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Abstract - We present a mathematical analysis of linear
precoders for downlink multiuser massive MIMO. In the
scenario we consider, one-bit digital-to-analog converters
are employed at the basestation antennas for mitigating
power consumption and hardware complexity. Using the
Bussgang theorem, a probability-of-error analysis for a
general precoder is presented. The special case of zero-
forcing (ZF) precoders is considered and simplified error
expressions are derived for asymptotic scenarios. Our
analysis illustrates that the probability of error for the
quantized ZF precoder depends primarily on the ratio
of the number of antennas to the number of users. Our
simulations also show that the quantized ZF precoder
outperforms the high complexity ML encoder for low- to
medium-SNRs

I. INTRODUCTION

Massive MIMO involves the use of many, perhaps hundreds,
of antennas at the base station (BS) of a wireless network, and
can potentially provide large increases in capacity via spatial
multiplexing [1]. Under favorable propagation conditions, the
user channels become asymptotically orthogonal as the num-
ber of antennas grows, and simple linear precoding at the BS
can be used to invert the channel without noise enhancement
[2], [3].

However, the resulting power consumption and hardware
costs of massive MIMO increase with the number of antennas
[4]. In order to mitigate these costs, we focus on an approach
that has gained attention recently, namely the use of low-
resolution DACs for each antenna; in particular we will explore
the simplest possible case involving one-bit DACs. Using one-
bit ADCs/DACs considerably reduces power consumption,
which grows linearly with increases in bandwidth and sam-
pling rate, and exponentially in the number of quantization
bits [5]–[7].

In this paper, we study the impact of one-bit DACs on
linear precoding for the massive MIMO downlink. To focus on
the performance degradation due to quantization, we assume
that the BS has perfect channel state information. Using the
Bussgang theorem [8] to model the second-order statistics of
the quantization noise introduced by the DACs, we provide a
closed-form expression for the signal to quantization, interfer-
ence and noise ratio (SQINR), which we use to deduce the
symbol error rate for each terminal in the network. We then

focus on the special case of the zero-forcing (ZF) precoder
and use asymptotic arguments to obtain an even simpler
expression. Our analysis illustrates that the performance of
the quantized ZF precoder depends primarily on the ratio
of the number of antennas to the number of user terminals,
and our simulations show that it can outperform the much
more complicated maximum likelihood encoder for low-to-
moderate signal to noise ratios, where massive MIMO systems
are presumed to operate.

The paper is organized as follows. Section II introduces the
one-bit downlink model, and describes both direct non-linear
maximum likelihood precoding and the simpler quantized
linear precoding approach. The SQINR performance of a
general one-bit quantized linear precoder is then analyzed in
Section III, and the approximate Symbol Error Rate (SER) for
each user is derived. Section IV focuses on the special case of
ZF precoding in the asymptotic regime where the number of
BS antennas M and user terminals K become large, leading
to a simpler and more insightful expression.

II. ONE-BIT DOWNLINK SYSTEM MODEL

A. Mathematical Notation and Assumptions

In what follows, uppercase boldface letters, A, indicate
a matrix, with [A]kl and akl interchangeably denoting the
element at the kth row and lth column. Lower boldface letters,
a, indicate a column vector, with ak denoting the kth element
of the column vector. The symbols (.)∗, (.)T and (.)H denote
the complex conjugate, matrix transpose and the transpose-
conjugate of the argument respectively. We will use diag(C)
to denote the square matrix whose main-diagonal elements
are equal to those of the square matrix C, and whose other
entries are all zero. With a vector argument, Diag(c) denotes
the diagonal matrix whose main diagonal is composed of the
elements of vector c.

We assume a flat-fading downlink scenario in which an M -
antenna BS is attempting to send QPSK symbols sk which are
zero-mean and independent with power σ2

s , to k = 1, · · · ,K
single-antenna users over the K × M channel H. The BS
transmits an M × 1 vector

√
ρx, where

√
ρ is a fixed gain

and the elements of x are constrained to be equal to ±1 ± j
due to the use of one-bit quantization of the in-phase and
quadrature components of the signal at the BS. Let rk be the



signal received by user k, and define r = [r1 · · · rK ]T so
that we can write the overall system model as

r =
√
ρHx + n , (1)

where the K × 1 vector n represents a vector of independent
Gaussian noise terms of variance σ2

n at each user. For the
downlink, the BS designs the vector x such that the elements
of r can be correctly decoded as the appropriate QPSK
symbols in the vector s = [s1 · · · sK ]T .

The kth row of channel matrix H is denoted as hk, and
represents the channel to user k. For our analysis, we will
assume that the elements of the channel matrix H are complex
Gaussian random variables, whose real and imaginary parts
are both iid Gaussian random variables with zero-mean and
variance σ2. As mentioned above, we will assume that the
channel H is known at the BS.

