
|t − s|α < ∞}

,

resp.

Cα
2 (I; V ) :=

{

h ∈ C2(I; V ) : N [h; Cα
2 (I; V )] := sup

s<t∈I

‖hst‖
|t − s|α < ∞}

.

2.4. The product Lévy area. Consider the successive spaces

LT (A⇀) := {L = (Lst)0≤s<t≤T : Lst ∈ L(As⊗̂As, A)} ,

LT (A→) := {L = (Lst)0≤s<t≤T : Lst ∈ L(As⊗̂As, At)} ,

and for every λ ∈ [0, 1], denote by Cλ
2 (LT (A⇀)), resp. Cλ

2 (LT (A→)), the
set of elements L ∈ LT (A⇀), resp. L ∈ LT (A→), for which the following
quantity is finite:

N [L; Cλ
2 (LT (A⇀))] := sup

s<t∈[0,T ]
U∈As⊗̂As,U6=0

‖Lst[U]‖
|t − s|λ ‖U‖

. (8)

At this point, recall that we have fixed a γ-Hölder process X : [0, T ] → A∗
(γ ∈ (1/3, 1/2)) for the whole section 2.

Definition 2.2. We call product Lévy area above X any process X
2 such

that:

(i) (2γ-roughness) X
2 ∈ C2γ

2 (LT (A→)),

(ii) (Product Chen identity) For all s < u < t and U ∈ As⊗̂As,

X
2
st[U] − X

2
su[U] − X

2
ut[U] = (U♯δXsu) δXut . (9)
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Remark 2.3. Recall that Definition 2.2 is derived from the theoretical analy-
sis performed in [6, Section 4] with equation (6) in mind. At some heuristic
level, and following the classical rough-path approach, the notion of product
Lévy area must be seen as some abstract version of the iterated integral

X
2
st[U] =

∫ t

s
(U♯δXsu) dXu , (10)

noting that definition of this integral is not clear a priori for a non-differentiable
process X. As pointed out in [6], the above notion of “Lévy area” is specifi-
cally designed to handle the non-commutative algebra dynamics of (6), and
it offers a much more efficient approach than general rough-path theory
based on “tensor” Lévy areas (the object considered in [10]). In a com-
mutative setting (i.e., if A were a commutative algebra), the basic process
Ast(U) := 1

2 (U♯δXst) δXst would immediately provide us with such a prod-
uct Lévy area. In the general (non-commutative) situation though, this path
only satisfies

Ast[U] − Asu[U] − Aut[U] =
1

2

[

(U♯δXsu) δXut + (U♯δXut) δXsu
]

,

so that A may not meet the product-Chen condition (ii), making Definition
2.2 undoubtedly relevant.

2.5. Controlled (bi)processes and integration. A second ingredient in
the rough-path machinery (in addition to a “Lévy area”) consists in the
identification of a suitable class of integrands for the future rough integral
with respect to X. The following definition naturally arises in this setting:

Definition 2.4. Given a time interval I ⊂ [0, T ], we call adapted controlled
process, resp. biprocess, on I any adapted process Y ∈ Cγ

1 (I; A), resp.
biprocess U ∈ Cγ

1 (I; A⊗̂A), with increments of the form

(δY )st = YX
s ♯(δX)st + Y ♭

st , s < t ∈ I , (11)

resp.

(δU)st = (δX)st♯UX,1
s + UX,2

s ♯(δX)st + U♭
st , s < t ∈ I , (12)

for some adapted biprocess YX ∈ Cγ
1 (I; A⊗̂A) , resp. adapted triprocesses

UX,1, UX,2 ∈ Cγ
1 (I; A⊗̂3), and Y ♭ ∈ C2γ

2 (I; A), resp. U♭ ∈ C2γ
2 (I; A⊗̂A).

We denote by QX(I), resp. QX(I), the space of adapted controlled pro-
cesses, resp. biprocesses, on I, and finally we define Q∗

X(I) as the subspace
of controlled processes Y ∈ QX(I) for which one has both Y ∗

s = Ys and
(YX

s )∗ = YX
s for every s ∈ I.

Example 2.5. If f, g ∈ F2 and Y ∈ Q∗
X(I) with decomposition (11), then

U := f(Y ) ⊗ g(Y ) ∈ QX(I) with

UX,1
s := [∂f(Ys) YX

s ] ⊗ g(Ys) , UX,2
s = f(Ys) ⊗ [∂g(Ys) YX

s ] .

Example 2.6. If f ∈ F3, then U := ∂f(X) ∈ QX([0, T ]) with UX,1
s = UX,2

s =
∂2f(Xs).

We are finally in a position to recall the definition of the rough integral
with respect to X, which can be expressed (among other ways) as the limit
of “corrected Riemann sums”:
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Proposition 2.7. [6, Proposition 4.12] Assume that we are given a product
Lévy area X

2 above X, in the sense of Definition 2.2, as well as a time
interval I = [ℓ1, ℓ2] ⊂ [0, T ]. Then for every U ∈ QX(I) with decomposition
(12), all s < t ∈ I and every subdivision Dst = {t0 = s < t1 < . . . < tn = t}
of [s, t] with mesh |Dst| tending to 0, the corrected Riemann sum

∑

ti∈Dst

{

Uti
♯(δX)titi+1

+ [X2
titi+1

× Id](UX,1
ti

) + [Id × X
2,∗
titi+1

](UX,2
ti

)
}

converges in A as |Dst| → 0. We call the limit the rough integral (from

s to t) of U against X := (X,X2), and we denote it by
∫ t

s Uu♯dXu. This
construction satisfies the two following properties:

• (Consistency) If X is a differentiable process in A and X
2 is understood in

the classical Lebesgue sense (that is, as in (10)), then
∫ t

s Uu♯dXu coincides

with the classical Lebesgue integral
∫ t

s [Uu♯X ′
u] du;

• (Stability) For every A ∈ A, there exists a unique process Z ∈ QX(I) such

that Zℓ1
= A and (δZ)st =

∫ t
s Uu♯dXu for all s < t ∈ I.

Theorem 2.8. [6, Theorem 4.15] Assume that we are given a product
Lévy area X

2 above X. Let f = (f1, . . . , fm) ∈ Fm
3 , g = (f∗

1 , . . . , f∗
m) or

(f∗
m, . . . , f∗

1 ), and fix A ∈ A∗. Then the equation

Y0 = A , (δY )st =
m

∑

i=1

∫ t

s
fi(Yu) dXu gi(Yu) , s < t ∈ [0, T ] , (13)

interpreted with Proposition 2.7, admits a unique solution Y ∈ Q∗
X([0, T ]).

