Fabienne Comte 
email: fabienne.comte@parisdescartes.fr
  
Gwennaëlle Mabon 
email: gwennaelle.mabon@hu-berlin.de.
  
LAGUERRE DECONVOLUTION WITH UNKNOWN MATRIX OPERATOR

Keywords: Convolution model, Linear inverse problem, Nonnegative random variables, Laguerre basis, Nonparametric density estimation, Random matrix, Oracle inequalities, Adaptive estimation AMS Subject Classification 2010: Primary 62G07; secondary 62N02

come    

Laguerre deconvolution with unknown matrix operator

Introduction

1.1. The model. We consider in this work the following convolution model: Z i = X i + Y i , for i = 1, . . . , n where the observation is the sequence (Z i ) 1≤i≤n while the X i 's are the independent and identically distributed variables (i.i.d.) of interest, with common density denoted by f . The random variables Y i , i = 1, . . . , n represent a nuisance process, they are also i.i.d. with common density g. The sequences (X i ) 1≤i≤n and (Y i ) i≤i≤n are assumed to be independent.

Our aim is to perform nonparametric estimation of f . The specificity of our framework is that all random variables are assumed to be nonnegative. Moreover, we do not suppose that the density g of the nuisance variables is known. Nevertheless, to make the problem identifiable, we assume that we have at hand an auxiliary nuisance sample (Y i ) 1≤i≤n 0 , independent of (X i , Y i ) 1≤i≤n . To sum up, we have to solve an inverse problem with unknown operator. 1.2. Bibliography for real-valued variables. The literature studies the convolution model for real-valued random variables and for centered Y i 's, which are then understood as a noise or a measurement error. Most solutions are based on Fourier methods, relying on the fact that the characteristic function of the observations is the product of the Fourier transforms of f and g: then, cautious Fourier inversion of a quotient should allow one to recover f . In the first works, g is assumed to be known. Under this assumption, rates of convergence and their optimality for kernel estimators have been studied in [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Stefanski | Rates of convergence of some estimators in a class of deconvolution problems[END_REF], [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] and [START_REF] Efromovich | Density estimation for the case of supersmooth measurement errors[END_REF]. For the study of sharp asymptotic optimality, we can cite [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF], Butucea and Tsybakov (2008a,b). For the most part, the adaptive bandwidth selection in deconvolution models has been addressed with a known error distribution, see for example [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] who apply wavelet technique, [START_REF] Delaigle | Bootstrap bandwidth selection in kernel density estimation from a contaminated sample[END_REF] for bandwidth selection, [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] who consider adaptive model selection for projection estimators, or [START_REF] Meister | Deconvolution Problems in Nonparametric Statistics[END_REF] and references therein.

However the assumption that the distribution of the errors is perfectly known is clearly not realistic in most fields of application. To make the problem feasible, some information on the error distribution is always required. For instance, in a physical context, a preliminary sample of the noise can be obtained. [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] first proposed an estimation strategy still based on Fourier inversion; for the study of convergence rates, see [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF], [START_REF] Johannes | Deconvolution with unknown error distribution[END_REF] or [START_REF] Meister | Deconvolution Problems in Nonparametric Statistics[END_REF]. The rigorous study of adaptive procedures in a deconvolution model with unknown errors has only recently been addressed. We are aware of the work by [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] and [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF] who extended it to the adaptive strategy, by [START_REF] Johannes | Adaptive circular deconvolution by model selection under unknown error distribution[END_REF] who consider a model of circular deconvolution and by [START_REF] Dattner | Adaptive quantile estimation in deconvolution with unknown error distribution[END_REF], who deal with adaptive quantile estimation via Lespki's method.

1.3. The case of nonnegative variables. In this paper, all random variables are nonnegative. Such modelization is encountered in survival analysis or reliability models. For instance, X can be the time of infection of a disease and Y the incubation time, a model used in so called back calculation problems in AIDS research. In reliability, the lifetime of interest for a component can be hidden by another one, systematically added to it. More broadly the problem of nonnegative variables appears in actuarial or insurance models. Recently, in a financial context, some papers as [START_REF] Jirak | Adaptive function estimation in nonparametric regression with one-sided errors[END_REF] or [START_REF] Reiß | Estimating nonparametric functionals efficiently under one-sided errors[END_REF] have addressed the problem of one-sided errors. The first authors are interested in the optimal adaptive estimation in nonparametric regression when the errors are not assumed to be centered anymore, and typically with Exponential density. [START_REF] Groeneboom | Information bounds and nonparametric maximum likelihood estimation[END_REF] have first introduced the problem of one-sided error in the convolution model under monotonicity of the cumulative distribution function (c.d.f.). They derive nonparametric maximum likelihood estimators (NPMLE) of the c.d.f. Some particular cases have been tackled as Uniform or Exponential deconvolution by [START_REF] Groeneboom | Density estimation in the uniform deconvolution model[END_REF]. van [START_REF] Van Es | Combining kernel estimators in the uniform deconvolution problem[END_REF], in the Uniform deconvolution problem, proposes a density estimator and an estimator of the c.d.f. using kernel estimators and inversion formula. The work of [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] subsumes the existing ones and in this way unifies the approach to tackle the problem of density estimation for nonnegative variables in the convolution model with any known error density. Besides [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] provides a solution to estimate the survival function in this model. In Mabon (2016a), in the same context, the author builds a model selection estimation strategy, with respect to the pointwise risk, for the probability density function and the c.d.f among others.

Indeed, the particularity of the model allows to use a general projection strategy (see [START_REF] Birgé | From model selection to adaptive estimation[END_REF]) in a specific R + -supported orthonormal functional basis, namely the Laguerre basis. This strategy has been used for nonnegative variables in other settings: e.g. in Comte et al. (2015) and [START_REF] Vareschi | Noisy Laplace deconvolution with error in the operator[END_REF] in a regression setting, or in [START_REF] Belomestny | Nonparametric laguerre estimation in the multiplicative censoring model[END_REF] for a multiplicative censoring model. The present paper is the sequel of [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF]. She defines the density estimator through its estimated coefficients obtained as the product of the inverse of a known matrix by a random vector: a collection of density projection estimators is proposed. A penalization procedure to select the dimension of the projection space is proved to reach the adequate squared-bias/variance trade-off, in a non-asymptotic way.

Here, we extend the procedure in the case where g is no longer known: instead, all quantities related to g are estimated thanks to the independent (Y i )-n 0 -sample. This means that we estimate all coefficients of the linear system which was solved in the first step. Therefore the main difficulty is to measure the distance between the inverse of a random matrix and the inverse of its expectation.

This is what makes the problem challenging, and the solution interesting. The strategy is inspired by the one initiated by [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] and developed by [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF] in the Fourier context, with help of tools related to matrix perturbation theory (see [START_REF] Stewart | Matrix perturbation theory[END_REF]) and random matrices taken in [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF]. A result of matrix perturbation theory (see Th. A.1) is the key result to enable us to prove a lemma similar to Lemma 2.1 in [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF]. Besides, Bernstein's inequality for random matrices provides useful moment inequalities. We intend to discuss the influence of the two sample sizes n and n 0 and to compare our results with the Fourier strategy outcomes, which still can be applied to nonnegative random variables.