B. ML Precoding
Assuming Gaussian noise, one might choose to implement

a maximum likelihood (ML) encoder, which attempts to solve
[9]

x = arg min
v∈SM

||s−Hv||2 , (2)

where S = {1 + j, 1 − j,−1 + j,−1 − j} is the set of
QPSK constellation points. However, in general, (2) requires
on exhaustive search of order O(4M ), which is prohibitively
expensive even for relatively small values of M , let alone in
the massive MIMO case.

We note here that, for the case where the elements of the
desired vector s are themselves drawn from a finite alphabet
(QPSK here), the ML encoder over-constrains the problem by
attempting to force Hx to be close to s, when in fact all that
is necessary is that its elements lie within the correct decision
regions so that the users can properly decode them as the
desired constellation points sk. The noise-free data Hx can in
principle be far away from s and still be decoded correctly;
in fact, often the farther Hx is away from s, the farther the
received signal is from the decision boundaries and hence the
more resilient to noise. So we might expect that ML encoding
may not give optimal performance in this case, and in fact we
will demonstrate this fact later in the paper.

C. One-bit Quantized Linear Precoding
As an alternative to ML encoding, we will study the

performance of a very simple approach in which the output of
a standard linear precoder is quantized by one-bit DACs prior
to transmission. In particular, assuming a linear precoding
matrix P, the transmitted signal is x = Q(Ps), where the
one-bit quantization operation is defined as

Q(a) = sign(<(a)) + j.sign(=(a)), (3)

with <(·) representing the real part, =(·) the imaginary part,
and sign(·) the sign of their arguments. Figure 1 gives a
graphical view of the assumed system, whose output is thus
given by

r =
√
ρHQ(Ps) + n . (4)

In what follows, we will assume that ρ = ρ0
M , where, ρ0 is

defined to be the transmit SNR.

Fig. 1: System Model

III. BUSSGANG ANALYSIS OF ONE-BIT QUANTIZED
PRECODING

Let xP = Ps represent the precoded vector before quanti-
zation. In this section, we use the Bussgang decomposition to
analyze the impact of the quantization on the signal of interest
and to quantify the level of quantization noise.

A. Bussgang Decomposition

The one-bit quantization operation on the precoded vector
xP is modeled here using the Bussgang theorem [8]. We
assume that the vector of QPSK symbols s is random with
zero mean and covariance matrix σ2

sIK . Although this implies
that xP is not strictly Gaussian, each element of xP is formed
as a result of a linear mixture of the K i.i.d. elements of the
vector s, hence the Gaussian assumption is fulfilled for large
enough K. We thus apply the Bussgang theorem to write

x := Q(xP ) = FxP + q , (5)

where F is chosen to satisfy RxPq = E(xPq
H) = 0.

The Bussgang theorem provides a linear representation of the
quantization that is statistically equivalent up to the second
moments of the data. To define the decomposition, we have

RxxP
= E(xxHP ) =E({FxP + q}xHP )

= FRxPxP
,

(6)

where
RxPxP

= σ2
sPPH . (7)

Note that the M ×M matrix in (7) is rank deficient, and thus
F cannot be solved for directly as in [10]. We will see shortly
that a unique expression for F is unnecessary, and that (6)
is sufficient. Under the mutual Gaussian assumption between
components of xP , and since P is column rank, we have (for
details, see [11]),

FP =
1

σs

√
2

π

{
diag(PPH)

}− 1
2 P. (8)

It is also useful to derive here the covariances of the
quantization noise q and the data vector x after quantization.
Using the arcsin law [11], [12],

Rxx =
2

π
arcsin[{diag(RxPxP

)}− 1
2

RxPxP
{diag(RxPxP

)}− 1
2 ].

(9)



Also, for the quantization noise vector q, we have

Rqq =
2

π
[arcsin{{diag(PPH)}− 1

2PPH{diag(PPH)}− 1
2 }

− {diag(PPH)}− 1
2PPH{diag(PPH)}− 1

2 ].
(10)

B. Impact on the Signal of Interest

Let s̃ be the noiseless received signal vector

s̃ =
√
ρHx =

√
ρ0√
M

Hx. (11)

The cross-correlation between the received s̃ and desired s is
(see [11]),

Rs̃s =

√
ρ0σ

2
s√

M
HFP

=

√
2

π

√
ρ0σs√
M

H
{

diag(PPH)
}− 1

2 P ,

(12)

Equation (12) shows that, for any full rank precoder, the
impact of the one-bit quantization on the signal of interest
is the diagonal matrix

{
diag(PPH)

}− 1
2 and a scalar factor√

2
π .

