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Abstract - We study low complexity precoding for a
downlink massive MIMO multiuser system assuming a
base station that employs one-bit digital-to-analog convert-
ers (DACs) in order to mitigate power usage. The use of
one-bit DACs is equivalent to constraining the transmit
signal to be drawn from a QPSK alphabet. While the
precoding problem can be formulated using a standard
maximum likelihood (ML) encoder, the implementation
cost is prohibitive for massive numbers of antennas, even if
a sphere encoding approach is used. Instead, we study the
performance of a one-bit quantized zero-forcing precoder,
and we show that it asymptotically provides the desired
downlink vector with low complexity. Simulations show
that the quantized ZF precoder can actually outperform
the ML encoder for low to moderate signal-to-noise ratios.

I. INTRODUCTION

Massive MIMO involves the use of many (perhaps hun-
dreds) of antennas at the base station (BS), and can potentially
provide large increases in capacity via spatial multiplexing
[1]. Prior work on Mulitple Input Multiple Output (MIMO)
downlink precoding has assumed that each RF chain is
equipped with a high-resolution digital-to-analog converter
(DAC). However, the power consumption of the DACs grows
exponentially with the number of quantization bits [2], and
also grows with increases in bandwidth and sampling rate. For
massive MIMO configurations with many antennas and DACs,
the resulting cost and power consumption will be prohibitive,
and alternative approaches are needed.

In this paper we study a scenario in which simple one-bit
DACs are implemented at the BS. One-bit DACs do not require
highly linear amplifiers, and hence they can be implemented
with very low cost and power consumption [3], [4]. One-
bit analog-to-digital converters (ADCs) have been studied in
prior work for uplink communication scenarios, with the focus
primarily on channel estimation and information theoretic
capacity analyses [5]-[12]. While there has been previous
research focused on downlink precoding for massive MIMO
(see e.g., [13]-[15]) very little has been reported on the impact
of low-resolution DACs on transmit processing [16].

The effect of one-bit DACs on the downlink is equivalent
to constraining the transmit signals to be drawn from the
Quadrature Phase Shift Keying (QPSK) constellation points:
±1± j. The problem can thus be posed as choosing a finite-
alphabet signal such that when passed through the channel,

results in the desired symbol at the individual users. This
problem is equivalent to maximum likelihood (ML) decoding,
or more appropriately in this context, ML encoding. However,
an ML encoding approach is not feasible when massive
numbers of transmit antennas are involved, since a different
QPSK symbol has to be chosen for each antenna. This is true
even if one chooses to use the more computationally efficient
sphere (en)decoder [17].

Instead, in this paper, we choose to focus on a more
computationally efficient approach that simply performs a
one-bit quantization of the zero-forcing (ZF) precoder. We
show that, with an accurate channel estimate and assuming an
asymptotically large number of antennas, this simple approach
yields received signals that will be correctly detected as the
desired symbols at each user. Simulations show that this
approach even outperforms the ML encoder at low to moderate
signal-to-noise ratios (SNRs) due to the fact that it essentially
relaxes the requirement for the precoding to produce received
signals as close as possible to the desired constellation points,
which is unnecessary if, for example, the user terminals also
employ one-bit ADCs and the desired symbols are thus QPSK.
In such cases, all that is needed for a correct detection is that
the received signal lies in the correct quadrant.

The paper is organized as follows. Section II covers the
system model and lays the foundation for our analysis. Sec-
tion III introduces the proposed algorithm and Section IV
provides a proof that the algorithm will yield accurate symbol
detections when the number of antennas is asymptotically
large. Finally Section V provides simulation results to support
the conclusions of the paper.

II. SYSTEM MODEL AND PRECODING ALGORITHMS

An M -antenna BS desires to send a vector s of K symbols
to K single-antenna users in a cell (one symbol to each
user), as depicted in Fig. 1. The symbol vector s is input
to a precoder P in order to generate the M -long vector x
that will be transmitted over the propagation channel. Due
to the assumption of one-bit DACs at the BS, our aim
is to design a precoder that generates a suitable x whose
elements are constrained to come from a QPSK alphabet
S = {−1 − j, 1 − j,−1 + j, 1 + j}. We will further assume
that the elements of the desired symbol vector s are QPSK as
well.