2.6. Approximation results. Another advantage of the rough-path ap-
proach - beyond its consistency and stability properties - lies in the conti-
nuity of the constructions with respect to the driving (rough) path. In this
non-commutative setting, and following the approach of [6], the phenom-
enon can be illustrated through several “Wong-Zakaï-type” approximation
results, which we propose to briefly review here. To this end, for every
sequence of partitions (Dn) of [0, T ] with mesh tending to zero, denote by
{Xn

t }t∈[0,T ] = {XDn

t }t∈[0,T ] the sequence of linear interpolations of X along
Dn, i.e., if Dn := {0 = t0 < t1 < . . . < tk = T },

Xn
t := Xti

+
t − ti

ti+1 − ti
δXtiti+1

for t ∈ [ti, ti+1] .

Then consider the sequence of approximated product Lévy areas defined for
every U ∈ A⊗̂A as

X
2,n
st [U] = X

2,Dn

st [U] :=

∫ t

s
(U♯δXn

su) dXn
u , s < t ∈ [0, T ] , (14)

where the integral is understood in the classical Lebesgue sense. In other
words, if tk ≤ s < tk+1 ≤ tℓ ≤ t < tℓ+1,

X
2,n
st [U] =

∫ tk+1

s

du

tk+1 − tk

(

U♯δXn
su

)

(δX)tktk+1

+
ℓ−1
∑

i=k+1

∫ ti+1

ti

du

ti+1 − ti

(

U♯δXn
su

)

(δX)titi+1
+

∫ t

tℓ

du

tk+1 − tk

(

U♯δXn
su

)

(δX)tktk+1
.
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Proposition 2.9. [6, Proposition 4.16] Assume that there exists a product
Lévy area X

2 above X such that, as n tends to infinity,

N [Xn − X; Cγ
1 ([0, T ]; A)] → 0 and N [X2,n − X

2; C2γ
2 (LT (A⇀))] → 0 .

(15)
Then for all f, g ∈ F3, it holds that

∫ .

.
f(Xn

u ) dXn
u g(Xn

u )
n→∞−−−→

∫ .

.
f(Xu) dXu g(Xu) in Cγ

2 ([0, T ]; A) , (16)

where the integral in the limit is interpreted with Proposition 2.7. Similarly,
for all f ∈ F3, one has

∫ .

.
∂f(Xn

u )♯dXn
u

n→∞−−−→
∫ .

.
∂f(Xu)♯dXu in Cγ

2 ([0, T ]; A) , (17)

which immediately yields Itô’s formula: for all s < t ∈ [0, T ],

δf(X)st =

∫ t

s
∂f(Xu)♯dXu . (18)

Finally, for some fixed f = (f1, . . . , fm) ∈ Fm
3 and g = (f∗

1 , . . . , f∗
m) (or

g := (f∗
m, . . . , f∗

1 )), let us denote by Y n = Y Dn
the solution of the classical

Lebesgue equation on [0, T ]

Y n
0 = A ∈ A∗ , dY n

t =
∑m

i=1
fi(Y

n
t ) dXn

t gi(Y
n

t ) .

Theorem 2.10. [6, Theorem 4.17] Under the assumptions of Proposition

2.9, one has Y n n→∞−−−→ Y in Cγ
1 ([0, T ]; A), where Y is the solution of (13)

given by Theorem 2.8.

As we pointed it out in the introduction, these convergence results are
based on Taylor-expansion procedures and accordingly, the consideration of
an algebra norm for the control of U and Lst[U] in the roughness assumption
(8) is an essential ingredient.

3. A product Lévy area above the q-Brownian motion

We go back here to the q-Bm setting described in Section 1. Namely,
we fix q ∈ [0, 1) and consider a q-Brownian motion (Xt)t≥0 in some non-
commutative probability space (A, ϕ). With the developments of the previ-
ous section in mind, the route towards an efficient operator-norm calculus
for X is now clear: we need to exhibit a product Lévy area above X, in the
sense of Definition 2.2. Our main result thus reads as follows:

Theorem 3.1. Denote by {Xn
t }t≥0 the linear interpolation of X along the

dyadic partition Dn := {tn
i , i ≥ 0}, tn

i := i
2n . Then there exists a product

Lévy area X
2,S above X, in the sense of Definition 2.2, such that for every

T > 0 and every 0 < γ < 1/2, one has

Xn → X in Cγ
1 ([0, T ]; A) and X

2,n → X
2,S in C2γ

2 (LT (A→)) , (19)

where X
2,n is defined by (14). We call X2,S the Stratonovich product Lévy

area above X.



ON STOCHASTIC CALCULUS WITH RESPECT TO q-BROWNIAN MOTION 11

Based on this result, the conclusions of Proposition 2.7, Theorem 2.8,
Proposition 2.9 and Theorem 2.10 can all be applied to the q-Brownian mo-
tion, with limits understood as rough integrals with respect to the “product
rough path” X

S := (X,X2,S). The Stratonovich terminology is here used as
a reference to the classical commutative situation, where the (almost sure)
limit of the sequence of approximated Lévy areas would indeed coincide
with the Stratonovich iterated integral (see also Corollary 4.10 for another
justification of this terminology).

Before we turn to the proof of Theorem 3.1, let us recall that the whole
difficulty in constructing a stochastic integral with respect to the general q-
Bm, in comparison with the free (q = 0) or the commutative (q → 1) cases,
lies in the absence of any satisfying “q-freeness” property for the increments
of the process when q ∈ (0, 1) (as reported by Speicher in [12]). For instance,
if s < u < t,

ϕ
(

(Xu−Xs)(Xt−Xu)(Xu−Xs)(Xt−Xu)
)

= q ϕ
(

(Xu−Xs)2)

ϕ
(

(Xt−Xu)2)

= q |u−s||t−u| ,

which shows that, for q 6= 0, the disjoint increments of a q-Brownian motion
{Xt}t≥0 are indeed not freely independent (in the sense of [6, Definition
2.6]), making most of the arguments of [1] unexploitable in this situation.

This being said, we can still rely here on the basic fact that for all q ∈
[0, 1), ϕ

(

(Xu − Xs)(Xt − Xu)
)

= 0. Together with Formula (3), this very
weak “freeness” property of the increments will somehow be sufficient for our
purpose, the construction of a product Lévy area being much more specific
than the construction of a general stochastic integral (along Itô’s standard
procedure).

The proof of Theorem 3.1 will also appeal to the two following elementary
lemmas. The first one (whose proof follows immediately from (3)) is related
to the linear stability of q-Gaussian families:

Lemma 3.2. For any fixed q ∈ [0, 1), let Y := {Y1, . . . , Yd} be a q-Gaussian
vector in some non-commutative probability space (A, ϕ), and consider a
real-valued (d × m)-matrix Λ. Then Z := ΛY is also a q-Gaussian vector in
(A, ϕ).

