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Abstract: In this paper we study the kernel change-point algorithm (KCP)
proposed by Arlot, Celisse and Harchaoui [2], that aims at locating an un-
known number of change-points in the distribution of a sequence of in-
dependent data taking values in an arbitrary set. The change-points are
selected by model selection with a penalized kernel empirical criterion. We
provide a non-asymptotic results showing that, with high probability, the
KCP procedure retrieves the correct number of change-points, provided
that the constant in the penalty is well-chosen; in addition, KCP estimates
the change-points location at the minimax rate log(n)/n. As a consequence,
when using a characteristic kernel, KCP detects all kinds of change in the
distribution (not only changes in the mean or the variance), and it is able to
do so for complex structured data (not necessarily in Rd). Most of the anal-
ysis is conducted assuming that the kernel is bounded; part of the results
can be extended when we only assume a finite second-order moment.

Keywords and phrases: change-point detection, kernel methods, penal-
ized least-squares.
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1. Introduction

In many situations, some properties of a time series change over time, such
as the mean, the variance or higher-order moments. Change-point detection
is the long standing question of finding both the number and the localization
of such changes. This is an important front-end task in many applications. For
instance, detecting changes occuring in comparative genomic hybridization array
data (CGH arrays) is crucial to the early diagnosis of cancer [29]. In finance,
some intensively examined time series like the volatility process exhibit local
homogeneity and it is useful to be able to segment these time series both for
modeling and forecasting [34, 40]. Change-point detection can also be used to
detect changes in exchange flows — for instance the exchange rate between the
US dollar and other currencies [23] — or changes in a sequence of images [25, 16].

1

mailto:damien.garreau@ens.fr
mailto:sylvain.arlot@math.u-psud.fr


D. Garreau and S. Arlot/Consistent change-point detection with kernels 2

Generally speaking, it is of interest to the practitioner to segment a time series
in order to calibrate its model on homogeneous sets of datapoints.

Addressing the change-point problem in practice requires to face several im-
portant challenges. First, the number of changes cannot assumed to be known
in advance — and cannot be assumed equal to 0 or 1 —, so a practical change-
point procedure must be able to learn the number of changes from data. Second,
changes do not always occur in the mean or the variance of the data, as assumed
by most change-point procedures. We need to be able to detect changes in other
aspects of the distribution. Third, parametric assumptions — which are often
made for building or for analyzing change-point procedures — are often unreal-
istic, so that we need a fully non-parametric approach. Fourth, data points in the
time series we want to segment can be high-dimensional and/or structured. If
the dimensionality is larger than the number of observations, a non-asymptotic
analysis is mandatory for theoretical results to be meaningful. When data are
structured — for instance, histograms, graphs or strings —, taking their struc-
ture into account seems necessary for detecting efficiently the change-points.

Numerous change-point procedures have been proposed since the seminal
works of [17] and [6], both parametric and non-parametric. We refer to [42] for
an extensive review and some applications. Recent works also consider the case
of high-dimensional data when only a few coordinates of the mean change at
each change-point [44, and references therein], and the slightly different problem
of detecting gradual changes [43]; this paper does not address these slightly
different problems.

Nevertheless, no change-point procedure addressed simultaneously all the
challenges mentioned above, until the kernel change-point procedure (KCP)
was proposed by [2]. In a few words, KCP mixes the penalized least-squares ap-
proach to change-point detection [13, 35] with semi-definite positive kernels [3].
On the computational side, the KCP segmentation can be computed efficiently
thanks to a dynamic programming algorithm [22, 2], which can be made even
faster [12]. An oracle inequality — which is not exactly a result on change-point
estimation, but a guarantee on estimation of the “mean” of the time series in the
RKHS associated with the kernel chosen — for KCP is proved by [2], who also
show its good numerical performance — in terms of change-point estimation —
in several experiments.

So, a key theoretical question remains open: does KCP estimates correctly
the number of change-points and their locations with a large probability? If yes,
at which speed does KCP estimate the change-point locations?

This paper answers these questions, showing that KCP has good theoretical
properties for change-point estimation with independent data, under a bound-
edness assumption (Theorem 1 in Section 3.1). This result is non-asymptotic,
hence meaningful for high-dimensional or complex data. In the asymptotic set-
ting — with a fixed true segmentation and more and more data points observed
within each segment —, Theorem 1 implies that KCP estimates consistently
all changes in the “kernel mean” of the distribution of data, at speed log(n)/n
which is the minimax rate with respect to the sample size n. We also provide
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a partial result under a weaker moment assumption (Theorem 2 in Section 3.3)
and explain in Section 4 how our proofs could be extended to other settings,
including the dependent case.

An important case is when KCP is used with a characteristic kernel [18], such
as the Gaussian or the Laplace kernel. Then, any change in the distribution
of data induces a change in the “kernel mean”. So, Theorem 1 implies that
KCP then estimates consistently and at the minimax rate all changes in the
distribution of the data, without any parametric assumption and without prior
knowledge about the number of changes.

Our results also are interesting regarding to the theoretical understanding
of least-squares change-point procedures. Indeed, when KCP is used with the
linear kernel, it reduces to previously known penalized least-squares change-
point procedures [45, 13, 35, for instance]. There are basically two kinds of
results on such procedures in the change-point literature: (i) asymptotic state-
ments on change-point estimation [45, 46, 4, 33] and (ii) non-asymptotic oracle
inequalities [13, 35, 2], which are based upon concentration inequalities and
model selection theory [7] but not directly provide guarantees on the estimated
change-point locations. Our results and their proofs show how to reconciliate
the two approaches when we are interested in change-point locations, which is
already new for the case of the linear kernel, and also holds for a general kernel.
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2. Kernel change-point detection

This section describes the change-point problem and the kernel change-point
procedure of [2].

2.1. Change-point problem

Set 2 ≤ n < +∞ and consider X1, . . . , Xn independent X -valued random vari-
ables, where X is an arbitrary (measurable) space. The goal of change-point
detection is to detect abrupt changes in the distribution of the Xis. For any
D ∈ {1, . . . , n} and any integers 0 = τ0 < τ1 < · · · < τD = 1, we define
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the segmentation τ :=
[
τ0, . . . , τD

]
of {1, . . . , n} as the collection of segments

λ` = {τ`−1 + 1, . . . , τ`}, ` ∈ {1, . . . , D}. We call change-points the right-end of
the segments, that is the τ`, ` ∈ {1, . . . , D}. We denote by T Dn the set of seg-
mentations with D segments and Tn :=

⋃n
D=1 T Dn the set of all segmentations

of {1, . . . , n}. For any τ ∈ Tn, we write Dτ for the number of segments of τ .
Figure 1 provides a visual example.

• • • • • • • • • •τ

Fig 1. We often represent the segmentations as above. The bullet points stand for the elements
of {1, . . . , n}. Here, n = 10, Dτ = 3, τ0 = 0, τ1 = 3, τ2 = 7 and τ3 = 10.

An important example we have in mind is the following.

Example 1 (Asymptotic setting). Let K ≥ 1, 0 = b0 < b1 < · · · < bK <
bK+1 = 1 and P1, . . . , PK+1 some probability distributions on X be fixed. Then,
for any n and i ∈ {1, . . . , n}, we set ti := i/n and the distribution of Xi is
Pj(i) where j(i) is such that ti ∈ [bj , bj+1). In other words, we have a fixed
segmentation of [0, 1], given by the bj , a fixed distribution over each segment,
given by the Pj , and we observe independent realizations from the distributions
at discrete times t1, . . . , tn. The corresponding true change-points in {0, . . . , n}
are the bnbjc, j = 1, . . . ,K. For n large enough, it has K+1 segments. Figure 2
shows an example. Let us emphasize that in this setting, n going to infinity does
not mean that new observations are observed over time. We here consider the
change-point problem a posteriori : a larger n means that we have been able to
observe the phenomenon of interest with a finer time discretization.

2.2. Kernel change-point procedure

Let k : X ×X → R be a positive semidefinite kernel, that is, a measurable func-
tion such that (k(xi, xj))1≤i,j≤m is positive semidefinite for any x1, . . . , xm ∈
X [38]. Classical examples of kernels are given by [2, section 3.2], among which:

– the linear kernel : klin(x, y) = 〈x, y〉Rp for x, y ∈ X = Rp.
– the polynomial kernel of order d ≥ 1: kpoly

d (x, y) =
(
〈x, y〉Rp + 1)d for

x, y ∈ X = Rp.
– the Gaussian kernel with bandwidth h > 0: kG

h (x, y) = exp[−‖x−y‖2/(2h2)]
for x, y ∈ X = Rp.

– the Laplace kernel with bandwidth h > 0: kL
h(x, y) = exp[−‖x−y‖/(2h2)]

for x, y ∈ X = Rp.
– the χ2-kernel: kχ2(x, y) = exp

(
− 1

2

∑p
i=1

(xi−yi)2
xi+yi

)
for x, y ∈ X the p-

dimensional simplex.
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Fig 2. An illustration of the asymptotic setting (Example 1) in the case of changes in
the mean of the Xi. Here, X = R, Xi = f(ti) + εi with ε1, . . . , εn i.i.d. and centered, and
f : [0, 1]→ R is a (fixed) piecewise constant function (shown in red). The goal is to recover the
number of abrupt changes of f (here, Dτ? = 2) and their locations (b1 = 0.5 and b2 = 0.7).
Note that other kinds of changes in the distribution of the Xi can be considered [see 2, for
illustrations].
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As in [22, 2], for a given segmentation τ ∈ T Dn , we assess the adequation of τ
with the kernel least-squares criterion,

R̂n(τ) :=
1

n

n∑
i=1

k(Xi, Xi)−
1

n

D∑
`=1

 1

τ` − τ`−1

τ∑̀
i=τ`−1+1

τ∑̀
j=τ`−1+1

k(Xi, Xj)

 .
(1)

Elementary algebra shows that, when X = Rp and k = klin, R̂n is the usual
least-squares criterion. Minimizing this criterion over the set of all segmentations
always outputs the segmentation with n segments reduced to a point, that is
[0, . . . , n]; this is a well-known overfitting phenomenon. To counteract this, a
classical idea [32, for instance] is to minimize a penalized criterion crit(τ) :=

R̂n(τ)+pen(τ), where pen : Tn → R+ is called the penalty. Formally, the kernel
change-point procedure (KCP) of [2] selects the segmentation

τ̂ ∈ arg min
τ∈Tn

{
crit(τ)

}
where crit(τ) = R̂n(τ) + pen(τ) . (2)

In the paper, we focus on the classical choice of a penalty proportional to the
number of segments:

pen(τ) = pen`(τ) :=
CM2Dτ

n
, (3)

similarly to AIC, BIC and Cp criteria. As mentioned in the introduction, slightly
different penalty shapes can be considered, as suggested by [2]. Our results could
be extended to the penalty of [2], but we choose to consider the linear penalty
(3) only for simplicity.