1.4. Outline of the paper. Let us now explain the plan of the paper. In Section 2, we give notations, we define the model, the Laguerre basis and the density estimator computed on a mdimensional projection space. We develop in Section 3 a study of the mean integrated squared error (MISE) of the estimators, based on Bernstein's type concentration inequalities developed for random matrices (see [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF]). We discuss the resulting rates of convergence under different sets of assumptions. For that we introduce subspaces of L 2 (R + ), called Laguerre-Sobolev spaces with index s > 0 which are defined in [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems?[END_REF]. This enables us to determine the order of the squared bias terms. This, together with variance order, provides upper bounds on the rates of convergence of the estimators of f belonging to a Laguerre-Sobolev space. We present a collection of mixed Gamma densities for which our procedure is particularly relevant, and compare our results with those of the Fourier setting. In Section 4, we define a data driven choice of the projection space by using a contrast penalization criterion and we prove an oracle inequality for the final data driven estimator. In Section 5, we study of the adaptive estimators through simulation experiments. Numerical results are then presented and compared to the performances of the direct case (direct observation of the X i 's) and to the case of known g. The results show that our procedure works well and that the cutoff introduced for the estimation of g plays an interesting role. In the concluding Section 6 we give further possible developments or extensions of the method. All the proofs are postponed to Section 7.

Estimation procedure

2.1. Model and assumptions. We consider the model

Z i = X i + Y i , i = 1, . . . , n, (1) 
where the X i 's are i.i.d. nonnegative variables with unknown density f . The Y i 's are also i.i.d. nonnegative variables with unknown density g. We denote by h the density of the Z i 's. The X i 's and the Y i 's are assumed to be independent. Moreover, we assume in all the following that we have at hand an auxiliary sample of the noise distribution

(Y 1 , . . . , Y n 0 ) and (Y i ) 1≤i≤n 0 independent of (X i , Y i ) 1≤i≤n , (2) 
where the Y i 's are also i.i.d. nonnegative variables with unknown density g.

Our target is the estimation of the density f when the Z i 's and Y i 's are observed. For two functions ϕ, ψ : R → R belonging to L 2 (R), we denote ϕ the L 2 norm of ϕ defined by ϕ 2 = R |ϕ(x)| 2 dx, ϕ, ψ the scalar product between ϕ and ψ defined by ϕ, ψ = R ϕ(x)ψ(x)dx. Let d be an integer, for two vectors u and v belonging to R d , we denote u 2,d the Euclidean norm defined by u 2 2,d = t u u where t u is the transpose of u. The scalar product between u and

v is u, v 2,d = t u v = t v u.
We introduce the operator norm of a matrix A defined by A op = max u 2 =1 A u 2 = λ max ( t AA) where λ max t AA is the largest eigenvalue of t AA in absolute value, along with the Frobenius norm defined by A F = i,j a 2 ij .

2.3. Laguerre basis. We define the Laguerre basis as

∀k ∈ N, ∀x ≥ 0, ϕ k (x) = √ 2L k (2x)e -x with L k (x) = k j=0 (-1) j k j x j j! . (3) 
The Laguerre polynomials L k defined by Equation ( 3) are orthonormal with respect to the weight function x → e -x on R + . In other words, R + L k (x)L k (x)e -x dx = δ k,k where δ k,k is the Kronecker symbol. Thus (ϕ k ) k≥0 is an orthonormal basis of L 2 (R + ). We can also notice that the Laguerre basis verifies the following inequality for any integer k

sup x∈R + |ϕ k (x)| = ϕ k ∞ ≤ √ 2. ( 4 
)
We also introduce the space S m = Span{ϕ 0 , . . . , ϕ m-1 }. For a function p in L 2 (R + ), we note

p(x) = k≥0 a k (p)ϕ k (x) where a k (p) = R + p(u)ϕ k (u) du.
According to formula 22.13.14 in [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF], what makes the Laguerre basis relevant in our deconvolution setting is the relation

ϕ k ϕ j (x) = x 0 ϕ k (u)ϕ j (x -u) du = 2 -1/2 (ϕ k+j (x) -ϕ k+j+1 (x)) (5)
where stands for the convolution product.

2.4. Projection estimator of the density function when g is known.

Here we briefly recall the projection estimator of f when g is known established in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF].

The principle of a projection method for estimation is to reduce the question of estimating f to the one of estimating f m the projection of f on S m . We write

f m (x) = m-1 k=0 a k (f )ϕ k (x).
Model (1) implies that h = f g. If all the functions f, g, h belong to L 2 (R + ), then we have

j≥0 a j (h)ϕ j = k≥0 ≥0 a k (f )a (g)ϕ k ϕ .
Thus, applying Equation (5) implies, with convention a -1 (g) = 0, that

j≥0 a j (h)ϕ j = k≥0 k =0 2 -1/2 (a k-(g) -a k--1 (g))a (f )ϕ k .
This yields the following infinite linear triangular system

h ∞ = G ∞ f ∞ , with h m = t (a 0 (h), . . . , a m-1 (h)), f m = t (a 0 (f ), . . . , a m-1 (f )) and [G m ] i,j =      2 -1/2 a 0 (g) if i = j, 2 -1/2 (a i-j (g) -a i-j-1 (g)) if j < i, 0 otherwise.
We can notice that G m is a lower triangular an Toeplitz matrix.

Thus for any m we can write

h m = G m f m . Moreover a 0 (g) = R + g(u)ϕ 0 (u) du = √ 2 R + g(u)e -u du = √ 2E[e -Y ] > 0. So G m is invertible and G -1 m h m = f m . Finally for any k ≥ 0 a k (h) = E[ϕ k (Z 1 )
] can be estimated from the observations and we obtain the projection of f on S m can be estimated by

fm (x) = m-1 k=0 âk ϕ k (x) with ˆ f m = G -1 m ˆ h m and âk (Z) = 1 n n i=1 ϕ k (Z i ) (6) 
with ˆ h m = t (â 0 (Z), . . . , âm-1 (Z)) and ˆ f m = t (â 0 , . . . , âm-1 ).

2.5. Projection estimator of the density function when g is unknown. Thanks to (2) we can easily derive an estimate of G m by replacing its coefficients by their empirical version,

[ G m ] i,j =      2 -1/2 â0 (Y ) if i = j, 2 -1/2 (â i-j (Y ) -âi-j-1 (Y )) if j < i, 0 otherwise, (7) 
where âk (

Y ) = (1/n 0 ) n 0 =1 ϕ k (Y ). It is clear that E[ G m ] = G m .
It is worth noting that G m is still a lower triangular Toeplitz matrix and that, as â0 (Y ) = n -1 0 n 0 i=0 exp(-Y i ) > 0, it is also invertible. However, in order to bound the distance between the inverse of G m and G -1 m , we have to introduce a cutoff. Thus we define an inverse of G m as follows

G -1 m =    G -1 m if G -1 m op ≤ n 0 m log m 0 otherwise. ( 8 
)
Under this definition of G -1 m , if we denote by spr(A) the spectral radius (largest eigenvalue in absolute value) of A, we have

√ 2 |â 0 (Y )| = spr( G -1 m ) ≤ G -1 m op
(see Theorem 5.6.9 in [START_REF] Horn | Matrix Analysis[END_REF]). Note that, for any threshold t > 0,

G -1 m op ≤ t implies that 2 -1/2 a 0 (g) ≥ t -1 and G -1 m op ≤ t implies that 2 -1/2 |â 0 (Y )| ≥ t.
We also want to emphasize that we put the constraint on the spectral norm for technical reasons. It is more convenient to deal with this norm than the trace norm thanks to some results developed in random matrix theory for largest eigenvalues of Hermitian matrices.