We will also need the following general topology property on the space
accommodating any Lévy area:

Lemma 3.3. The space Cλ
2 (LT (A⇀)), endowed with the norm (8), is com-

plete.

Proof. Although the arguments are classical, let us provide a few details
here, since the Cλ

2 (LT (A⇀))-structure is not exactly standard.

Consider a Cauchy sequence Ln in Cλ
2 (LT (A⇀)). For every fixed s ∈ [0, T ],

the sequence Ln
s. defines a Cauchy sequence in the space L∞([s, T ]; L(As⊗̂As, A))

of bounded functions on [s, T ] (with values in L(As⊗̂As, A)), endowed with
the uniform norm. Therefore it converges in the latter space to some function
Ls.. The fact that the so-defined family {Lst}s<t belongs to Cλ

2 (LT (A⇀))
is an immediate consequence of the boundedness of Ln in Cλ

2 (LT (A⇀)).
Finally, given ε > 0 and for all fixed s < t, we know that there exists



12 AURÉLIEN DEYA AND RENÉ SCHOTT

Mε,s,t ≥ 0 such that for all m ≥ Mε,s,t, ‖Lm
st − Lst‖L(As⊗̂As,A) ≤ ε

2 |t − s|λ.
On the other hand, there exists Nε ≥ 0 such that for all n, m ≥ Nε and all
s < t, ‖Ln

st − Lm
st‖L(As⊗̂As,A) ≤ ε

2 |t − s|λ. Therefore, for all n ≥ Nε and all

s < t, we get that for m := max(Nε, Mε,s,t),

‖Ln
st−Lst‖L(As⊗̂As,A) ≤ ‖Ln

st−Lm
st‖L(As⊗̂As,A)+‖Lst−Lm

st‖L(As⊗̂As,A) ≤ ε|t−s|λ ,

and so Ln → L in Cλ
2 (LT (A⇀)), which achieves to prove that the latter

space is complete. �

Proof of Theorem 3.1. Throughout the proof, we will denote by A . B any
bound of the form A ≤ cB, where c is a universal constant independent from
the parameters under consideration. The first-order convergence statement
in (19) is a straightforward consequence of the 1/2-Hölder regularity of X.
In fact, using (5), it can be checked that for all n ≥ 0 and s < t,

‖δXn
st‖ . ‖X1‖|t − s|1/2 and ‖δ(Xn − X)st‖ . ‖X1‖|t − s|γ2−n(1/2−γ) .

(20)
Let us turn to the second-order convergence and to this end, fix n ≥ 0 and
s < t such that tn

k ≤ s < tn
k+1, tn

ℓ ≤ t < tℓ+1, with k ≤ ℓ. If |ℓ − k| ≤ 1, or in

other words if |t − s| ≤ 2−n+1, the expected bound can be readily derived
from the first estimate in (20), that is for every U ∈ As⊗̂As, we get from
(20)

‖X2,n+1
st [U]−X

2,n
st [U]‖ ≤ ‖X2,n+1

st [U]‖+‖X2,n
st [U]‖ . ‖X1‖2|t−s|2γ2−n(1/2−γ) .

Assume from now on that ℓ ≥ k + 2 and in this case consider the decompo-
sition, for every U ∈ As⊗̂As,

X
2,n+1
st [U] − X

2,n
st [U]

=

[
∫ tn

ℓ

tn
k+1

(

U♯δXn+1
tn
k+1

u

)

dXn+1
u −

∫ tn
ℓ

tn
k+1

(

U♯δXn
tn
k+1

u

)

dXn
u

]

+

[
∫ tn

k+1

s

(

U♯δXn+1
su

)

dXn+1
u +

∫ t

tn
ℓ

(

U♯δXn+1
su

)

dXn+1
u −

∫ tn
k+1

s

(

U♯δXn
su

)

dXn
u

−
∫ t

tn
ℓ

(

U♯δXn
su

)

dXn
u

]

+

[
∫ tn

ℓ

tn
k+1

(

U♯δXn+1
stn

k+1

)

dXn+1
u −

∫ tn
ℓ

tn
k+1

(

U♯δXn
stn

k+1

)

dXn
u

]

. (21)
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The “boundary” integrals within the second and third brackets can again
be bounded individually using the first estimate in (20) only. For instance,

∥

∥

∥

∫ t

tn
ℓ

(

U♯δXn+1
su

)

dXn+1
u

∥

∥

∥

. ‖X1‖‖U‖
[

1{tn+1

2ℓ
≤t<tn+1

2ℓ+1
}

∫ t

tn
ℓ

|s − u|1/2(

2n+1‖δXtn+1

2ℓ
tn+1

2ℓ+1

‖)

+1{tn+1

2ℓ+1
≤t<tn+1

2ℓ+2
}

∫ tn+1

2ℓ+1

tn+1

2ℓ

|s − u|1/2(

2n+1‖δXtn+1

2ℓ
tn+1

2ℓ+1

‖)

+1{tn+1

2ℓ+1
≤t<tn+1

2ℓ+2
}

∫ t

tn+1

2ℓ+1

|s − u|1/2(

2n+1‖δXtn+1

2ℓ+1
tn+1

2ℓ+2

‖)

]

. ‖X1‖2‖U‖|t − s|2γ2−n(1/2−γ) .

Therefore, we only have to focus on the first bracket in decomposition
(21). In fact, noting that

∫ tn
i+1

tn
i

(

U♯δXn
tn
i

u

)

dXn
u =

1

2

(

U♯δXtn
i

tn
i+1

)

δXtn
i

tn
i+1

,
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we get

∫ tn
ℓ

tn
k+1

(

U♯δXn+1
tn
k+1

u

)

dXn+1
u −

∫ tn
ℓ

tn
k+1

(

U♯δXn
tn
k+1

u

)

dXn
u

=
ℓ−1
∑

i=k+1

{
∫ tn+1

2i+1

tn+1

2i

(

U♯δXn+1
tn
k+1

u

)

dXn+1
u +

∫ tn+1

2i+2

tn+1

2i+1

(

U♯δXn+1
tn
k+1

u

)

dXn+1
u

−
∫ tn

i+1

tn
i

(

U♯δXn
tn
k+1

u

)

dXn
u

}

=
ℓ−1
∑

i=k+1

{[
∫ tn+1

2i+1

tn+1

2i

(

U♯δXn+1
tn+1

2i
u

)

dXn+1
u +

∫ tn+1

2i+2

tn+1

2i+1

(

U♯δXn+1
tn+1

2i+1
u

)

dXn+1
u

−
∫ tn

i+1

tn
i

(

U♯δXn
tn
i

u

)

dXn
u

]

+
[

(

U♯δXtn
k+1

tn+1

2i

)

δXtn+1

2i
tn+1

2i+1

+
(

U♯δXtn
k+1

tn+1

2i+1

)