2.3. The reproducing kernel Hilbert space

Let H be the reproducing kernel Hilbert space (RKHS) associated with k [3],
together with the canonical feature map Φ : X → H

Φ : X → H
x 7→ Φ(x) := k(·, x) .

We write 〈·, ·〉H (resp. ‖·‖H) for the inner product (resp. the norm) of H. For
any i ∈ {1, . . . , n}, define Yi := Φ(Xi) ∈ H. In the case where k = klin, then

Yi = Xi and the empirical risk R̂n becomes the least-squares criterion

R̂n(τ) =
1

n

Dτ∑
`=1

τ∑̀
i=τ`−1+1

(
Xi −X`

)2
,

where X` is the empirical mean of the Xi over the segment {τ`−1 + 1, . . . , τ`}.
It is well-known that penalized least-squares procedures detect changes in the
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mean of the observations Xi, see [45]. Hence the kernelized version of this least-
squares procedure, KCP, should detect changes in the “mean” of the Yi = Φ(Xi),
which are a nonlinear transformation of the Xi.

More precisely, assume that H is separable and that

∀i ∈ {1, . . . , n}, E
[√

k(Xi, Xi)
]
< +∞ .

Then µ?i , the Bochner integral of Yi is well-defined [36]. The condition above is
satisfied in our setting (when either Assumption 1 or Assumption 2 holds true),
and H is separable in most cases [15]. The Bochner integral commutes with
continuous linear operators, hence the following property holds, which will be
of common use:

∀g ∈ H, 〈µ?i , g〉H = E
[
g(Xi)

]
= E

[
〈Yi, g〉H

]
.

We now define the “true segmentation” τ? ∈ Tn by

µ?1 = · · · = µ?τ?1 , µ?τ?1 +1 = · · · = µ?τ?2 , · · · µ?τ?Dτ?−1+1 = · · · = µ?n

and ∀i ∈ {1, . . . , Dτ? − 1}, µ?τ?i 6= µ?τ?i+1

(4)

with 1 ≤ τ?1 < · · · < τ?Dτ?−1 ≤ n. We call the τ?i s the true change-points. It
should be clear that it is always possible to define τ?.

A kernel is said to be characteristic if the mapping P 7→ EX∼P [Φ(X)] is
injective, for P belonging to the set of Borel probability measures on X [41].
In simpler terms, when k is a characteristic kernel, Xi and Xi+1 have the same
distribution if and only if µ?i = µ?i+1, and τ? indeed corresponds to the set of
changes in the distribution of the Xi. For instance, all strictly positive definite
kernels are characteristic, including the Gaussian kernel, see [41]. Therefore, in
the setting of Example 1, Dτ? = K + 1 for n large enough and τ?` = bnb`c for
` = 1, . . . ,K.

For a general kernel, some changes of PXi , the distribution of Xi, might
not appear in τ?. For instance, with the linear kernel, τ? only corresponds to
changes of the mean of the Xi. In most cases, a characteristic kernel is known
and we can choose to use KCP with a characteristic kernel; then, as we prove
in the following, KCP eventually detects any change in the distribution of the
observations. But one can also choose a non-characteristic kernel on purpose,
hence focusing only in some changes in the distribution of the Xi. For instance,
the polynomial kernel of order d is not characteristic and leads to the detection
of changes in the first d moments of the distribution; with the linear kernel,
KCP detects changes in the mean of the Xi.

From now on, we focus on the problem of detecting the changes of τ? only,
whether the kernel is characteristic or not.

2.4. Rewriting the empirical risk

It is convenient to define Y := (Y1, . . . , Yn) ∈ Hn, µ? := (µ?1, . . . , µ
?
n) ∈ Hn,

and ε := Y − µ? ∈ Hn. We identify the elements of Hn with the set of the
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applications from {1, . . . , n} to H, naturally embedded with the inner product
and norm given by

∀x, y ∈ Hn, 〈x, y〉 :=

n∑
i=j

〈xj , yj〉H and ‖x‖2 :=

n∑
j=1

‖xj‖2H .

We now rewrite the empirical risk (1) as a function of τ and Y . For any seg-
mentation τ ∈ Tn, define Fτ the set of functions from {1, . . . , n} to H that are
constant over the segments of τ . We see Fτ as a subspace of Hn as a vector
space. Take f ∈ Hn, we define Πτf the orthogonal projection of f onto Fτ with
respect to ‖·‖:

Πτf ∈ arg min
g∈Fτ

‖f − g‖ .

It is shown in [2] that for any f ∈ Hn,

∀1 ≤ ` ≤ Dτ , ∀i ∈ {τ`−1+1, . . . , τ`}, (Πτf)i =
1

|τ` − τ`−1|

τ∑̀
j=τ`−1+1

fj . (5)

We are now able to write the empirical risk as

R̂n(τ) =
1

n
‖Y − µ̂τ‖2 , (6)

where µ̂τ = ΠτY , following [22, 2].

2.5. Assumptions

A key ingredient of our analysis is the concentration of ε. Intuitively, the per-
formance of KCP is better when ε concentrates strongly around its mean, since
without noise we are just given the task to segment a piecewise-constant signal.
It is thus natural to make assumptions on ε in order to obtain concentration
results. We actually formulate assumptions on the kernel k, which translate
automatically onto ε.

As in [2], the main hypothesis used in our analysis is the following.

Assumption 1. A positive constant M exists such that

∀i ∈ {1, . . . , n}, k(Xi, Xi) ≤M2 < +∞ a.s.

If Assumption 1 holds true,

∀i ∈ {1, . . . , n}, ‖Yi‖H =
√
k(Xi, Xi) ≤M a.s.

and [2] shows that ‖εi‖H ≤ 2M almost surely.
Assumption 1 is always satisfied for a large class of commonly used kernels,

such as the Gaussian, Laplace and χ2 kernels.
Note that Assumption 1 is weaker than assuming k to be bounded — that

is, k(x, x) ≤ M for any x ∈ X , which is equivalent to k(x, x′) ≤ M for any
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x, x′ ∈ X since k is positive definite. For instance, if X = Rp and the data are
bounded almost surely, Assumption 1 holds true for the linear kernel and all
polynomial kernels, which are not bounded on Rp.

In the setting of Example 1, Assumption 1 holds true when

∀j ∈ {1, . . . ,K}, k(x, x) ≤M2 for Pj-a.e. x ∈ X .

It is sometimes possible to weaken Assumption 1 into a finite variance as-
sumption

Assumption 2. A positive constant V exists such that

max
1≤i≤n

E
[
‖εi‖2H

]
≤ V.

Since vi = E [k(Xi, Xi)]− ‖µ?i ‖
2
H, Assumption 2 holds true when

∀i ∈ {1, . . . , n}, E
[
k(Xi, Xi)

]
≤ V .

As a consequence, Assumption 1 implies Assumption 2 with V = M2. Note that
Assumption 2 is satisfied for the polynomial kernel of order d provided that

∀i ∈ {1, . . . , n}, E
[
‖Xi‖2d

]
< +∞.

In the setting of Example 1, Assumption 2 holds true with

V = max
1≤k≤K+1

EX∼Pk
[
k(X,X)

]
,

provided this maximum is finite.

3. Theoretical guarantees for KCP

We are now able to state our main results. The following section is organized as
follows. In Section 3.1, we state the main result of the paper, Theorem 1, which
provides simple conditions under which KCP recovers the correct number of
segments and localizes the true change-points with high probability, under the
bounded kernel Assumption 1. Section 3.2 details a few classical losses between
segmentations which can be considered in addition to the one used in Theorem 1.
Corollary 1 formulates a result on τ̂ in terms of the Frobenius loss. Finally,
Section 3.3 states a partial result on KCP — requiring the number of change-
points Dτ? to be known — under the weaker Assumption 2.

3.1. Main result

We need first to define some quantities. The size of the smallest jump of µ? in H
is

∆ := min
i / µ?i 6=µ?i+1

∥∥µ?i − µ?i+1

∥∥
H . (7)
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Intuitively, the higher ∆ is, the easier it is to detect the smallest jump with our
procedure. In the scalar setting (with the linear kernel), the ratio ∆/σ (where
σ2 is the variance of the noise) is called the signal to noise ratio [5] and is often
used as a measure of the magnitude of a change in the signal. In Example 1,

∆ = min
1≤j≤K

∥∥∥µ?Pj − µ?Pj+1

∥∥∥
H

where µ?Pj denotes the (Bochner) expectation of Φ(X) when X ∼ Pj .
For any τ ∈ Tn, we denote the (normalized) sizes of its smallest and of its

largest segment by

Λτ :=
1

n
min

1≤`≤Dτ
|τ` − τ`−1| and Λτ :=

1

n
max

1≤`≤Dτ
|τ` − τ`−1| . (8)

It should be clear that Λτ? should not be too small; otherwise, the corresponding
segments of τ? might be undetectable by any change-point procedure [11]. In
Example 1,

Λτ −−−−−→
n→+∞

min
0≤j≤K

|bj+1 − bj | and Λτ −−−−−→
n→+∞

max
0≤j≤K

|bj+1 − bj | .

For any τ1 and τ2 ∈ Tn, we define

d(1)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

{
min

1≤j≤Dτ2−1

∣∣τ1
i − τ2

j

∣∣} ,
which is a loss function (a measure of dissimilarity) between the segmentations

τ1 and τ2. Note that d
(1)
∞ is not a true distance; other possible losses between

segmentations and their relationship with d
(1)
∞ are discussed in Section 3.2.

Theorem 1. Suppose that Assumption 1 holds true. For any y > 0, an event Ω
of probability at least 1− e−y exists on which the following holds true. For any
C > 0, let τ̂ be defined as in Eq. (2) with pen` defined by Eq. (3). Set

Cmin :=
74

3
(Dτ? + 1)(y + log n+ 1) and Cmax :=

∆2

M2

Λτ?

6Dτ?
n .

Then, if
Cmin < C < Cmax , (9)

on Ω, we have

Dτ̂ = Dτ? and
1

n
d(1)
∞
(
τ?, τ̂

)
≤ v1(y) :=

148Dτ?M
2

∆2 · y + log n+ 1

n
.

Theorem 1 is proved in Section 5.4. Some remarks follow.
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Theorem 1 is a non-asymptotic result: it is valid for any n ≥ 1 and there is
nothing hidden in o(1) remainder terms. The latter point is crucial for complex
data — for instance, X = Rp with p > n — since in this case, assuming X fixed
while n→ +∞ is not realistic.

