
HAL Id: hal-01416950
https://hal.science/hal-01416950v1

Preprint submitted on 15 Dec 2016 (v1), last revised 1 Dec 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On stochastic calculus with respect to q-Brownian
motion

Aurélien Deya, René Schott

To cite this version:
Aurélien Deya, René Schott. On stochastic calculus with respect to q-Brownian motion. 2016. �hal-
01416950v1�

https://hal.science/hal-01416950v1
https://hal.archives-ouvertes.fr


On stochastic calculus with respect to q-Brownian motion

AURÉLIEN DEYA AND RENÉ SCHOTT

Abstract. We pursue the investigations initiated by Donati-Martin [8] regarding stochastic calculus
with respect to the q-Brownian motion, and essentially extend the previous results along two directions:
(i) We develop a robust L∞-integration theory based on rough-paths principles and apply it to the study
of q-Bm-driven differential equations; (ii) We provide a comprehensive description of the multiplication
properties in the q-Wiener chaos.

Our presentation follows a probabilistic pattern, in the sense that it only leans on the law of the
process and not on its particular construction. Besides, our formulation puts the stress on the rich
combinatorics behind non-commutative processes, in the spirit of the machinery developed by Nica and
Speicher in [14].

1. Introduction: the q-Brownian motion

The q-Gaussian processes (for q ∈ [0, 1)) stand for one of the most standard families of non-commutative
random variables in the literature. Their consideration can be traced back to a paper by Frisch and
Bourret in the early 1970s [9]: the dynamics is therein suggested as a model to quantify some possible
commutation default between the creation and annihilator operators on the Fock space, the limit case
q = 1 morally corresponding to the classical probability framework. The mathematical construction and
basic stochastic properties of the q-Gaussian processes were then investigated in the 1990s, in a series of
pathbreaking papers by Bożejko, Kümmerer and Speicher [3, 4, 5].

For the sake of clarity, let us briefly recall the framework of this analysis and introduce a few notations
that will be used in the sequel (we refer the reader to the comprehensive survey [14] for more details on
the subsequent definitions and assertions). First, recall that the processes under consideration consist in
paths with values in a non-commutative probability space, that is a von Neumann algebra A equipped
with a weakly continuous, positive and faithful trace ϕ . The sole existence of such a trace ϕ on A (to be
compared with the “expectation” in this setting) is known to give the algebra a specific structure, with
“Lp”-norms

‖X‖Lp(ϕ) := ϕ(|X |p)1/p ( |X | :=
√

XX∗ )

closely related to the operator norm ‖.‖:

‖X‖Lp(ϕ) ≤ ‖X‖ , ‖X‖ = lim
p→∞

‖X‖Lp(ϕ) , for all X ∈ A . (1)

Now recall that non-commutative probability theory is built upon the following fundamental spectral
result: any element X in the subset A∗ of self-adjoint operators in A can be associated with a law that
shares the same moments. To be more specific, there exists a unique compactly supported probability
measure µ on R such that for any real polynomial P ,

∫

R

P (x)dµ(x) = ϕ(P (X)) . (2)

Based on this property, elements in A∗ are usually referred to as (non-commutative) random variables,
and in the same vein, the law of a given family {X(i)}i∈I of random variables in (A, ϕ) is defined as the
set of all of its joint moments

ϕ
(

X(i1) · · · X(ir)) , i1, . . . , ir ∈ I , r ∈ N .
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With this stochastic approach in mind, the definition of a q-Gaussian family can be easily introduced
along the following combinatorial description:

Definition 1.1. 1. Let r be an even integer. A pairing of {1, . . . , r} is any partition of {1, . . . , r} into
r/2 disjoint subsets, each of cardinality 2. We denote by P2({1, . . . , r}) or P2(r) the set of all pairings of
{1, . . . , r}.

2. When π ∈ P2({1, . . . , r}), a crossing in π is any set of the form {{x1, y1}, {x2, y2}} with {xi, yi} ∈ π
and x1 < x2 < y1 < y2. The number of such crossings is denoted by Cr(π).

Definition 1.2. For any fixed q ∈ [0, 1), we call a q-Gaussian family in a non-commutative probability
space (A, ϕ) any collection {Xi}i∈I of random variables in (A, ϕ) such that, for every integer r ≥1 and
all i1, . . . , ir ∈ I, one has

ϕ
(

Xi1 · · · Xir

)

=
∑

π∈P2({1,...,r})

qCr(π)
∏

{p,q}∈π

ϕ
(

Xip
Xiq

)

. (3)

Therefore, just as with classical (commutative) Gaussian families, the law of a q-Gaussian family
{Xi}i∈I is completely characterized by the set of its covariances ϕ(XiXj), i, j ∈ I. In fact, when q → 1
and ϕ is - at least morally - identified with the usual expectation, relation (3) is nothing but the classical
Wick formula satisfied by the joint moments of Gaussian variables.

When q = 0, such a family of random variables is also called a semicircular family, in reference to its
marginal distributions (see [14, Chapter 8] for more details on semicircular families, in connection with
the so-called free central limit theorem).

We are now in a position to introduce the family of processes at the core of our study:

Definition 1.3. For any fixed q ∈ [0, 1), we call q-Brownian motion (q-Bm) in some non-commutative
probability space (A, ϕ) any q-Gaussian family {Xt}t≥0 in (A, ϕ) with covariance function given by the
formula

ϕ
(

XsXt

)

= s ∧ t . (4)

In the same spirit as above, the q-Bm distribution can be regarded as a straightforward extension of
two well-known processes:

• When q → 1, one recovers the classical Brownian-motion dynamics, with independent, stationary and
normally-distributed increments.

• The 0-Brownian motion coincides with the celebrated free Brownian motion, whose freely-independent
increments are known to be closely related to the asymptotic behaviour of large random matrices, following
Voiculescu’s breakthrough results [17].

Thus, we have here at our disposal a family of processes which, as far as distribution is concerned,
provides a natural “smooth” interpolation between two of the most central objects in probability theory:
the standard and the free Brownian motions. It is then natural to wonder whether the classical stochastic
properties satisfied by each of these two processes can be “lifted” on the level of this interpolation, or in
other words if the properties known for q = 0 and q → 1 can be extended to every q ∈ [0, 1). Of course,
any such extension potentially offers an additional piece of evidence in favor of this interpolation model,
as a privileged link between the free and the commutative worlds.

Some first results in this direction, focusing on the stationarity property and the marginal-distribution
issue, can be found in [3]:

Proposition 1.4. For any fixed q ∈ [0, 1), let {Xt}t≥0 be a q-Brownian motion in some non-commutative
probability space (A, ϕ). Then for all 0 ≤ s < t, it holds that Xt − Xs ∼ √

t − s X1. In particular, any
q-Brownian motion {Xt}t≥0 is a 1

2 -Hölder path in A, i.e.

sup
s<t

‖Xt − Xs‖
|t − s|1/2

≤ ‖X1‖ < ∞ . (5)
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Moreover, the law νq of X1 is absolutely continuous with respect to the Lebesgue measure; its density is
supported on

[ −2√
1−q

, 2√
1−q

]

and is given, within this interval, by the formula

νq(dx) =
1

π

√

1 − q sin θ

∞
∏

n=1

(1 − qn)|1 − qne2iθ|2 , where x =
2 cos θ√

1 − q
with θ ∈ [0, π] .

A next natural step is to examine the possible extension, to all q ∈ [0, 1), of the stochastic integration
results associated with the free/classical Brownian motion. Let us here recall that the foundations of
stochastic calculus with respect to the free Brownian motion (that is, for q = 0) have been laid in
a remarkable paper by Biane and Speicher [2]. Among other results, the latter study involves the
construction of a free Itô integral, as well as an analysis of the free Wiener chaoses generated by the
multiple integrals of the free Brownian motion.

These lines of investigation have been followed by Donati-Martin in [8] to handle the general q-Bm case,
with the construction of a q-Itô integral and a first study of the q-Wiener chaos. Let us also mention the
results of [6] related to the extension of the fourth-moment phenomenon that prevails in Wiener chaoses.

Our aim in this paper is to go further with this analysis and extend the previous results in the two
following directions:

(i) In the continuation of [7], we propose to adapt some of the main rough-path principles to this setting.
The aim here is to derive a very robust integration theory allowing, in particular, to consider the study
of differential equations driven by the q-Bm, i.e. sophisticated dynamics of the form

dYt = f(Yt) · dXt · g(Y ) , (6)

for smooth functions f, g. In fact, thanks to the general (non-commutative) rough-path results proved in
[7] (and which we will recall in Section 2), the objective reduces to the exhibition of a so-called product
Lévy area above the q-Bm, that is a kind of iterated integral of the process.

At this point, we would like to draw the reader’s attention to the fact that the construction in [8] of a
q-Itô integral as an element of L2(ϕ) is not sufficient for our purpose. Indeed, the rough-path techniques
are based on Taylor-expansion procedures, which, for obvious stability reasons, forces us to consider an
algebra norm in the computations. As a result, any satisfying notion of product Lévy area requires some
control with respect to the operator norm, that is in L∞(ϕ) (along (1)), and not only with respect to the
L2(ϕ)-norm (see Section 2 and especially Definition 2.2 for more details on the topology involved in this
control).

In the particular case of the free Bm (q = 0), the Burkholder-Gundy inequality established by Biane
and Speicher in [2, Theorem 3.2.1] immediately gives rise to operator-norm controls on the free Itô integral,
which we could readily exploit in [7] to deal with rough paths in the free situation. Unfortunately, and
at least for the time being, no similar operator-norm control has been shown for the q-Itô integral when
q ∈ (0, 1). With our rough-path objectives in mind, we will be able to overcome this difficulty though,
by resorting to a straightforward L∞(ϕ)-construction of a product Lévy area - the latter object being
actually much more specific than a general Itô integral. This is the purpose of the forthcoming Section 3
and one of the main results of the paper. Injecting this construction into the general rough-path theory
will immediately answer our original issue, that is the derivation of a robust stochastic calculus for the
q-Bm.

It is then possible to compare, a posteriori, the resulting rough integral with more familiar q-Itô or
q-Stratonovich integrals, through an elementary L2(ϕ)-analysis and the use of some of the results in [8]
(see Section 4). Let us however insist, one more time, on the fact that this sole L2(ϕ)-analysis would not
have been sufficient for the rough-path theory (and the powerful rough-path results) to be applied in this
situation.

(ii) In a second part of the paper (starting from Section 5), we will turn to the study of the rich
combinatorial machinery governing the behaviour of q-Wiener chaoses. Our main result in this setting is
the exhibition of a full q-Wick product formula, that is a clear description of the product of any number
of multiple integrals (Theorem 6.1). Again, this result must be regarded as a q-extension of a classical
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formula, the full Wick formula, that was only known in the two standard situations (q ∈ {0, 1}) so far.
We thus hope that our analysis can offer a new insight on the transition properties from the commutative
to the free case.

To achieve our purpose, we will be led to rephrase the central concept of contraction in terms of q-
contraction along (possibly “incomplete”) pairings. Thanks to this representation, many of our arguments
can then be conveniently illustrated through basic pictures, and in that sense, our formulation is somehow
related to the nice combinatorial approach developed by Nica and Speicher in the free case [14] (of course,
the analysis in the general q-Bm situation is far from being as complete as in the specific free case).

We will conclude this study of multiplication in the q-Wiener chaos with a few additional details
about the fully-symmetric situation, that is the situation where the integrals involve fully-symmetric
kernels. In this case, it turns out that the coefficients in the product formula can be expressed in terms of
classical q-combinatorial numbers, making the link with the classical commutative case even more clear
(Theorem 7.2). The identification procedure will again give us the opportunity to offer a glimpse on the
rich combinatorics associated with the q-Brownian process.

Let us finally point out the fact that, in comparison with the analysis carried out in [3, 8], our
presentation throughout the paper will follow a “probabilistic” pattern. In other words, our arguments
will essentially rely on the sole law of the q-Bm, that is on the process as given by Definition 1.3. Thus,
in the vast majority of our results and proofs, no reference will be made to any particular representation
of the process as a map with values in some specific algebra (just as classical probability theory builds
upon the law of the Brownian motion and not upon its construction). We consider this fully-stochastic
approach to be another advance of the study, which hopefully can make the paper accessible to a large
audience. The only reference to some particular representation of the q-Brownian motion (namely its
standard representation on the q-Fock space) will occur in Section 4, as a way to compare our rough
objects with the constructions of [8], based on the Fock space.

Besides, we have chosen in this study to focus on the case where q ∈ [0, 1) and introduce the q-
Brownian motion as a natural interpolation between the free and the standard Brownian motions. We
are aware that the definition of a q-Bm can also be extended to every q ∈ (−1, 0), that is up to the
“anticommutative” situation q → −1. Let us therefore specify that the positiveness assumption on q will
be used in an essential way for our main rough-path construction, that is in the proof of Theorem 3.1. On
the contrary, it can be checked that all our arguments and results regarding q-Wiener chaoses (Sections
5-7) are valid for any q ∈ (−1, 1).

As we already sketched it in the above description of our results, the study is organized as follows.
In Section 2, we will recall the general non-commutative rough-path results obtained in [7] and at the
core of the present analysis. Section 3 is devoted to the construction of the main object involved in the
rough-path procedure, that is a product Lévy area above the q-Bm, while Section 4 focuses on the L2(ϕ)-
comparison of the rough constructions with more standard Itô/Stratonovich definitions. Sections 5, 6 and
7 then deal with the multiplication issue in the q-Wiener chaos, along the above-detailled progression.

2. General rough-path results in C∗-algebras

Our strategy to develop a robust L∞(ϕ)-stochastic calculus for the q-Bm is based on the non-
commutative rough-path considerations of [7, Section 4]. Therefore, before we turn to the q-Bm situation
and for the sake of completeness, we would like to recall in this section the main results of the theoret-
ical analysis carried out in [7]. This requires first a few brief preliminaries on functional calculus in a
C∗-algebra (along the framework of [2]), as well as precisions on the topologies involved in this study.
Special emphasis will be put on the cornerstone of the rough-path machinery, the product Lévy area,
around which the whole integration procedure can be naturally expanded.