Finally, we estimate the projection f m of f on the space S m as fm

(x) = m-1 k=0 ãk ϕ k (x) with ˜ f m = G -1 m ˆ h m (9) 
with ˆ h m be defined by( 6), G -1 m by (8) and ˜ f m = t (ã 0 , . . . , ãm-1 )

Study of the L 2 risk

In this section, we want to derive upper bounds on the MISE of fm defined by Equation ( 9). Using the isomorphism between the Euclidean norm and the L 2 -norm, we show that

E f m -fm 2 = f -f m 2 + E f m -fm 2 = f -f m 2 + E f m - ˜ f m 2 2,m = f -f m 2 + E G -1 m h m -G -1 m ˆ h m + G -1 m ˆ h m -G -1 m ˆ h m 2 2,m ≤ f -f m 2 + 2E G -1 m ( h m - ˆ h m ) 2 2,m + 2E (G -1 m -G -1 m ) ˆ h m 2 
2,m . The first two terms correspond to the squared bias term and the variance term appearing in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] when the density g is assumed to be known. The difficulty in this problem lies in bounding the second variance term. We need to study how large the average squared error is when we estimate G -1 m by G -1 m . For that we use some tools of random matrix theory and particularly matrix concentration inequalities (see [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF]), and Paulsen dilatation trick (see the proof of Corollary 7.2).

First we give upper bounds on the L 2 risk by bounding the variance term then we compute optimal rates by introducing Laguerre-Sobolev spaces and estimating the order of the bound on the variance.

3.1. Upper bounds on the MISE. First we state the key lemma to bound the L 2 risk of fm along with an important corollary.

Lemma 3.1. For G -1 m defined by Equation (8), g ∞ < ∞ and m log m ≤ n 0 , then for any integer p there exists a positive constant C op,p such that

E G -1 m -G -1 m 2p op ≤ C op,p G -1 m 2 op ∧ log m G -1 m 4 op m n 0 p .
Corollary 3.2. Under the Assumptions of Lemma 3.1, there exists a positive constant C F such that

E G -1 m -G -1 m 2 F ≤ C F G -1 m 2 F ∧ log m G -1 m 2 op G -1 m 2 F m n 0 .
Corollary 3.3. Under the Assumptions of Lemma 3.1, there exists a positive constant C E such that

E (G -1 m -G -1 m ) h m 2 2,m ≤ C E 1 ∧ log m m n 0 G -1 m 2 op .
We can now state the main result of this subsection:

Proposition 3.4. If f and g belong to L 2 (R + ), g ∞ < ∞, for fm defined by (9) the following result holds

E f -fm 2 ≤ f -f m 2 + C n 2m G -1 m 2 op ∧ h ∞ G -1 m 2 F + 4C E log m m n 0 G -1 m 2 op (10) with C = 2 + C op,1 + C F .
We can notice that, in the right hand side of Equation ( 10), the first two terms correspond to the upper bound on the mean integrated risk when the matrix G -1 m is known (see Proposition 3.1 in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF]). The first one is the squared bias term which gets smaller when m increases and the second one is the variance term when g is known. Thanks to Lemma 3.4 in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF], we know that the spectral norm of G -1 m grows with the dimension m. The third term is due to the estimation of the matrix G -1 m . This last term seems to deteriorate the rate compared to known noise case in particular if n = n 0 . If we add some assumptions we can have the following Corollary

Corollary 3.5. If m log(m) G -1 m 2
op /n 0 < 1/4 and f 1 := j |a j (f )| < ∞, then for any integer p ≥ 2, we have

E (G -1 m -G -1 m ) h m 2 2,m ≤ C E n 0 (1 ∨ g ∞ ) 3 ( f 2 ∨ f 2 1 ) m G -1 m 2 op ∧ G -1 m 2 F + 2 2p+1 C 2p 2m log(m) G -1 m 2 op n 0 p .
It is worth mentioning that the condition m log(m) G -1 m 2 op /n 0 < 1/4 can be replaced for any > 0 by m log(m) G -1 m 2 op /n 0 ≤ < 1 and Corollary 3.5 is still valid. Corollary 3.5 leads us to the following bound, under slightly stronger assumption than in Proposition 3.4. Proposition 3.6. If f and g belong to

L 2 (R + ), g ∞ < ∞, f 1 < ∞ and m log(m) G -1 m 2
op /n 0 < 1/4, for fm defined by (9) the following result holds

E f -fm 2 ≤ f -f m 2 + C n 2m G -1 m 2 op ∧ h ∞ G -1 m 2 F + 2C E n 0 (1 ∨ g ∞ ) 3 f 2 m G -1 m 2 op ∧ f 2 1 G -1 m 2 F + 2 2p+1 C 2p 2m log(m) G -1 m 2 op n 0 p .
Note that the condition f 1 < ∞, as the Laguerre basis is bounded, is a condition of normal convergence of the series. As ϕ j (0) = √ 2 for all j ≥ 0, it is also the natural condition ensuring that f (0) is well defined.

We illustrate hereafter that this bound implies better upper rates of estimation than the one given in Proposition 3.4.

3.2.

Rates of convergence. To derive the rates of convergence of fm defined by ( 9), we need to evaluate the smoothness of the signal along with the order of G -1

m 2 op and G -1 m 2 F .
First of all, we assume that f belongs to a Laguerre-Sobolev space defined as

W s (R + , L) =    p : R + → R, p ∈ L 2 (R + ), k≥0 k s a 2 k (p) ≤ L < +∞    with s ≥ 0 (11)
where a k (p) = p, ϕ k . [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems?[END_REF] have introduced Laguerre-Sobolev space but the link with the coefficients of a function on a Laguerre basis was done by [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF]. Indeed, let s be an integer, for p : R + → R and f ∈ L 2 (R + ), we have that k≥0 k s a 2 k (p) < +∞ is equivalent to the fact that p admits derivatives up to order s -1 with p (s-1) absolutely continuous and for 0

≤ k ≤ s, x k/2 (p(x)e x ) (k) e -x ∈ L 2 (R + ).
For more details we refer to section 7 of [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF]. Thus, for f ∈ W s (R + , L) defined by ( 11),

f -f m 2 = ∞ k=m a 2 k (f ) = ∞ k=m a 2 k (f )k s k -s ≤ Lm -s .
Now we have to evaluate the variance terms of Equations ( 10) which means assess the order of

G -1 m 2 op and G -1 m 2 F . First we define an integer r ≥ 1 such that d j dx j g(x) | x=0 = 0 if j = 0, 1, . . . , r -2 B r = 0 if j = r -1.
Lemma 3.7 (Comte et al. (2015)). If Assumptions

(C1) g ∈ L 1 (R + ) is r times differentiable and g (r) ∈ L 1 (R + ). (C2)
The Laplace transform of g has no zero with non negative real parts except for the zeros of the form ∞ + ib.

are true, then it holds that

c 1 m 2r ≤ G -1 m 2 F ≤ G -1 m 2 op ≤ c 2 m 2r . where c 1 ≤ c 2 are constants independent of m.
Optimizing the squared bias and the variance terms in the upper bounds stated in Propositions 3.4 and 3.6 imply the following results.