C. SQINR and Probability of Error

Using the Bussgang decomposition, the received vector after
quantization can be represented as

r =

√
ρ0√
M

H(FPs + q) + n

=

√
ρ0√
M

Gs +

√
ρ0√
M

Hq + n .

(13)

Letting d = Hq, we denote the covariance matrix of the
received quantized noise as

Rdd = HRqqH
H . (14)

With these definitions, the SQINR experienced by user k for an
arbitrary linear precoder P whose output is one-bit quantized
can be expressed as

SQINRk =
ρ0
|gkk|2σ2

s

M

ρ0
∑K
l=1,l 6=k

|gkl|2σ2
s

M + ρ0
[Rdd]kk

M + σ2
n

, (15)

where ρ0
∑K
l=1,l 6=k

|gkl|2σ2
s

M accounts for multi-user interfer-
ence and ρ0

[Rdd]kk

M for quantization noise. With the assump-
tion of equally likely Gray-mapped QPSK signaling, using
the nearest neighbour approximation, we can calculate the
probability of a decoding error for user k as

Pe =Pr(Q(rk) 6= sk) ' 2Q(
√
SQINRk)

=2Q

√√√√ ρ0
|gkk|2σ2

s

M

ρ0
∑K
l=1,l 6=k

|gkl|2σ2
s

M + ρ0
[Rdd]kk

M + σ2
n

 .

(16)

IV. ASYMPTOTIC PERFORMANCE OF THE ONE-BIT
QUANTIZED ZERO-FORCING PRECODER

The previous section provides a closed-form expression for
the SQINR for any one-bit quantized linear precoder P. To get
additional insight into the impact of the one-bit DACs, here
we focus on the special case of the zero-forcing (ZF) precoder
defined by

P = HH(HHH)−1 . (17)

In addition, we will further simplify the resulting expressions
by adopting a massive MIMO assumption and letting both M
and K be large [13].

A. Approximations for the Asymptotic Case

In our asymptotic analysis, we let M and K grow large
while maintaining a finite value for the ratio M

K that is greater
than 1. In what follows, we recall and extend some results on
the asymptotic behaviour of the matrix (HHH)−1 needed for
analyzing the ZF precoder. As mentioned earlier, we assume
that the elements of H are i.i.d. circularly symmetric Gaussian
random variables with <(hij) ∼ N (0, σ2) independent of
=(hij) ∼ N (0, σ2), ∀i = 1, 2, . . . ,K and j = 1, 2, . . . ,M .

It is shown in [14] that Z = 2HHH is a complex Wishart
matrix (see [15]) with distribution

WK(M,σ2IK ;Z) =
|Z|M−K−1

2 exp
(
− 1

2 trace(σ−2Z))
)

2
MK
2 ΓK(M2 )|σ2IK |

M
2

(18)
where

ΓK(M) = π
K(K−1)

4

K∏
l=1

Γ(M +
1− l

2
) ,

is the Gamma function. In what follows, we use the properties
of the Wishart distribution to analyze the asymptotic behavior
of one-bit quantized ZF precoder (for details, see [11]).

B. Asymptotic Received Downlink Signal

Using the results of the previous section (for details, see
[11]), we have

FP =
1

σs

√
2

π

{
diag(PPH)

}− 1
2 P

−−−−→
M→∞

√
2

π

1

2σs(M −K)σ2

{
diag(PPH)

}− 1
2

HH ,

(19)

Also, for G, we have (using (19)),

G =HFP

−−−−→
M→∞

√
2

π

1

2σs(M −K)σ2
H
{

diag(PPH)
}− 1

2

HH .
(20)

Since the columns of H become quasi-orthogonal as K be-
comes large, the M×M rank K matrix, PPH , asymptotically
becomes a diagonal matrix with K non-zero elements that can
be approximated as:

[PPH ]kk −−−−→
K→∞

K

2(M −K)2σ2
. (21)



Moreover, the non-zero diagonal values correspond to eigen-
vectors that lie in the size K subspace spanned by H. Thus,
using (21) and (20) (see [11]),

G −−−−−−−−−→
K→∞,M→∞

2(M −K)σ

σs
√
πK

IK . (22)

The cross-covariance matrix of s̃ and s becomes

Rs̃s 'σ2
s

√
ρ0HHH

√
MπKσ

−−−−−−−−−→
K→∞,M→∞

2σsσ
√
ρ0√

π

(
M

K
− 1

)√
K

M
IK

=βIK ,

(23)

We observe that for large M and K, s̃k and sl are uncorrelated
for k 6= l, and hence the multi-user interference disappears. In
addition, we see that the signal of interest is received with a
gain of

√
2

σs
β which grows as

√
M
K . Hence, the larger the value

of M/K, the deeper the received signal will be pushed into
the correct decision region, and hence the lower the probability
of a decoding error in the presence of noise at the receiver.