Note that the considerations of this section apply to a general C∗-algebra A, that we fix from now
on. In particular, no additional trace operator will be required here. As before, we denote by ‖.‖ the
operator norm on A, and A∗ will stand for the set of self-adjoint operators in A. We also fix an arbitrary
time horizon T > 0 for the whole section.
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2.1. Tensor product. Let A ⊗ A be the algebraic tensor product generated by A, and just as in [2],
denote by ♯ the natural product interaction between A and A ⊗ A, that is the linear extension of the
formula

(U1 ⊗ U2)♯X = X♯(U1 ⊗ U2) := U1XU2 , for all U1, U2, X ∈ A .

In a similar way, set, for all U1, U2, U3, X ∈ A,

X♯(U1 ⊗ U2 ⊗ U3) := (U1XU2) ⊗ U3 , (U1 ⊗ U2 ⊗ U3)♯X := U1 ⊗ (U2XU3) .

Our below developments will actually involve the projective tensor product A⊗̂A of A, that is the com-
pletion of A ⊗ A with respect to the norm

‖U‖ = ‖U‖A⊗̂A := inf
∑

i

‖Ui‖‖Vi‖ ,

where the infimum is taken over all possible representation U =
∑

i Ui ⊗ Vi of U. It is readily checked
that for all U ∈ A ⊗ A and X ∈ A, one has ‖U♯X‖ ≤ ‖U‖‖X‖, and so the above ♯-product continuously
extends to A⊗̂A. These considerations can, of course, be generalized to the n-th projective tensor product

A⊗̂n, n ≥ 1, and we will still denote by ‖.‖ the projective tensor norm on A⊗̂n.
Along the same terminology as in [2], we will call any process with values in A⊗̂A, resp. A⊗̂A⊗̂A, a

biprocess, resp. a triprocess.

2.2. Functional calculus in a C∗-algebra. Following again the presentation of [2], let us introduce
the class of functions f defined for every integer k ≥ 0 by

Fk := {f : R → C : f(x) =

∫

R

eıξxµf (dξ) with

∫

R

|ξ|i µf (dξ) < ∞ for every i ∈ {0, . . . , k}}, (7)

and set, if f ∈ Fk, ‖f‖k :=
∑k

i=0

∫

R
|ξ|i µf (dξ). Then, with all f ∈ F0 and X ∈ A∗, we associate the

operator f(X) along the formula

f(X) :=

∫

R

eıξXµf (dξ) ,

where the integral in the right-hand side is uniformly convergent in A. This straightforward operator
extension of functional calculus happens to be compatible with Taylor expansions of f , a central ingredient
towards the application of rough-path techniques. The following notion of tensor derivatives naturally
arises in the procedure (see the subsequent Examples 2.5 and 2.6):

Definition 2.1. For every f ∈ F1, resp. f ∈ F2, we define the tensor derivative, resp. second tensor
derivative, of f by the formula: for every X ∈ A∗,

∂f(X) :=

∫ 1

0
dα

∫

R

ıξ [eıαξX ⊗ eı(1−α)ξX ] µf (dξ) ∈ A⊗̂A ,

resp. ∂2f(X) := −
∫∫

α,β≥0
α+β≤1

dα dβ

∫

R

ξ2 [eıαξX ⊗ eıβξX ⊗ eı(1−α−β)ξX ] µf (dξ) ∈ A⊗̂A⊗̂A .

2.3. Filtration and Hölder topologies. From now on and for the rest of Section 2, we fix a process
X : [0, T ] → A∗ and assume that X is γ-Hölder regular, that is

sup
0≤s<t≤T

‖Xt − Xs‖
|t − s|γ < ∞ ,

for some fixed coefficient γ ∈ (1/3, 1/2).

With this process in hand, we denote by {At}t∈[0,T ] = {AX
t }t∈[0,T ] the filtration generated by X ,

that is, for each t ∈ [0, T ], At stands for the closure (with respect to the operator norm) of the unital
subalgebra of A generated by {Xs}0≤s≤t.

For any fixed interval I ⊂ [0, T ], a process Y : I → A is said to be adapted if for each t ∈ I, Yt ∈ At.
In the same way, a biprocess U : [0, T ] → A⊗̂A, resp. a triprocess U : [0, T ] → A⊗̂A⊗̂A, is adapted if
for each t ∈ [0, T ], Ut ∈ At⊗̂At, resp. Ut ∈ At⊗̂At⊗̂At.

Let us now briefly recall the topologies involved in the rough-path procedure, as far as time-roughness

is concerned (and following Gubinelli’s approach [11]). For V := A⊗̂n (n ≥ 1), let C1(I; V ) be the set
of continuous V -valued maps on I, and C2(I; V ) the set of continuous V -valued maps on the simplex
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S2 := {(s, t) ∈ I2 : s ≤ t} that vanish on the diagonal. The increments of a path g ∈ C1(I; V ) will be
denoted by δgst := gt − gs (s ≤ t) and for every α ∈ (0, 1), we define the α-Hölder spaces Cα

1 (I; V ), resp.
Cα

2 (I; V ), as

Cα
1 (I; V ) :=

{

h ∈ C1(I; V ) : N [h; Cα
1 (I; V )] := sup

s<t∈I

‖δhst‖
|t − s|α < ∞

}

,

resp.

Cα
2 (I; V ) :=

{

h ∈ C2(I; V ) : N [h; Cα
2 (I; V )] := sup

s<t∈I

‖hst‖
|t − s|α < ∞

}

.

2.4. The product Lévy area. Consider the successive spaces

LT (A⇀) := {L = (Lst)0≤s<t≤T : Lst ∈ L(As⊗̂As, A)} ,

LT (A→) := {L = (Lst)0≤s<t≤T : Lst ∈ L(As⊗̂As, At)} ,

and for every λ ∈ [0, 1], denote by Cλ
2 (LT (A⇀)), resp. Cλ

2 (LT (A→)), the set of elements L ∈ LT (A⇀),
resp. L ∈ LT (A→), for which the following quantity is finite:

N [L; Cλ
2 (LT (A⇀))] := sup

s<t∈[0,T ]
U∈As⊗̂As,U6=0

‖Lst[U]‖
|t − s|λ ‖U‖

. (8)

At this point, recall that we have fixed a γ-Hölder process X : [0, T ] → A∗ (γ ∈ (1/3, 1/2)) for the
whole section 2.

Definition 2.2. We call product Lévy area above X any process X2 such that:

(i) (2γ-roughness) X2 ∈ C2γ
2 (LT (A→)),

(ii) (Product Chen identity) For all s < u < t and U ∈ As⊗̂As,

X
2
st[U] − X

2
su[U] − X

2
ut[U] = (U♯δXsu) δXut . (9)

Remark 2.3. Recall that Definition 2.2 is derived from the theoretical analysis performed in [7, Section
4] with equation (6) in mind. At some heuristic level, and following the classical rough-path approach,
the notion of product Lévy area must be seen as some abstract version of the iterated integral

X
2
st[U] =

∫ t

s

(U♯δXsu) dXu , (10)

noting that definition of this integral is not clear a priori for a non-differentiable process X . As pointed
out in [7], the above notion of “Lévy area” is specifically designed to handle the non-commutative algebra
dynamics of (6), and it offers a much more efficient approach than general rough-path theory based
on “tensor” Lévy areas (the object considered in [13]). In a commutative setting (i.e., if A were a
commutative algebra), the basic process Ast(U) := 1

2 (U♯δXst) δXst would immediately provide us with
such a product Lévy area. In the general (non-commutative) situation though, this path only satisfies

Ast[U] − Asu[U] − Aut[U] =
1

2

[

(U♯δXsu) δXut + (U♯δXut) δXsu

]

,

so that A may not meet the product-Chen condition (ii), making Definition 2.2 undoubtedly relevant.

2.5. Controlled (bi)processes and integration. A second ingredient in the rough-path machinery
(in addition to a “Lévy area”) consists in the identification of a suitable class of integrands for the future
rough integral with respect to X . The following definition naturally arises in this setting:

Definition 2.4. Given a time interval I ⊂ [0, T ], we call adapted controlled process, resp. biprocess,
on I any adapted process Y ∈ Cγ

1 (I; A), resp. biprocess U ∈ Cγ
1 (I; A⊗̂A), with increments of the form

(δY )st = YX
s ♯(δX)st + Y ♭

st , s < t ∈ I , (11)

resp.

(δU)st = (δX)st♯UX,1
s + UX,2

s ♯(δX)st + U♭
st , s < t ∈ I , (12)

for some adapted biprocess YX ∈ Cγ
1 (I; A⊗̂A) , resp. adapted triprocesses UX,1, UX,2 ∈ Cγ

1 (I; A⊗̂3), and

Y ♭ ∈ C2γ
2 (I; A), resp. U♭ ∈ C2γ

2 (I; A⊗̂A). We denote by QX(I), resp. QX(I), the space of adapted
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controlled processes, resp. biprocesses, on I, and finally we define Q∗
X(I) as the subspace of controlled

processes Y ∈ QX(I) for which one has both Y ∗
s = Ys and (YX

s )∗ = YX
s for every s ∈ I.

Example 2.5. If f, g ∈ F2 and Y ∈ Q∗
X(I) with decomposition (11), then U := f(Y ) ⊗ g(Y ) ∈ QX(I)

with

UX,1
s := [∂f(Ys) YX

s ] ⊗ g(Ys) , UX,2
s = f(Ys) ⊗ [∂g(Ys) YX

s ] .

Example 2.6. If f ∈ F3, then U := ∂f(X) ∈ QX([0, T ]) with UX,1
s = UX,2

s = ∂2f(Xs).

We are finally in a position to recall the definition of the rough integral with respect to X , which can
be expressed (among other ways) as the limit of “corrected Riemann sums”:

Proposition 2.7. [7, Proposition 4.12] Assume that we are given a product Lévy area X2 above X, in
the sense of Definition 2.2, as well as a time interval I = [ℓ1, ℓ2] ⊂ [0, T ]. Then for every U ∈ QX(I)
with decomposition (12), all s < t ∈ I and every subdivision Dst = {t0 = s < t1 < . . . < tn = t} of [s, t]
with mesh |Dst| tending to 0, the corrected Riemann sum

∑

ti∈Dst

{

Uti
♯(δX)titi+1 + [X2

titi+1
× Id](UX,1

ti
) + [Id × X

2,∗
titi+1

](UX,2
ti

)
}

converges in A as |Dst| → 0. We call the limit the rough integral (from s to t) of U against X := (X,X2),

and we denote it by
∫ t

s Uu♯dXu. This construction satisfies the two following properties:

• (Consistency) If X is a differentiable process in A and X2 is understood in the classical Lebesgue sense

(that is, as in (10)), then
∫ t

s Uu♯dXu coincides with the classical Lebesgue integral
∫ t

s [Uu♯X ′
u] du;

• (Stability) For every A ∈ A, there exists a unique process Z ∈ QX(I) such that Zℓ1 = A and (δZ)st =
∫ t

s Uu♯dXu for all s < t ∈ I.

Theorem 2.8. [7, Theorem 4.15] Assume that we are given a product Lévy area X2 above X. Let
f = (f1, . . . , fm) ∈ Fm

3 , g = (f∗
1 , . . . , f∗

m) or (f∗
m, . . . , f∗

1 ), and fix A ∈ A∗. Then the equation

Y0 = A , (δY )st =

m
∑

i=1

∫ t

s

fi(Yu) dXu gi(Yu) , s < t ∈ [0, T ] , (13)

interpreted with Proposition 2.7, admits a unique solution Y ∈ Q∗
X([0, T ]).

2.6. Approximation results. Another advantage of the rough-path approach - beyond its consistency
and stability properties - lies in the continuity of the constructions with respect to the driving (rough)
path. In this non-commutative setting, and following the approach of [7], the phenomenon can be
illustrated through several “Wong-Zakaï-type” approximation results, which we propose to briefly review
here. To this end, for every sequence of partitions (Dn) of [0, T ] with mesh tending to zero, denote by
{Xn

t }t∈[0,T ] = {XDn

t }t∈[0,T ] the sequence of linear interpolations of X along Dn, i.e., if Dn := {0 = t0 <
t1 < . . . < tk = T },

Xn
t := Xti

+
t − ti

ti+1 − ti
δXtiti+1 for t ∈ [ti, ti+1] .

Then consider the sequence of approximated product Lévy areas defined for every U ∈ A⊗̂A as

X
2,n
st [U] = X

2,Dn

st [U] :=

∫ t

s

(U♯δXn
su) dXn

u , s < t ∈ [0, T ] , (14)

where the integral is understood in the classical Lebesgue sense.

Proposition 2.9. [7, Proposition 4.16] Assume that there exists a product Lévy area X2 above X such
that, as n tends to infinity,

N [Xn − X ; Cγ
1 ([0, T ]; A)] → 0 and N [X2,n − X

2; C2γ
2 (LT (A⇀))] → 0 . (15)

Then for all f, g ∈ F3, it holds that
∫ .

.

f(Xn
u ) dXn

u g(Xn
u )

n→∞−−−−→
∫ .

.

f(Xu) dXu g(Xu) in Cγ
2 ([0, T ]; A) , (16)



8 AURÉLIEN DEYA AND RENÉ SCHOTT

where the integral in the limit is interpreted with Proposition 2.7. Similarly, for all f ∈ F3, one has
∫ .

.

∂f(Xn
u )♯dXn

u
n→∞−−−−→

∫ .

.

∂f(Xu)♯dXu in Cγ
2 ([0, T ]; A) , (17)

which immediately yields Itô’s formula: for all s < t ∈ [0, T ],

δf(X)st =

∫ t

s

∂f(Xu)♯dXu . (18)

Finally, for some fixed f = (f1, . . . , fm) ∈ Fm
3 and g = (f∗

1 , . . . , f∗
m) (or g := (f∗

m, . . . , f∗
1 )), let us

denote by Y n = Y Dn

the solution of the classical Lebesgue equation on [0, T ]

Y n
0 = A ∈ A∗ , dY n

t =
∑m

i=1
fi(Y

n
t ) dXn

t gi(Y
n

t ) .