δXtn+1

2i+1
tn+1

2i+2

−(

U♯δXtn
k+1

tn+1

2i

)

δXtn+1

2i
tn+1

2i+2

]

}

=
ℓ−1
∑

i=k+1

{

1

2

[

(

U♯δXtn+1

2i
tn+1

2i+1

)

δXtn+1

2i
tn+1

2i+1

+
(

U♯δXtn+1

2i+1
tn+1

2i+2

)

δXtn+1

2i+1
tn+1

2i+2

−(

U♯δXtn+1

2i
tn+1

2i+2

)

δXtn+1

2i
tn+1

2i+2

]

+
[

− (

U♯δXtn
k+1

tn+1

2i

)

δXtn+1

2i+1
tn+1

2i+2

+
(

U♯δXtn
k+1

tn+1

2i+1

)

δXtn+1

2i+1
tn+1

2i+2

]

}

=
ℓ−1
∑

i=k+1

{

1

2

[

− (

U♯δXtn+1

2i
tn+1

2i+1

)

δXtn+1

2i+1
tn+1

2i+2

− (

U♯δXtn+1

2i+1
tn+1

2i+2

)

δXtn+1

2i
tn+1

2i+1

]

+
[

(

U♯δXtn+1

2i
tn+1

2i+1

)

δXtn+1

2i+1
tn+1

2i+2

]

}

=
1

2

ℓ−1
∑

i=k+1

[

(

U♯(δX)tn+1

2i
tn+1

2i+1

)

(δX)tn+1

2i+1
tn+1

2i+2

−
(

U♯(δX)tn+1

2i+1
tn+1

2i+2

)

(δX)tn+1

2i
tn+1

2i+1

]

.(22)

Let us bound the two sums

S1,n
st [U] :=

ℓ−1
∑

i=k+1

(

U♯(δX)tn+1

2i
tn+1

2i+1

)

(δX)tn+1

2i+1
tn+1

2i+2

and

S2,n
st [U] :=

ℓ−1
∑

i=k+1

(

U♯(δX)tn+1

2i+1
tn+1

2i+2

)

(δX)tn+1

2i
tn+1

2i+1

separately.

Consider first the case where U =
∑o

j=1 Uj ⊗ Vj, with

Uj := X
sj

1

· · · X
sj

mj

, Vj := X
sj

mj +1

· · · X
sj

mj +pj

,
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and sj
p ≤ s for all j, p. Besides, let us set Yi = Yi,n := (δX)tn+1

i
tn+1

i+1

. With

these notations, and for every r ≥ 1, we have

ϕ
(|S1,n

st [U]|2r)

= ϕ

([(

∑

i1

∑

j1

Uj1
Y2i1

Vj1
Y2i1+1

)(

∑

i2

∑

j2

Uj2
Y2i2

Vj2
Y2i2+1

)∗]r)

=
∑

i1,...,i2r

∑

j1,...,j2r

ϕ
(

[

Uj1
Y2i1

Vj1
Y2i1+1Y2i2+1V ∗

j2
Y2i2

U∗
j2

] · · ·

[

Uj2r−1
Y2i2r−1

Vj2r−1
Y2i2r−1+1Y2i2r+1V ∗

j2r
Y2i2r

U∗
j2r

]

)

,(23)

where each index i runs over {k + 1, . . . , ℓ − 1} and each index j runs overs
{1, . . . , o}. At this point, observe that for all fixed i := (i1, . . . , i2r) and
j := (j1, . . . , j2r), the family

{X
sj

1

, . . . , X
sj

mj +pj

, Y2i, Y2i+1, i ∈ {i1, . . . , i2r}, j ∈ {j1, . . . , j2r}}

is a q-Gaussian family (due to Lemma 3.2) and accordingly the associated
joint moments obey Formula (3). Besides, we have trivially

ϕ
(

Y2iaY2ib+1
)

= 0 , ϕ
(

Y2iaY2ib

)

= ϕ
(

Y2ia+1Y2ib+1
)

= 1{ia=ib}2−(n+1)ϕ
(|X1|2)

and
ϕ

(

Y2iXsj
a
) = ϕ

(

Y2i+1X
sj

a
) = 0 .

Using these basic observations and going back to (23), it is clear that, when
applying Formula (3) to the expectation in (23), we can restrict the sum
to the set of pairings π ∈ P2({1, . . . , Nr}) (Nr := 2

[

(mj1
+ pj1

) + . . . +
(mj2r

+ pj2r
)] + 8r) that decompose - in a unique way - as a combination of

three sub-pairings, namely: 1) a pairing π1 ∈ P2({1, . . . , 2r}) that connects
the random variables {Y2i} to each other; 2) a pairing π2 ∈ P2({1, . . . , 2r})
that connects the random variables {Y2i+1} to each other; 3) a pairing π3 ∈
P2({1, . . . , N ′

r}) (N ′
r := 2

[

(mj1
+pj1

)+ . . .+(mj2r
+pj2r

)]) that connects the
random variables {X

sj
i

} to each other. Moreover, with this decomposition

in mind, one has clearly

Cr(π) ≥ Cr(π1) + Cr(π2) + Cr(π3) .

Consequently, it holds that for all fixed i := (i1, . . . , i2r) and j := (j1, . . . , j2r),
∣

∣

∣ϕ
(

[

Uj1
Y2i1

Vj1
Y2i1+1Y2i2+1V ∗

j2
Y2i2

U∗
j2

] · · ·
[

Uj2r−1
Y2i2r−1

Vj2r−1
Y2i2r−1+1Y2i2r+1V ∗

j2r
Y2i2r

U∗
j2r

]

)∣

∣

∣

≤
∑

π1,π2∈P2({1,...,2r})
π3∈P2({1,...,N ′

r})

qCr(π1)+Cr(π2)+Cr(π3)

∏

{a,b}∈π1

ϕ
(

Y2iaY2ib

)

1{ia=ib}
∏

{c,d}∈π2

ϕ
(

Y2ic+1Y2id+1
)

1{ic=id}
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

(24)

≤ 2−2r(n+1)ϕ
(|X1|2)2r

(

∑

π1∈P2({1,...,2r})

qCr(π1)
∏

{a,b}∈π1

1{ia=ib}

)

(

∑

π2∈P2({1,...,2r})

qCr(π2)
∏

{c,d}∈π2

1{ic=id}

)(

∑

π3∈P2({1,...,N ′

r})

qCr(π3)
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

)

,
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where Zj stands for the natural reordering of the variables {X
sj

m
}, namely

for all a ∈ {1, . . . , 2r} and b ∈ {1, . . . , mja + pja},

Zj

2[(mj1
+pj1

)+...+(mja−1
+pja−1

)]+b = Zj

2[(mj1
+pj1

)+...+(mja−1
+pja−1

)]+[2(mja +pja )−b] := X
sja

b

.