Proposition 3.8. If f belongs to W s (R + , L) and g satisfies (C1)-(C2) then fmopt defined by (9) and m opt ∝ n 1/s+2r ∧ (n 0 / log n 0 ) 1/s+2r+1 , then sup f ∈W s (R + ,L) E f -fmopt 2 ≤ C 1 (s, L)n -s/s+2r ∨ n 0 log n 0 -s/s+2r+1 . where C 1 (s, L) is a positive constant. If in addition n 0 ≥ n 3/2 , then choosing m opt ∝ n 1/s+2r , yields sup f ∈W s (R + ,L) E f -fmopt 2 ≤ C 2 (s, L)n -s/s+2r .
where C 2 (s, L) is a positive constant.

Corollary 3.9. If f belong to W s (R + , L) and f 1 < ∞, g satisfies (C1)-(C2) for fmopt defined by (9) and m opt = c(n 1/s+2r ∧ n 1/s+2r 0

) for c a positive constant, the following result holds

sup f ∈W s (R + ,L) E f -fmopt 2 ≤ c(n ∨ n 0 ) -s/s+2r , c a positive constant.
In particular, the condition

f 1 < ∞ is implied by f ∈ W s (R + , L) for s > 1. Indeed, k≥1 |a k (f )| ≤ s s -1 k≥1 k s a 2 k (f ) ≤ s s -1 L < +∞. 3.3.
Examples of rates and comparison with Fourier setting. In this section we denote by ψ * (x) = e -iux ψ(u) du the Fourier transform of an integrable function ψ. The Fourier estimator of f in the model defined by ( 1)-( 2) is in fact an estimator of

f m,Fo (x) = (2π) -1 πm -πm f * (u) du, the orthogonal projection of f on the space S m = {ψ ∈ L 1 (R) ∩ L 2 (R), support(ψ * ) ⊂ [-πm, πm]}. It is given by fm,Fo (x) = 1 2π πm -πm e iux ĥ * (u) g * (u) du with ĥ * (u) = 1 n n j=1 e -iuZ j , ĝ * (u) = 1 n 0 n 0 j=1 e -iuY j , 1 g * (u) = 1{|ĝ * (u)| ≥ n -1/2 0 } ĝ * (u)
.

The risk bound obtained in [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] can be written as follows,

E f -fm,Fo 2 ≤ f -f m,Fo 2 + C 1 ∆(m) n + (4C 1 + 2) ∆ f (m) n 0 with C 1 a constant and ∆(m) = 1 2π πm -πm 1 |g * (u)| 2 du, ∆ f (m) = 1 2π πm -πm |f * (u)| 2 |g * (u)| 2 du.
The structure of the estimator is similar to the structure of ours, with a cutoff required for safe inversion of the noise characteristic function. The structure of the upper bound is also similar and involves a squared bias term f -f m,Fo 2 , a variance term corresponding to known g, ∆(m)/n and the price for estimating g, ∆ f (m)/n 0 .

There are also several differences. The bias term does not refer to the same regularity. It is clearly explained in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] that, if f is a Gamma density γ(p, θ), then the bias is of order m -2p+1 in the Fourier setting while it is exponentially decreasing in the Laguerre setting (namely of order m 2(p-1) exp(-ρm), for ρ = ρ(θ) > 0). Thus, most reasonably, our method, dedicated to R + -supported function estimation, performs at best for Gamma and all types of mixed Gamma densities (see Section 2.3.3 in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF]).

The first variance term is simpler in the Fourier setting than in the Laguerre setting in the sense that there is no choice between two quantities, and the characteristic function of the noise is better known than the trace and operator norms of G -1 m . However, for g following a Gamma or a beta distribution, it is checked in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] that these variance terms have the same order with respect to m in Laguerre and Fourier settings: if g follows a γ(q, µ) density, both upper bounds have order less than m 2q /n; if g follows a β(a, b) density with b > a ≥ 1, both upper bounds have order less than m 2a /n.

For the second variance term, it is straightforward that ∆ f (m) ≤ ∆(m) and thus the estimation of g does not change the Fourier risk as soon as n 0 ≥ n. A similar result is obtained for Laguerre estimator, in Proposition 3.6, with a condition on f 1 similar to than the property |f * (u)| ≤ 1.

As a consequence, the Laguerre estimator has smaller upper bounds on the rates than the Fourier methods when the function f under estimation belongs to a class of mixed Gamma densities: the exponential decrease of the Laguerre bias, implies that choice of small m's (namely m = c log(n) for large enough constant c) are possible, and make also the variance small. In this case, the rates are of order (log n) α /n with α > 0. However, the Fourier method remains more general and has to be used for R-supported functions. Now, as we are about to deal with model selection, we can mention that in the Laguerre method, the quantity m to be selected is a dimension and is therefore searched among a set of integers, while in the Fourier method, fractional m's are often considered and it is a real difficulty to determine which set of values is wise to be visited in the selection procedure.

Model selection and adaptation

The aim of this section is to select an integer m that enables us to compute an estimator of the unknown density f with the L 2 risk as close as possible to the oracle risk inf m E f -fm 2 . We follow the model selection paradigm (see [START_REF] Birgé | From model selection to adaptive estimation[END_REF], [START_REF] Birgé | An alternative point of view on Lepski's method[END_REF], [START_REF] Massart | Concentration Inequalities and Model selection[END_REF]) and choose the dimension of projection spaces m as the minimizer of a penalized criterion.

First, we consider the following sets of integers:

M = 1 ≤ m ≤ C n/ log n ∧ n 0 / log n 0 , m log m G -1 m 2 op ≤ n ∧ n 0 , M = 1 ≤ m ≤ C n/ log n ∧ n 0 / log n 0 , 4m log m G -1 m 2
op ≤ n ∧ n 0 , with C a positive constant. Next, we define the two parts of the random penalty

pen 1 (m) := 2κ 1 C( h ∞ ∨ 1) log n n 2m G -1 m 2 op ∧ G -1 m 2 F pen 2 (m) := 8κ 2 ( g ∞ ∨ 1) log n 0 m n 0 G -1 m 2 op .
Then we set the random penalty as pen(m) := pen 1 (m) + pen 2 (m). ( 12)

We also define the deterministic counterparts

pen 1 (m) := 2κ 1 C( h ∞ ∨ 1) log n n 2m G -1 m 2 op ∧ G -1 m 2 F pen 2 (m) := 8κ 2 ( g ∞ ∨ 1) log n 0 m n 0 G -1 m 2 op
and set the deterministic penalty as pen(m) := pen 1 (m) + pen 2 (m) (13)

where κ 1 and κ 2 are numerical constants, see our comment in Section 5. Then we can prove the following result.

Theorem 4.1. Assume that f and g ∈ L 2 (R + ) with g ∞ < ∞. Let f m be defined by (9) and

m = arg min m∈ M -fm 2 + pen(m)
with pen defined by (12), then there exists a positive numerical constant κ 1 such that

E f -f m 2 ≤ C ad inf m∈M f -f m 2 + pen(m) + C n ∧ n 0 ,
where C ad is a numerical constant and C depends on f and g , pen is defined by (13).