Theorem 2.10. [7, Theorem 4.17] Under the assumptions of Proposition 2.9, one has Y n n→∞−−−−→ Y in
Cγ

1 ([0, T ]; A), where Y is the solution of (13) given by Theorem 2.8.

3. A product Lévy area above the q-Brownian motion

We go back here to the q-Bm setting described in Section 1. Namely, we fix q ∈ [0, 1) and consider a
q-Brownian motion (Xt)t≥0 in some non-commutative probability space (A, ϕ). With the developments
of the previous section in mind, the route towards an efficient operator-norm calculus for X is now clear:
we need to exhibit a product Lévy area above X , in the sense of Definition 2.2. Our main result thus
reads as follows:

Theorem 3.1. Denote by {Xn
t }t≥0 the linear interpolation of X along the dyadic partition Dn :=

{tn
i , i ≥ 0}, tn

i := i
2n . Then there exists a product Lévy area X2,S above X, in the sense of Definition

2.2, such that for every T > 0 and every 0 < γ < 1/2, one has

Xn → X in Cγ
1 ([0, T ]; A) and X

2,n → X
2,S in C2γ

2 (LT (A→)) , (19)

where X2,n is defined by (14). We call X2,S the Stratonovich product Lévy area above X.

Based on this result, the conclusions of Proposition 2.7, Theorem 2.8, Proposition 2.9 and Theorem
2.10 can all be applied to the q-Brownian motion, with limits understood as rough integrals with respect
to the “product rough path” XS := (X,X2,S). The Stratonovich terminology is here used as a reference to
the classical commutative situation, where the (almost sure) limit of the sequence of approximated Lévy
areas would indeed coincide with the Stratonovich iterated integral (see also Corollary 4.10 for another
justification of this terminology).

Before we turn to the proof of Theorem 3.1, let us recall that the whole difficulty in constructing
a stochastic integral with respect to the general q-Bm, in comparison with the free (q = 0) or the
commutative (q → 1) cases, lies in the absence of any satisfying “q-freeness” property for the increments
of the process when q ∈ (0, 1) (as reported by Speicher in [16]). For instance, if s < u < t,

ϕ
(

(Xu − Xs)(Xt − Xu)(Xu − Xs)(Xt − Xu)
)

= q ϕ
(

(Xu − Xs)2)

ϕ
(

(Xt − Xu)2)

= q |u − s||t − u| ,

which shows that, for q 6= 0, the disjoint increments of a q-Brownian motion {Xt}t≥0 are indeed not
freely independent (in the sense of [7, Definition 2.6]), making most of the arguments of [2] unexploitable
in this situation.

This being said, we can still rely here on the basic fact that for all q ∈ [0, 1), ϕ
(

(Xu−Xs)(Xt−Xu)
)

= 0.
Together with Formula (3), this very weak “freeness” property of the increments will somehow be sufficient
for our purpose, the construction of a product Lévy area being much more specific than the construction
of a general stochastic integral (along Itô’s standard procedure).

The proof of Theorem 3.1 will also appeal to the two following elementary lemmas. The first one
(whose proof follows immediately from (3)) is related to the linear stability of q-Gaussian families:

Lemma 3.2. For any fixed q ∈ [0, 1), let Y := {Y1, . . . , Yd} be a q-Gaussian vector in some non-
commutative probability space (A, ϕ), and consider a real-valued (d × m)-matrix Λ. Then Z := ΛY is
also a q-Gaussian vector in (A, ϕ).
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We will also need the following general topology property on the space accommodating any Lévy area:

Lemma 3.3. The space Cλ
2 (LT (A⇀)), endowed with the norm (8), is complete.

Proof. Although the arguments are classical, let us provide a few details here, since the Cλ
2 (LT (A⇀))-

structure is not exactly standard. Consider a Cauchy sequence Ln in Cλ
2 (LT (A⇀)). For every fixed

s ∈ [0, T ], the sequence Ln
s. defines a Cauchy sequence in the space L∞([s, T ]; L(As⊗̂As, A)) of bounded

functions on [s, T ] (with values in L(As⊗̂As, A)), endowed with the uniform norm. Therefore it con-
verges in the latter space to some function Ls.. The fact that the so-defined family {Lst}s<t belongs
to Cλ

2 (LT (A⇀)) is an immediate consequence of the boundedness of Ln in Cλ
2 (LT (A⇀)). Finally, given

ε > 0 and for all fixed s < t, we know that there exists Mε,s,t ≥ 0 such that for all m ≥ Mε,s,t,
‖Lm

st − Lst‖L(As⊗̂As,A) ≤ ε
2 |t − s|λ. On the other hand, there exists Nε ≥ 0 such that for all n, m ≥ Nε

and all s < t, ‖Ln
st − Lm

st‖L(As⊗̂As,A) ≤ ε
2 |t − s|λ. Therefore, for all n ≥ Nε and all s < t, we get that for

m := max(Nε, Mε,s,t),

‖Ln
st − Lst‖L(As⊗̂As,A) ≤ ‖Ln

st − Lm
st‖L(As⊗̂As,A) + ‖Lst − Lm

st‖L(As⊗̂As,A) ≤ ε|t − s|λ ,

and so Ln → L in Cλ
2 (LT (A⇀)), which achieves to prove that the latter space is complete. �

Proof of Theorem 3.1. Throughout the proof, we will denote by A . B any bound of the form A ≤ cB,
where c is a universal constant independent from the parameters under consideration. The first-order
convergence statement in (19) is a straightforward consequence of the 1/2-Hölder regularity of X . In
fact, using (5), it can be checked that for all n ≥ 0 and s < t,

‖δXn
st‖ . ‖X1‖|t − s|1/2 and ‖δ(Xn − X)st‖ . ‖X1‖|t − s|γ2−n(1/2−γ) . (20)

Let us turn to the second-order convergence and to this end, fix n ≥ 0 and s < t such that tn
k ≤ s < tn

k+1,

tn
ℓ ≤ t < tℓ+1, with k ≤ ℓ. If |ℓ − k| ≤ 1, or in other words if |t − s| ≤ 2−n+1, the expected bound can be

readily derived from the first estimate in (20), that is for every U ∈ As⊗̂As, we get from (20)

‖X2,n+1
st [U] − X

2,n
st [U]‖ ≤ ‖X2,n+1

st [U]‖ + ‖X2,n
st [U]‖ . ‖X1‖2|t − s|2γ2−n(1/2−γ) .

Assume from now on that ℓ ≥ k + 2 and in this case consider the decomposition, for every U ∈ As⊗̂As,

X
2,n+1
st [U] − X

2,n
st [U]

=

[
∫ tn

ℓ

tn
k+1

(

U♯δXn+1
tn

k+1
u

)

dXn+1
u −

∫ tn
ℓ

tn
k+1

(

U♯δXn
tn

k+1
u

)

dXn
u

]

+

[
∫ tn

k+1

s

(

U♯δXn+1
su

)

dXn+1
u +

∫ t

tn
ℓ

(

U♯δXn+1
su

)

dXn+1
u −

∫ tn
k+1

s

(

U♯δXn
su

)

dXn
u

−
∫ t

tn
ℓ

(

U♯δXn
su

)

dXn
u

]

+

[
∫ tn

ℓ

tn
k+1

(

U♯δXn+1
stn

k+1

)

dXn+1
u −

∫ tn
ℓ

tn
k+1

(

U♯δXn
stn

k+1

)

dXn
u

]

. (21)

The “boundary” integrals within the second and third brackets can again be bounded individually using
the first estimate in (20) only. For instance,

∥

∥

∥

∫ t

tn
ℓ

(

U♯δXn+1
su

)

dXn+1
u

∥

∥

∥
. ‖X1‖‖U‖

[

1{tn+1
2ℓ

≤t<tn+1
2ℓ+1

}

∫ t

tn
ℓ

|s − u|1/2(

2n+1‖δXtn+1
2ℓ

tn+1
2ℓ+1

‖
)

+1{tn+1
2ℓ+1

≤t<tn+1
2ℓ+2

}

∫ tn+1
2ℓ+1

tn+1
2ℓ

|s − u|1/2(

2n+1‖δXtn+1
2ℓ

tn+1
2ℓ+1

‖
)

+1{tn+1
2ℓ+1

≤t<tn+1
2ℓ+2

}

∫ t

tn+1
2ℓ+1

|s − u|1/2(

2n+1‖δXtn+1
2ℓ+1

tn+1
2ℓ+2

‖
)

]

. ‖X1‖2‖U‖|t − s|2γ2−n(1/2−γ) .
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Therefore, we only have to focus on the first bracket in decomposition (21). In fact, using only the
very definition of the approximation, it can be checked that this term is also equal to

∫ tn
ℓ

tn
k+1

(

U♯δXn+1
tn

k+1
u

)

dXn+1
u −

∫ tn
ℓ

tn
k+1

(

U♯δXn
tn

k+1
u

)

dXn
u

=
1

2

ℓ−1
∑

i=k+1

[

(

U♯(δX)tn+1
2i

tn+1
2i+1

)

(δX)tn+1
2i+1

tn+1
2i+2

−
(

U♯(δX)tn+1
2i+1

tn+1
2i+2

)

(δX)tn+1
2i

tn+1
2i+1

]

. (22)

Let us bound the two sums

S1,n
st [U] :=

ℓ−1
∑

i=k+1

(

U♯(δX)tn+1
2i

tn+1
2i+1

)

(δX)tn+1
2i+1

tn+1
2i+2

, S2,n
st [U] :=

ℓ−1
∑

i=k+1

(

U♯(δX)tn+1
2i+1

tn+1
2i+2

)

(δX)tn+1
2i

tn+1
2i+1

separately.

Consider first the case where U =
∑o

j=1 Uj ⊗ Vj , with Uj := Xsj

1
· · · Xsj

mj

, Vj := Xsj

mj +1
· · · Xsj

mj +pj

, and

sj
p ≤ s for all j, p. Besides, let us set Yi = Yi,n := (δX)tn+1

i
tn+1

i+1
. With these notations, and for every

r ≥ 1, we have

ϕ
(

|S1,n
st [U]|2r

)

= ϕ

([(

∑

i1

∑

j1

Uj1 Y2i1 Vj1 Y2i1+1

)(

∑

i2

∑

j2

Uj2 Y2i2 Vj2 Y2i2+1

)∗]r)

=
∑

i1,...,i2r

∑

j1,...,j2r

ϕ
(

[

Uj1 Y2i1 Vj1 Y2i1+1Y2i2+1V ∗
j2

Y2i2 U∗
j2

]

· · ·

[

Uj2r−1 Y2i2r−1 Vj2r−1 Y2i2r−1+1Y2i2r+1V ∗
j2r

Y2i2r
U∗

j2r

]

)

, (23)

where each index i runs over {k + 1, . . . , ℓ − 1} and each index j runs overs {1, . . . , o}. At this point,
observe that for all fixed i := (i1, . . . , i2r) and j := (j1, . . . , j2r), the family

{Xsj
1
, . . . , Xsj

mj +pj

, Y2i, Y2i+1, i ∈ {i1, . . . , i2r}, j ∈ {j1, . . . , j2r}}

is a q-Gaussian family (due to Lemma 3.2) and accordingly the associated joint moments obey Formula
(3). Besides, we have trivially

ϕ
(

Y2ia
Y2ib+1

)

= 0 , ϕ
(

Y2ia
Y2ib

)

= ϕ
(

Y2ia+1Y2ib+1
)

= 1{ia=ib}2−(n+1)ϕ
(

|X1|2)

and

ϕ
(

Y2iXsj
a
) = ϕ

(

Y2i+1Xsj
a
) = 0 .

Using these basic observations and going back to (23), it is clear that, when applying Formula (3) to
the expectation in (23), we can restrict the sum to the set of pairings π ∈ P2({1, . . . , Nr}) (Nr :=
2
[

(mj1 + pj1) + . . . + (mj2r
+ pj2r

)] + 8r) that decompose - in a unique way - as a combination of three

sub-pairings, namely: 1) a pairing π1 ∈ P2({1, . . . , 2r}) that connects the random variables {Y2i} to each
other; 2) a pairing π2 ∈ P2({1, . . . , 2r}) that connects the random variables {Y2i+1} to each other; 3)
a pairing π3 ∈ P2({1, . . . , N ′

r}) (N ′
r := 2

[

(mj1 + pj1 ) + . . . + (mj2r
+ pj2r

)]) that connects the random
variables {Xsj

i

} to each other. Moreover, with this decomposition in mind, one has clearly

Cr(π) ≥ Cr(π1) + Cr(π2) + Cr(π3) .
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Consequently, it holds that for all fixed i := (i1, . . . , i2r) and j := (j1, . . . , j2r),

∣

∣

∣
ϕ

(

[

Uj1 Y2i1 Vj1 Y2i1+1Y2i2+1V ∗
j2

Y2i2 U∗
j2

]

· · ·
[

Uj2r−1 Y2i2r−1 Vj2r−1 Y2i2r−1+1Y2i2r +1V ∗
j2r

Y2i2r
U∗

j2r

]

)∣

∣

∣

≤
∑

π1,π2∈P2({1,...,2r})
π3∈P2({1,...,N ′

r})

qCr(π1)+Cr(π2)+Cr(π3)

∏

{a,b}∈π1

ϕ
(

Y2ia
Y2ib

)

1{ia=ib}
∏

{c,d}∈π2

ϕ
(

Y2ic+1Y2id+1
)

1{ic=id}
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

≤ 2−2r(n+1)ϕ
(

|X1|2)2r

(

∑

π1∈P2({1,...,2r})

qCr(π1)
∏

{a,b}∈π1

1{ia=ib}

)

(

∑

π2∈P2({1,...,2r})

qCr(π2)
∏

{c,d}∈π2

1{ic=id}

)(

∑

π3∈P2({1,...,N ′
r})

qCr(π3)
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

)

,

where Zj stands for the natural reordering of the variables {Xsj
m

}, namely for all a ∈ {1, . . . , 2r} and

b ∈ {1, . . . , mja
+ pja

},

Zj

2[(mj1 +pj1 )+...+(mja−1
+pja−1

)]+b = Zj

2[(mj1 +pj1 )+...+(mja−1
+pja−1

)]+[2(mja +pja )−b] := Xsja
b

.