C. Asymptotic SQINR and Probability of Error

As described in Section IV-B, the ZF precoder PPH

asymptotically becomes a diagonal matrix with K non-zero
diagonal elements which correspond to eigenvectors lying on
the subspace spanned by H. Using (21) and the Law of Large
Numbers [16], we have

Rdd −−−−−−−−−→
K→∞,M→∞

2

(
1− 2

π

)
(M −K)σ2IK , (24)

The SQINR then becomes

SQINRk −−−−−−−−−→
K→∞,M→∞

ρ0
4(M−K)2σ2

MπK

ρ0
2
M

(
1− 2

π

)
(M −K)σ2 + σ2

n

,

(25)
As before, assuming equally likely Gray-mapped QPSK sym-
bols, we have the probability of error for the kth user as

Pe =Pr(Q(rk) 6= sk) ' 2Q(
√
SQINRk)

−−−−−−−−−→
K→∞,M→∞

2Q


√√√√ ρ0

4(M−K)2σ2

MπK

ρ0
2
M

(
1− 2

π

)
(M −K)σ2 + σ2

n

 .

(26)

For a high SNR, SQINRk is given by

SQINRk '
2
π

1− 2
π

(
M

K
− 1

)
, (27)

so that the error floor becomes

Pe ' 2Q

(√
2
π

1− 2
π

(
M

K
− 1

))
. (28)

In all cases above (25-28), we note the critical dependence
of the SQINR and probability of error on the quantity M/K;
in particular for a high SNR (see (27)), the SQINR increases
approximately linearly with M/K. In Fig. 2, we have plotted

Fig. 2: Variation of SER with the ratio M
K in the noiseless

case.

Fig. 3: Variation of SER with transmit SNR, for varying
number of users, K and BS antennas, M .

the SER for the case of no additive noise as a function of M/K
for various choices of M and K averaged over 106 channel
realizations. We see that the simulations match the analysis
very well, and illustrate the importance of the ratio M/K on
performance. Massive MIMO systems are typically envisioned
to operate with loading factors on the order of M/K ' 10,
and we see that for this case the SER is below 10−4, which
bodes well for the use of the quantized ZF precoder in practical
scenarios.

D. Simulations

In Fig. 3, we have plotted both the predicted and simulated
SER for one-bit quantized ZF precoding at the BS for varied
number of users as a function of the transmit SNR, ρ0,
as described in Section II-C. The variance of the real and
imaginary parts of the channel coefficients are independently
assumed to be σ = 1. We note the excellent match between
the simulations and analytical approximation in (26), which



Fig. 4: Variation of SER versus transmit SNR for K = 2
users and M = 8 BS antennas for one-bit ZF precoding and

ML encoding

validates our analysis. As expected, we observe that the SER
approaches an error floor at high SNR; for example, with
M ∼ 10K, the SER floor is of the order of 10−4. To see how
the analysis holds for non-asymptotic values of K and M ,
we have also performed the simulation for the case of K = 3
users. We observe that our asymptotic analysis is accurate even
for this non-asymptotic value. The results of simulation are
similar for K = 3 and K = 15 for both M/K = 5, 10. This
result reinforces the observation that performance is governed
by the ratio M/K, independent of their specific values.

In Fig. 4 we compare the ML encoding approach (2) with
the quantized ZF precoder. Due to the complexity of the ML
encoder, we perform the simulation for the relatively small
values M = 8 and K = 2. Again, σ = 1 is assumed
for the channel. While the ML encoder is superior at high
SNR, there is a broad range of low- to medium-SNRs where
the simple quantized ZF precoder provides significantly better
performance. The low- to medium-SNR range is of particular
interest for massive MIMO implementations, and thus the
quantized ZF precoder is an attractive simple approach for
such scenarios.

V. CONCLUSION

We have studied the use of quantized linear precoding for
the massive MIMO downlink with one-bit DACs. We derived
closed form expressions for the SQINR and SER for any linear
precoder using the Bussgang decomposition. We provided
an analysis to show that asymptotically in the number of
antennas M and the number of users K, the quantized ZF
precoder yields signals at the user terminals that are scaled
versions of the desired symbols, with the scaling increasing
proportionally to

√
M/K. We also derived the asymptotic

error performance of the quantized ZF precoder and showed
that it primarily depends on the ratio M/K. Simulations show
that the algorithm outperforms the ML encoder for low to
moderate SNRs for the scenarios of interest.
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