Fig. 1: System Model

The downlink transmission model can be written as

r =
√
ρHx+ n , (1)

where H is the K × M channel matrix and n represents
additive noise. ρ = Pt

M , Pt being the total transmission power
at the BS. In order to focus on the impact of the precoding, we
assume that H is perfectly known at the transmitter, although
we recognize that in practice only a noisy estimate will be
available. We further assume that M � K.

A. ML Precoding

Ideally, in the absence of noise, one might attempt to design
the precoder P such that Hx ' s, so that a simple threshold
detector applied to r would yield a minimal probability of
error. In such a case, x could be of the form H†s+u, where
H† denotes the pseudo-inverse of the channel and u belongs
to the nullspace of H. Due to the finite alphabet constraint
imposed by the one-bit DACs, one would have to find such
an x with QPSK entries, which may not be possible.

Assuming Gaussian noise, one could claim that the best pre-
coder P should solve the following ML optimization problem:

x = arg min
v∈SM

||s−Hv||2 , (2)

which is equivalent to ML detection, SM being the set of all
possible M long vectors composed of elements of S. However,
ML detection has a complexity of O(4M ), which is too large
for massive MIMO scenarios where M � K. The Sphere
Decoding algorithm [18] provides a more computationally
efficient solution to (2), although it must be noticed that we
consider the unusual case of a matrix H with many more
columns than rows. In such cases, one should transform (2) to

x = arg min
v∈SM

||D(z− v)||2 , (3)

where D is the upper triangular matrix obtained by the
Cholesky factorization of G = HHH + αIM (IM being
an Identity matrix of dimension M ), z = G−1HHs and
α is a small regularization parameter as explained in [17].
Though less complex than ML detection, the generalized
sphere encoder still has a complexity exponential in M −K,
which is prohibitive when M −K is very large. Thus, in the
sequel we consider a low complexity solution suited for large
values of M .

B. One-Bit ZF Precoding

In addition to reducing computational complexity, an ad-
ditional motivation for considering an alternative to ML de-
tection or sphere decoding is the observation that, when the
desired signals at the user terminals are drawn from a QPSK

alphabet, it is less important that s ' Hx; instead, all that
is necessary is that the ith element of Hx lies in the same
quadrant as si, the ith element of s. The user will then decode
the received signal as the desired symbol.

Consider the unconstrained ZF precoder HH(HHH)−1s,
and let hi represent the ith column of H. For massive MIMO
scenarios, in the limit as M → ∞, we have HHH ∝ IK .
Thus the ZF precoder signal transmitted from antenna i is
asymptotically proportional to hHi s, which is the complex
number that best rotates the vector hi in the direction of s.
Since it is the direction and not the magnitude of the elements
of s that is crucial for detection, we simply truncate the number
to the QPSK constellation. The sum of a large number M of
such contributions should then result in correct decisions at the
user terminals. In the next section, we provide a mathematical
analysis that validates this heuristic conclusion.

The one-bit ZF precoding algorithm is summarized below as
Algorithm 1. Note that the precoding complexity is O(MK),
which will be orders of magnitude less than that of the sphere
encoder for large M . We will see in simulations presented
later that in some cases this simple approach can significantly
outperform ML detection for finite alphabet s. <(.) and =(.)
denote real part and imaginary part of the corresponding
complex arguments respectively, for the algorithm description
and the rest of the paper.

Algorithm 1: One-bit ZF precoding algorithm
Inputs: s,H
1) x̂ = H†s, where H† = HH(HHH)−1

2) x = Q (x̂) = sign(<(x̂)) + j. sign(=(x̂))

III. PROOF OF ONE-BIT ZF PRECODER EFFICIENCY

The analysis follows the algorithm and channel transmission
step by step. Our aim is to show that asymptotically, Hx
is proportional to s. For this proof, we assume that the
entries of H are i.i.d random variables drawn from a circular
symmetric gaussian distribution, CN

(
0, σ2

)
. Also, we assume

s is known at the BS.

a) Approximation of x̂:

x̂ = HH(HHH)−1s (4)

Since M � 1 and the entries of H are taken to be i.i.d., by
Law of Large Numbers [19],

HHH ' 2Mσ2IK (5)