Nevertheless, it is useful to write down what Theorem 1 becomes in the
asymptotic setting of Example 1. As previously noticed, Dτ? , Λτ? , ∆2 and M2

then converge to positive constants as n → +∞. Therefore, Cmin is of order
log(n), Cmax is of order n and we always have Cmin < Cmax for n large enough.
The upper bound on C matches classical asymptotic conditions for variable
selection [39]. The necessity of taking C of order at least log(n) is shown by
[8] in a variable selection setting, which includes change-point detection as a
particular example; [8, 1] provide several arguments for the optimality of taking
a constant C of order log(n). When C satisfies (9), the result of Theorem 1
implies that P (Dτ̂ = Dτ?)→ 1. For the linear kernel in Rd, this is a well-known
result when the distribution of the Xi changes only through its mean. The first
result dates back to [45, Section 2] for a Gaussian noise, later extended by [37]
and [4, Section 3.1] under mixingale hypothesis on the error, and [33] under very
mild assumptions satisfied for a large family of zero-mean processes [Section 2.1
33, for the precise statement of the hypothesis, see]. Theorem 1 also shows that
the estimated change-points of τ̂ converge towards the true change-points at
speed log(n)/n.

This speed matches minimax lower bounds [11, section 4, assuming Dτ? > 2
and Gaussian noise] and has been obtained previously for various change-point
procedures [9, for instance] including least-squares [33]. In the case where Dτ? =
1 and the change-point is known to be bounded away from 1 and n, this rate
becomes n−1 [28, 27]. This last assumption is in fact unnecessary, as it is shown
in [11].

Note finally that KCP also performs well for finite samples, according to the
simulation experiments of [2].

Theorem 1 emphasizes the key role of ∆2/M2, which can be seen as a gener-
alization of the signal-to-noise ratio, for the change-point detection performance
of KCP. The larger is this ratio, the easier it is to have (9) satisfied and the
smaller is v1(y). This suggests to choose k (theoretically at least) by maximizing
∆2/M2, as we discuss in Section 4. Note that ∆2/M2 is invariant by a rescaling
of k, hence the result of Theorem 1 is unchanged when k is rescaled.

The hypothesis (9) is actually three-fold. First, we use that C > Cmax to
get Dτ̂ ≤ Dτ? . We have to assume C large enough since a too small penalty
leads to selecting (with KCP or any other penalized least-squares procedure)
the segmentation with n segments, that is Dτ̂ = n. Second, in the same way,
C < Cmax is used to get Dτ̂ ≥ Dτ? . Such an assumption is required since taking
a penalty function too large in Eq. (2) would result in selecting the segmentation
with only one segment, that is, Dτ̂ = 1. Third, Cmax has to be greater than Cmin

for providing a non-empty interval of possible values for C. This is also used in

the proof to obtain the upper bound on d
(1)
∞
(
τ?, τ̂

)
when we already know that
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Dτ̂ = Dτ? . In the asymptotic setting, the Cmin < Cmax hypothesis translates
into Λτ? � log(n)/n. That is, the size of the smallest segment has to be of order
log n/n. This is known to be a necessary condition to obtain the minimax rate
in multiple change-point detection [11, section 2].

Theorem 1 helps choosing C, which is a key parameter of KCP, as in any
penalized model selection procedure. However, in practice, we do not recom-
mend to directly use Eq. (2) for choosing C for two reasons: Cmin, Cmax depend
on unknown quantities Dτ? ,Λτ? ,∆, and the exact values of the constants in
Cmin, Cmax might be pessimistic compared to what we can observe from simu-
lation experiments. We rather suggest to use a data-driven method for choosing
C, see section 4.

If we know Dτ? , we can replace τ̂ by

τ̂(Dτ?) ∈ arg min
τ∈T Dτ?n

{
R̂n(τ)

}
.

Then, assuming that Λτ? > v1(y) — which is weaker than assuming Cmin <
Cmax —, the proof of Theorem 1 shows that, on Ω, we have

1

n
d(1)
∞
(
τ?, τ̂

)
≤ v1(y) .

3.2. Loss functions between segmentations

Theorem 1 shows that τ̂ is close to τ? in terms of d
(1)
∞ . Several other loss functions

(measures of dissimilarity) can be defined between segmentations [24]. We here
consider a few of them, which are often used or natural for the change-point
problem.

Let us first consider losses related to the Hausdorff distance. For any τ1

and τ2 ∈ Tn, we define

d(1)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

{
min

1≤j≤Dτ2−1

∣∣τ1
i − τ2

j

∣∣}
d(2)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

{
min

0≤j≤Dτ2

∣∣τ1
i − τ2

j

∣∣}
diH(τ1, τ2) := max

{
di∞(τ1, τ2),di∞(τ2, τ1)

}
for i ∈

{
1, 2
}
.

Whenever Dτ1 = Dτ2 , we define

d(3)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

∣∣τ1
i − τ2

i

∣∣ .
Note that d

(3)
∞ is symmetric thus there is no need to define d3

H. One could also
define diH as the Hausdorff distance between the subsets {τ1

1 , . . . , τ
1
Dτ1−1} and
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• • • • • • • • • • • • • • • • • • •τ1

τ2

d
(2)
∞ (τ2, τ1)

d
(1)
∞ (τ1, τ2)

d
(2)
∞ (τ1, τ2)

Fig 3. Illustration of the definition of di∞, with n = 19, τ1 =
[
0, 8, 17, 19

]
and τ2 =[

0, 7, 14, 19
]
. In this example, Dτ1 = Dτ2 = 3. We can compute d

(1)
∞ (τ1, τ2) = d

(1)
∞ (τ2, τ1) =

d
(2)
∞ (τ2, τ1) = d

(3)
∞ (τ1, τ2) = 3 and d

(2)
∞ (τ1, τ2) = 2.

{τ2
1 , . . . , τ

2
Dτ2−1} (for i = 2) associated to the distance δ(x, y) = |x− y| on R.

These definitions are illustrated by Figure 3.

Interestingly, all these loss functions coincide whenever n−1d
(1)
∞ (τ1, τ2) is

small enough. The following lemma makes this claim rigourous.

Lemma 1. We have the following two properties.

(i) For any τ1, τ2 ∈ Tn such that

1

n
d(1)
∞ (τ1, τ2) <

1

2
min

{
Λτ1 ,Λτ2

}
,

we have Dτ1 = Dτ2 and

d(1)
∞ (τ1, τ2) = d(2)

∞ (τ1, τ2) = d(3)
∞ (τ1, τ2) = d

(1)
H (τ1, τ2) = d

(2)
H (τ1, τ2).

(ii) For any τ1, τ2 ∈ Tn such that

Dτ1 = Dτ2 and
1

n
d(1)
∞ (τ1, τ2) <

Λτ1

2
,

we have
d(1)
∞ (τ1, τ2) = d(1)

∞ (τ2, τ1) = d
(1)
H (τ1, τ2) .

Lemma 1 is proved in section A.1. As a direct application of Lemma 1 we see

that the statement of Theorem 1 holds true with d
(1)
∞ replaced by any of the

loss functions that we defined above, at least for n large enough.

Another loss between segmentations is the Frobenius loss [31], which is defined
as follows. For any τ1, τ2 ∈ Tn,

dF(τ1, τ2) := ‖Πτ1 −Πτ2‖F ,
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where Πτ is the orthogonal projection onto Fτ , as defined in Section 2.4, and
‖·‖F denotes the Frobenius norm of a matrix:

∀A ∈ RN×M , ‖A‖2F :=

N∑
i=1

M∑
j=1

A2
ij .

A closed-form formula for dF can be derived from the matrix representation
of Πτ that is given by Eq. (5):

∀1 ≤ i, j ≤ n, (Πτ )i,j =

{
1
|λ| if i and j belong to the same segment λ of τ

0 otherwise.

An interesting feature of the Frobenius loss is that it is smaller than one
only when τ1 and τ2 have the same number of segments, whereas Hausdorff
distances can be small with very diffferent numbers of segments. Indeed, we
prove in Section A.2 that

|Dτ1 −Dτ2 | ≤ dF(τ1, τ2)2 ≤ Dτ1 +Dτ2 . (10)

The next proposition shows that there is an equivalence (up to constants)
between the Hausdorff and Frobenius losses between segmentations, provided
that they are close enough.

Proposition 1. Suppose that Dτ1 = Dτ2 and 1
nd

(1)
∞ (τ1, τ2) < Λτ1/2, then

(
dF(τ1, τ2)

)2 ≤ 12Dτ1

Λτ1

1

n
d(1)
∞ (τ1, τ2) .

If in addition 1
nd

(1)
∞ (τ1, τ2) < Λτ1/3, then

2

3Λτ1

1

n
d(1)
∞ (τ1, τ2) ≤

(
dF(τ1, τ2)

)2
.

Proposition 1 was first stated and proved by [30, Theorem B.2]. We prove it
in Section A.2 for completeness.

As a corollary of Theorem 1 and Proposition 1, we get the following guarantee
on the Frobenius loss between τ? and the segmentation τ̂ estimated by KCP.

Corollary 1. Under the assumptions of Theorem 1, on the event Ω defined by
Theorem 1, for any τ̂ satisfying Eq. (2) with pen` defined by Eq. (3), we have:

dF(τ?, τ̂) ≤ 43Dτ?

Λτ?
· M

∆

√
y + log n+ 1

n
.

Note that Corollary 1 gives a better result (at least for large n) than the
obvious bound

dF(τ?, τ̂) ≤ Dτ? +Dτ̂ − 2 .
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Proof. On the event Ω, we have 1
nd

(1)
∞ (τ?, τ̂) < Λτ?/(Dτ? + 1) and Dτ? = Dτ̂ .

Therefore, according to Proposition 1,

(
dF(τ?, τ̂)

)2 ≤ 12Dτ?

Λτ?

1

n
d(1)
∞ (τ?, τ̂) =

1776D2
τ?(y + log n+ 1)

nΛτ?
· M

2

∆2 .

Up to this point, we assessed the quality of the segmentation τ by considering
the proximity of τ with τ?. Another natural idea is to measure the distance
between µ? and µ?τ in Hn. It is closely related to the oracle inequality proved

by [2], which implies an upper bound on ‖µ? − µ̂τ̂‖2. We can also observe that

there is a simple relationship between ‖µ? − µ?τ‖
2

and the Frobenius distance
between τ and τ?. Indeed,

‖µ? − µ?τ‖
2

= ‖(Πτ? −Πτ )µ?‖2 ≤ ‖Πτ? −Πτ‖22 ‖µ?‖
2 ≤

(
dF(τ?, τ̂)

)2 ‖µ?‖2 .
(11)

Eq. (23) in the proof of Theorem 1 shows that on Ω, under the assumptions of
Theorem 1,

‖µ? − µ?τ̂‖
2 ≤ 74

(
y + log(n) + 1

)
Dτ?M

2

which is slightly better (but similar) to what Corollary 1, Eq. (11) and the

bound ‖µ?‖2 ≤M2n imply.