As a result, the double sum in (23) is bounded by

2−2rnϕ
(|X1|2)2r

(

∑

π1∈P2({1,...,2r})

qCr(π1)
ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

)

(

∑

π2∈P2({1,...,2r})

qCr(π2)
) o

∑

j1,...,j2r=1

(

∑

π3∈P2({1,...,N ′

r})

qCr(π3)
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

)

.(25)

Now observe that the last sum in (25) actually corresponds to

o
∑

j1,...,j2r=1

(

∑

π3∈P2({1,...,N ′

r})

qCr(π3)
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

)

= ϕ
(

∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)

,

(26)
and for every fixed π1 ∈ P2({1, . . . , 2r}),

ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

=

( ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

)2(1−2γ)( ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

)4γ−1

≤ (ℓ − (k + 1))2(1−2γ)r(ℓ − (k + 1))2r(4γ−1)

≤ |tn
ℓ − tn

k+1|4rγ24rγn ≤ |t − s|4rγ24rγn . (27)

By injecting (26) and (27) into (25), we end up with the estimate

ϕ
(|S1,n

st [U]|2r)

≤ |t − s|4rγ2−2r(1−2γ)nϕ
(|X1|2)2r

(

∑

π∈P2({1,...,2r})

qCr(π)
)2

ϕ
(∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)

≤ |t − s|4rγ2−2r(1−2γ)nϕ
(|X1|2)2rϕ

(|X1|2r)2
ϕ

(∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)

,

and so

ϕ
(|S1,n

st [U]|2r)1/2r

≤ |t − s|2γ2−(1−2γ)nϕ
(|X1|2)ϕ

(|X1|2r)1/r
ϕ

(∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)1/2r

≤ |t − s|2γ2−(1−2γ)n‖X1‖4
∥

∥

∥

o
∑

j=1

UjVj

∥

∥

∥

≤ |t − s|2γ2−(1−2γ)n‖X1‖4
(

o
∑

j=1

‖Uj‖‖Vj‖
)

. (28)
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It is easy to see that the above arguments could also be applied to the more
general situation where U :=

∑o
j=1 Uj ⊗ Vj with

Uj :=

Kj
∑

k=0

αj,kX
sj,k

1

· · · X
sj,k

mj,k

and

Vj :=

Lj
∑

ℓ=0

βj,ℓXuj,ℓ
1

· · · X
uj,ℓ

pj,ℓ

, αj,k, βj,ℓ ∈ C , sj,k
a , uj,ℓ

b ∈ [0, s] ,

leading in the end to the same bound (28). Therefore, this bound (28) can
actually be extended to any Uj, Vj ∈ As, which then entails that for every
U ∈ As⊗̂As,

ϕ
(|S1,n

st [U]|2r)1/2r ≤ |t − s|2γ2−(1−2γ)n‖X1‖4‖U‖ ,

and by letting r tend to infinity, we get by (1) that

‖S1,n
st [U]‖ ≤ |t − s|2γ2−(1−2γ)n‖X1‖4‖U‖ .

The very same reasoning can of course be used in order to estimate ‖S2,n
st [U]‖,

with the same resulting bound. Going back to (21) and (22), we have thus
proved that X

2,n is a Cauchy sequence in Cλ
2 (LT (A⇀)), and by Lemma 3.3,

we can therefore assert that it converges in this space to some element X2,S.

The product Chen identity (10) for X
2,S is readily obtained by passing to

the limit (in a pointwise way) in the product Chen identity that is trivially
satisfied by X

2,n. Finally, in order to show that X
2,S actually belongs to

Cλ
2 (LT (A→)), fix s < t, U ∈ As⊗̂As, and set

W n := X
2,n
st [U] , W := X

2,S
st [U] , W̄ n :=

∫ tn
ℓ

s
(U♯δXn

su) dXn
u ,

where tn
ℓ is such that s < tn

ℓ ≤ t < tn
ℓ+1 (considering n large enough). Using

the first estimate in (20), it is easy to check that ‖W n − W̄ n‖ → 0, and so,
since ‖W n − W ‖ → 0, we get that ‖W̄ n − W ‖ → 0. As W̄ n ∈ At, we can
conclude that W ∈ At, as expected.

�

Remark 3.4. Observe that in a commutative setting, the sum (22) would
simply vanish, leading to an almost trivial proof, which clearly points out
the specificity of our non-commutative framework (as evoked in Remark
2.3).

4. Comparison with L2(ϕ)-constructions

Our objective in this section is to compare the previous L∞(ϕ)-constructions
(i.e., constructions based on the operator norm) with the L2(ϕ)-constructions
exhibited by Donati-Martin in [7]. In brief, we shall see that, when studied
in L2(ϕ), the previous rough constructions correspond to Stratonovich-type
integrals, while the constructions in [7] are more of a Itô-type. This com-
parison relies on an additional ingredient, the so-called second-quantization
operator, whose central role in q-integration theory was already pointed out
in Donati-Martin’s work.
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Since we intend to make specific references to some of the results of [7], we
assume for simplicity that we are exactly in the same setting as in the latter
study. Namely, for a fixed q ∈ [0, 1), we assume that the q-Bm {Xt}t≥0 we
will handle in this section is constructed as the “canonical process” on the
q-Fock space (A, ϕ) (see [7] for details on these structures).

As in the previous sections, we denote by At the closure, with respect to
the operator norm, of the algebra generated by {Xs}s≤t.

4.1. Second quantization. Recall that the space L2(ϕ) is defined as the
completion of A as a Hilbert space through the product

〈U, V 〉 := ϕ(UV ∗) . (29)

We will denote by ‖.‖L2(ϕ) the associated norm, to be distinguished from
the operator norm ‖.‖. For every t ≥ 0, let Bt be the von Neumann algebra
generated by {Xs}s≤t (observe in particular that At ⊂ Bt ⊂ A) and denote
by ϕ(·|Bt) the conditional expectation with respect to Bt. In other words,
for every U ∈ A, ϕ(U |Bt) stands for the orthogonal projection of U onto Bt,
with respect to the product (29): Z = ϕ(U |Bt) if and only if Z ∈ Bt and
ϕ(ZW ∗) = ϕ(UW ∗) for every W ∈ Bt.

A possible way to introduce the second-quantization operator goes through
the following invariance result:

Lemma 4.1. [7, Theorem 3.1]. For all s0 < t0, s1 < t1, with s0 ≤ s1, and
U ∈ As0

⊂ As1
, it holds that

ϕ
(

(δX)s0t0
U(δX)s0t0

∣

∣Bs0

)

|t0 − s0| =
ϕ

(

(δX)s1t1
U(δX)s1t1

∣

∣Bs1

)

|t1 − s1| .