This Theorem gives an oracle inequality which establishes a non asymptotic oracle bound. It shows that the squared bias variance trade-off is automatically made up to a loss of logarithmic factor and a multiplicative constant. Theorem 4.1 is derived under mild assumptions. Some comments for practical use are in order. Indeed in the penalty terms pen 1 and pen 2 , there are four quantities which deserve some explanations: κ 1 , κ 2 , g ∞ and h ∞ . It follows from the proof that κ 1 = 196 and κ 2 = 5/2 would suit. But in practice, values obtained from the theory are generally too large and constants are calibrated by simulations. Once chosen, they remain fixed for all simulation experiments. There are still two unknown terms in the penalty, g ∞ and h ∞ , that must be estimated. We have to check that we can derive an oracle inequality when those terms are estimated, which is done in the following Corollary.

Beforehand let us define projection estimators of h and g

ĥD 1 (x) = D 1 -1 k=0 âk (Z)ϕ k (x) with âk (Z) = (1/n) n i=1 ϕ k (Z i ), (14) ĝD 2 (x) = D 2 -1 k=0 âk (Y )ϕ k (x) with âk (Y ) = (1/n 0 ) n 0 i=1 ϕ k (Y i ). ( 15 
)
We can see that ĥD 1 and ĝD 2 are respectively unbiased estimators of

h D 1 (x) = D 1 -1 k=0 a k (h)ϕ k (x) and g D 2 (x) = D 2 -1 k=0 a k (g)ϕ k (x).
Corollary 4.2. Assume that f and g ∈ L 2 (R + ) with g ∞ < ∞. Let f m be defined by (9) and

m = arg min m∈ M -fm 2 + pen(m)
with pen defined by pen(m) := pen 1 (m) + pen 2 (m) with

pen 1 (m) := 4κ 1 log nC( ĥD 1 ∞ ∨ 1) 2m G -1 m 2 op ∧ G -1 m 2 F /n pen 2 (m) := 16κ 2 ( ĝD 2 ∞ ∨ 1) log n 0 m G -1 m 2 op /n 0 , (16) 
where ĥD 1 and ĝD 2 are given by ( 14) and (15), D 1 and

D 2 satisfy log n ≤ D 1 ≤ h ∞ n/(128 √ 2 log 3 n) and log n 0 ≤ D 2 ≤ g ∞ n 0 /(128 √ 2 log 3 n 0 )
. Then there exist positive numerical constants κ 1 and

κ 2 such that E f -f m 2 ≤ C ad inf m∈M f -f m 2 + pen(m) + C n ∧ n 0 ,
Note that the constraint on D 1 and D 2 are fulfilled respectively for n and n 0 large enough as soon as D 1 √ n and D 2 √ n 0 for instance. In this sense Corollary 4.2 has rather an asymptotic flavor.

Illustration

The whole implementation is conducted using Matlab software. The integrated squared error f -f m 2 is computed via a standard approximation and discretization (over 100 points) of the integral on an interval of R + denoted by I f . Then the mean integrated squared error (MISE)

E f -f m
2 is computed as the empirical mean of the approximated ISE over 200 simulation samples.

5.1. Simulation setting. We consider the following six densities with unit variance.

An exponential density E(1) with parameter 1, on

I f = [0, 5] A Gamma density X = 2γ(4, 1/4), on I f = [0, 10] A mixed Gamma X/c with X ∼ 0.4γ(2, 1/2) + 0.6γ(16, 1/4), with c = √ 2.96, A Weibull density, X/c with f (x) = kx k-1 e -x k 1 R + (x) with c = Γ(7/3) -Γ(5/3) 2 on I f = [0, 5], A Rayleigh density X ∼ f with f (x) = (x/σ 2 ) exp(-x 2 /(2σ 2 )) with σ 2 = 2/(4 -π) on I f = [0, 5], A beta density X/c with X ∼ β(4, 5), c = √ 2/9 on I f = [0, 1/c].
We also consider two types of noises Y with same variance, namely an exponential density E(λ) with λ = 2, and a gamma density γ(2, 1/λ ) with λ = 2 √ 2. In both cases, the variance is equal to 1/4.

In the case where the noise density is assumed to be known, we can compute analytically the matrix G m and use the exact formulae:

For Y ∼ E(λ) [G m ] i,j = λ/(1 + λ)1 i=j -2λ (λ -1) i-j-1 (λ + 1) (i-j+1) 1 j<i (17) For Y ∼ γ(2, µ) [G m ] i,j = (µ/(1 + µ)) 2 1 i-1=j -4µ 2 /(1 + µ)) 3 1 i=j + 4(i -j -µ)µ 2 (µ -1) i-j-2 (µ + 1) (i-j+2) 1 j+1<i (18)
5.2. Practical estimation procedure. As in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF], to illustrate the loss implied by the noise, we apply the density estimation method on the true X i 's, for comparison, with a specific τ 0 = 0.25 in the penalty; more precisely, the case called "direct" hereafter relies on the estimator

f (0) m with f (0) m = m-1 j=0 â(0) j ϕ j , â(0) k = n -1 n i=1 ϕ k (X i ) and m 0 = arg min m∈{0,1,...,n} - m-1 k=0 (â (0) k ) 2 + 2τ 0 m n .
To study if the estimation of G m implies a loss, we implement the "known noise" case. We compute G m as given by ( 17) and ( 18) and we apply the procedure described in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF]. We compute the estimator as given by ( 6) and select

m 1 = arg min m G -1 m 2 op ≤n/ log(n) -fm 2 + τ 1 n 2m G -1 m 2 op ∧ log(n)( g ∞ ∨ 1) G -1 m 2 F
.

We set τ 1 = 0.03 in the penalty for known noise density, this is the value calibrated in Mabon (2016b), and g ∞ is known in this setting.

For the case of estimated G m which is specifically studied in the present work, we compute f m with fm given by ( 9) and m given by m = arg min m∈ M -fm 2 + pen(m) , with pen(m) defined by ( 16). The constant calibrations were done with intensive preliminary simulations, including other densities than the ones mentioned above (to avoid overfitting): the selected values are κ 1 = 0. 1 and2 the MISE computed over 200 repetitions, together with the standard deviation, both being multiplied by 100 for small sample size 200 (Table 1) and by 1000 for larger sample size (Table 2). For simplicity, the dimension is selected in all cases among 30 values. We also provide "oracles", with mean values and standard deviations also multiplied by the same factor as the MISE: we compute over 200 repetitions the MISE which would be obtained if we were choosing the best proposal in our family of thirty estimators. These oracles use the knowledge of the true, that we do not have in practice, and they are computed on other samples than the MISE of model selection.

We can see by comparing Tables 1 and2 (recall that the multiplying factor is 100 for the first table and 1000 for the second), that the results are improved when n increases. Estimating the matrix G m does not seem to really increase the error when we compare with the case where it is known; it even sometimes happens that the estimation of G m improves the MISE. In deconvolution setting, the same remark had been made by [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], it seems that the cutoff in the estimation procedure is often safe. For fixed n and estimated G m , increasing n 0 systematically improves the results, except in the case where f is exponential with parameter 1. But this case corresponds to a best estimation proportional to ϕ 0 , a simplicity which seems to be difficult for the estimation algorithm. We can also see that the mixed Gamma distribution has the highest errors and is clearly more difficult to estimate: n = 200 seems too small to get a good account of the bimodality. We can also see that increasing the degree of the inverse problem when going from Exponential to Gamma distribution for Y always increases the errors, even if the signal-to-noise ratio is unchanged. 

Y

) (0.2) (0.4) (0.6) (0.5) (0.5) (0.9) (0.5) Rayleigh MISE 0.4 0.8 1.0 0.6 1.1 1.1 1.0 (std) (0.4) (0.4) (0.3) (0.5) (0.2) (0.2) (0.3) Oracles 0.2 0.3 0.4 0.4 0.3 0.4 0.3 (std) (1.2) (1.5) (1.6) (0.3) (0.3) (0.3) (0.3) Beta MISE 0.3 1.