As a result, the double sum in (23) is bounded by

2−2rnϕ
(

|X1|2)2r

(

∑

π1∈P2({1,...,2r})

qCr(π1)
ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

)(

∑

π2∈P2({1,...,2r})

qCr(π2)
)

o
∑

j1,...,j2r=1

(

∑

π3∈P2({1,...,N ′
r})

qCr(π3)
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

)

. (24)

Now observe that the last sum in (24) actually corresponds to

o
∑

j1,...,j2r=1

(

∑

π3∈P2({1,...,N ′
r})

qCr(π3)
∏

{e,f}∈π3

ϕ
(

Zj
eZj

f

)

)

= ϕ
(∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)

, (25)

and for every fixed π1 ∈ P2({1, . . . , 2r}),

ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

=

( ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

)2(1−2γ)( ℓ−1
∑

i1,...,i2r=k+1

∏

{a,b}∈π1

1{ia=ib}

)4γ−1

≤ (ℓ − (k + 1))2(1−2γ)r(ℓ − (k + 1))2r(4γ−1) = |tn
ℓ − tn

k+1|4rγ24rγn ≤ |t − s|4rγ24rγn . (26)

By injecting (25) and (26) into (24), we end up with the estimate

ϕ
(

|S1,n
st [U]|2r

)

≤ |t − s|4rγ2−2r(1−2γ)nϕ
(

|X1|2)2r

(

∑

π∈P2({1,...,2r})

qCr(π)
)2

ϕ
(

∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)

≤ |t − s|4rγ2−2r(1−2γ)nϕ
(

|X1|2)2rϕ
(

|X1|2r
)2

ϕ
(∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)

,
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and so

ϕ
(

|S1,n
st [U]|2r

)1/2r ≤ |t − s|2γ2−(1−2γ)nϕ
(

|X1|2)ϕ
(

|X1|2r
)1/r

ϕ
(∣

∣

∣

o
∑

j=1

UjVj

∣

∣

∣

2r)1/2r

≤ |t − s|2γ2−(1−2γ)n‖X1‖4
∥

∥

∥

o
∑

j=1

UjVj

∥

∥

∥

≤ |t − s|2γ2−(1−2γ)n‖X1‖4
(

o
∑

j=1

‖Uj‖‖Vj‖
)

. (27)

It is easy to see that the above arguments could also be applied to the more general situation where
U :=

∑o
j=1 Uj ⊗ Vj with

Uj :=

Kj
∑

k=0

αj,kXsj,k

1
· · · Xsj,k

mj,k

and Vj :=

Lj
∑

ℓ=0

βj,ℓXuj,ℓ

1
· · · Xuj,ℓ

pj,ℓ

, αj,k, βj,ℓ ∈ C , sj,k
a , uj,ℓ

b ∈ [0, s] ,

leading in the end to the same bound (27). Therefore, this bound (27) can actually be extended to any
Uj , Vj ∈ As, which then entails that for every U ∈ As⊗̂As,

ϕ
(

|S1,n
st [U]|2r

)1/2r ≤ |t − s|2γ2−(1−2γ)n‖X1‖4‖U‖ ,

and by letting r tend to infinity, we get by (1) that

‖S1,n
st [U]‖ ≤ |t − s|2γ2−(1−2γ)n‖X1‖4‖U‖ .

The very same reasoning can of course be used in order to estimate ‖S2,n
st [U]‖, with the same resulting

bound. Going back to (21) and (22), we have thus proved that X2,n is a Cauchy sequence in Cλ
2 (LT (A⇀)),

and by Lemma 3.3, we can therefore assert that it converges in this space to some element X2,S .

The product Chen identity (10) for X2,S is readily obtained by passing to the limit (in a pointwise way) in
the product Chen identity that is trivially satisfied by X2,n. Finally, in order to show that X2,S actually
belongs to Cλ

2 (LT (A→)), fix s < t, U ∈ As⊗̂As, and set

W n := X
2,n
st [U] , W := X

2,S
st [U] , W̄ n :=

∫ tn
ℓ

s

(U♯δXn
su) dXn

u ,

where tn
ℓ is such that s < tn

ℓ ≤ t < tn
ℓ+1 (considering n large enough). Using the first estimate in (20), it

is easy to check that ‖W n − W̄ n‖ → 0, and so, since ‖W n − W ‖ → 0, we get that ‖W̄ n − W ‖ → 0. As
W̄ n ∈ At, we can conclude that W ∈ At, as expected.

�

Remark 3.4. Observe that in a commutative setting, the sum (22) would simply vanish, leading to an
almost trivial proof, which clearly points out the specificity of our non-commutative framework (as evoked
in Remark 2.3).

4. Comparison with L2(ϕ)-constructions

Our objective in this section is to compare the previous L∞(ϕ)-constructions (i.e., constructions based
on the operator norm) with the L2(ϕ)-constructions exhibited by Donati-Martin in [8]. In brief, we
shall see that, when studied in L2(ϕ), the previous rough constructions correspond to Stratonovich-type
integrals, while the constructions in [8] are more of a Itô-type. This comparison relies on an additional
ingredient, the so-called second-quantization operator, whose central role in q-integration theory was
already pointed out in Donati-Martin’s work.

Since we intend to make specific references to some of the results of [8], we assume for simplicity that
we are exactly in the same setting as in the latter study. Namely, for a fixed q ∈ [0, 1), we assume that
the q-Bm {Xt}t≥0 we will handle in this section is constructed as the “canonical process” on the q-Fock
space (A, ϕ) (see [8] for details on these structures).

As in the previous sections, we denote by At the closure, with respect to the operator norm, of the
algebra generated by {Xs}s≤t.
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4.1. Second quantization. Recall that the space L2(ϕ) is defined as the completion of A as a Hilbert
space through the product

〈U, V 〉 := ϕ(UV ∗) . (28)

We will denote by ‖.‖L2(ϕ) the associated norm, to be distinguished from the operator norm ‖.‖. For every
t ≥ 0, let Bt be the von Neumann algebra generated by {Xs}s≤t (observe in particular that At ⊂ Bt ⊂ A)
and denote by ϕ(·|Bt) the conditional expectation with respect to Bt. In other words, for every U ∈ A,
ϕ(U |Bt) stands for the orthogonal projection of U onto Bt, with respect to the product (28): Z = ϕ(U |Bt)
if and only if Z ∈ Bt and ϕ(ZW ∗) = ϕ(UW ∗) for every W ∈ Bt.

A possible way to introduce the second-quantization operator goes through the following invariance
result:

Lemma 4.1. [8, Theorem 3.1]. For all s0 < t0, s1 < t1, with s0 ≤ s1, and U ∈ As0 ⊂ As1 , it holds that

ϕ
(

(δX)s0t0U(δX)s0t0

∣

∣Bs0

)

|t0 − s0| =
ϕ

(

(δX)s1t1 U(δX)s1t1

∣

∣Bs1

)

|t1 − s1| .

Definition 4.2. We call second quantization of X the operator Γq : ∪t≥0At → A defined for all s ≥ 0
and U ∈ As by the formula

Γq(U) := ϕ
(

(δX)s,s+1U(δX)s,s+1
∣

∣Bs

)

.

In particular, for all s ≥ 0 and U ∈ As, Γq(U) ∈ Bs, Γq(U)∗ = Γq(U∗) and

‖Γq(U)‖L2(ϕ) ≤ ‖(δX)s,s+1U(δX)s,s+1‖L2(ϕ) ≤ ‖X1‖2‖U‖ . (29)

Remark 4.3. For q = 0, it is easy to check that, thanks to the freeness properties of X , the second
quantization reduces to Γ0(U) = ϕ(U), while in the commutative situation, that is when q → 1, one has
(at least morally) Γ1(U) = U .

In fact, we will essentially use the operator Γq through the following result, which offers a quite general
tool to study Itô/Stratonovich correction terms (for the sake of clarity, we have postponed the proof of
this proposition to Section 4.4):

Proposition 4.4. For every adapted triprocess U ∈ Cε
1([s, t]; A⊗̂3) (s < t, ε > 0) and every subdivision

∆ of [s, t] whose mesh |∆| tends to 0, it holds that

∑

(ti)∈∆

(δXtiti+1 ♯Uti
)♯δXtiti+1 −→

∫ t

s

[

Id × Γq × Id
]

(Uu) du in L2(ϕ) ,

where Id × Γq × Id stands for the continuous extension, as an operator from ∪u≥0A⊗̂3
u to L2(ϕ), of the

operator
(Id × Γq × Id)(U1 ⊗ U2 ⊗ U3) := U1Γq(U2)U3 , U1, U2, U2 ∈ Au .

4.2. Non-commutative Itô integral. Let us here slightly rephrase the results of [8] regarding Itô’s
approach to stochastic integration with respect to X .

Definition 4.5. Fix an interval I ⊂ R. An adapted biprocess U : I → A⊗̂A is said to be Itô integrable
against X if it is adapted and if for every partition ∆ of I whose mesh |∆| tends to 0, the sequence of
Riemann sums

S∆
X(U) :=

∑

ti∈∆

Uti
♯δXtiti+1

converges in L2(ϕ) (as |∆| → 0). In this case, we call the limit of S∆
X(U) the product Itô integral of U

against X, and we denote it by
∫

I

Us♯dXs ∈ L2(ϕ) .

Given a biprocess U : I → A⊗̂A and a partition ∆ of I, we denote by U∆ the step-approximation

U∆ :=
∑

ti∈∆

Uti
1[ti,ti+1[ .

The following isometry property, to be compared with the classical Brownian Itô isometry, is the key
ingredient to identify Itô-integrable processes:
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Proposition 4.6. [8, Proposition 3.3]. For every interval I ⊂ R, all adapted biprocesses

U : I → A ⊗ A , V : I → A ⊗ A ,

and all partitions ∆1, ∆2 of I, it holds that

〈S∆1

X (U), S∆2

X (V)〉L2(ϕ) =

∫ ∞

0
〈〈U∆1

u , V∆2
u 〉〉q du , (30)

where 〈〈., .〉〉q is the bilinear extension of the application defined for all U1, U2, V1, V2 ∈ ∪t≥0At as

〈〈U1 ⊗ U2, V1 ⊗ V2〉〉q := ϕ
(

U1Γq(U2V ∗
2 )V ∗

1

)

.

Corollary 4.7. Let U : I → A⊗̂A be an adapted biprocess such that
∫

I

‖Uu‖2
A⊗̂A du < ∞ and

∫

I

‖U∆
u − Uu‖2

A⊗̂A du → 0 as |∆| → 0 ,

for every partition ∆ of I. Then U is Itô integrable against X and
∥

∥

∥

∫

I

Uu♯dXu

∥

∥

∥

2

L2(ϕ)
=

∫

I

〈〈Uu, Uu〉〉q du . (31)

Proof. Let us just provide a few details, the procedure being essential standard. Consider a sequence
Un : I → A ⊗ A of adapted biprocesses such that for every t ∈ I, ‖Un

t − Ut‖ → 0. Then, given two
partitions ∆1, ∆2 of I, one has by (30)

∥

∥S∆1

X (Un) − S∆2

X (Un)
∥

∥

2
L2(ϕ) =

∫

I

〈〈Un,∆1
u − Un,∆2

u , Un,∆1
u − Un,∆2

u 〉〉q du .

By applying Cauchy-Schwarz inequality and then (29), it is readily checked that for all V ∈ As ⊗ As,

〈〈V, V〉〉q ≤ ‖X1‖2‖V‖2 ,

and so
∥

∥S∆1

X (Un) − S∆2

X (Un)
∥

∥

2
L2(ϕ) ≤ ‖X1‖2

∫

I

∥

∥Un,∆1
u − Un,∆2

u

∥

∥

2
du ,

which, by letting n tend to infinity, leads us to
∥

∥S∆1

X (U) − S∆2

X (U)
∥

∥

2
L2(ϕ) ≤ ‖X1‖2

∫

I

∥

∥U∆1
u − U∆2

u

∥

∥

2
du .

The conclusion easily follows. �

4.3. Comparison with the rough integral. We now have all the tools to identify, as elements in
L2(ϕ), the rough constructions arising from Sections 2 and 3.

Let us first consider the situation at the level of the product Lévy area provided by Theorem 3.1. To this
end, given 0 ≤ s < t and U ∈ As⊗̂As, observe that, by Corollary 4.7, the biprocess Vu := (U♯δXsu) ⊗ 1
is known to be Itô-integrable on [s, t], which allows us to consider the integral

∫ t

s

(U♯δXsu) dXu ∈ L2(ϕ) .

Proposition 4.8. For all 0 ≤ s < t and every U ∈ As⊗̂As, it holds that

X
2,S
st [U] =

∫ t

s

(U♯δXsu) dXu +
1

2
(t − s)

(

Id × Γq

)

[U] in L2(ϕ) , (32)

where Id × Γq stands for the continuous extension, as an operator from As⊗̂As to L2(ϕ), of the operator
(

Id × Γq

)

[U ⊗ V ] := UΓq(V ) .

Proof. Fix s < t, U ∈ As⊗̂As, and let D̃n be the subdivision obtained by adding the two times s, t to
the dyadic partition Dn := {i/2n, i ≥ 0}. Denote by X̃n the linear interpolation of X along D̃n and set

X̂n :=
∑

t̂i
Xt̂i

1[t̂i,t̂i+1) where {s = t̂1 < . . . < t̂n = t} := D̃n ∩ [s, t]. Besides, we recall that the notation

X2,Dn

(or X2,D̃n

) has been introduced in (14).