Definition 4.2. We call second quantization of X the operator Γq : ∪t≥0At →
A defined for all s ≥ 0 and U ∈ As by the formula

Γq(U) := ϕ
(

(δX)s,s+1U(δX)s,s+1
∣

∣Bs
)

.

In particular, for all s ≥ 0 and U ∈ As, Γq(U) ∈ Bs, Γq(U)∗ = Γq(U∗) and

‖Γq(U)‖L2(ϕ) ≤ ‖(δX)s,s+1U(δX)s,s+1‖L2(ϕ) ≤ ‖X1‖2‖U‖ . (30)

Remark 4.3. For q = 0, it is easy to check that, thanks to the freeness
properties of X, the second quantization reduces to Γ0(U) = ϕ(U), while in
the commutative situation, that is when q → 1, one has (at least morally)
Γ1(U) = U .

In fact, we will essentially use the operator Γq through the following result,
which offers a quite general tool to study Itô/Stratonovich correction terms
(for the sake of clarity, we have postponed the proof of this proposition to
Section 4.4):

Proposition 4.4. For every adapted triprocess U ∈ Cε
1([s, t]; A⊗̂3) (s < t,

ε > 0) and every subdivision ∆ of [s, t] whose mesh |∆| tends to 0, it holds
that

∑

(ti)∈∆

(δXtiti+1
♯Uti

)♯δXtiti+1
−→

∫ t

s

[

Id × Γq × Id
]

(Uu) du in L2(ϕ) , (31)
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where Id × Γq × Id stands for the continuous extension, as an operator from

∪u≥0A⊗̂3
u to L2(ϕ), of the operator

(Id × Γq × Id)(U1 ⊗ U2 ⊗ U3) := U1Γq(U2)U3 , U1, U2, U2 ∈ Au .

4.2. Non-commutative Itô integral. Let us here slightly rephrase the
results of [7] regarding Itô’s approach to stochastic integration with respect
to X.

Definition 4.5. Fix an interval I ⊂ R. An adapted biprocess U : I → A⊗̂A
is said to be Itô integrable against X if it is adapted and if for every partition
∆ of I whose mesh |∆| tends to 0, the sequence of Riemann sums

S∆
X(U) :=

∑

ti∈∆

Uti
♯δXtiti+1

converges in L2(ϕ) (as |∆| → 0). In this case, we call the limit of S∆
X(U)

the product Itô integral of U against X, and we denote it by
∫

I
Us♯dXs ∈ L2(ϕ) .

Given a biprocess U : I → A⊗̂A and a partition ∆ of I, we denote by
U∆ the step-approximation

U∆ :=
∑

ti∈∆

Uti
1[ti,ti+1[ .

The following isometry property, to be compared with the classical Brownian
Itô isometry, is the key ingredient to identify Itô-integrable processes:

Proposition 4.6. [7, Proposition 3.3]. For every interval I ⊂ R, all adapted
biprocesses

U : I → A ⊗ A , V : I → A ⊗ A ,

and all partitions ∆1, ∆2 of I, it holds that

〈S∆1

X (U), S∆2

X (V)〉L2(ϕ) =

∫ ∞

0
〈〈U∆1

u , V∆2

u 〉〉q du , (32)

where 〈〈., .〉〉q is the bilinear extension of the application defined for all
U1, U2, V1, V2 ∈ ∪t≥0At as

〈〈U1 ⊗ U2, V1 ⊗ V2〉〉q := ϕ
(

U1Γq(U2V ∗
2 )V ∗

1
)

.

Corollary 4.7. Let U : I → A⊗̂A be an adapted biprocess such that
∫

I
‖Uu‖2

A⊗̂A du < ∞ and

∫

I
‖U∆

u − Uu‖2
A⊗̂A du → 0 as |∆| → 0 ,

for every partition ∆ of I. Then U is Itô integrable against X and
∥

∥

∥

∫

I
Uu♯dXu

∥

∥

∥

2

L2(ϕ)
=

∫

I
〈〈Uu, Uu〉〉q du . (33)

Proof. Let us just provide a few details, the procedure being essential stan-
dard. Consider a sequence Un : I → A ⊗ A of adapted biprocesses such
that for every t ∈ I, ‖Un

t − Ut‖ → 0. Then, given two partitions ∆1, ∆2 of
I, one has by (32)

∥

∥S∆1

X (Un) − S∆2

X (Un)
∥

∥

2
L2(ϕ) =

∫

I
〈〈Un,∆1

u − Un,∆2

u , Un,∆1

u − Un,∆2

u 〉〉q du .
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By applying Cauchy-Schwarz inequality and then (30), it is readily checked
that for all V ∈ As ⊗ As,

〈〈V, V〉〉q ≤ ‖X1‖2‖V‖2 ,

and so

∥

∥S∆1

X (Un) − S∆2

X (Un)
∥

∥

2
L2(ϕ) ≤ ‖X1‖2

∫

I

∥

∥Un,∆1

u − Un,∆2

u

∥

∥

2
du ,

which, by letting n tend to infinity, leads us to

∥

∥S∆1

X (U) − S∆2

X (U)
∥

∥

2
L2(ϕ) ≤ ‖X1‖2

∫

I

∥

∥U∆1

u − U∆2

u

∥

∥

2
du .

The conclusion easily follows. �

4.3. Comparison with the rough integral. We now have all the tools to
identify, as elements in L2(ϕ), the rough constructions arising from Sections
2 and 3.

Let us first consider the situation at the level of the product Lévy area
provided by Theorem 3.1. To this end, given 0 ≤ s < t and U ∈ As⊗̂As,
observe that, by Corollary 4.7, the biprocess Vu := (U♯δXsu) ⊗ 1 is known
to be Itô-integrable on [s, t], which allows us to consider the integral

∫ t

s
(U♯δXsu) dXu ∈ L2(ϕ) .

Proposition 4.8. For all 0 ≤ s < t and every U ∈ As⊗̂As, it holds that

X
2,S
st [U] =

∫ t

s
(U♯δXsu) dXu +

1

2
(t − s)

(

Id × Γq
)

[U] in L2(ϕ) , (34)

where Id × Γq stands for the continuous extension, as an operator from
As⊗̂As to L2(ϕ), of the operator

(

Id × Γq
)

[U ⊗ V ] := UΓq(V ) .

Proof. Fix s < t, U ∈ As⊗̂As, and let D̃n be the subdivision obtained by
adding the two times s, t to the dyadic partition Dn := {i/2n, i ≥ 0}. Denote

by X̃n the linear interpolation of X along D̃n and set X̂n :=
∑

t̂i
Xt̂i

1[t̂i,t̂i+1)

where {s = t̂1 < . . . < t̂n = t} := D̃n ∩ [s, t]. Besides, we recall that the

notation X
2,Dn

(or X
2,D̃n

) has been introduced in (14).