3.3. Extension to the finite variance case

Theorem 1 is valid under a boundedness assumption (Assumption 1). What
happens under the weaker Assumption 2? As a first step, we provide a result
for

τ̂(Dτ? , δn) ∈ arg min
τ∈T Dτ?n /Λτ≥δn

{
R̂n(τ)

}
(12)

for some δn > 0. In other words, we restrict our search to segmentations τ of
the correct size — hence Dτ? must be known a priori — and having no segment
with less than nδn observations. Note that the dynamic programming algorithm
of [22, 2] can be used for computing τ̂(Dτ? , δn) efficiently.

We discuss how to relax this restriction right after the statement of Theo-
rem 2. Similarly to ∆, we define ∆ := maxi

∥∥µ?i − µ?i+1

∥∥
H.

Theorem 2. Suppose that Assumption 2 holds true. For any δn, y > 0, define:

v2(y, δn) := 24(Dτ?)2 ∆
√
V

∆2

y√
n

+ 8Dτ?
V

∆2

y2

nδn
.

For any y > 0, an event Ω2 exists such that

P (Ω2) ≥ 1− 1

y2
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and, on Ω2, we have the following : for any δn ∈ (0,Λτ? ] and any τ̂(Dτ? , δn)
satisfying Eq. (12), if v2(y, δn) ≤ Λτ? ,

1

n
d(1)
∞
(
τ?, τ̂(Dτ? , δn)

)
≤ v2(y, δn) . (13)

Theorem 2 is proved in Section 5.5. Let us make a few remarks.
As for Theorem 1, our result is non-asymptotic. However, it is interesting

to write it down in the setting of Example 1. If n goes to infinity, then the
assumption Λτ? ≥ δn is satisfied whenever δn → 0. If we furthermore require
that nδn →∞, then Eq. (13) implies that

1

n
d(1)
∞ (τ?, τ̂(Dτ? , δn))

(p)−−−−−→
n→+∞

0 ,

by taking a well-chosen y of order
√
n +
√
nδn. In the particular case of the

linear kernel, this result is known under various hypothesis [33, for instance].
More precisely, if we take δn = n−1/2, Theorem 2 implies that

1

n
d(1)
∞

(
τ?, τ̂(Dτ? , n

−1/2)
)

goes to zero at least as fast as `n/
√
n, where (`n)n≥1 is any sequence tending

to infinity, for instance `n = log(n). This speed seems suboptimal compared to
previous results [33, for instance] — which do not consider the case of a general
kernel —, but we could not prove tight enough deviation bounds for getting the
localization rate log(n)/n under Assumption 2.

How does Theorem 2 compares to Theorem 1? First, as noticed by Remark 5
in Section 5.4, the result of Theorem 1 also holds true for τ̂(Dτ? , δn) as long as
Λτ? ≥ δn. Second, v1(y) is usually smaller than v2(y, δn) — its order of magni-
tude is smaller when n→ +∞ —, and the lower bound on the probability of Ω
is better than the one for Ω2. There is no surprise here: the stronger Assump-
tion 1 helps us proving a stronger result for τ̂(Dτ? , δn). Nevertheless, these only
are upper bounds, so we do not know whether the performance of τ̂(Dτ? , δn)
actually changes much depending on the noise assumption. For instance, as al-
ready noticed, we do not believe that the localization speed log(n)/n requires a
boundedness assumption; in particular cases at least, it has been obtained for
unbounded data [33, 9].

The dependency in k of the speed of convergence of τ̂(Dτ? , δn) is slightly less
clear than in Theorem 1. The signal-to-noise ratio here appears through ∆2/V ,
as expected, but the size ∆ of the largest true jump also appears in v2. At the
very least, it is clear that ∆2/V should not be too small.

As noted by [33], it may be possible to get rid of the minimal segment
length δn, either by imposing stronger conditions on ε — which are not met
in our setting — or by constraining the values of µ̂ to lie in a compact subset
Θ ⊂ HDτ?+1.
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4. Discussion

Before proving our main results, less us discuss some of their consequences
regarding the KCP procedure.

Fully non-parametric consistent change-point detection We have proved
that for any kernel satisfying some reasonably mild hypotheses, the KCP pro-
cedure outputs a segmentation closeby the true segmentation with high proba-
bility.

An important particular example is the “asymptotic setting” of Example 1,
where we have a fixed true segmentation τ? and fixed distributions P1, . . . , PK+1

from which more and more points are sampled. How fast can KCP recover
τ?, without any prior information on the number of segments Dτ? or on the
distributions P1, . . . , PK+1?

Let us take a bounded characteristic kernel — for instance the Gaussian
or the Laplace kernel if X = Rd —, so that Assumption 1 holds true. Then,
Theorem 1 shows that KCP detects consistently all changes in the distribution
of the Xi, and localizes them at speed log(n)/n. This speed also depends on the
adequation between the kernel k and the differences between the Pj — through
the ratio ∆/M . In the case of a single change-point, in a non-parametric setting,
some consistency results exists for the detection of arbitrary changes in the
distribution of the data [10, Th. 3.6.1]. However, obtaining such a fully non-
parametric result for multiple change-points with a general set X — we only
need to know a bounded characteristic kernel on X — has never been obtained
before, to the best of our knowledge.

Choice of k An important question remains: how to choose the kernel k? In
Theorem 1, k only appears through the “signal-to-noise ratio” ∆/M , leading to
better theoretical guarantees when this signal-to-noise ratio is larger: a larger

value for Cmax and a smaller bound v1 on d
(1)
∞
(
τ?, τ̂

)
. Therefore, a simple strat-

egy for choosing the kernel is to pick k that maximizes ∆/M , at least among
a family of kernels, for instance Gaussian kernels. This first idea requires to
know the distributions of the Xi, or at least to have prior information on them.
Interestingly, when the change-points locations are known, ∆2 corresponds to
the Maximum Mean Discrepancy (MMD) [19] between the distributions of the
Xi over contiguous segments. In this particular setting, it is feasible to estimate
and to maximize ∆ with respect to the kernel k, as it is done in [20]. An inter-
esting future development would be to build an estimator of ∆ without knowing
the change-point locations and to maximize this estimator with respect to the
kernel k. We refer to [2, section 7.2] for a complementary discussion about the
choice of k for KCP.

Choice of C Another important parameter of the KCP procedure is the con-
stant C in front of the penalty. As mentioned below Theorem 1, our theoretical
guarantees provide some guidelines for choosing C, but these are not sufficient
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to choose precisely C in practice. We recommend to follow the advice of [2,
section 6.2] on this point, which is to choose C from data thanks to the “slope
heuristic”.

Modularity of the proofs and possible extensions Finally, we would like
to emphasize what we believe to be an important contribution of this paper. The
structure of the proofs of Theorems 1 and 2 — which follow the same strategy
— is modular, so that one can easily adapt it to different sets of assumptions.

Our proof strategy is not new, since it is similar to the one of almost all
previous papers analyzing the consistency of least-squares change-point detec-
tion procedures. In particular, we adapted some ideas of the proofs of [33] to
the Hilbert space setting. Nevertheless, these papers formulate their results in
asymptotic terms, which can be seen as a limitation — especially when n is small
or X is of large dimension. Another approach is the one of [35, 13, 2] where non-
asymptotic oracle inequalities — using concentration inequalities and following
the model selection results of Birgé and Massart [7] — are provided as theo-
retical guarantees on some penalized least-squares change-point procedures. Up
to now, these two approaches seemed difficult to combine. The proofs of The-
orems 1 and 2 show how they can be reconciled, which allows us to mix their
strengths.

Indeed, the assumptions on the distributions of the Xi — Assumption 1 or 2
— are only used for proving bounds on two quantities — a linear term Lτ and
a quadratic term Qτ —, uniformly over τ ∈ Tn. Under Assumption 1, this is
done thanks to concentration inequalities (Lemmas 8 and 9) which have been
proved first by [2] in order to get an oracle inequality. Under Assumption 2, this
is done by generalizing the method of [33] to Hilbert-space valued data, through
two deterministic bounds (Lemmas 6 and 7) and a deviation inequality for

Mn := max
1≤k≤n

∥∥∥∥∥∥
k∑
j=1

εj

∥∥∥∥∥∥
H

(Lemma 11). The rest of the proofs does not use anything about the distribution
of X1, . . . , Xn.

As a consequence, if one can generalize these bounds to another setting, a
straightforward consequence is that a result similar to Theorem 1 or 2 holds true
for the KCP procedure in this new setting. In particular, this could be used for
dealing with the case of dependent data X1, . . . , Xn. We could also consider an
intermediate assumption between Assumption 2 and Assumption 1, of the form:

max
1≤i≤n

E
[
k(Xi, Xi)

α
]
≤ Bα < +∞

for some α ∈ (1,+∞).
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5. Proofs

Let us start by describing our general strategy for proving our main results. Our
goal is to build a large probability event on which any τ̂ ∈ arg minτ∈Tn crit(τ)
belongs to some subset E of Tn. For proving this, we use the key fact that
crit(τ?) ≥ crit(τ̂), together with a lower bound on crit(τ) holding simultaneously
for all τ ∈ Tn—hence for τ = τ̂ .

In order to get such a lower bound on the empirical penalized criterion,
we start by decomposing it in Section 5.1 into terms that are simpler to control
individually: two random terms — a linear function of ε and a quadratic function
of ε —, and two deterministic terms — the approximation error and the penalty.
Then, we control these terms thanks to deterministic bounds (Section 5.2) and
deviation/concentration inequalities (Section 5.3). Finally, we prove Theorem 1
in Section 5.4 and Theorem 2 in Section 5.5.

5.1. Decomposition of the empirical risk

The first step in the proofs of Theorems 1 and 2 is to decompose the empirical
risk (6).

Lemma 2. Let τ ∈ Tn be a segmentation. Define µ?τ = Πτµ
?. Then we can

write

nR̂n(τ) = ‖Y − µ̂τ‖2 = ‖µ? − µ?τ‖
2

+ 2 〈µ? − µ?τ , ε〉 − ‖Πτε‖2 + ‖ε‖2 . (14)

Proof. First, recall that µ̂τ = ΠτY and that Y = µ? + ε, hence

‖Y − µ̂τ‖2 = ‖Y −ΠτY ‖2

= ‖µ? + ε−Πτ (µ? + ε)‖2

= ‖µ? −Πτµ
?‖2 + ‖ε−Πτε‖2 + 2 〈µ? −Πτµ

?, ε−Πτε〉 .