Using only the 1/2-Hölder regularity of X (see (5)), it is easy to check that for every U ∈ As⊗̂As,

‖X2,Dn

st [U] − X
2,D̃n

st [U]‖ ≤ c‖X1‖2‖U‖ |t − s|2γ 2−n(1/2−γ) , (33)
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for some universal constant c and for every γ ∈ (0, 1/2). Thus, by Theorem 3.1, we can assert that

X
2,D̃n

st [U] converges to X
2,S
st [U] for the operator norm (and accordingly in L2(ϕ)). Now write

X
2,D̃n

st [U] =

∫ t

s

(U♯δX̃n
su) dX̃n

u (34)

=

n−1
∑

k=1

1

t̂k+1 − t̂k

∫ t̂k+1

t̂k

U♯
(

δXst̂k
+

u − t̂k

t̂k+1 − t̂k

(δX)t̂k t̂k+1

)

du (δX)t̂k t̂k+1

=

n−1
∑

k=1

(U♯δXst̂k
) δXt̂k t̂k+1

+
1

2

n−1
∑

k=1

U♯(δX)t̂k t̂k+1
(δX)t̂k t̂k+1

=

∫ t

s

(U♯δX̂n
su) dXu +

1

2

n−1
∑

k=1

U♯(δX)t̂k t̂k+1
(δX)t̂k t̂k+1

. (35)

Thanks to (31), it holds that

∥

∥

∫ t

s

(U♯δX̂n
su) dXu −

∫ t

s

(U♯δXsu) dXu

∥

∥

2
L2(ϕ)

=

∫ t

s

〈〈 (U♯[δX̂n
su − δXsu]) ⊗ 1, (U♯[δX̂n

su − δXsu]) ⊗ 1 〉〉q du

=

∫ t

s

∥

∥U♯[δX̂n
su − δXsu]

∥

∥

2
L2(ϕ) du

≤ ‖U‖2
n−1
∑

k=1

∫ t̂k+1

t̂k

‖Xt̂k
− Xu‖2 du

≤ ‖U‖2
n−1
∑

k=1

∫ t̂k+1

t̂k

(u − t̂k) du ≤ 1

2
‖U‖22−n |t − s| → 0 .

Observe finally that the limit of the second term in (35) is immediately provided by Proposition 4.4,
which achieves the proof of (32). �

Let us now extend the correction formula (32) to any adapted controlled biprocess, that is to the
class of biprocesses introduced in Definition 2.4. Using again Corollary 4.7, it is easy to check that, as
an adapted Hölder path in A⊗̂A, any such controlled biprocess is Itô-integrable when considered on an
interval I of finite Lebesgue measure. This puts us in a position to state the formula:

Corollary 4.9. For all 0 ≤ s < t and every adapted controlled biprocess U ∈ QX([s, t]) with decomposi-
tion (12), it holds that

∫ t

s

Uu♯dXS
u =

∫ t

s

Uu♯dXu +
1

2

∫ t

s

(Id × Γq × Id)[UX,1
u + UX,2

u ] du in L2(ϕ) . (36)

Proof. The transition from (32) to (36) follows from the very same Taylor-expansion argument as in the
proof of [7, Proposition 5.6] (related to the free case), and so, for the sake of conciseness, we do not repeat
it here. �

At this point, observe that the combination of Proposition 2.9 and Corollary 4.9 immediately yields
the following q-extension of Itô/Stratonovich formula: for all f ∈ F3 and s < t,

δ(f(X))st =

∫ t

s

∂f(Xu)♯dXS
u =

∫ t

s

∂f(Xu)♯dXu +

∫ t

s

[Id × Γq × Id](∂2f(Xu)) du .

As another spin-off of Formula (36), we can finally derive an expression of the rough Stratonovich

integral
∫ t

s Uu♯dXS
u as the L2(ϕ)-limit of “mean-value” Riemann sums. The result, which emphasizes the

analogy between the rough construction and the classical (commutative) Stratonovich integral, can be
stated as follows:
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Corollary 4.10. For all 0 ≤ s < t and every adapted controlled biprocess U ∈ QX([s, t]), it holds that
∫ t

s

Uu♯dXS
u = lim

|∆|→0

∑

(ti)∈∆

1

2

(

Uti
+ Uti+1

)

♯δXtiti+1 in L2(ϕ) , (37)

for any subdivision ∆ of [s, t] whose mesh |∆| tends to 0.

Proof. For any subdivision ∆ = (ti) of [s, t], write

1

2

(

Uti
+ Uti+1

)

♯δXtiti+1

= Uti
♯δXtiti+1 +

1

2
δUtiti+1♯δXtiti+1

= Uti
♯δXtiti+1 +

1

2

[

(δXtiti+1 ♯UX,1
ti

)♯δXtiti+1 + (UX,2
ti

♯δXtiti+1)♯δXtiti+1 + U♭
titi+1

♯δXtiti+1

]

,

and observe that, with the notations of Section 2.3, we have

‖U♭
titi+1

♯δXtiti+1‖ ≤ |ti+1 − ti|2γ+1/2‖X1‖ N [U♭; C2γ
2 ([s, t])] .

Taking the sum over i and then letting |∆| tend to 0, we get by Proposition 4.4 that the sum in (37)
converges in L2(ϕ) to the right-hand side of (36), which leads us to the conclusion. �

4.4. Proof of Proposition 4.4. It is based on similar conditioning arguments as in the proof of [8,
Theorem 3.2]. Let Un : [s, t] → A⊗3 be a sequence of adapted triprocesses such that

∥

∥Un
u − Uu

∥

∥ → 0 for
every u ∈ [s, t], and fix a subdivision ∆ = (ti) of [s, t]. Then set successively Yi := δXtiti+1 ,

S∆(U) :=
∑

(ti)∈∆

{

(Yi♯Uti
)♯Yi − (ti+1 − ti)

[

Id × Γq × Id
]

(Uti
)
}

and Sn
∆(U) :=

∑

(ti)∈∆

{

(Yi♯Un
ti

)♯Yi − (ti+1 − ti)
[

Id × Γq × Id
]

(Un
ti

)
}

.

If Un
t :=

∑

ℓ≤Ln
t

Un
t,ℓ ⊗ V n

t,ℓ ⊗ W n
t,ℓ ∈ A⊗3

t , Sn
∆(U) thus corresponds to Sn

∆(U) =
∑

(ti)∈∆

∑

ℓ≤Ln
ti

Mn
i,ℓ, with

Mn
i,ℓ := Un

ti,ℓYiV
n

ti,ℓYiW
n
ti,ℓ − (ti+1 − ti)U

n
ti,ℓΓq(V n

ti,ℓ)W
n
ti,ℓ ,

so

‖Sn
∆(U)‖2

L2(ϕ) =
∑

(ti1 )∈∆

∑

(ti2 )∈∆

∑

ℓ1≤Ln
ti1

∑

ℓ2≤Ln
ti2

ϕ
(

Mn
i1,ℓ1

(Mn
i2,ℓ2

)∗)

. (38)

For more clarity, let us set Un
i,ℓ := Un

ti,ℓ, V n
i,ℓ := V n

ti,ℓ, W n
i,ℓ := W n

ti,ℓ, and consider then the expansion

ϕ
(

Mn
i1,ℓ1

(Mn
i2,ℓ2

)∗)

= ϕ
(

Un
i1,ℓ1

Yi1 V n
i1,ℓ1

Yi1 W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2 V n,∗
i2,ℓ2

Yi2 Un,∗
i2,ℓ2

)

−(ti2+1 − ti2 )ϕ
(

Un
i1,ℓ1

Yi1 V n
i1,ℓ1

Yi1 W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

−(ti1+1 − ti1 )ϕ
(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2 V n,∗
i2,ℓ2

Yi2 Un,∗
i2,ℓ2

)

+(ti1+1 − ti1 )(ti2+1 − ti2 )ϕ
(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

. (39)

Step 1: Non-diagonal terms (i1 6= i2). Observe first that if for instance i1 < i2, we have, by combining
Lemma 4.1 and Definition 4.2,

ϕ
(

Un
i1,ℓ1

Yi1 V n
i1,ℓ1

Yi1 W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2 V n,∗
i2,ℓ2

Yi2 Un,∗
i2,ℓ2

)

= ϕ
(

Un
i1,ℓ1

Yi1 V n
i1,ℓ1

Yi1 W n
i1,ℓ1

W n,∗
i2,ℓ2

ϕ
(

Yi2 V n,∗
i2,ℓ2

Yi2

∣

∣Bti2

)

Un,∗
i2,ℓ2

)

= (ti2+1 − ti2 )ϕ
(

Un
i1,ℓ1

Yi1 V n
i1,ℓ1

Yi1 W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

,
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and with the same conditioning argument

ϕ
(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Yi2 V n,∗
i2,ℓ2

Yi2 Un,∗
i2,ℓ2

)

= (ti2+1 − ti2 )ϕ
(

Un
i1,ℓ1

Γq(V n
i1,ℓ1

)W n
i1,ℓ1

W n,∗
i2,ℓ2

Γq(V n,∗
i2,ℓ2

)Un,∗
i2,ℓ2

)

,

so that, going back to (39), one has ϕ
(

Mn
i1,ℓ1

(Mn
i2,ℓ2

)∗)

= 0. Similar arguments lead to the same conclusion
when i2 < i1.

Step 2: Diagonal terms (i1 = i2 = i). First, observe that with the same conditioning argument as above,
decomposition (39) actually reduces to

ϕ
(

Mn
i,ℓ1

(Mn
i,ℓ2

)∗)

= ϕ
(

Un
i,ℓ1

YiV
n

i,ℓ1
YiW

n
i,ℓ1

W n,∗
i,ℓ2

YiV
n,∗

i,ℓ2
YiU

n,∗
i,ℓ2

)

−(ti+1 − ti)
2ϕ

(

Un
i,ℓ1

Γq(V n
i,ℓ1

)W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)

.

Now, on the one hand, using (5) and the Cauchy-Schwarz inequality,
∣

∣ϕ
(

Un
i,ℓ1

YiV
n

i,ℓ1
YiW

n
i,ℓ1

W n,∗
i,ℓ2

YiV
n,∗

i,ℓ2
YiU

n,∗
i,ℓ2

)
∣

∣

≤ ‖Yi‖4‖Un
i,ℓ1

‖‖V n
i,ℓ1

‖‖W n
i,ℓ1

‖‖W n
i,ℓ2

‖‖V n
i,ℓ2

‖‖Un
i,ℓ2

‖
≤ (ti+1 − ti)

2‖X1‖4‖Un
i,ℓ1

‖‖V n
i,ℓ1

‖‖W n
i,ℓ1

‖‖W n
i,ℓ2

‖‖V n
i,ℓ2

‖‖Un
i,ℓ2

‖ .

On the other hand, using the definition of Γq(Vj1 ),
∣

∣ϕ
(

Un
i,ℓ1

Γq(V n
i,ℓ1

)W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)
∣

∣

=
∣

∣ϕ
(

Un
i,ℓ1

(δX)ti,ti+1V n
i,ℓ1

(δX)ti,ti+1W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)∣

∣

≤
∥

∥Un,∗
i,ℓ2

Un
i,ℓ1

(δX)ti,ti+1V n
i,ℓ1

(δX)ti,ti+1W n
i,ℓ1

W n,∗
i,ℓ2

∥

∥

L2(ϕ)

∥

∥Γq(V n,∗
i,ℓ2

)
∥

∥

L2(ϕ) ,

which, by (29), entails that
∣

∣ϕ
(

Un
i,ℓ1

Γq(V n
i,ℓ1

)W n
i,ℓ1

W n,∗
i,ℓ2

Γq(V n,∗
i,ℓ2

)Un,∗
i,ℓ2

)∣

∣ ≤ ‖X1‖4‖Un
i,ℓ1

‖‖V n
i,ℓ1

‖‖W n
i,ℓ1

‖‖W n
i,ℓ2

‖‖V n
i,ℓ2

‖‖Un
i,ℓ2

‖ .

Going back to (38), we have thus shown that

‖Sn
∆(U)‖2

L2(ϕ) ≤ ‖X1‖4
∑

(ti)∈∆

(ti+1 − ti)
2
(

∑

ℓ≤Ln
ti

‖Un
i,ℓ‖‖V n

i,ℓ‖‖W n
i,ℓ‖

)2
,

and so we can assert that

‖Sn
∆(U)‖2

L2(ϕ) ≤ ‖X1‖4
∑

(ti)∈∆

(ti+1 − ti)
2‖Un

ti
‖2

≤ 2‖X1‖4
{

∑

(ti)∈∆

(ti+1 − ti)
2‖Un

ti
− Uti

‖2 +
(

sup
u∈[s,t]

‖Uu‖2)

|t − s||∆|
}

.

By letting n tend to infinity first, we can conclude that ‖S∆(U)‖2
L2(ϕ) → 0 as |∆| → 0. The convergence

∑

(ti)∈∆

(ti+1 − ti)
[

Id × Γq × Id
]

(Uti
) →

∫ t

s

[

Id × Γq × Id
]

(Uu) du in L2(ϕ)

follows easily from the regularity of U , by noting that for every u and every V ∈ A⊗̂3
u ,

∥

∥

[

Id × Γq × Id
]

(V)
∥

∥

L2(ϕ) ≤ ‖V‖ .

This achieves the proof of our statement.

5. Generalities on q-Wiener chaoses

We now turn to the consideration of our second main objective in this q-Brownian analysis, namely
a combinatorial description of the multiplication properties occuring in q-Wiener chaoses. As a first
step, let us introduce in this section an alternative and as-graphical-as-possible approach to the notion
of q-contraction, in comparison with the definition provided in [8].
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5.1. Arrangement along a partition and q-contraction. We have seen in Section 1 that the law of
a q-Gaussian family or a q-Bm can be conveniently described as a sum over pairings. In order to extend
such formulas at the level of the processes (and not only their laws), we will need to involve more general
“incomplete pairings” into the procedure:

Definition 5.1. (i) For n ≥ 1, we denote by P≤2({1, . . . , n}) or P≤2(n) the set of partitions π of
{1, . . . , n} with blocks of one or two elements, and for every 0 ≤ k ≤ n

2 , we denote Pk
≤2 the set of

partitions π ∈ P≤2 containing exactly k pairs.