Using only the 1/2-Hölder regularity of X (see (5)), it is easy to check that
for every U ∈ As⊗̂As,

‖X2,Dn

st [U] − X
2,D̃n

st [U]‖ ≤ c‖X1‖2‖U‖ |t − s|2γ 2−n(1/2−γ) , (35)

for some universal constant c and for every γ ∈ (0, 1/2). Thus, by Theorem

3.1, we can assert that X2,D̃n

st [U] converges to X
2,S
st [U] for the operator norm
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(and accordingly in L2(ϕ)). Now write

X
2,D̃n

st [U] =

∫ t

s
(U♯δX̃n

su) dX̃n
u (36)

=
n−1
∑

k=1

1

t̂k+1 − t̂k

∫ t̂k+1

t̂k

U♯
(

δXst̂k
+

u − t̂k

t̂k+1 − t̂k
(δX)t̂k t̂k+1

)

du (δX)t̂k t̂k+1

=
n−1
∑

k=1

(U♯δXst̂k
) δXt̂k t̂k+1

+
1

2

n−1
∑

k=1

U♯(δX)t̂k t̂k+1
(δX)t̂k t̂k+1

=

∫ t

s
(U♯δX̂n

su) dXu +
1

2

n−1
∑

k=1

U♯(δX)t̂k t̂k+1
(δX)t̂k t̂k+1

. (37)

Thanks to (33), it holds that

∥

∥

∫ t

s
(U♯δX̂n

su) dXu −
∫ t

s
(U♯δXsu) dXu

∥

∥

2
L2(ϕ)

=

∫ t

s
〈〈 (U♯[δX̂n

su − δXsu]) ⊗ 1, (U♯[δX̂n
su − δXsu]) ⊗ 1 〉〉q du

=

∫ t

s

∥

∥U♯[δX̂n
su − δXsu]

∥

∥

2
L2(ϕ) du

≤ ‖U‖2
n−1
∑

k=1

∫ t̂k+1

t̂k

‖Xt̂k
− Xu‖2 du

≤ ‖U‖2
n−1
∑

k=1

∫ t̂k+1

t̂k

(u − t̂k) du ≤ 1

2
‖U‖22−n |t − s| → 0 .

Observe finally that the limit of the second term in (37) is immediately
provided by Proposition 4.4, which achieves the proof of (34). �

Let us now extend the correction formula (34) to any adapted controlled
biprocess, that is to the class of biprocesses introduced in Definition 2.4.
Using again Corollary 4.7, it is easy to check that, as an adapted Hölder path
in A⊗̂A, any such controlled biprocess is Itô-integrable when considered on
an interval I of finite Lebesgue measure. This puts us in a position to state
the formula:

Corollary 4.9. For all 0 ≤ s < t and every adapted controlled biprocess
U ∈ QX([s, t]) with decomposition (12), it holds that
∫ t

s
Uu♯dXS

u =

∫ t

s
Uu♯dXu +

1

2

∫ t

s
(Id × Γq × Id)[UX,1

u + UX,2
u ] du in L2(ϕ) .

(38)

Proof. The transition from (34) to (38) follows from the very same Taylor-
expansion argument as in the proof of [6, Proposition 5.6] (related to the
free case), and so, for the sake of conciseness, we do not repeat it here. �

At this point, observe that the combination of Proposition 2.9 and Corol-
lary 4.9 immediately yields the following q-extension of Itô/Stratonovich
formula: for all f ∈ F3 and s < t,

δ(f(X))st =

∫ t

s
∂f(Xu)♯dXS

u =

∫ t

s
∂f(Xu)♯dXu+

∫ t

s
[Id×Γq×Id](∂2f(Xu)) du .
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As another spin-off of Formula (38), we can finally derive an expression

of the rough Stratonovich integral
∫ t

s Uu♯dXS
u as the L2(ϕ)-limit of “mean-

value” Riemann sums. The result, which emphasizes the analogy between
the rough construction and the classical (commutative) Stratonovich inte-
gral, can be stated as follows:

Corollary 4.10. For all 0 ≤ s < t and every adapted controlled biprocess
U ∈ QX([s, t]), it holds that

∫ t

s
Uu♯dXS

u = lim
|∆|→0

∑

(ti)∈∆

1

2

(

Uti
+ Uti+1

)

♯δXtiti+1
in L2(ϕ) , (39)

for any subdivision ∆ of [s, t] whose mesh |∆| tends to 0.

Proof. For any subdivision ∆ = (ti) of [s, t], write

1

2

(

Uti
+ Uti+1

)

♯δXtiti+1

= Uti
♯δXtiti+1

+
1

2
δUtiti+1

♯δXtiti+1

= Uti
♯δXtiti+1

+
1

2

[

(δXtiti+1
♯UX,1

ti
)♯δXtiti+1

+ (UX,2
ti

♯δXtiti+1
)♯δXtiti+1

+ U♭
titi+1

♯δXtiti+1

]

,

and observe that, with the notations of Section 2.3, we have

‖U♭
titi+1

♯δXtiti+1
‖ ≤ |ti+1 − ti|2γ+1/2‖X1‖ N [U♭; C2γ

2 ([s, t])] .

Taking the sum over i and then letting |∆| tend to 0, we get by Proposition
4.4 that the sum in (39) converges in L2(ϕ) to the right-hand side of (38),
which leads us to the conclusion. �

4.4. Proof of Proposition 4.4. When Ut = Ut ⊗ Vt ⊗ Wt, the convergence
property (31) has been shown in the proof of [7, Theorem 3.2]. However,
since we want the formula to hold for general adapted triprocesses here, we
need to exhibit additional controls. Let Un : [s, t] → A⊗3 be a sequence of
adapted triprocesses such that

∥

∥Un
u − Uu

∥

∥ → 0 for every u ∈ [s, t], and fix a
subdivision ∆ = (ti) of [s, t]. Then set successively Yi := δXtiti+1

,

S∆(U) :=
∑

(ti)∈∆

{

(Yi♯Uti
)♯Yi − (ti+1 − ti)

[

Id × Γq × Id
]

(Uti
)
}

and Sn
∆(U) :=

∑

(ti)∈∆

{

(Yi♯Un
ti

)♯Yi − (ti+1 − ti)
[

Id × Γq × Id
]

(Un
ti

)
}

.