Since Πτ is an orthogonal projection,

‖Y − µ̂τ‖2 = ‖µ? − µ?τ‖
2

+ ‖ε‖2 − 2 〈ε,Πτε〉+ ‖Πτε‖2 + 2 〈(Id−Πτ )µ?, ε〉

= ‖µ? − µ?τ‖
2

+ ‖ε‖2 − ‖Πτε‖2 + 2 〈(Id−Πτ )µ?, ε〉 .

Since each term of Eq. (14) behaves differently and is controlled via different
techniques depending on the result to be proven, we give a name to each of
these terms:

Lτ := 〈µ? − µ?τ , ε〉 , Qτ := ‖Πτε‖2 and Aτ := ‖µ? − µ?τ‖
2
. (15)

It should be clear that L stands for “linear”, Q stands for “quadratic” and A
stands for “approximation error”. We also define

ψτ := 2Lτ −Qτ +Aτ . (16)
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Thus Lemma 2 states that

nR̂n(τ) = ψτ + ‖ε‖2 .

Notice that Lτ? = Aτ? = 0 and Qτ? ≥ 0, hence ψτ? ≤ 0. Also note that ψ, L
and Q are random quantities depending on ε.

5.2. Deterministic bounds

In this section, we provide some deterministic bounds that are used in the proofs
of Theorems 1 and 2.

5.2.1. Approximation error Aτ

We begin by the following result, which is the reason for the Λτ?∆2 term in
Theorem 1.

Lemma 3. Let τ ∈ Tn be a segmentation such that D := Dτ < Dτ? . Then

1

n
Aτ =

1

n
‖µ? − µ?τ‖

2 ≥ 1

2
Λτ?∆2 . (17)

The proof of Lemma 3 can be found in Section A.3.2.

Remark 1. Lemma 3 is tight. Indeed, consider the simple case Dτ = 1 and
Dτ? = 2. Assume that n = 2m is an even number, and let τ?1 = m. It follows
from definitions (7) and (8) that, in this case,

∆ = ‖µ?1 − µ?n‖H and Λτ? =
1

2
.

According to Eq. (5), (µ?τ )i = 1
2 (µ?1 + µ?n), which yields

1

n
Aτ =

1

4
‖µ?1 − µ?n‖

2
H =

1

2
Λτ?∆2 .

Thus, in this particular class of examples, equality holds in Eq. (17).

We next state an analogous result, valid for any τ ∈ Tn, which plays a key
role in the proofs of Theorems 1 and 2.

Lemma 4. For any τ ∈ Tn,

1

n
Aτ ≥

1

2
min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ)

}
∆2 . (18)

Lemma 4 is proved in Section A.3.3.
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5.2.2. Linear term Lτ and quadratic term Qτ

The proof of Theorem 2 relies on some deterministic bounds on Lτ and Qτ . We
start with a preliminary lemma. First define

Mn := max
1≤k≤n

∥∥∥∥∥∥
k∑
j=1

εj

∥∥∥∥∥∥
H

.

Lemma 5. For any ε1, . . . , εn ∈ H,

max
1≤a<b≤n

∥∥∥∥∥∥
b∑

j=a

εj

∥∥∥∥∥∥
H

≤ 2Mn . (19)

Proof. For every a < b, we have:∥∥∥∥∥∥
b∑

j=a

εj

∥∥∥∥∥∥
H

=

∥∥∥∥∥∥
b∑
j=1

εj −
a−1∑
j=1

εj

∥∥∥∥∥∥
H

≤

∥∥∥∥∥∥
b∑
j=1

εj

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
a−1∑
j=1

εj

∥∥∥∥∥∥
H

≤ 2Mn .

The following result is a deterministic bound on Qτ in terms of Mn.

Lemma 6. Let τ ∈ Tn be a segmentation. Then

Qτ ≤
4DτM

2
n

nΛτ
.

Proof. By Eq. (5),

Qτ =

Dτ∑
`=1

1

|τ` − τ`−1|

∥∥∥∥∥∥
τ∑̀

j=τ`−1+1

εj

∥∥∥∥∥∥
2

H

≤ Dτ max
1≤`≤Dτ

 1

|τ` − τ`−1|

∥∥∥∥∥∥
τ∑̀

j=τ`−1+1

εj

∥∥∥∥∥∥
2

H


≤ Dτ

nΛτ
max

1≤`≤Dτ

∥∥∥∥∥∥
τ∑̀

j=τ`−1+1

εj

∥∥∥∥∥∥
2

H

≤ 4Dτ

nΛτ
M2
n

where we used Lemma 5 for the last inequality.

The following result is a deterministic bound on Lτ .

Lemma 7. For any τ ∈ Tn,

|Lτ | ≤ 6Dτ? max {Dτ? , Dτ}∆Mn .

Lemma 7 is proved in Section A.4.
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5.3. Concentration

In this subsection, we present concentration results on Qτ , Lτ , and deviation
bounds for Mn — which will imply deviation bounds on Qτ and Lτ by Lemmas 6
and 7). For any j ∈ {1, . . . , n}, τ ∈ Tn and ` ∈ {1, . . . , Dτ}, we define

vj := E
[
‖εj‖2H

]
vτ,` :=

1

τ` − τ`−1

τ∑̀
j=τ`−1+1

vj and vτ :=

D∑
`=1

vτ,` .

Concentration under Assumption 1 The first result takes care of the lin-
ear term Lτ when Assumption 1 is satisfied.

Lemma 8 (Prop. 3 of [2]). Suppose that Assumption 1 holds true. Then for
any x > 0, with probability at least 1− 2 e−x, for any θ > 0,

|Lτ | ≤ θAτ +

(
4

3
+

1

2θ

)
M2x .

The next result deals with the quadratic term Qτ when Assumption 1 is
satisfied.

Lemma 9 (Prop. 1 of [2]). Suppose that Assumption 1 holds true. Then for
any x > 0, with probability at least 1− e−x,

Qτ − vτ ≤
(
x+ 2

√
2xDτ

) 14M2

3
.

We merge Lemma 8 and 9 for convenience.

Lemma 10. Suppose that Assumption 1 holds true. Take any λ > 1 and τ ∈ Tn
be a segmentation. Then, there exists an event Ω

(0)
τ,λ of probability greater than

1− 3 e−λDτ on which:

ψτ ≥
1

3
Aτ −

74

3
λDτM

2 .

Proof. According to Lemma 8 with θ = 1/3 and x = λDτ , there exists an

event Ω
(1)
τ,λ on which |Lτ | ≤ 1

3Aτ + 17
6 λDτM

2, with P
(

Ω
(1)
τ,λ

)
≥ 1 − 2 e−λDτ .

Lemma 9 with x = λDτ gives Ω
(2)
τ,λ on which Qτ − vτ ≤ 14

3

(
λ+ 2

√
2λ
)
DτM

2,

with P
(

Ω
(2)
τ,λ

)
≥ 1− e−λDτ . Then, Ω

(0)
τ,λ := Ω

(1)
τ,λ ∩ Ω

(2)
τ,λ has a probability larger

than 1− 3 e−λDτ by the union bound. Since for any 1 ≤ ` ≤ Dτ , vτ,` ≤M2, we

have vτ =
∑Dτ
`=1 vτ,` ≤ DτM

2. Hence, by definition (16) of ψτ and using that

λ ≥ 1, on the event Ω
(0)
τ,λ, we have:

ψτ ≥
1

3
Aτ −

(
31

3
λ+

28

3

√
2
√
λ+ 1

)
DτM

2

≥ 1

3
Aτ − λ

(
31

3
+

28

3

√
2 + 1

)
DτM

2 .
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Remark 2. It is also possible to obtain an upper bound for ψτ : by Lemma 8,

for every λ ≥ 0, on the event Ω
(2)
τ,λ ⊂ Ω

(0)
τ,λ,

ψτ ≤
5

3
Aτ +

17

3
λDτM

2 .

However, we do not need this result thereafter.

Concentration under Assumption 2 Lemma 6 and 7 directly translate
upper bounds on Mn into controls of Lτ and Qτ . Under Assumption 2, this
is achieved via the following lemma, a Kolmogorov-like inequality for the noise
in the RKHS. This result is a straightforward generalization of the inequality
obtained by [26] into the Hilbert setting. A more precise result (for real random
variables only) can be found in [21], of which we follow the proof (their proof
adapts well in our setting but we do not need the full result).

Lemma 11. If Assumption 2 holds true, then, for any x > 0,

P (Mn ≥ x) ≤ 1

x2

n∑
j=1

vj . (20)

Remark 3. We can reformulate Lemma 11 as follows. For any y > 0, there exists

an event of probability at least 1 − y−2 on which Mn < y
√∑n

i=j vj ≤ y
√
nV .

Equivalently, for any z ≥ 0, there exists an event of probability at least 1− e−z

such that Mn < ez/2
√∑n

i=j vj ≤ ez/2
√
nV .

Proof. Let us put
ζ := ‖ε1 + · · ·+ εn‖2H .

Since for any j 6= k, E
[
〈εj , εk〉H

]
= 0 (see Remark 4), by definition of vj ,

E [ζ] = E
[
‖ε1 + · · ·+ εn‖2H

]
=

n∑
j=1

vj .

We recognize the right-hand side of Eq. (20) up to 1/x2. For any r > 1, let us
denote by Ar the event

∀1 ≤ s < r, ‖ε1 + · · ·+ εs‖H < x and ‖ε1 + · · ·+ εr‖H ≥ x ,

and by A1 the event ‖ε1‖H ≥ x. These events are disjoints, thus we can write

P
(

max
1≤k≤n

‖ε1 + · · ·+ εk‖H ≥ x
)

= P

(
n⋃
r=1

Ar

)
=

n∑
r=1

P (Ar) . (21)

The law of total expectation and the positiveness of ζ yield

E [ζ] ≥
n∑
r=1

E
[
ζ
∣∣Ar]P (Ar) .
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Finally, let ` ≤ r < k be integers. Since ε` is independent from εk conditionally
to σ(ε1, . . . , εr), ε` is independent from εk conditionally to Ar. Furthermore, εk
is independent from Ar and

E
[
〈εk, ε`〉H

∣∣Ar] =
〈
E [εk] ,E

[
ε`
∣∣Ar]〉H = 0 .