(ii) For n1, . . . , nr ≥ 1, we denote by P≤2(n1 ⊗ · · · ⊗ nr) the set of partitions π ∈ P≤2(n1 + · · · + nr)
respecting n1 ⊗ · · · ⊗ nr, i.e., with no pair contained in a same block {1, . . . , n1}, {n1 + 1, . . . , n1 + n2},...
We define P2(n1 ⊗ · · · ⊗ nr) and Pk

≤2(n1 ⊗ · · · ⊗ nr) along the same lines.

(iii) Given π ∈ P≤2(n), a crossing in π is any set of the form {(a1, b1), (a2, b2)} with (ai, bi) ∈ π and
a1 < a2 < b1 < b2, or of the form {(a, b), (c)} with (a, b) ∈ π, (c) ∈ π and a < c < b. We will denote by
Cr(π) the number of crossings in π.

Now observe that any partition π ∈ Pk
≤2(n) can be described in a unique way as

π = {(ai, bi), i = 1, . . . , k, ak < ak−1 < . . . < a1}∪{(ci), i = 1, . . . , n−2k, c1 < c2 < . . . < cn−2k} . (40)

With this notation in mind, and for all s = (s1, . . . , sk) ∈ Rk
+, t = (t1, . . . , tn−2k) ∈ R

n−2k
+ , we define the

arrangement π(s, t) ∈ {s, t}n as follows: for l = 1, . . . , n,

π(s, t)l :=

{

si if l = ai or l = bi ,

ti if l = ci .

Example 5.2. Consider the partition π ∈ P4
≤2(14) drawn below, with singletons represented by dashed

lines “extending to infinity” and pairs by continuous lines. Such a representation implies in particular
that each pair (ai, bi) ∈ π satisfying ai < cj < bi, for some singleton (cj) ∈ π, necessarily crosses the
“line” (cj). It is then easy to visualize that in this case

π(s, t) = (t1, s4, t2, s3, t3, s2, s4, t4, s1, t5, s1, t6, s3, s2) and Cr(π) = 13 .

• • • • • • • • • • • • • •
t1 s4 t2 s3 t3 s2 s4 t4 s1 t5 s1 t6 s3 s2

The suitable definition of a contraction in our setting now reads as follows:

Definition 5.3. (i) Given f ∈ L2(Rn
+) and π ∈ Pk

≤2(n), we call integral of f along π, and denote by
∫

π f , the function defined for every t ∈ R
n−2k
+ by

[
∫

π

f

]

(t) :=

∫

R
k
+

ds f(π(s, t)) ,

where π(s, t) stands for the above-defined arrangement along π.

(ii) For all f ∈ L2(Rm
+ ), g ∈ L2(Rn

+) and π ∈ P≤2(m ⊗ n), we define the contraction of f and g along
π by the formula f ⊗π g :=

∫

π f ⊗ g. Finally, for all q ∈ [0, 1) and k ∈ {0, . . . , m ∧ n}, we define the
q-contraction of f and g of order k as the sum

f ⊗q
k g :=

∑

π∈Pk
≤2

(m⊗n)

qCr(π)f ⊗π g .
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This definition can be seen as a natural q-extension of the standard contracting procedure along a Feyn-
man diagram (as defined in [12, Section 7.2]). It actually coincides with the notion of a q-contraction
introduced in [8], which can be recovered by comparing [8, Proposition 4.1] with the subsequent Propo-
sition 6.4 and applying the isometry property (43).

Notation 5.4. Given t = (t1, . . . , tn) ∈ Rn
+, we will denote by t∗ the vector (tn, . . . , t1). We recall

that for every f ∈ L2(Rn
+), the mirror-symmetric of f , denoted by f∗, is the function in L2(Rn

+) defined

by f∗(t) = f(t∗). Besides, given π∗ ∈ Pk
≤2(m ⊗ n), we define the mirror-symmetrized π∗ of π as the

element of Pk
≤2(n ⊗ m) obtained by taking the symmetric of π along a vertical axis between the two blocks

{1, . . . , m} and {m + 1, . . . , m + n}. Otherwise stated, if π is given by (40), then

π∗ := {(m + n + 1 − bi, m + n + 1 − ai), (m + n + 1 − cj)} .

For further use, let us also label the following readily-checked relations between mirror-symmetry and
q-contractions:

Lemma 5.5. For all f ∈ L2(Rm
+ ), g ∈ L2(Rn

+) and π ∈ P≤2(m ⊗ n), it holds that

(f ⊗π g)∗ = g∗ ⊗π∗ f∗ .

Besides, Cr(π∗) = Cr(π) and accordingly (f ⊗q
k g)∗ = g∗ ⊗q

k f∗ for every k ∈ {0, . . . , m ∧ n}.

5.2. Construction of the q-Wiener chaos. With the above “graphical” approach in mind, and also
for the sake of completeness, let us briefly go back here to the definition of the q-Wiener chaos.

From now on and for the rest of the paper, we fix q ∈ [0, 1) and consider a q-Bm (Xt)t≥0 = (X(q))t≥0

in some non-commutative probability space (A, ϕ). With the notations of Section 5.1, observe that the
joint moments of (Xt)t≥0 can also be expressed as

ϕ(Xt1 . . . Xtn
) =

∑

π∈P2(n)

qCr(π)
∫

π

(1[0,t1] ⊗ · · · ⊗ 1[0,tn]) . (41)

The construction of the multiple integrals of X , which give birth to the q-Wiener chaoses, can then be
made along a similar procedure as in the classical commutative case (see [15]). Consider first the set Em

of simple functions, that is the set of functions f of the form f =
∑p

i1,...,im=1 λi1,...,im
1Ai1

⊗ · · · ⊗ 1Aim
,

for pairwise disjoint intervals Ai and coefficients λi1,...,im
vanishing on diagonals. For such a function

f ∈ Em, we set naturally

Iq
m(f) :=

p
∑

i1,...,im=1

λi1,...,im
X(1Ai1

) · · · X(1Aim
) , (42)

using convention that for any interval A := [ℓ1, ℓ2], X(1A) := Xℓ2 − Xℓ1 . With this definition, observe in
particular that Iq

m(f)∗ = Iq
m(f∗) for every f ∈ Em. Then, just as in the commutative case, the extension

of Iq
m(f) to any real-valued function f ∈ L2(Rm

+ ) relies on two ingredients: the density of Em within

L2(Rm
+ ) on the one hand, an isometry property on the other, which, in this setting, reads as follows:

Proposition 5.6. For f ∈ Em and g ∈ En, it holds that

〈Iq
m(f), Iq

n(g)〉L2(ϕ) = δm,n〈f, Pq(g)〉L2(Rn
+) , (43)

where Pq is the q-symmetrization operator defined for all f ∈ L2(Rm
+ ) and s ∈ R

m
+ by

Pq(f)(s) :=
∑

π∈P2(m⊗m)

qCr(π)f(π(s)m+1::2m) , π(s)m+1::2m := (π(s)m+1, . . . , π(s)2m) .

In particular, ‖Pq(f)‖L2(Rm
+ ) ≤ m!‖f‖L2(Rm

+ ).

The resulting extension of the integral to any f ∈ L2(Rm
+ ) will still be denoted by Iq

m(f), as usual. It
satisfies the isometry property (43), as well as ϕ(Iq

m(f)) = 0 for m ≥ 1.
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Proof of Proposition 5.6. Consider the case where

f :=

p
∑

i1,...,im=1

λi1...im
1Ai1

⊗ · · · ⊗ 1Aim
and g :=

p
∑

i1,...,in=1

βi1...in
1Ai1

⊗ · · · ⊗ 1Ain
,

for disjoint intervals (Ai) and coefficients λ, β vanishing on diagonals. Then by (41)

ϕ
(

Iq
m(f)∗Iq

n(g)
)

=

p
∑

i1,...,im=1

p
∑

j1,...,jn=1

λi1...im
βj1...jm

∑

π∈P2(m+n)

qCr(π)
∫

π

(

1Aim
⊗ · · · ⊗ 1Ai1

⊗ 1Aj1
⊗ · · · ⊗ 1Ajn

)

. (44)

Now, for pairwise distinct i1, . . . , im ∈ {1, . . . , p} and pairwise distinct j1, . . . , jn ∈ {1, . . . , p}, the integral
∫

π

(

1Aim
⊗ · · · ⊗ 1Ai1

⊗ 1Aj1
⊗ · · · ⊗ 1Ajn

)

clearly vanishes for every π ∈ P2(m + n) if n 6= m, and for every π ∈ P2(2n)\P2(n ⊗ n) if n = m. Thus,

∑

π∈P2(m+n)

qCr(π)
∫

π

(

1Aim
⊗ · · · ⊗ 1Ai1

⊗ 1Aj1
⊗ · · · ⊗ 1Ajn

)

= δm,n

∑

π∈P2(m⊗m)

qCr(π)
∫

R
n
+

ds (1Aim
⊗ · · · ⊗ 1Ai1

)(s∗)(1Aj1
⊗ · · · ⊗ 1Ajm

)(π(s)m+1::2m)

= δm,n

∫

R
m
+

ds (1Ai1
⊗ · · · ⊗ 1Aim

)(s) Pq(1Aj1
⊗ · · · ⊗ 1Ajm

)(s) .

Going back to (44), we get the desired conclusion for f ang g, and the general result follows by linearity.
�

6. Multiplication formulas in q-Wiener chaoses

With the formalism of Section 5 in hand, we can now state our main result about q-Wiener chaos,
namely the extension, to every q ∈ [0, 1), of the full Wick product formula:

Theorem 6.1. Let n1, . . . , nr ≥ 1 and for every i ∈ {1, . . . , r}, let fi ∈ L2(Rni

+ ). Then, with the notations
of Section 5.1, it holds that

Iq
n1

(f1) · · · Iq
nr

(fr) =
∑

π∈P≤2(n1⊗···⊗nr)

qCr(π)Iq

(
∫

π

f1 ⊗ · · · ⊗ fr

)

. (45)

By letting q tend to 1 in (45) (at least at some heuristic level), we indeed recover the exact expression
of the classical full Wick product formula for the standard Bm (see [12, Theorem 7.33]). Observe also
that, as an immediate consequence of (45) and the fact that ϕ(Iq

m(f)) = 0 for m ≥ 1, we recover the
result of [6, Theorem 2.7]:

Corollary 6.2. In the setting of Theorem 6.1, it holds that

ϕ(Iq
n1

(f1) · · · Iq
nr

(fr)) =
∑

π∈P2(n1⊗···⊗nr)

qCr(π)
∫

π

f1 ⊗ · · · ⊗ fr .

The rest of this section is devoted to the proof of Theorem 6.1, which will consist in a natural three-
step procedure: we first show the formula when (r = 2, n1 = 1, n2 ≥ 1), then extend the result to the
case where (r = 2, n1, n2 ≥ 1), and finally turn to the general situation. At each step, our strategy will
actually be based on the (non-trivial) q-extension of the classical arguments used in the commutative
framework.

Proposition 6.3. For all f ∈ L2(R+) and g ∈ L2(Rn
+), it holds that

Iq
1 (f)Iq

n(g) = Iq
n+1(f ⊗ g) + Iq

n−1(f ⊗q
1 g) . (46)
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Proof. For any interval A, let us write X(A) for X(1A). Using bilinearity and a density argument, it is
readily checked that we can focus on the following situation:

f = 1A and g = 1A1 ⊗ · · · ⊗ 1Ak−1
⊗ 1B ⊗ 1Ak

⊗ · · · ⊗ 1An−1 ,

where k ∈ {1, . . . , n}, the intervals Ai are disjoint and A, B are both intervals disjoint from the Ai’s such
that A = B or A ∩ B = ∅.

If A ∩ B = ∅, then clearly f ⊗q
1 g = 0 and the formula is trivially satisfied, so we assume from

now on that A = B. Then, denoting by µ(A) the length of A, it is easy to see (as in Figure 1) that
f ⊗q

1 g = qk−1µ(A)1A1 ⊗ · · · ⊗ 1An−1 and accordingly Iq
n−1(f ⊗q

1 g) = qk−1µ(A)X(A1) · · · X(An−1).

• • • • • • •
A A1 A2 Ak−1 A Ak

Figure 1. The only partition with non-zero contribution in the computation of f ⊗q
1 g.

For ε > 0, pick disjoint intervals B1, . . . , Bl such that A = B1 ∪ . . . ∪ Bl and µ(Bi) < ε. Then write

I1(f)In(g)

= X(A)X(A1) · · · X(Ak−1)X(A)X(Ak) · · · X(An−1)

=
∑

i6=j

X(Bi)X(A1) · · · X(Ak−1)X(Bj)X(Ak) · · · X(An−1)

+

l
∑

i=1

{

X(Bi)X(A1) · · · X(Ak−1)X(Bi)X(Ak) · · · X(An−1) − qk−1µ(Bi)X(A1) · · · X(An−1)
}

+qk−1µ(A)X(A1) · · · X(An−1)

= Iq
n+1(hε) +

l
∑

i=1

Rε,i + Iq
n−1(f ⊗q

1 g) ,

where we have set

hε :=
∑

i6=j

1Bi
⊗ 1A1 ⊗ · · · ⊗ 1Ak−1

⊗ 1Bj
⊗ 1Ak

⊗ · · · ⊗ 1An−1 .

At this point, observe that due to (43), one has

‖Iq
n+1(hε) − Iq

n+1(f ⊗ g)‖L2(ϕ) ≤ (n + 1)! ‖hε − f ⊗ g‖L2(Rn
+) ,

which tends to 0 as ε → 0. Therefore, it remains us to check that ‖ ∑l
i=1 Rε,i‖L2(ϕ) → 0 as ε → 0, and

to this end, decompose ‖ ∑l
i=1 Rε,i‖2

L2(ϕ) as

‖
l

∑

i=1

Rε,i‖2
L2(ϕ) =

∑

i6=j

ϕ
(

R∗
ε,iRε,j

)

+

l
∑

i=1

ϕ
(

R∗
ε,iRε,i

)

. (47)

When i 6= j, it turns out that ϕ
(

R∗
ε,iRε,j

)

= 0, as a consequence of the following readily-checked relations

(see Figure 2 for an illustration of the first one):

ϕ
(

[X(An−1) · · · X(Ak)X(Bi)X(Ak−1) · · · X(A1)X(Bi)]·
[X(Bj)X(A1) · · · X(Ak−1)X(Bj)X(Ak) · · · X(An−1)]

)

= q2(k−1)µ(Bi)µ(Bj)µ(A1) · · · µ(An−1) , (48)
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ϕ
(

[X(An−1) · · · X(Ak)X(Bi)X(Ak−1) · · · X(A1)X(Bi)] · [X(A1) · · · X(An−1)]
)

= qk−1µ(Bi)µ(A1) · · · µ(An−1) ,

and

ϕ
(

[X(An−1) · · · X(A1)] · [X(A1) · · · X(An−1)]
)

= µ(A1) · · · µ(An−1) .