If Un
t :=

∑

ℓ≤Ln
t

Un
t,ℓ ⊗ V n

t,ℓ ⊗ W n
t,ℓ ∈ A⊗3

t , Sn
∆(U) thus corresponds to

Sn
∆(U) =

∑

(ti)∈∆

∑

ℓ≤Ln
ti

Mn
i,ℓ ,

with

Mn
i,ℓ := Un

ti,ℓYiV
n

ti,ℓYiW
n
ti,ℓ − (ti+1 − ti)U

n
ti,ℓΓq(V n

ti,ℓ)W
n
ti,ℓ ,
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so

‖Sn
∆(U)‖2

L2(ϕ) =
∑

(ti1
)∈∆

∑

(ti2
)∈∆

∑

ℓ1≤Ln
ti1

∑

ℓ2≤Ln
ti2

ϕ
(

Mn
i1,ℓ1

(Mn
i2,ℓ2

)∗)

. (40)

For more clarity, let us set Un
i,ℓ := Un

ti,ℓ, V n
i,ℓ := V n

ti,ℓ, W n
i,ℓ := W n

ti,ℓ, and
consider then the expansion

ϕ
(

Mn
i1,ℓ1

(Mn
i2,ℓ2

)∗)

= ϕ
(

Un
i1,ℓ1

Yi1
V n

i1,ℓ1
Yi1

W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2
V n,∗

i2,ℓ2
Yi2

Un,∗
i2,ℓ2

)

−(ti2+1 − ti2
)ϕ

(

Un
i1,ℓ1

Yi1
V n

i1,ℓ1
Yi1

W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

−(ti1+1 − ti1
)ϕ

(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2
V n,∗

i2,ℓ2
Yi2

Un,∗
i2,ℓ2

)

+(ti1+1 − ti1
)(ti2+1 − ti2

)ϕ
(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

.(41)

Step 1: Non-diagonal terms (i1 6= i2). Observe first that if for instance
i1 < i2, we have, by combining Lemma 4.1 and Definition 4.2,

ϕ
(

Un
i1,ℓ1

Yi1
V n

i1,ℓ1
Yi1

W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2
V n,∗

i2,ℓ2
Yi2

Un,∗
i2,ℓ2

)

= ϕ
(

Un
i1,ℓ1

Yi1
V n

i1,ℓ1
Yi1

W n
i1,ℓ1

W n,∗
i2,ℓ2

ϕ
(

Yi2
V n,∗

i2,ℓ2
Yi2

∣

∣Bti2

)

Un,∗
i2,ℓ2

)

= (ti2+1 − ti2
)ϕ

(

Un
i1,ℓ1

Yi1
V n

i1,ℓ1
Yi1

W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

,

and with the same conditioning argument

ϕ
(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2
V n,∗

i2,ℓ2
Yi2

Un,∗
i2,ℓ2

)

= (ti2+1 − ti2
)ϕ

(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

,

so that, going back to (41), one has ϕ
(

Mn
i1,ℓ1

(Mn
i2,ℓ2

)∗)

= 0. Similar argu-
ments lead to the same conclusion when i2 < i1.

Step 2: Diagonal terms (i1 = i2 = i). First, observe that with the same
conditioning argument as above, decomposition (41) actually reduces to

ϕ
(

Mn
i,ℓ1

(Mn
i,ℓ2

)∗)

= ϕ
(

Un
i,ℓ1

YiV
n

i,ℓ1
YiW

n
i,ℓ1

W n,∗
i,ℓ2

YiV
n,∗

i,ℓ2
YiU

n,∗
i,ℓ2

)

−(ti+1 − ti)
2ϕ

(

Un
i,ℓ1

Γq(V n
i,ℓ1

)W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)

.

Now, on the one hand, using (5) and the Cauchy-Schwarz inequality,
∣

∣ϕ
(

Un
i,ℓ1

YiV
n

i,ℓ1
YiW

n
i,ℓ1

W n,∗
i,ℓ2

YiV
n,∗

i,ℓ2
YiU

n,∗
i,ℓ2

)∣

∣

≤ ‖Yi‖4‖Un
i,ℓ1

‖‖V n
i,ℓ1

‖‖W n
i,ℓ1

‖‖W n
i,ℓ2

‖‖V n
i,ℓ2

‖‖Un
i,ℓ2

‖
≤ (ti+1 − ti)

2‖X1‖4‖Un
i,ℓ1

‖‖V n
i,ℓ1

‖‖W n
i,ℓ1

‖‖W n
i,ℓ2

‖‖V n
i,ℓ2

‖‖Un
i,ℓ2

‖ .

On the other hand, using the definition of Γq(Vj1
),

∣

∣ϕ
(

Un
i,ℓ1

Γq(V n
i,ℓ1

)W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)∣

∣

=
∣

∣ϕ
(

Un
i,ℓ1

(δX)ti ,ti+1V n
i,ℓ1

(δX)ti ,ti+1W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)∣

∣

≤
∥

∥Un,∗
i,ℓ2

Un
i,ℓ1

(δX)ti ,ti+1V n
i,ℓ1

(δX)ti ,ti+1W n
i,ℓ1

W n,∗
i,ℓ2

∥

∥

L2(ϕ)

∥

∥Γq(V n,∗
i,ℓ2

)
∥

∥

L2(ϕ) ,

which, by (30), entails that
∣

∣ϕ
(

Un
i,ℓ1

Γq(V n
i,ℓ1

)W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)
∣

∣

≤ ‖X1‖4‖Un
i,ℓ1

‖‖V n
i,ℓ1

‖‖W n
i,ℓ1

‖‖W n
i,ℓ2

‖‖V n
i,ℓ2

‖‖Un
i,ℓ2

‖ .
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Going back to (40), we have thus shown that

‖Sn
∆(U)‖2

L2(ϕ) ≤ ‖X1‖4
∑

(ti)∈∆

(ti+1 − ti)
2
(

∑

ℓ≤Ln
ti

‖Un
i,ℓ‖‖V n

i,ℓ‖‖W n
i,ℓ‖

)2
,

and so we can assert that

‖Sn
∆(U)‖2

L2(ϕ) ≤ ‖X1‖4
∑

(ti)∈∆

(ti+1 − ti)
2‖Un

ti
‖2

≤ 2‖X1‖4
{

∑

(ti)∈∆

(ti+1 − ti)
2‖Un

ti
− Uti

‖2 +
(

sup
u∈[s,t]

‖Uu‖2)|t − s||∆|
}

.

By letting n tend to infinity first, we can conclude that ‖S∆(U)‖2
L2(ϕ) → 0

as the mesh |∆| tends to 0. The convergence

∑

(ti)∈∆

(ti+1 − ti)
[

Id × Γq × Id
]

(Uti
) →

∫ t

s

[

Id × Γq × Id
]

(Uu) du in L2(ϕ)

follows easily from the regularity of U , by noting that for every u and every

V ∈ A⊗̂3
u ,

∥

∥

[

Id × Γq × Id
]

(V)
∥

∥

L2(ϕ) ≤ ‖V‖ .

This achieves the proof of our statement.
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