Because of this relation and the positivity of the (real) conditional expectation,
for any integers r ≤ k ≤ j,

E
[
ζ
∣∣Ar] = E

[
‖ε1 + · · ·+ εn‖2H

∣∣Ar] ≥ E
[
‖ε1 + · · ·+ εr‖2H

∣∣Ar] ≥ x2 .

Therefore, E
[
ζ
∣∣Ar] ≥ x2, which gives E [ζ] ≥ x2

∑
P (Ar). This concludes the

proof, thanks to Eq. (21).

Remark 4. The independence between εj and εk for j 6= k yields E
[
〈εj , εk〉H

]
=

0. Indeed, we dispose of a conditional expectation on H [14, chapter 5], which
satisfies the same properties than the conditional expectation with real random
variables. Hence we can write

E
[
〈εj , εk〉H

]
= E

[
E
[
〈εj , εk〉H

∣∣εk]]
= E

[〈
E
[
εj
∣∣εk] , εk〉H]

= E
[
〈E [εj ] , εk〉H

]
= 0.

Note that the εjs expectation vanishes by hypothesis.

5.4. Proof of Theorem 1

We follow the strategy described at the beginning of Section 5.

Definition of Ω. Let us define Ω :=
⋂
τ∈Tn Ω

(0)
τ,λ with λ = y + log n + 1 > 1,

where we recall that Ω
(0)
τ,λ is defined in Lemma 10. By the union bound, and

since the Ω
(0)
τ,λ have probability greater than 1− 3 e−λDτ ,

P (Ω) ≥ 1− 3
∑
τ∈Tn

e−λDτ .

The inequality P (Ω) ≥ 1− e−y follows since∑
τ∈Tn

e−λDτ =

n∑
d=1

(
n− 1

d− 1

)
e−λd = e−λ

(
1 + e−λ

)n−1

≤ e−λ exp
(
(n− 1) e−λ

)
=

e−y

n e
exp

(
n− 1

n
e−1−y

)
≤ e−y

exp(e−1)

n e
≤ 0.27 e−y ,

where the last inequality uses that n ≥ 2. From now on we work exclusively
on Ω.
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Key argument. We now use of the simple (but crucial) remark that crit(τ?) ≥
crit(τ̂), hence

npen(τ̂) + ψτ̂ ≤ npen(τ?) + ψτ? ≤ npen(τ?) = CDτ?M
2 .

Since we work on Ω, by definition of Ω
(0)
τ,λ in Lemma 10, for any τ ∈ Tn, we have:

ψτ ≥
1

3
Aτ −

74

3
λDτM

2 .

Therefore, we get:

CDτ?M
2 ≥ 1

3
Aτ̂ +

(
C − 74

3
λ

)
Dτ̂M

2 . (22)

Proof that Dτ̂ ≤ Dτ? . Since C > 74λ/3 (by the lower bound in assump-
tion (9)), M2 > 0 and Aτ̂ ≥ 0, Eq. (22) implies that

Dτ̂ ≤
C

C − 74
3 λ

Dτ? .

The lower bound in assumption (9) ensures that

C

C − 74
3 λ

<
Dτ? + 1

Dτ?

hence Dτ̂ ≤ Dτ? on Ω.

Proof that Dτ̂ ≥ Dτ? . Since C > 74λ/3 (by the lower bound in assump-
tion (9)), Eq. (22) implies that

Aτ̂ ≤ 3CDτ?M
2 .

The upper bound in assumption (9) implies that

Aτ̂ <
nΛτ?∆2

2
,

hence Dτ̂ ≥ Dτ? by Lemma 3.

Loss between τ̂ and τ?. We have proved that Dτ̂ = Dτ? on Ω, therefore,
Eq. (22) can be rewritten

Aτ̂ ≤ 74λDτ?M
2 . (23)

By Lemma 4 and the definition of λ, we get

min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ̂)

}
≤ 148Dτ?M

2

∆2 · y + log n+ 1

n
= v1(y) . (24)
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Remark that Assumption (9) implies that

∆2

M2

Λτ?

6Dτ?
n >

74

3
(Dτ? + 1)(y + log n+ 1)

hence

Λτ? > (Dτ? + 1)
148Dτ?M

2

∆2 · y + log n+ 1

n
> v1(y) .

Therefore, Eq. (24) can be simplified into

1

n
d(1)
∞ (τ?, τ̂) ≤ v1(y) .

Remark 5. The proof of Theorem 1 generalizes to τ̂ defined by

τ̂ ∈ arg min
τ∈Tn /Λτ≥δn

{
crit(τ)

}
instead of (2), for any δn ≥ 0 such that Λτ? ≥ δn. Indeed, this assumption
allows to write crit(τ?) ≥ crit(τ̂) in the key argument, and the rest of the proof
can stay unchanged (with the same event Ω). More generally, any constraint can
be added in the argmin defining τ̂ , provided that τ? satisfies this constraint.

5.5. Proof of Theorem 2

We follow the strategy described at the beginning of Section 5. Throughout the
proof, we write τ̂2 as a shortcut for τ̂(Dτ? , δn).

Key argument. By definition (12) of τ̂2 = τ̂(Dτ? , δn), since we assume Λτ? ≥
δn,

R̂n(τ?) ≥ R̂n(τ̂2)

hence
0 ≥ ψτ? ≥ ψτ̂2 = Aτ̂2 + 2Lτ̂2 −Qτ̂2 .

By Lemma 6, Lemma 7 and the facts that Dτ̂2 = Dτ? and Λτ̂2 ≥ δn, we get

0 ≥ ψτ̂2 ≥ Aτ̂2 − 12D2
τ?∆Mn −

4Dτ?M
2
n

nδn

hence, using Lemma 4,

min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ̂2)

}
≤ 24D2

τ?∆

∆2

Mn

n
+

8Dτ?

∆2

M2
n

n2δn
. (25)

Definition of Ω2. We define

Ω2 := {Mn ≤ y
√
nV } .

By Lemma 11, under Assumption 2, P (Ω2) ≥ 1− y−2.
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Conclusion. By definition of Ω2, Eq. (25) implies that on Ω2:

min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ̂2)

}
≤ 24(Dτ?)2 ∆

√
V

∆2

y√
n

+ 8Dτ?
V

∆2

y2

nδn
= v2(y, δn) .

Since we assume v2(y, δn) < Λτ? , the result follows.
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[7] L. Birgé and P. Massart. Gaussian model selection. Journal of the European
Mathematical Society, 3(3):203–268, 2001.
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Appendix A: Proofs

The following additional notation are used in the appendix.
We denote by λ?1, . . . , λ

?
Dτ?

the segments of τ?, that is, λ?i =
{
τ?i−1 + 1, . . . , τ?i

}
.

For any segment λ of τ ∈ Tn, we denote by µ?λ the value of µ?τ on λ, which
does not depend on τ and is given by Eq. (5):

µ?λ =
1

|λ|
∑
j∈λ

µ?j . (26)
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A.1. Proof of Lemma 1

Proof of (i) We setDi := Dτ i for i ∈ {1, 2}. Let us show first that d
(2)
∞ (τ1, τ2) =

d
(1)
∞ (τ1, τ2). Take any i ∈

{
1, . . . , D1 − 1

}
, by the definition of Λτ1 ,∣∣τ1

i − τ2
D2

∣∣ =
∣∣τ1
i − n

∣∣ ≥ nΛτ1 > nΛτ1/2 ≥ nmin
{

Λτ1 ,Λτ2

}
/2 > d(1)

∞ (τ1, τ2).

The same holds for
∣∣τ1
i − τ2

0

∣∣. Hence, for any i ∈ {1, . . . , D1 − 1},

min
0≤j≤D2

∣∣τ1
i − τ2

j

∣∣ = min
1≤j≤D2−1

∣∣τ1
i − τ2

j

∣∣ ,
which proves that d

(2)
∞ (τ1, τ2) = d

(1)
∞ (τ1, τ2).

Next, we prove that D1 = D2 and d
(3)
∞ (τ1, τ2) = d

(1)
∞ (τ1, τ2). Define φ :{

1, . . . , D1 − 1
}
→
{

1, . . . , D2 − 1
}

such that
{
φ(i)

}
= arg min1≤j≤D2−1

∣∣τ1
i − τ2

j

∣∣
for all i ∈ {1, . . . , D1 − 1}. This mapping is well-defined: indeed, suppose
that j, k ∈

{
1, . . . , D2 − 1

}
both realize the minimum for some i ∈

{
1, . . . , D1 − 1

}
.

Since we assumed 1
nd

(1)
∞ (τ1, τ2) < min

{
Λτ1 ,Λτ2

}
/2,∣∣τ1

i − τ2
j

∣∣ =
∣∣τ1
i − τ2

k

∣∣ ≤ d(1)
∞ (τ1, τ2) < nmin

{
Λτ1 ,Λτ2

}
/2.

By the triangle inequality,∣∣τ2
j − τ2

k

∣∣ < nmin
{

Λτ1 ,Λτ2

}
≤ nΛτ2 ,

hence j = k. Next, we show that φ is increasing. Take i, j ∈
{

1, . . . , D1 − 1
}

such that i < j. Recall that τk· is increasing (k = 1, 2). Then

τ2
φ(i) − τ

2
φ(j) = τ2

φ(i) − τ
1
i + τ1

i − τ1
j + τ1

j − τ2
φ(j)

= τ2
φ(i) − τ

1
i −

∣∣τ1
i − τ1

j

∣∣+ τ1
j − τ2

φ(j)

≤
∣∣∣τ2
φ(i) − τ

1
i

∣∣∣− ∣∣τ1
i − τ1

j

∣∣+
∣∣∣τ1
j − τ2

φ(j)

∣∣∣
≤ 2d(1)

∞ (τ1, τ2)−
∣∣τ1
i − τ1

j

∣∣
< nmin

{
Λτ1 ,Λτ2

}
− nΛτ1 ≤ 0.

Hence φ(i) < φ(j), so φ is increasing. As a consequence, φ is injective and we
get D1 ≤ D2. The same argument, exchanging τ1 and τ2, shows that D2 ≤ D1.
Therefore, D1 = D2 and φ is an increasing permutation of

{
1, . . . , D1 − 1

}
,

hence it is the identity. As a consequence, d
(3)
∞ (τ1, τ2) = d

(1)
∞ (τ1, τ2).

Finally, since d
(3)
∞ is symmetric, di∞(τ1, τ2) = diH(τ1, τ2) for any i ∈ {1, 2, 3}.