From (4) and (5), we have

x̂ ' (HHs)
1

2Mσ2
(6)



Therefore, we have the mth element of x̂ as

x̂m =
1

2Mσ2

K∑
k=1

h∗kmsk

=
1

2Mσ2
(

K∑
k=1

(<(hkm)<(sk) + =(hkm)=(sk))

+ j

K∑
k=1

(<(hkm)=(sk)−=(hkm)<(sk))) ,

(7)

where hkm is element k,m of H.
b) Approximation of the quantizer output: We approx-

imate any element of the output of the nonlinear function,
Q, by a logistic function [20]. The following asymptotically
represents the characteristics of Q(.) as the parameter n
becomes large:

(Q(x̂))m ≈
en<(x̂m) − 1

en<(x̂m) + 1
+ j

en=(x̂m) − 1

en=(x̂m) + 1
(8)

c) Approximation of the noiseless channel output: Next
we denote s̃ as the signal vector at the user terminals prior
to detection/quantization. Here it is assumed that the transmit
power, Pt = 1.

s̃ =

√
1

M
HQ(x̂) '

√
1

M
HQ

(
HHs

2Mσ2

)
(9)

We write the lth element of s̃ separately in terms of the real
and imaginary parts to obtain

<(s̃l) =√
1

M

M∑
m=1

<(hlm)
e

n
2Mσ2

(
∑K
k=1(<(hkm)<(sk)+=(hkm)=(sk))) − 1

e
n

2Mσ2
(
∑K
k=1(<(hkm)<(sk)+=(hkm)=(sk))) + 1

−=(hlm)
e

n
2Mσ2

(
∑K
k=1(<(hkm)=(sk)−=(hkm)<(sk))) − 1

e
n

2Mσ2
(
∑K
k=1(<(hkm)=(sk)−=(hkm)<(sk))) + 1

(10)

The expression for the imaginary part is similar.
The algorithm will be shown to give the desired result for

the first of the two terms of the real part of s̃l. The extension
to the second term and to the imaginary part is similar. Let X
denote the real part of an entry of the channel matrix drawn
from an i.i.d. circular symmetric gaussian distribution:

X = <(hlm) ∼ N (0, σ2) (11)

For a given s, let Y be a random variable defined as

Y = e
n

2Mσ2
(
∑K
k=1(<(hkm)<(sk)+=(hkm)=(sk))) (12)

and then define

Z = X
Y − 1

Y + 1
= g(X,Y ) (13)

We can easily see that any single term of the summation in
(10) can be given by the random variable Z, with all other
terms being independent and identically distributed to Z.

Let µX = E (X) and µY = E (Y ). The function g(X,Y ) is
differentiable to the second order in the neighborhood around

(µX , µY ). Using a second order Taylor expansion for g(X,Y )
about the point (µX , µY ), we have

Z ' g(µX , µY ) +
∂g

∂x
(µX , µY )(X − µX)

+
∂g

∂y
(µX , µY )(Y − µY ) +

1

2

∂2g

∂x2
(µX , µY )(X − µX)2

+
1

2

∂2g

∂y2
(µX , µY )(Y − µY )2

+
∂2g

∂x∂y
(µX , µY )(X − µX)(Y − µY )

(14)

Since M � 1, by the law of large numbers we can use E (Z)
to approximate the summation over M in (10). Using (14),

E (Z) ' g(µX , µY ) +
1

2

∂2g

∂x2
(µX , µY )σ

2
X

+
1

2

∂2g

∂y2
(µX , µY )σ

2
Y +

∂2g

∂x∂y
(µX , µY )σXY

(15)

By definition of X , µX = 0, and

µY = E (Y )

=

K∏
k=1

E (e
n

2Mσ2
(XkR<(sk)+XkI=(sk)))

= e
2Kt2σ2

2 = e
n2K

4M2σ2

(16)

where t = n<(sk)
2Mσ2 , so that t2 = n2

4M2σ4 since <(sk) = ±1 and
=(sk) = ±1. To get (16), we use the fact that XkR, XkI ∼
N (0, σ2) ∀k = 1, . . . ,K and are i.i.d. due to the assumption
on the distribution of the channel elements. Also, we have,

σXY = E ((X − µX)(Y − µY ))