Concluding remarks

In this work, we have defined a projection estimator of the density f of unobserved i.i.d. random variables X i , i = 1, . . . , n, when data (Z i ) 1≤i≤n from model (1) are available, together with an independent sample (Y i ) 1≤i≤n 0 of the nuisance process Y . All quantities related to the common density g of the (Y i ) 1≤i≤n 0 and the (Y i ) 1≤i≤n 0 are estimated thanks to the independent (Y i )-n 0sample. This means that we estimate a matrix whose inverse is involved in the definition of the coefficients of the estimator. Therefore the main difficulty is to measure the distance between the inverse of a random matrix and the inverse of its expectation. Our strategy is inspired by the one initiated by [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] and developed by [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF] in the Fourier context, with help of tools related to random matrices taken in [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF]; its relies on the use of a relevant cutoff for the inversion of the estimated matrix. We obtain risk bounds generalizing the case where g is known and showing that, if both sample sizes n and n 0 have the same order, it is possible that no loss in the order of the upper bound occurs. We also provide a model selection procedure for which a risk bound states that the bias-variance compromise is adequately performed, in a non-asymptotic setting.

There remains additional questions that may be worth answering. First, in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF], the problem of survival function estimation for known g is also studied: the question is left open here, to determine if the strategy developed in the present work could be extended to this context. Moreover, our framework is mainly nonasymptotic, but if we are interested in asymptotics, the question of lower bounds may be studied; we may wonder if the tedious strategy proposed in [START_REF] Belomestny | Nonparametric laguerre estimation in the multiplicative censoring model[END_REF] can be extended to the present context, for the terms corresponding to known g; the additional terms due to estimating G m would have to be studied also. 
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P G m -G m op ≥ t ≤ 2m exp - n 0 t 2 /4 g ∞ m + ( √ 2/3)mt .
Corollary 7.2. Under the Assumptions of Proposition 7.1, for all q ≥ 2, it holds that

E G m -G m q op ≤ C q (log m) q/2 m q/2 n q/2 0 ∨ (log m) q m q n q 0 with C q = 2 q-1 e q/2 g q/2
∞ (q + 2) q/2 + 2 2q-1+q/2 (q + 2) q/2 .

Proof of Proposition 7.1. To get the announced result, we apply a Bernstein matrix inequality (see Theorem A.2). Thus we write G m as a sum of a sequence of independent matrices

G m = 1 n 0 n 0 i=1 K m (Y i ) with K m (Y i ) =      2 -1/2 ϕ 0 (Y i ) if i = j, 2 -1/2 (ϕ i-j (Y i ) -ϕ i-j-1 (Y i )) if j < i, 0 otherwise. We put S m = 1 n 0 n 0 i=1 K m (Y i ) -E K m (Y i ) . • Bound on L(K m ) = K m (Y 1 ) -E [K m (Y 1 )] op /n 0 .
First using the equivalence between the spectral and trace norms

A ∈ R m×m , 1 √ m A F ≤ A op ≤ A F (19) 
we have by Equation ( 19) that

L(K m ) ≤ 1 n 0 K m (Y 1 ) -E K m (Y 1 ) F ,
and using Equation ( 4)

K m (Y 1 ) -E K m (Y 1 ) 2 F = 1≤i,j≤m |[K m (Y 1 )] i,j -E K m (Y 1 ) i,j | 2 ≤ 1 2 1≤i≤m |ϕ 0 (Y 1 ) -E[ϕ 0 (Y 1 )]| 2 + 1 2 1≤j<i≤m |ϕ i-j (Y 1 ) -ϕ i-j-1 (Y 1 ) -E[ϕ i-j (Y 1 ) -ϕ i-j-1 (Y 1 )]| 2 ≤ 1 2 m|e -Y 1 -E[e -Y 1 ]| 2 + 1 2 1≤j<i≤m (4 √ 2) 2 ≤ m 2 + 4 2 m(m -1) 2 = 16m 2 -16m + m 2 ≤ 8m 2 . So we get that L(K m ) ≤ 2 √ 2m n 0 . • Bound on ν(S m ) = n 0 i=1 E t (K m (Y i ) -E [K m (Y i )])(K m (Y i ) -E [K m (Y i )]) op /n 2 0 .
By definition of the operator norm we have

ν(S m ) = 1 n 2 0 sup x 2,m =1 t x n 0 i=1 E t (K m (Y i ) -E K m (Y i ) )(K m (Y i ) -E K m (Y i ) ) x = 1 n 0 sup x 2,m =1 t x E t (K m (Y 1 ) -E K m (Y 1 ) )(K m (Y 1 ) -E K m (Y 1 ) ) x = 1 n 0 sup x 2,m =1 E K m (Y 1 ) -E K m (Y 1 ) x 2 2,m
It yields that, for t x = (x 0 , . . . , x m-1 ), and convention ϕ -1 ≡ 0,

E K m (Y 1 ) -E K m (Y 1 ) x 2 2,m = 1 2 m-1 i=0 E   i j=0 ϕ i-j (Y 1 ) -ϕ i-j-1 (Y 1 ) -E[ϕ i-j (Y 1 ) -ϕ i-j-1 (Y 1 )] x j   2 = 1 2 m-1 i=0 Var   i j=0 ϕ i-j (Y 1 ) -ϕ i-j-1 (Y 1 ) x j   ≤ 1 2 m-1 i=0 E i j=0 ϕ i-j (Y 1 ) -ϕ i-j-1 (Y 1 ) x j 2 = 1 2 m-1 i=0 i j=0 (ϕ i-j (u) -ϕ i-j-1 (u)) x j 2 g(u) du ≤ g ∞ 2 m-1 i=0 i j=0 (ϕ i-j (u) -ϕ i-j-1 (u)) x j 2 du = g ∞ 2 m-1 i=0   2 1≤j,j ≤i δ j,j x j x j - 1≤j,j ≤i δ j,j +1 x j x j +1 - 1≤j,j ≤i δ j,j -1 x j x j -1   ≤ 2 g ∞ m x 2 2,m .
Then we get that ν(S m ) ≤ 2 g ∞ m n 0 .

In the end applying Theorem A.2 yields that for all t > 0

P G m -G m op ≥ t ≤ 2m exp - t 2 /2 2 g ∞ m/n 0 + (2 √ 2/3)mt/n 0 .
from which we get the result of Proposition 7.1.