As for the second summand in (47), it is easy to see that ϕ
(

R∗
ε,iRε,i

)

≤ c µ(Bi)
2, so

0 ≤
l

∑

i=1

ϕ
(

R∗
ε,iRε,i

)

≤ c εµ(A) ,

which, by letting ε tend to zero, completes the proof of our statement.
�

• • • • • • • • • • • • • •
A5 A4 Bi A3 A2 A1 Bi Bj A1 A2 A3 Bj A4 A5

Figure 2. The only partition with non-zero contribution in (48) (here, k = 4, n = 6).

Let us now extend (46) to any function f ∈ L2(Rm
+ ), m ≥ 1:

Proposition 6.4. For all f ∈ L2(Rm
+ ) and g ∈ L2(Rn

+), it holds that

Iq
m(f)Iq

n(g) =

m∧n
∑

k=0

Iq
m+n−2r(f ⊗q

k g) . (49)

The key ingredient towards (49) is the following recursion formula satisfied by q-contractions:

Lemma 6.5. Fix m ≤ n − 1 and let g ∈ L2(Rn
+), f1 := 1A1 , f2 := 1A2 ⊗ · · · ⊗ 1Am+1 , for disjoint

intervals (Ai). Then the following relations hold true:

(f1 ⊗ f2) ⊗q
m+1 g = f1 ⊗q

1 (f2 ⊗q
m g),

and for every k = 1, . . . , m,

(f1 ⊗ f2) ⊗q
k g = f1 ⊗ (f2 ⊗q

k g) + f1 ⊗q
1 (f2 ⊗q

k−1 g) .

Proof. Given t := (t1, . . . , tn) ∈ Rn
+ and ℓ ≤ m ∈ {1, . . . , n}, let us set tℓ::m := (tℓ, tℓ+1, . . . , tm). Using

this notation, one has, for all k ∈ {0, . . . , m} and t ∈ R
m+n−2r−1
+ ,

[f1 ⊗q
1 (f2 ⊗q

k g)](t)

=

m+n−2k
∑

ℓ=1

qℓ−1
∫

R+

ds f1(s)(f2 ⊗q
k g)(t1::ℓ−1, s, tℓ::m+n−2k−1)

=

m+n−2k
∑

ℓ=1

∑

π∈Pk
≤2

(m⊗n)

qℓ−1+Cr(π)
∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) .
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Since f1 and f2 have disjoint supports, it is easy to see that if ℓ ∈ {1, . . . , m − k} then for every
π ∈ Pk

≤2(m ⊗ n),
∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) = 0 ,

and accordingly the above formula reduces to

[f1 ⊗q
1 (f2 ⊗q

k g)](t)

=

m+n−2k
∑

ℓ=m−k+1

∑

π∈Pk
≤2

(m⊗n)

qℓ−1+Cr(π)
∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) . (50)

Now observe that there is a one-to-one correspondance between pairs (ℓ, π) ∈ {m − k + 1, . . . , m + n −
2k} × Pk

≤2(m ⊗ n) and partitions π′ ∈ Pk+1
≤2 ((m + 1) ⊗ n) not containing the singleton (1). Namely, given

such a pair (ℓ, π), we can construct π′ along the following two-step procedure (see Figure 3):

• let the k interactions between the blocks {2, . . . , m + 1} and {m + 2, . . . , m + n} be governed by π;

• connect the point 1 with the ℓ-th unpaired point of {2, . . . , m + n + 1}, when counting from the left to
the right (in particular, the right-end point of this pair necessarily belongs to {m + 2, . . . , m + n + 1} due
to ℓ ≥ m − k + 1).

With these notations, it is readily checked (see again Figure 3) that Cr(π′) = Cr(π) + (ℓ − 1) and
∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) = [(f1 ⊗ f2) ⊗π′ g](t) .

Going back to (50), we deduce that

f1 ⊗q
1 (f2 ⊗q

k g) =
∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)/∈π

qCr(π)(f1 ⊗ f2) ⊗π g . (51)

When k = m, (51) reduces to

f1 ⊗q
1 (f2 ⊗q

m g) =
∑

π∈Pk+1
≤2

((m+1)⊗n)

qCr(π)(f1 ⊗ f2) ⊗π g = (f1 ⊗ f2) ⊗q
m+1 g ,

which corresponds to the first claim of our statement. Then, for k ∈ {0, . . . , m − 1}, one has

(f1 ⊗ f2) ⊗q
k+1 g =

∑

π∈Pk+1
≤2

((m+1)⊗n)

qCr(π)(f1 ⊗ f2) ⊗π g

=
∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)∈π

qCr(π)(f1 ⊗ f2) ⊗π g +
∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)/∈π

qCr(π)(f1 ⊗ f2) ⊗π g

= f1 ⊗ (f2 ⊗q
k+1 g) +

∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)/∈π

qCr(π)(f1 ⊗ f2) ⊗π g ,

and we can conclude by using (51) again. �

Proof of Proposition 6.4. Assume that formula (49) holds true for all m ≤ n, f ∈ L2(Rm
+ ) and g ∈

L2(Rn
+). Then for m ≥ n, it holds that

Iq
m(f)Iq

n(g) =
(

Iq
n(g∗)Iq

m(f∗)
)∗

=
(

m∧n
∑

k=0

Iq
n+m−2k(g∗ ⊗q

k f∗)
)∗

=

m∧n
∑

k=0

Iq
m+n−2k(f ⊗q

k g) ,

where we have used Lemma 5.5 to derive the last equality.
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Figure 3. Construction of π′ (second line) from π and the ℓ-th unpaired position (first
line). Here, m = 4, n = 6, r = 2 and ℓ = 5.

Therefore, we can stick to an induction procedure on m ≥ 1 for n ≥ m. If m = 1, then (49) is nothing
but the result of Proposition 6.3. Assume that the decomposition holds true for some m ≥ 1 and every
n ≥ m, and let n ≥ m + 1. By a density argument, we can take f ∈ L2(Rm+1

+ ) of the form f = f1 ⊗ f2

with f1 = 1A1 and f2 = 1A2 ⊗ · · · ⊗ 1Am+1 , for disjoint intervals (Ai). Then Iq
m+1(f) = Iq

1 (f1)Iq
m(f2) and

Iq
m+1(f)Iq

n(g)

= Iq
1 (f1) ·

[

Iq
m(f2)Iq

n(g)
]

=

m
∑

k=0

Iq
1 (f1)Iq

m+n−2k(f2 ⊗q
k g) (by the induction hypothesis)

=
m

∑

k=0

[

Iq
m+n+1−2k

(

f1 ⊗ (f2 ⊗q
k g)

)

+ Iq
m+n−1−2k

(

f1 ⊗q
1 (f2 ⊗q

k g)
)]

(by Proposition 6.3)

= Iq
m+n+1(f1 ⊗ f2 ⊗ g) +

m
∑

k=1

Iq
m+n+1−2k

(

f1 ⊗ (f2 ⊗q
k g) + f1 ⊗q

1 (f2 ⊗q
k−1 g)

)

+Iq
n−m−1

(

f1 ⊗q
1 (f2 ⊗q

m g)
)

.

The conclusion immediately follows from the two identities exhibited in Lemma 6.5.
�

We can finally turn to the proof of the general formula.

Proof of Theorem 6.1. We proceed by induction on r ≥ 1. For r = 1, the result only amounts to saying
that qCr(π)

∫

π
f1 = f1 when π = {(1), . . . , (n1)}, which is obvious. Assume that the relation holds true
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up to r − 1 and let fi ∈ L2(Rni

+ ) for i = 1, . . . , r. Then, using Proposition 6.4, we have

Iq
n1

(f1) · · · Iq
nr

(fr)

=

n1∧n2
∑

k=0

∑

π1∈Pk
≤2

(n1⊗n2)

qCr(π1)Iq(f1 ⊗π1 f2)Iq
n3

(f3) · · · Iq
nr

(fr)

=

n1∧n2
∑

k=0

∑

π1∈Pk
≤2

(n1⊗n2)

∑

π2∈P≤2((n1+n2−2k)⊗n3⊗···⊗nr)

qCr(π1)+Cr(π2)

Iq
(

∫

π2

[f1 ⊗π1 f2] ⊗ f3 ⊗ · · · ⊗ fr

)

. (52)

At this point, and in a similar way as in the proof of Lemma 6.5, observe that there is a one-to-one
correspondance between the set of triplets (k, π1, π2) in the above sum and the set of partitions π ∈
P≤2(n1 ⊗ · · · ⊗ nr). Namely, given such a triplet (k, π1, π2), we can construct π along the following 2-step
procedure (see Figure 4):

• the first two blocks {1, . . . , n1} and {n1 +1, . . . , n1 +n2} are connected by k pairs, and these interactions
are described through π1;

• then π2 governs the interactions between the n1 + n2 − 2k unpaired points of {1, . . . , n1 + n2} and the
set {n1 + n2 + 1, . . . , n1 + · · · + nr}.

With these notations, it only remains to observe (see Figure 4 again) that Cr(π) = Cr(π1) + Cr(π2) and
∫

π2

[f1 ⊗π1 f2] ⊗ f3 ⊗ · · · ⊗ fr =

∫

π

f1 ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fr .

Going back to (52), we get the desired conclusion. �

7. Multiplication in the fully-symmetric case

As a conclusion to our study, let us elaborate on the specific situation where the kernels involved
within the multiple integrals under consideration are given by fully-symmetric functions. Recall that a
function f : Rn

+ → R is said to be fully-symmetric if for all times t1, . . . , tn ∈ R+ and every permutation
σ of {1, . . . , n}, one has f(t1, . . . , tn) = f(tσ(1), . . . , tσ(n)).

It is important to notice here that, contrary to the classical commutative case (with multiple integrals
generated by a standard Bm), the fully-symmetric assumption must be regarded as highly restrictive in
the non-commutative situation. Otherwise stated, considering any generic function f ∈ L2(Rn

+) (n ≥ 2)
and its symmetrization

f̃(t1, . . . , tn) :=
1

n

∑

σ∈Sn

f(tσ(1), . . . , tσ(n)) ,

there is no reason in general for the two multiple integrals Iq
n(f) and Iq

n(f̃) to be equal, which is easy
to see from the very definition (42) of the multiple integrals and the possible non-commutativity of the
components of X .

7.1. Multiplication formula. Given two fully-symmetric functions f1 ∈ L2(Rn1
+ ), f2 ∈ L2(Rn2

+ ) and a
parameter k ∈ {1, . . . , n1 ∧n2}, it is readily checked that the contraction f1 ⊗π f2 (see Definition 5.3) does
not depend on the choice of π ∈ Pk

≤2(n1 ⊗ n2): we denote by f1 ⊗k f2 this common value. For q ∈ [0, 1),

the q-contraction of f1 and f2 (see again Definition 5.3) is then equal to f1 ⊗q
k f2 = C

(k)
n1,n2(q)f ⊗k g,

where

C(k)
n1,n2

(q) :=
∑

π∈Pk
≤2

(n1⊗n2)

qCr(π) .
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Figure 4. Construction of π (third line) from π1 (second line) and π2 (first line).

We propose to show that the latter coefficients can be conveniently expressed in terms of standard q-
binomial coefficients. To this end, and for the sake of completeness, let us first recall the definition of the
classical combinatorial coefficients associated with q-combinatorics:

[n]q = 1 + q + · · · + qn−1 , [n]q! := [n]q[n − 1]q · · · [1]q ,

( n
k

)

q
:=

[n]q!

[k]q! [n − k]q!
,

(

n
n1, . . . , np

)

q

:=
[n]q!

[n1]q! · · · [np]q!
,

for all n1, . . . , np ≥ 0 such that n1 + · · · + np = n.

Proposition 7.1. For all m, n ≥ 0 and k ∈ {0, . . . , m ∧ n}, it holds that

C(k)
m,n(q) = [k]q!

(

n
k

)

q

(

m
k

)

q

. (53)

Injecting (53) into (49) immediately gives rise to the following combinatorial description of the product
of any two multiple integrals build upon fully-symmetric kernels. Note that, when compared for instance
with [15, Proposition 1.1.3], this formulation makes the transition with the classical commutative case
even more clear.
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Theorem 7.2. Let f ∈ L2(Rn
+) and g ∈ L2(Rm

+ ) be fully-symmetric functions. Then it holds that

Iq
n(f)Iq

m(g) =

n∧m
∑

k=0

[k]q!

(

n
k

)

q

(

m
k

)

q

Iq
n+m−2r(f ⊗k g) .

Before we turn to the proof of (53), observe that this relation extends the well-known formula
∑

π∈P2(n⊗n)

qCr(π) =
∑

σ∈Sn

qinv(σ) = [n]q! , (54)

where Sn refers to the group of permutations of {1, . . . , n} and inv(σ) to the number of inversions in σ.
In order to extend (54) into (53), we will essentially rely on the following combinatorial result:

Lemma 7.3. For all n ≥ k ≥ 1, it holds that

∑

1≤i1<...<ik≤n

qi1+···+ik = q
k(k+1)

2

(

n
k

)

q

. (55)

Proof. By induction on k ≥ 1. For k = 1, one has indeed, for all n ≥ 1,
∑

1≤i≤n qi = q [n]q. Assume that
the relation holds true up to some fixed k ≥ 1, for all n ≥ k. Then for n ≥ k, one has

∑

1≤i1<...<ik+1≤n+1

qi1+···+ik+1 =
∑

1≤i1≤n+1−k

qi1

∑

i1+1≤i2<...<ik+1≤n+1

qi2+···+ik+1

=
∑

1≤i≤n+1−k

q(k+1)i
∑

1≤i1<...<ik≤n+1−i

qi1+···+ik

= q
k(k+1)

2

∑

1≤i≤n+1−k

q(k+1)i

(

n + 1 − i
k

)

q

= q
k(k+1)

2

∑

k≤i≤n

q(k+1)(n+1−i)
(

i
k

)

q

.