= E (Xe
n

2Mσ2
(
∑K
k=1(XkR<(sk)+XkI=(sk))))

= E (Xe
n

2Mσ2
XlR<(sl))

(
e

n2

8M2σ2

)2K−1 (17)

Since X ∼ N (0, σ2), and X = XlR using (10) and (11),

E (Xe
n

2Mσ2
X<(sl)) =

∫ ∞
−∞

xe
n

2Mσ2
x<(sl) 1√

2πσ
e
x2

2σ2 dx

=
n

2M
<(sl)e

n2

8M2σ2

(18)

Using (16) and (17), (15) becomes

E (Z) ' <(sl)
ne

n2K
4M2σ2

M(e
n2K

4M2σ2 + 1)2
(19)

From (10) and (19), we have

<(s̃l) ' <(sl)
√

1

M

2n

e
n2K

4M2σ2

(20)

=(s̃l) ' =(sl)
√

1

M

2n

e
n2K

4M2σ2

(21)

Thus, for values of sl ∈ S , s̃l is directly proportional to
sl, with a positive scaling factor, which will result in correct
detections.



Fig. 2: One-bit ZF precoding SER versus K
M .

IV. SIMULATION RESULTS

In the first example, we study the precoder symbol error
rate (SER), which denotes here the average rate at which the
received symbols are incorrectly decoded without noise at the
receivers. Fig. 2 plots the SER as a function of K

M for four
different cases: M = 250, 1000,K = 25, 100. Fig. 2 validates
that the performance is a function of K

M and SERs below 10−4

are achieved as long as K
M ≤ 0.1, which is a typical loading

for massive MIMO systems. Here, the elements of x and s
are constrained to come from a QPSK alphabet.

In Fig. 3, the Mean Square Error (MSE) between the true
symbol vector s and the channel output Hx is plotted for
the one-bit ZF precoding and generalized sphere decoding
algorithms. The elements of x and s are again constrained
to come from a QPSK alphabet. In order to make the problem
tractable for the sphere encoder, we only study MSE assuming
K = 2 and for small values of M . In both cases, the
MSE decreases rapidly with M , and the one-bit ZF precoder
matches the ML encoder even for values of M less than 10.

In Fig. 4, we fix K = 2 and M = 10, 20 and plot the SER
at the noisy channel output with respect to the transmit SNR.
In this case, for simplicity we choose x and s to be BPSK: ±1,
and M to be small. It is interesting to note that although the
one-bit ZF precoder has a high-SNR error floor, it significantly
outperforms the ML encoder for low to moderate SNRs up to
20 dB. The one-bit ZF precoder helps in scaling up the symbol
sent, at its reception at the receiver, which helps in enhancing
its noise performance with respect to the ML encoder due to
a larger received SNR. The mean scale factor is observed to
increase with M , as seen from the simulations. For the case
of M = 10, and BPSK inputs, a scaling of 1.69 is observed.
In the case of M = 20, a scaling of 2.45 is observed. This
is a promising result since it is at these lower SNR regimes
where massive MIMO systems are targeted.

V. CONCLUSION

We have studied the use of a simple quantized zero-forcing
precoder for massive MIMO downlink with one-bit DACs.
The approach performs particularly well when the desired
symbols to be received at the user terminals are QPSK, and

Fig. 3: 10MSE(s−Hx) versus M for K = 2.

Fig. 4: SER versus SNR for ML encoder and one-bit ZF
precoder for K = 2 and M = 10, 20.

thus need only lie in the quadrant associated with the desired
signal in order to be correctly decoded. We provided an
analysis to show that asymptotically, in the number of antennas
M , the algorithm yields signals at the user terminals that
are scaled versions of the desired symbols, and hence will
be correctly detected. Simulations show that the algorithm
outperforms ML encoder for low to moderate SNRs when
the ratio K/M is smaller than 0.1. Also, The algorithm has a
complexity of O(MK), as opposed to complexities of O(4M )
and O(4M−K) for ML and sphere encoders respectively,
which makes it computationally feasible to use.

ACKNOWLEDGMENT

The research was supported by the National Science Foun-
dation under Grant ECCS-1547155, and by the Technische
Universität München Institute for Advanced Study, funded
by the German Excellence Initiative and the European Union
Seventh Framework Programme under grant agreement No.
291763, and by the European Union under the Marie Curie
COFUND Program, and by French CNRS.