Proof of (ii) Since Dτ1 = Dτ2 , we can set D = Dτ1 = Dτ2 . Next, define
φ(i) := arg min1≤j≤D−1

∣∣τ1
i − τ2

j

∣∣ and Cφ(i) := |φ(i)| for all i ∈ {1, . . . , D − 1}.
Clearly, Cφ(i) ≥ 1 for any i. Let us show that we actually have Cφ(i) = 1.
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Take i and j distincts elements of {1, . . . , D − 1}, and suppose that φ(i)∩φ(j)
is non-empty. Let k be any element of φ(i) ∩ φ(j). By the triangle inequality

and the definition of d
(1)
∞ ,

nΛτ1 ≤
∣∣τ1
i − τ1

j

∣∣ ≤ ∣∣τ1
i − τ2

k

∣∣+
∣∣τ2
k − τ1

j

∣∣ ≤ 2d(1)
∞ (τ1, τ2) < nΛτ1 .

Hence, the φ(i) are disjoint and we can write
∑D−1
i=1 Cφ(i) = D−1, which clearly

implies that Cφ(i) = 1.
From now on, we identify φ(i) with its unique element. Let us show that φ is

increasing similarily to what we have done for proving (i). Take i, j ∈ {1, . . . , D − 1}
such that i < j. We showed that

τ2
φ(i) − τ

2
φ(j) ≤ 2d(1)

∞ (τ1, τ2)−
∣∣τ1
i − τ1

j

∣∣ ,
thus according to the definition of Λτ1 , and our assumption,

τ2
φ(i) − τ

2
φ(j) < nΛτ1 − nΛτ1 ≤ 0.

Hence φ(i) < φ(j): φ is increasing. As a consequence, d
(1)
∞ (τ1, τ2) = d

(1)
∞ (τ2, τ1) =

d
(1)
H (τ1, τ2).

A.2. Proofs about the Frobenius loss

A.2.1. A formula for d2
F

We start by proving a general formula for dF, which is stated by [31]. We prove
it here for completeness.

∀τ1, τ2 ∈ Tn, dF(τ1, τ2)2 = Dτ1 +Dτ2 − 2

Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
. (27)

Indeed, by definition, we have

dF(τ1, τ2)2 = Tr
(
(Πτ1 −Πτ2)2

)
= Tr(Πτ1)︸ ︷︷ ︸

=Dτ1

+ Tr(Πτ2)︸ ︷︷ ︸
=Dτ2

−2 Tr(Πτ1Πτ2)

and Tr(Πτ1Πτ2) =

n∑
i=1

n∑
j=1

1{λ1(i)=λ1(j) and λ2(i)=λ2(j)}

|λ1(i)| |λ2(i)|
=

Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
,

where we denoted by λk(i) the segment of τk to which i ∈ {1, . . . , n} belongs.

A.2.2. Proof of Eq. (10)

Eq. (10) is stated by [31]. The upper bound is a straightforward consequence of
Eq. (27). We prove the lower bound here for completeness. We remark that

Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
≤
Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣
|λ1
k|

= Dτ1 ,
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hence Eq. (27) shows that

dF(τ1, τ2)2 ≥ Dτ2 −Dτ1 .

The lower bound follows since τ1 and τ2 play symmetric roles.

A.2.3. Proof of Proposition 1

Throughout the proof, we write D = Dτ1 = Dτ2 , ε = n−1d
(1)
∞ (τ1, τ2) and we

denote by (λ1
k)1≤k≤D and (λ2

k)1≤k≤D the segments of τ1 and τ2, respectively.

Preliminary remark. Since we assume that Dτ1 = Dτ2 and 1
nd

(1)
∞ (τ1, τ2) =

ε < Λτ1/2, point (ii) in Lemma 1 shows that d
(1)
∞ (τ1, τ2) = d

(1)
H (τ1, τ2) =

d3
∞(τ1, τ2). In other words, for every k ∈ {1, . . . , D−1}, we have

∣∣τ1
k − τ2

k

∣∣ ≤ nε,
and some k0 ∈ {1, . . . , D−1} exists such that

∣∣τ1
k0
− τ2

k0

∣∣ = nε. As a consequence,
for every k ∈ {1, . . . , D − 1},∣∣∣∣λ1

k

∣∣− ∣∣λ2
k

∣∣∣∣ ≤ 2nε and
∣∣λ1
k ∩ λ2

k

∣∣ ≥ ∣∣λ1
k

∣∣− 2nε . (28)

Upper bound for dF(τ1, τ2)2. We focus on the sum appearing in the right-
hand side of Eq. (27). Using Eq. (28), we get:

D∑
k=1

D∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
≥

D∑
k=1

∣∣λ1
k ∩ λ2

k

∣∣2
|λ1
k| × |λ2

k|

≥
D∑
k=1

[ (∣∣λ1
k

∣∣− 2nε
)2

|λ1
k| × (|λ1

k|+ 2nε)

]
=

D∑
k=1

(
1− 2nε

|λ1
k|

)2

1 + 2nε

|λ1
k|

≥
D∑
k=1

(
1− 6nε

|λ1
k|

)
≥ D − 6εD

Λτ1

,

since for any x ≥ 0, (1−x)2

1+x ≥ 1− 3x. The upper bound follows, using Eq. (27).

Lower bound for dF(τ1, τ2)2. As shown in the preliminary remark, there
exists some k0 ∈ {1, . . . , D − 1} such that

∣∣τ1
k0
− τ2

k0

∣∣ = nε. First consider the
case where τ1

k0
< τ2

k0
. Then, by definition of dF and Πτ , we have:

dF(τ1, τ2)2 :=
∑

1≤i,j≤n

(Πτ1 −Πτ2)2
i,j

≥
∑

i∈λ1
k0+1∩λ

2
k0

∑
j∈λ1

k0+1∩λ
2
k0+1

1∣∣λ1
k0+1

∣∣2 +
∑

i∈λ1
k0+1∩λ

2
k0+1

∑
j∈λ1

k0+1∩λ
2
k0

1∣∣λ1
k0+1

∣∣2
=

2
∣∣λ1
k0+1 ∩ λ2

k0

∣∣ · ∣∣λ1
k0+1 ∩ λ2

k0+1

∣∣∣∣λ1
k0+1

∣∣2 .
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Now, remark that
∣∣λ1
k0+1 ∩ λ2

k0

∣∣ = nε, by the preliminary remark and our as-
sumption τ2

k0
> τ1

k0
. Using also Eq. (28), we get:

dF(τ1, τ2)2 ≥
2nε
(∣∣λ1

k0+1

∣∣− 2nε
)∣∣λ1

k0+1

∣∣2 ≥ 2nε

3Λτ1

,

since
∣∣λ1
k0+1

∣∣− 2nε ≥
∣∣λ1
k0+1

∣∣ /3 and
∣∣λ1
k0+1

∣∣ ≤ Λτ1 . When τ1
k0
> τ2

k0
, we apply

the same reasoning, restricting the sum over i, j in the definition of dF to i ∈
λ1
k0
∩ λ2

k0
and j ∈ λ1

k0
∩ λ2

k0+1 (plus its symmetric). We obtain the same lower
bound, which concludes the proof.

A.3. Lower bounds on the approximation error

This section provides the proofs of Lemmas 3 and 4.

A.3.1. Preliminary lemma

We start by a lemma useful in the two proofs.

Lemma 12. If a segment λ ⊂ {1, . . . , n} intersects only two segments of τ?, λ?i
and λ?i+1, then we have:

∑
j∈λ

∥∥µ?j − µ?λ∥∥2

H =
|λ ∩ λ?i | ·

∣∣λ ∩ λ?i+1

∣∣
|λ ∩ λ?i |+

∣∣λ ∩ λ?i+1

∣∣ ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
(29)

≥

(
|λ ∩ λ?i |
|λ?i |

∧
∣∣λ ∩ λ?i+1

∣∣∣∣λ?i+1

∣∣
)
·
|λ?i | ·

∣∣λ?i+1

∣∣
|λ?i |+

∣∣λ?i+1

∣∣ · ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
.

(30)

Proof. We first prove Eq. (29). Since λ only intersects λ?i and λ?i+1, we have:∑
j∈λ

∥∥µ?j − µ?λ∥∥2

H =
∑

j∈λ∩λ?i

∥∥µ?j − µ?λ∥∥2

H +
∑

j∈λ∩λ?i+1

∥∥µ?j − µ?λ∥∥2

H

= |λ ∩ λ?i | ·
∥∥∥µ?λ?i − µ?λ∥∥∥2

H
+
∣∣λ ∩ λ?i+1

∣∣ · ∥∥∥µ?λ?i+1
− µ?λ

∥∥∥2

H
. (31)

Since µ?λ is given by Eq. (26), we obtain

∥∥∥µ?λ?i − µ?λ∥∥∥2

H
=

∥∥∥∥∥∥ 1

|λ|
∑
j∈λ

(
µ?λ?i − µ

?
j

)∥∥∥∥∥∥
2

H

=

∥∥∥∥∥∥ 1

|λ|
∑

j∈λ∩λ?i+1

(
µ?λ?i − µ

?
λ?i+1

)∥∥∥∥∥∥
2

H

=

∣∣λ ∩ λ?i+1

∣∣2
|λ|2

∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
.
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The same computation on λ ∩ λ?i+1 yields

∥∥∥µ?λ?i+1
− µ?λ

∥∥∥2

H
=
|λ ∩ λ?i |

2

|λ|2
∥∥∥µ?λ?i+1

− µ?λ?i
∥∥∥2

H
.

Therefore, Eq. (31) and the fact that |λ| = |λ ∩ λ?i |+
∣∣λ ∩ λ?i+1

∣∣ yield Eq. (29).
Now, we remark that for any a, b, c, d > 0,

abcd

ab+ cd
=

1
ab

max(a,c) + cd
max(a,c)

×min(a, c)× bd ≥ min(a, c)
bd

b+ d
.

Taking a = |λ ∩ λ?i | / |λ?i |, b = |λ?i |, c =
∣∣λ ∩ λ?i+1

∣∣ / ∣∣λ?i+1

∣∣ and d =
∣∣λ?i+1

∣∣, we
get Eq. (30).

A.3.2. Proof of Lemma 3

In fact, we prove a slightly stronger statement. We show that, for any n ≥ 2,
for any Dτ? ∈ {2, . . . , n}, for any D ∈ {1, . . . , Dτ? − 1} and any τ ∈ T Dn ,

‖µ? − µ?τ‖
2 ≥ min

1≤i≤Dτ?−1

{
|λ?i | ·

∣∣λ?i+1

∣∣
|λ?i |+

∣∣λ?i+1

∣∣ · ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H

}
. (32)

Then,

‖µ? − µ?τ‖
2 ≥ Γ ·∆2 where Γ =

(
n max

1≤i≤Dτ?−1

{
1

|λ?i |
+

1∣∣λ?i+1

∣∣
})−1

.