Let us now prove by induction on n ≥ k that

∑

k≤i≤n

q(k+1)(n+1−i)
(

i
k

)

q

= qk+1
(

n + 1
k + 1

)

q

, i.e.,
∑

k≤i≤n

q(k+1)(n−i)
(

i
k

)

q

=

(

n + 1
k + 1

)

q

.

For n = k, the relation is obviously satisfied. Then, assuming that it holds true for some n ≥ k, we get

∑

k≤i≤n+1

q(k+1)(n+1−i)
(

i
k

)

q

= qk+1
∑

k≤i≤n

q(k+1)(n−i)
(

i
k

)

q

+

(

n + 1
k

)

q

= qk+1
(

n + 1
k + 1

)

q

+

(

n + 1
k

)

q

=

(

n + 2
k + 1

)

q

.

This achieves the proof of (55). �

Proof of Proposition 7.1. Observe that any partition π ∈ Pk
≤2(m ⊗ n) can be entirely described through

two elements (see Figure 5):

• the positions {m + 1 − ik < . . . < m + 1 − i1} in {1, . . . , m} (resp. {m + j1 < . . . < m + jk} in
{m + 1, . . . , m + n}) corresponding to the left-end (resp. right-end) points of the pairs in π;

• the interactions in π between these paired points, which can be summed through a unique π′ ∈ P2(k⊗k).

Setting i := (i1, . . . , ik) and j := (j1, . . . , jk), the difference Cr(i, j) := Cr(π) − Cr(π′) is then given by
the number of crossings between a pair and a singleton in π. We can easily compute this quantity as
follows (see again Figure 5):

Cr(i, j) =
[

k × (i1 − 1) + (k − 1) × (i2 − i1 − 1) + · · · + 1 × (ik − ik−1 − 1) + 0 × (m − ik)
]

+
[

k × (j1 − 1) + (k − 1) × (j2 − j1 − 1) + · · · + 1 × (jk − jk−1 − 1) + 0 × (n − jk)
]

,
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which in fact reduces to

Cr(i, j) =

k
∑

l=1

(il + jl) − k(k + 1) .

As a consequence,
∑

π∈Pk
≤2

(m⊗n)

qCr(π) =

(

∑

π′∈P2(k⊗k)

qCr(π′)
)

·
(

∑

1≤i1<...<ik≤m
1≤j1<...<jk≤n

qCr(i,j)
)

= q−k(k+1)
(

∑

π′∈P2(k⊗k)

qCr(π′)
)

·
(

∑

1≤i1<...<ik≤m

qi1+···+ik

)

·
(

∑

1≤j1<...<jk≤n

qj1+···+jk

)

,

and we can conclude by applying formula (54) and Lemma 7.3. �

• • • • • • • • • • • • •

• • • • • •

rs

rs

Figure 5. A partition π ∈ P3
≤2(6 × 7) (first line) with its associated partition π′ ∈

P2(3 ⊗ 3) (second line). With the notations of the proof, the positions of the pairs in π
correspond to i1 = 2, i2 = 3, i3 = 5, and j1 = 2, j2 = 4, j3 = 7.

7.2. Stochastic dynamics of the q-Hermite martingales. A well-known example of multiple inte-
grals involving fully-symmetric kernels is provided by the sequence of the q-Hermite martingales

M (q)
n (t) := Iq

n

(

1⊗n
[0,t]

)

, n ≥ 1 ,

which corresponds to the q-analog of the classical sequence of Hermite martingales derived from Hermite

polynomials. The study of the martingale properties of M
(q)
n , as well as its connections with the q-Hermite

polynomials, can be found in [3, Proposition 2.9 and Corollary 4.7].

What we propose to do here is to use the results of the previous sections (and especially identity
(53)) so as to complete the program initiated in [8, Section 4.2] regarding the stochastic dynamics of the

sequence (M
(q)
n ). Let us first recall that in the classical commutative framework, the sequence (M

(1)
n ) of

Hermite martingales is known to be governed by the formula (denoting by X(1) the standard Bm)

M
(1)
n+1(t) = (n + 1)

∫ t

0
M (1)

n (s) dX(1)
s , (56)

while in the free situation, that is when q = 0, the following relation can be found in [1]

M
(0)
n+1(t) =

∑

0≤k≤n

∫ t

0
M

(0)
k (s) dX(0)

s M
(0)
n−k(s) . (57)
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In order to express our interpolation result between these two formulas, let us consider the family of
kernels defined as

hℓ
m,t(s1, . . . , sℓ) := 1⊗ℓ

[0,t](s1, . . . , sℓ)
∏

i6=m

1{si<sm} , ℓ, m ≥ 1 , t, s1, . . . , sℓ ≥ 0 .

Proposition 7.4. For all m, n ≥ 0 and t ≥ 0, it holds that

Iq
m+n+1

(

hm+n+1
m+1,t

)

=

m∧n
∑

ℓ=0

(−1)ℓq
ℓ(ℓ+1)

2 C(ℓ)
m,n(q)

∫ t

0
sℓM

(q)
m−ℓ(s) dX(q)

s M
(q)
n−ℓ(s) , (58)

where the integral in the right-hand side is understood in Itô’s sense (see Definition 3).

To see that identity (58) indeed provides us with the desired interpolation between (56) and (57), it
suffices to observe that, on the one hand,

M
(1)
n+1(t) = I1

n

(

1⊗n
[0,t]

)

= (n + 1)I1
n+1

(

hn+1
1,t

)

,

which gives (56) by applying (58) with m = 0. On the other hand, by writing

M
(q)
n+1(t) = Iq

n

(

1⊗n
[0,t]

)

=

n
∑

k=0

Iq
(n−k)+k+1

(

h
(n−k)+k+1
k+1,t

)

and then applying (58) to each summand, we immediately recover (57) for q = 0, and more generally:

Corollary 7.5. For all n ≥ 0 and t ≥ 0, it holds that

M
(q)
n+1(t) =

n
∑

k=0

k∧(n−k)
∑

ℓ=0

(−1)ℓq
ℓ(ℓ+1)

2 C
(ℓ)
k,n−k(q)

∫ t

0
sℓ M

(q)
k−ℓ(s) dX(q)

s M
(q)
n−k−ℓ(s) ,

where the integral in the right-hand side is understood in Itô’s sense.

Proof of Proposition 7.4. For the sake of clarity, we fix q and t for the whole proof and drop the depen-

dence on these two parameters in the notation, that is we write C
(k)
m,n for C

(k)
m,n(q), hℓ

m for hℓ
m,t, and so

on. Besides, let us set, for all ℓ, p ≥ 0, m, n ≥ 1 and s1, . . . , sℓ ≥ 0,

hℓ,p
m (s1, . . . , sℓ) := sp

m1⊗ℓ
[0,t](s1, . . . , sℓ)

∏

i6=m

1{si<sm} , Jℓ
m,n :=

∫ t

0
sℓMm(s) dXs Mn(s) ,

noting in particular that hℓ
m = hℓ,0

m . With these notations in hand, a straightforward application of [8,
Proposition 4.2] yields that

Jp
m,n = Im+n+1

(

hm+n+1,p
m+1

)

+
m∧n
∑

ℓ1=1

qℓ1 C(ℓ1)
m,nIm+n+1−2ℓ1

(

hm+n+1−2ℓ1,p+ℓ1

m+1−ℓ1

)

.

Therefore,

Im+n+1
(

hm+n+1
m+1

)

= J0
m,n −

m∧n
∑

ℓ1=1

qℓ1 C(ℓ1)
m,nIm+n+1−2ℓ1

(

hm+n+1−2ℓ1,ℓ1

m+1−ℓ1

)

= J0
m,n −

m∧n
∑

ℓ1=1

qℓ1 C(ℓ1)
m,n

[

Jℓ1

m−ℓ1,n−ℓ1
−

(m∧n)−ℓ1
∑

ℓ2=1

qℓ2C
(ℓ2)
m−ℓ1,n−ℓ1

Im+n+1−2(ℓ1+ℓ2)
(

h
m+n+1−2(ℓ1+ℓ2),ℓ1+ℓ2

m+1−(ℓ1+ℓ2)

)

]
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and by repeating the procedure, we end up with

Im+n+1
(

hm+n+1
m+1

)

= J0
m,n +

∑

(ℓ1,...,ℓp)∈Gm,n

(−1)pqℓ1+···+ℓp
[

C(ℓ1)
m,nC

(ℓ2)
m−ℓ1,n−ℓ1

· · · C
(ℓp)
m−(ℓ1+···+ℓp−1),n−(ℓ1+···+ℓp−1)

]

J
ℓ1+···+ℓp

m−(ℓ1+···+ℓp),n−(ℓ1+···+ℓp) ,

where

Gm,n := {(ℓ1, . . . , ℓp) : p ≥ 1, 1 ≤ ℓ1 ≤ m ∧ n, 1 ≤ ℓi+1 ≤ (m ∧ n) − (ℓ1 + · · · + ℓi)} .

Observe that this expression can also be written as

Im+n+1
(

hm+n+1
m+1

)

= Jm,n +

m∧n
∑

ℓ=1

qℓJℓ
m−ℓ,n−ℓ

ℓ
∑

p=1

(−1)p
∑

ℓ1+···+ℓp=ℓ
ℓi≥1

[

C(ℓ1)
m,nC

(ℓ2)
m−ℓ1,n−ℓ1

· · · C
(ℓp)
m−(ℓ1+···+ℓp−1),n−(ℓ1+···+ℓp−1)

]

.

Now, using identity (53), it is readily checked that for ℓ1, . . . , ℓp ∈ {1, . . . , m ∧ n} with ℓ1 + · · · + ℓp = ℓ,
one has

C(ℓ1)
m,nC

(ℓ2)
m−ℓ1,n−ℓ1

· · · C
(ℓp)
m−(ℓ1+···+ℓp−1),n−(ℓ1+···+ℓp−1) = C(ℓ)

m,n

(

ℓ
ℓ1, . . . , ℓp

)

q

,

and thus, using also the subsequent combinatorial Lemma 7.6, we obtain

Im+n+1
(

hm+n+1
m+1

)

= J0
m,n +

m∧n
∑

ℓ=1

(−1)ℓq
ℓ(ℓ+1)

2 C(ℓ)
m,nJℓ

m−ℓ,n−ℓ ,

which corresponds to the expected formula.
�

Lemma 7.6. For every ℓ ≥ 1, it holds that

ℓ
∑

p=1

(−1)p
∑

ℓ1+···+ℓp=ℓ
ℓi≥1

(

ℓ
ℓ1, . . . , ℓp

)

q

= (−1)ℓq
ℓ(ℓ−1)

2 .

Proof. By induction on ℓ ≥ 1. For ℓ = 1, the relation is immediate. Assume that it holds true up to
ℓ ≥ 1, and recall the classical recursion formula for the q-multinomial coefficients: if ℓ1 + . . . + ℓp = ℓ + 1,
then

(

ℓ + 1
ℓ1, . . . , ℓp

)

q

=

p
∑

m=1

qℓ1+···+ℓm−1

(

ℓ
ℓ1, . . . , ℓm − 1, . . . , ℓp

)

q

.
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Therefore,

ℓ+1
∑

p=1

(−1)p
∑

ℓ1+···+ℓp=ℓ+1
ℓi≥1

(

ℓ + 1
ℓ1, . . . , ℓp

)

q

=

ℓ+1
∑

p=1

(−1)p

p
∑

m=1

∑

ℓ1+···+(ℓm−1)+···+ℓp=ℓ
ℓi≥1

qℓ1+···+ℓm−1

(

ℓ
ℓ1, . . . , ℓm − 1, . . . , ℓp

)

q

=
ℓ+1
∑

p=1

(−1)p

p
∑

m=1

[

∑

ℓ1+···+ℓm−1+ℓm+1+···+ℓp=ℓ
ℓi≥1

qℓ1+···+ℓm−1

(

ℓ
ℓ1, . . . , ℓm−1, ℓm+1, . . . , ℓp

)

q

+
∑

ℓ1+···+ℓp=ℓ
ℓi≥1

qℓ1+···+ℓm−1

(

ℓ
ℓ1 . . . , ℓp

)

q

]

=

ℓ+1
∑

p=1

(−1)p

p
∑

m=1

[

∑

ℓ1+···+ℓp−1=ℓ
ℓi≥1

qℓ1+···+ℓm−1

(

ℓ
ℓ1, . . . , ℓp−1

)

q

+
∑

ℓ1+···+ℓp=ℓ
ℓi≥1

qℓ1+···+ℓm−1

(

ℓ
ℓ1 . . . , ℓp

)

q

]

= −
ℓ

∑

p=1

(−1)p

p+1
∑

m=1

∑

ℓ1+···+ℓp=ℓ
ℓi≥1

qℓ1+···+ℓm−1

(

ℓ
ℓ1, . . . , ℓp

)

q

+
ℓ

∑

p=1

(−1)p

p
∑

m=1

∑

ℓ1+···+ℓp=ℓ
ℓi≥1

qℓ1+···+ℓm−1

(

ℓ
ℓ1 . . . , ℓp

)

q

= −
ℓ

∑

p=1

(−1)p
∑

ℓ1+···+ℓp=ℓ
ℓi≥1

qℓ1+···+ℓp

(

ℓ
ℓ1, . . . , ℓp

)

q

= −qℓ(−1)ℓq
ℓ(ℓ−1)

2 = (−1)ℓ+1q
ℓ(ℓ+1)

2 ,

as desired. �
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