REFERENCES

[1] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Communication Magazine,
vol. 52, no. 2, pp. 186-195, Feb 2014

[2] R.H. Walden, “Analog-to-digital converter survey and analysis,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-
550, Apr 1999

[3] J. Mo, and R.W. Heath, “Capacity analysis of one-bit quantized MIMO
systems with transmitter channel state information,” IEEE Transactions
on Signal Processing, vol. 63, pp. 5498-5512, Oct 2015

[4] J. Singh, S. Ponnuru, and U. Madhow, “Multi-Gigabit communication: the
ADC bottleneck,” in IEEE International Conference on Ultra-Wideband,
Vancouver, Canada, 2009, pp. 22-27

[5] N. Liang, and W. Zhang, “A mixed-ADC receiver architecture for massive
MIMO systems,” in IEEE Information Theory Workshop, Jerusalem, 2015
pp. 229-233

[6] J. Choi, and R.W. Heath, “Near maximum-likelihood detector with one-
bit ADCs for multiuser massive MIMO systems,” in IEEE 6th Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, Cancun, Mexico, 2015, pp. 397-400

[7] A. Mezghani, and J.A. Nossek, “Analysis of Rayleigh-fading channels
with 1-bit quantized output,” in IEEE International Symposium on Infor-
mation Theory, Toronto, Canada, 2008, pp. 260-264

[8] J.A. Nossek, and M.T. Ivrlac, “Capacity and coding for quantized MIMO
systems,” in Proceedings of the 2006 international conference on Wireless
communications and mobile computing, Vancouver, Canada, 2006, pp.
1387-1392

[9] C. Risi, D. Persson, and E.G. Larsson, “Massive MIMO with 1-bit ADC,”
arXiv preprint arXiv:1404.7736 (2014)

[10] J. Choi, J. Mo, and R.W. Heath, “Near maximum-likelihood detector
and channel estimator for uplink multiuser massive MIMO systems with
one-bit ADCs,” arXiv preprint arXiv:1507.04452 (2015).

[11] J. Mo, P. Schniter, N.P. Gonzalez, and R.W. Heath, “Channel estimation
in millimeter wave MIMO systems with one-bit quantization,” in 48th
Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
CA, 2014, pp. 957-961

[12] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer,
“One-bit massive MIMO: Channel estimation and high-order modula-
tions,” in IEEE International Conference on Communication Workshop,
London, UK, 2015, pp. 1304-1309

[13] L. Zhao, K. Zheng, H. Long, and H. Zhao, “Performance analysis for
downlink massive MIMO system with ZF precoding,” Transactions on
Emerging Telecommunications Technologies, vol. 25., no. 12, pp. 1219-
1230, Dec 2014

[14] J. Hoydis, S. Brink, and M. Debbah, “Comparison of linear precoding
schemes for downlink massive MIMO,” in IEEE International Conference
on Communications, Ottawa, ON, 2012, pp. 2135-2139

[15] J. Hoydis, S. Brink, and M. Debbah, “Massive MIMO in the UL/DL
of Cellular Networks: How Many Antennas Do We Need?” IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 160-171, Feb 2013

[16] A. Mezghani, R. Ghiat, and J.A. Nossek, “Transmit processing with low
resolution D/A-converters,” in 16th IEEE International Conference on
Electronics, Circuits, and Systems, Yasmine Hammamet, Tunisia, 2009,
pp. 683-686

[17] T. Cui and C. Tellambura, “An efficient generalized sphere decoder for
rank-deficient MIMO systems,” IEEE Commun. Lett., vol. 9, no. 5, pp.
423-425, May 2005

[18] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,” Mathematics
of computation, vol. 44, no. 170, pp. 463-471, Apr 1985

[19] J. Gubner, “More about discrete random variables,” in Probability and
random processes for electrical and computer engineers, New York,
Cambridge University Press, 2006, ch. 3, pp. 108-137

[20] S. Theodoridis and K. Koutroumbas, “Nonlinear Classifiers,” in Pattern
Recognition, Academic Press, 2009, ch. 4, pp. 151-260