Since we always have

Λτ? ≥ Γ ≥ 1

2
Λτ? ,

Eq. (17) follows.

Proof of Eq. (32) by induction. We show by strong induction on Dτ? that,
for any Dτ? ≥ 2, for any D ∈ {1, . . . , Dτ? − 1}, any n ≥ Dτ? and any τ ∈ T Dn ,
Eq. (32) holds true.

First, if Dτ? = 2, the result follows by Eq. (30) in Lemma 12 since we then
have i = 1 and

|λ ∩ λ?1|
|λ?1|

=
|λ ∩ λ?2|
|λ?2|

= 1 .

Suppose now that the result is proved for all Dτ? ∈ {2, . . . , p} and consider
a change-point problem (τ?, µ?) with Dτ? = Dτ? = p + 1 and n ≥ p + 1. Let
D < p + 1 and some segmentation τ ∈ T Dn be fixed. Then one of these two
scenarios occurs: (i) there exists λ?i with 2 ≤ i ≤ Dτ? − 1 that does not contain
any change-point of τ , or (ii) λ?2,...,λ?Dτ?−1 all contain a change-point of τ .
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Case (i) Suppose that there exists an inner segment λ?i of τ?, 2 ≤ i ≤ Dτ?−1,
that does not contain any change-point of τ (see Figure 4). Therefore, there
exists k ∈ {1, . . . , D} such that λ?i $ λk. By definition, there are i − 1 change-
points of τ? to the left of λ?i and k−1 change-points of τ to the left of λ?i . Suppose
that k < i. We define τ◦ as the segmentation obtained by adding τ?i to τ (see

Figure 4). Then ‖µ? − µ?τ‖
2 ≥ ‖µ? − µ?τ◦‖2 because τ◦ is finer than τ . Reducing

τ◦ to a segmentation τ̃◦ of {1, 2, . . . , τ?i } in k segments and τ? to a segmentation
τ̃? of {1, 2, . . . , τ?i } in i segments and defining µ̃? = (µ?1, . . . , µ

?
τ?i

) ∈ Hi, we get
back to a situation covered by the induction since i ≤ Dτ? − 1 and k < i. So,

‖µ̃? − µ̃?τ̃◦‖2 ≥ inf
1≤j≤i−1

{ ∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ̃?λ?j+1
− µ̃?λ?j

∥∥∥2

H

}

≥ inf
1≤j≤Dτ?−1

{ ∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ?λ?j+1
− µ?λ?j

∥∥∥2

H

}

and we get the result since ‖µ? − µ?τ◦‖2 ≥ ‖µ̃? − µ̃?τ̃◦‖2. A symmetric reasonning
can be applied if k ≥ i, considering change-points to the right of λ?i and using
that D − k + 1 < Dτ? − i+ 1 since D < Dτ? .

λ?i

λk

τ̃?

τ?

τ

τ◦

τ̃◦

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig 4. Proof of Lemma 3, Case (i): λ?i is a segment of τ? that is included in a segment of τ .
The segmentation τ◦ is obtained by joining τ?i to the segmentation τ .

Case (ii) Suppose that each inner segment of τ? contains a change-point of τ .
Since there are Dτ?−2 inner segments of τ? and D−1 ≤ Dτ?−2 change-points
of τ , there is at most (hence exactly) one change-point of τ in each inner segment
of τ?. Then D = Dτ? − 1 and we are in the situation depicted in Figure 5.

τ?

τ

· · ·

· · ·

λ?1 λ?2 λ?D λ?D+1

λ1 λ2 λD

α2

∣∣λ?2∣∣ (1− α2)
∣∣λ?2∣∣ αD

∣∣λ?D∣∣ (1− αD)
∣∣λ?D∣∣

Fig 5. Proof of Lemma 3, Case (ii): D = Dτ? − 1 and each inner segment of τ? contains
exactly one change-point of τ .

We can use Eq. (30) in Lemma 12 to lower bound the contribution of each

λ ∈ τ to ‖µ? − µ?τ‖
2
. For 2 ≤ i ≤ D = Dτ? − 1, define αi := |λ?i ∩ λi−1| / |λ?i |.
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Then, we have

‖µ? − µ?τ‖
2 ≥ (1 ∧ α2)

|λ?1| · |λ?2|
|λ?1|+ |λ?2|

·
∥∥∥µ?λ?2 − µ?λ?1∥∥∥2

H

+

D−1∑
j=2

([
(1− αj) ∧ αj+1

]
·
∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ?λ?j+1
− µ?λ?j

∥∥∥2

H

)

+
[
(1− αD) ∧ 1

] |λ?D| · ∣∣λ?D+1

∣∣
|λ?D|+

∣∣λ?D+1

∣∣ · ∥∥∥µ?λ?D+1
− µ?λ?D

∥∥∥2

H

≥ [1 ∧ α2 + (1− α2) ∧ α3 + · · ·+ (1− αD−1) ∧ αD + (1− αD) ∧ 1]

× inf
1≤j≤Dτ?−1

{ ∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ?λ?j+1
− µ?λ?j

∥∥∥2

H

}
.

Since αi ≥ 0 for any 2 ≤ i ≤ Dτ? − 1, it is straightforward to show that

α2 + (1− α2) ∧ α3 + · · ·+ (1− αD) ≥ 1 ,

which concludes the proof.

A.3.3. Proof of Lemma 4

Let us define δ := min
{
nΛτ? ,d

(1)
∞ (τ?, τ)

}
. If δ = 0, then Eq. (18) holds true.

We assume from now on that δ > 0.
Because nΛτ? ≥ δ, for any 1 ≤ i ≤ Dτ? −1, we can write

∣∣τ?i+1 − τ?i
∣∣ ≥ δ. On

the other hand, because d
(1)
∞ (τ?, τ) ≥ δ, there exists i ∈ {1, . . . , Dτ? − 1} such

that, for any j ∈ {1, . . . , D − 1}, |τ?i − τj | ≥ δ. Since δ ≤ nΛτ? , this also holds
true for j = 0 and j = D. Let us define, as illustrated by Figure 6,

λ◦ := {τ?i − δ + 1, . . . , τ?i , τ
?
i + 1, . . . , τ?i + δ} .

• × • ×

• • • • • × • • × •τ?

τ

λ◦

τ?i τ?i+1

Fig 6. Construction of λ◦ in the proof of Lemma 4. In this case, δ = 2 since Λτ? = 2/10
(the rightmost segment of τ? is of size 2) and d∞(τ?, τ) = 3 (achieved in τ?i ).

Since λ◦ is included in a segment of τ ,

‖µ? − µ?τ‖
2 ≥

∑
j∈λ◦

∥∥µ?j − (µ?τ )j
∥∥2

H ≥
∑
j∈λ◦

∥∥µ?j − µ?λ◦

∥∥2

H .
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Because of the hypothesis we made, λ◦ only intersects λ?i and λ?i+1 among the
segments of τ?, so Eq. (29) in Lemma 12 shows that∑
j∈λ◦

∥∥µ?j − µ?λ◦

∥∥2

H =
|λ◦ ∩ λ?i | ·

∣∣λ◦ ∩ λ?i+1

∣∣
|λ◦ ∩ λ?i |+

∣∣λ◦ ∩ λ?i+1

∣∣ ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
=
δ

2

∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
≥ δ

2
∆2 ,

hence the result.

A.4. Proof of Lemma 7

In this proof, since τ is fixed, we denote by λ1, . . . , λD the segments of τ , that
is, λi = {τi−1 + 1, . . . , τi}.

First, notice that

Lτ = 〈µ? − µ?τ , ε〉 =

Dτ?∑
i=1

〈
µ?λ?i ,

∑
j∈λ?i

εj

〉
H

−
Dτ∑
i=1

〈
µ?λi ,

∑
j∈λi

εj

〉
H

. (33)

Now, if Dτ < Dτ? we arbitrarily define λDτ+1 = · · · = λDτ? = ∅, so that∑
j∈λi εj = 0 for every i ∈ {Dτ + 1, . . . , Dτ?}. Similarly, if Dτ? < Dτ , we define

λ?Dτ?+1 = · · · = λDτ = ∅. We also define µ?∅ = µ?n by convention. Then, defining

D+ := max
{
Dτ? , Dτ

}
, we can rewrite Eq. (33) as follows:

Lτ =

D+∑
i=1

〈
µ?λ?i ,

∑
j∈λ?i

εj

〉
H

−
D+∑
i=1

〈
µ?λi ,

∑
j∈λi

εj

〉
H

=

D+∑
i=1

〈
µ?λ?i − µ

?
λi ,
∑
j∈λ?i

εj

〉
H

+

D+∑
i=1

〈
µ?λi ,

∑
j∈λ?i

εj −
∑
j∈λi

εj

〉
H

=

D+∑
i=1

〈
µ?λ?i − µ

?
λi ,
∑
j∈λ?i

εj

〉
H

+

D+∑
i=1

〈
µ?λi − µ

?
n,
∑
j∈λ?i

εj −
∑
j∈λi

εj

〉
H

,

since
D+∑
i=1

(∑
j∈λ?i

εj −
∑
j∈λi

εj

)
= 0 .

Then, by the triangle inequality and Cauchy-Schwarz inequality,

|Lτ | ≤
D+∑
i=1

∥∥∥µ?λ?i − µ?λi∥∥∥H
∥∥∥∥∥∥
∑
j∈λ?i

εj

∥∥∥∥∥∥
H

+

D+∑
i=1

∥∥µ?λi − µ?n∥∥H
∥∥∥∥∥∥
∑
j∈λ?i

εj −
∑
j∈λi

εj

∥∥∥∥∥∥
H

≤ diam conv
{
µ?j / j ∈ {1, . . . , n}

}D+∑
i=1

∥∥∥∥∥∥
∑
j∈λ?i

εj

∥∥∥∥∥∥
H

+

D+∑
i=1

∥∥∥∥∥∥
∑
j∈λ?i

εj

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
∑
j∈λi

εj

∥∥∥∥∥∥
H


≤ 3 diam conv

{
µ?j / j ∈ {1, . . . , n}

}
D+ sup

1≤a<b≤n

∥∥∥∥∥∥
b∑

j=a

εj

∥∥∥∥∥∥
H
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where we used that µ?λ ∈ conv
{
µ?j / j ∈ {1, . . . , n}

}
for any segment λ. Since the

diameter of the convex hull of a finite set of points is equal to the diameter of
the set, we have

diam conv
{
µ?j / j ∈ {1, . . . , n}

}
= diam

{
µ?j / j ∈ {1, . . . , n}

}
≤ (Dτ? − 1)∆ < Dτ?∆ .

Using also Lemma 5, we get the result.
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