Proof of Corollary 7.2. Before proving the announced result, let us explain how Theorem A.3 for Hermitian matrices can be extended to non-Hermitian matrices. This is due to the so-called Paulsen dilation which corresponds to the following isomorphism trick for a rectangular matrix

A A → H(A) = 0 A A † 0
where A † denotes the conjugate transpose of A. Obviously H(A) is an Hermitian matrix. We can also notice that

H(A) 2 = AA † 0 0 A † A So we get λ max H(A) 2 = A 2 op and λ max (H(A)) = A op .
Under the Assumptions of Proposition 7.1, we can apply Theorem A.1 in [START_REF] Chen | The masked sample covariance estimator: an analysis using matrix concentration inequalities[END_REF] (see Theorem A.3) stated for Hermitian matrices, using the above Paulsen dilation as follows. Let Y i be rectangular matrices and set A = i Y i it yields that, for q ≥ 2 and r ≥ max(q, 2 log m),

H(A) = 0 i Y i i Y † i 0 = i 0 Y i Y † i 0 = i H(Y i ).
Thus we get that

E A q op 1/q = Eλ max H( i Y i ) q 1/q ≤ √ erλ 1/2 max i EH(Y i ) 2 + 2er E max i λ max (H(Y i )) q 1/q ≤ er max (λ max (EAA † ) , λ max (EA † A)) + 2er E max i Y i q op 1/q
. Now we apply this result for

A = G m -G m = S m = 1 n 0 n 0 i=1 K m (Y i ) -E K m (Y i ) .
Using the notations of the proof of Proposition 7.1, we get for q ≥ 2, m ≥ 2 and r = 2 log m

E G m -G m q op ≤ 2 q-1 (erν(S m )) q/2 + 2 q-1 (erL(K m )) q ≤ 2 q-1 er g ∞ m n 0 q/2 + 2 q-1 er 2 √ 2m n 0 q ≤ 2 q-1 e q/2 g q/2 ∞ 2 log m m n 0 q/2 + 2 2q-1+q/2 2 log m m n 0 q ≤ C q log m m n 0 q/2 ∨ log m m n 0 q ,
with C q = 2 q-1 e q/2 g q/2 ∞ (q + 2) q/2 + 2 2q-1+q/2 (q + 2) q/2 . 7.2. Proofs of results of Section 3. 

∆ m = G -1 m op ≤ n 0 m log m (20)
and notice that

G -1 m -G -1 m = 1 ∆ c m G -1 m + 1 ∆m (G -1 m -G -1 m ) = 1 ∆ c m G -1 m -1 ∆m G -1 m (G m -G m )G -1 m . Then we can write that E G -1 m -G -1 m 2p op = E G -1 m 2p op 1 ∆ c m + G -1 m (G m -G m )G -1 m 2p op 1 ∆m = G -1 m 2p op P[∆ c m ] + E G -1 m (G m -G m )G -1 m 2p op 1 ∆m . ( 21 
)
This proof is inspired of the proof of Lemma 2.1 in [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF], in the sense that we divide the proof in two cases according to the comparison of G -1 m op with the threshold.

• First case:

G -1 m op > 1 2 n 0 m log m . Let us prove that E G -1 m -G -1 m 2p op G -1 m 2p op .
Starting from Equation (21) and using the set ∆ m , we have that

E G -1 m -G -1 m 2p op ≤ G -1 m 2p op + G -1 m 2p op E G -1 m 2p op G m -G m 2p op 1 ∆m ≤ G -1 m 2p op + G -1 m 2p op n 0 m log m p E G m -G m 2p op .
Besides applying Corollary 7.2 for q = 2p yields

E G -1 m -G -1 m 2p op ≤ G -1 m 2p op + G -1 m 2p op n 0 m log m p C 2p m log m n 0 p ≤ (1 + C 2p ) G -1 m 2p op .
• Second case:

G -1 m op < 1 2 n 0 m log m . Let us prove that E G -1 m -G -1 m 2p op log m G -1 m 4 op m n 0 p .
Starting from ( 21) again, we get

E G -1 m -G -1 m 2p op ≤ G -1 m 2p op P[∆ c m ] + G -1 m 2p op E G m -G m 2p op G -1 m 2p op 1 ∆m . (22) i) Upper bound on E G m -G m 2p op G -1 m 2p op 1 ∆m .
First let us notice that

G -1 m 2p op ≤ 2 2p-1 G -1 m -G -1 m 2p op + 2 2p-1 G -1 m 2p
op . Moreover applying Corollary 7.2 for q = 2p and q = 4p with the set ∆ m , we get

E G m -G m 2p op G -1 m 2p op 1 ∆m ≤ 2 2p-1 G -1 m 2p op E G m -G m 2p op 1 ∆m + 2 2p-1 E G m -G m 2p op G -1 m -G -1 m 2p op 1 ∆m ≤ 2 2p-1 G -1 m 2p op E G m -G m 2p op 1 ∆m + 2 2p-1 G -1 m 2p op E G m -G m 4p op G -1 m 2p op 1 ∆m ≤ 2 2p-1 C 2p G -1 m 2p op m log m n 0 p + 2 2p-1 G -1 m 2p op n 0 m log m p C 4p m log m n 0 2p ≤ 2 2p-1 (C 2p + C 4p ) G -1 m 2p op m log m n 0 p . ( 23 
) ii) Upper bound on P[∆ c m ] = P G -1 m op > n 0 m log m .
The upper bound is given by the following Lemma proved afterwards.

Lemma 7.3. For ∆ m defined by Equation (20) and G -1

m op < 1 2 n 0 m log m , it holds that P[∆ c m ] = P G -1 m op > n 0 m log m ≤ 2 2p+1 C 2p m log m n 0 p G -1 m 2p op . ( 24 
)
Finally starting from Equation ( 22) and gathering Equations ( 23) with ( 24), we get that

E G -1 m -G -1 m 2p op ≤ 2 2p+1 C 2p m log m n 0 p G -1 m 4p op + 2 2p-1 (C 2p + C 4p ) G -1 m 4p op m log m n 0 p ≤ (2 2p+1 C 2p + 2 2p C 4p ) log m G -1 m 4 op m n 0 p .
In conclusion, we just proved the following upper bound

E G -1 m -G -1 m 2p op ≤ C op,p G -1 m 2 op ∧ log m G -1 m 4 op m n 0 p with C op,p = 2 2p+1 C 2p + 2 2p C 4p + 1.
Proof of Lemma 7.3. First invoke the triangular inequality

G -1 m op ≤ G -1 m -G -1 m op + G -1 m op which implies that P G -1 m op > n 0 m log m ≤ P G -1 m -G -1 m op > n 0 m log m -G -1 m op .
Moreover we assume that

G -1 m op < 1 2 n 0 m log m , so P G -1 m op > n 0 m log m ≤ P G -1 m -G -1 m op > G -1 m op .
Now let us rewrite this probability, as

P G -1 m -G -1 m op > G -1 m op = P G -1 m -G -1 m op > G -1 m op ∩ G -1 m ( G m -G m ) op < 1 2 + P G -1 m -G -1 m op > G -1 m op ∩ G -1 m ( G m -G m ) op ≥ 1 2 ≤ P G -1 m -G -1 m op > G -1 m op ∩ G -1 m ( G m -G m ) op < 1 2 + P G -1 m ( G m -G m ) op ≥ 1 2 . ( 25 
)
To control the second term of the right hand side of Equation ( 25), we apply Markov inequality and Corollary 7.2 for q = 2p

P G -1 m ( G m -G m ) op ≥ 1 2 ≤ P G -1 m op G m -G m op ≥ 1 2 ≤ 2 2p C 2p m log m n 0 p G -1 m 2p op . (26) 
Next to control the first term on the right hand side of Equation ( 25), we apply Theorem A.1 (with

A = G m and B = G m -G m ), it yields P G -1 m -G -1 m op > G -1 m op ∩ G -1 m ( G m -G m ) op < 1 2 ≤ P G m -G m op G -1 m 2 op 1 -G -1 m ( G m -G m ) op > G -1 m op ∩ G -1 m ( G m -G m ) op < 1 2 ≤ P G m -G m op > 1 2 G -1 m -1 op , (27) 
again applying Markov inequality along with Corollary 7.2 gets

P G -1 m -G -1 m op > G -1 m op ∩ G -1 m ( G m -G m ) op < 1 2 ≤ 2 2p C 2p m log m n 0 p G -1 m 2p op
So starting from Equation ( 25) and gathering Equations ( 26) and ( 27) gives

P G -1 m op > n 0 m log m ≤ 2 2p+1 C 2p m log m n 0 p G -1 m 2p op
7.2.2. Useful corollary for the Frobenius norm.

Corollary 7.4. Under the Assumptions of Lemma 3.1, we have

E G -1 m -G -1 m 2 F ≤ 2 G -1 m 2 F
Proof of Corollary 7.4. The proof mainly follows the lines of the proof of of Lemma 3.1. ∆ m is defined by Equation ( 20), then we write

E G -1 m -G -1 m 2 F = E G -1 m 2 F 1 ∆ c m + G -1 m (G m -G m )G -1 m 2 F 1 ∆m = G -1 m 2 F P[∆ c m ] + E G -1 m (G m -G m )G -1 m 2 F 1 ∆m . (28) 
The definition of ∆ m along with the equivalence between norms (see Eq. ( 19)) implies that on these set

G -1 m 2 F ≤ n 0 log m . ( 29 
)
Let us recall that for two matrices A and

B AB F ≤ A F B op and AB F ≤ A op B F . (30) 
Starting from Equation (28) plus Equation ( 29) and Lemma 3.1 for q = 2 along with Equation ( 30) gives

E G -1 m -G -1 m 2 F ≤ G -1 m 2 F + G -1 m 2 F E G -1 m 2 op G m -G m 2 op 1 ∆m ≤ G -1 m 2 F + G -1 m 2 F n 0 m log m E G m -G m 2 op ≤ G -1 m 2 F + G -1 m 2 F m log m n 0 n 0 m log m = 2 G -1 m 2 F
7.2.3. Proof of Corollary 3.3. The proof follows the lines of the proof of of Lemma 3.1. The only difference lies in the following equation

E (G -1 m -G -1 m ) h m 2 2,m = G -1 m h m 2 2,m P[∆ c m ] + E G -1 m (G m -G m )G -1 m h m 2 2,m 1 ∆m = f m 2 2,m P[∆ c m ] + E G -1 m (G m -G m )G -1 m h m 2 2,m 1 ∆m ,
with ∆ m defined by Equation ( 20). It yields the following upper bound

E (G -1 m -G -1 m ) h m 2 2,m ≤ f m 2 2,m P[∆ c m ] + f m 2 2,m E G -1 m 2 op G m -G m 2 op 1 ∆m .
And following the proof of of Lemma 3.1, we get

E (G -1 m -G -1 m ) h m 2 2,m ≤ f 2 C op 1 ∧ log m m n 0 G -1 m 2 op .
7.2.4. Proof of Corollary 3.5.

E (G -1 m -G -1 m ) h m 2 2,m = G -1 m h m 2 2,m P[∆ c m ] + E[ (G -1 m -G -1 m ) h m 2 2,m 1 ∆m ] ≤ f 2 2 2p+1 C 2p 2m log(m) G -1 m 2 op n 0 p + 2E[ G -1 m (G m -G m ) f m 2 2,m 1 ∆m ] + 2E[ ( G -1 m -G -1 m )(G m -G m ) f m 2 2,m 1 ∆m 1 Em ] + 2E[ ( G -1 m -G -1 m )(G m -G m ) f m 2 2,m 1 ∆m 1 E c m ] (31) 
where the last inequality follows from Lemma 7.3, and we define

E m = G m -G m 2 op < a 2 m log(m) n 0 ,
along with

T 2 := E[ G -1 m (G m -G m ) f m 2 2,m 1 ∆m ]
Bound on T 2 : First let us notice that, with convention ϕ -1 ≡ 0,

T 2 ≤ G -1 m 2 op E (G m -G m ) f m 2 2,m ≤ G -1 m 2 op E   m k=1   m j=1 [G m -G m ] k,j a j-1 (f )   2   = 1 2n 0 G -1 m 2 op m-1 k=0 Var   k j=0 (ϕ k-j (Y 1 ) -ϕ k-j-1 (Y 1 ))a j (f )   .
It yields that

T 2 ≤ 1 2n 0 G -1 m 2 op m-1 k=0 E   k j=0 (ϕ k-j (Y 1 ) -ϕ k-j-1 (Y 1 ))a j (f )   2 ≤ 1 2n 0 G -1 m 2 op m-1 k=0 R +   k j=0 (ϕ k-j (y) -ϕ k-j-1 (y))a j (f )   2 g(y) dy ≤ g ∞ 2n 0 G -1 m 2 op m-1 k=0 R +   k j=1 (ϕ k-j (y) -ϕ k-j-1 (y))a j-1 (f )   2 dy ≤ 2 g ∞ n 0 G -1 m 2 op m-1 k=0 k j=0 a 2 j (f ) ≤ 2 f 2 g ∞ m n 0 G -1 m 2 op .
Secondly we propose an alternative bound on T 2 .

T 2 = E G -1 m (G m -G m ) f m 2 2,m = E m k=1 G -1 m (G m -G m ) f m 2 k = E m k=1   1≤j,l≤m [G -1 m ] k,l [G m -G m ] l,j a j-1 (f )   2 = m k=1 1 2n 0 Var   1≤j≤l≤m [G -1 m ] k,l (ϕ l-j (Y 1 ) -ϕ l-j-1 (Y 1 ))a j (f )   ≤ 1 2n 0 m k=1 E 1≤j≤l≤m [G -1 m ] k,l (ϕ l-j (Y 1 ) -ϕ l-j-1 (Y 1 ))a j (f ) 2
Following the same reasoning as previously, we get

T 2 ≤ 2 g ∞ n 0 m k=1 1≤j<l≤m 1≤j <l ≤m a j-1 (f )a j -1 (f )[G -1 m ] k,l [G -1 m ] k,l δ l-j,l -j .
Moreover, we can notice that

1≤j<l≤m a j-1 (f )[G -1 m ] k,l δ l-j,l -j = m j=1 m l=j+1 a j-1 (f )[G -1 m ] k,l δ l-j,l -j = m j=1 m-j l =1 a l+j (f )[G -1 m ] k,l +j δ l,l -j , it yields T 2 ≤ 2 g ∞ n 0 m k=1 j,l,j |a j-1 (f )||a j -1 (f )||[G -1 m ] k,l ||[G -1 m ] k,l-j-j | ≤ 2 g ∞ n 0 G -1 m 2 F   m j=1 |a j-1 (f )|   2 ≤ 2 f 2 1 g ∞ G -1 m 2 F n 0 .
So we get

T 2 ≤ 2 n 0 g ∞ f 2 m G -1 m 2 op ∧ f 2 1 G -1 m 2 F . (32) 
Next using the definition of ∆ m and

E m E[ ( G -1 m -G -1 m )(G m -G m ) f m 2 2,m 1 ∆m 1 Em ] = E[ G -1 m (G m -G)G -1 m (G m -G m ) f m 2 2,m 1 ∆m 1 Em ] ≤ E[ G -1 m 2 op 1 ∆m (G m -G m ) 2 op 1 Em G -1 m (G m -G m ) f m 2 2,m ] ≤ a 2 T 2 . ( 33 
)
For the last term, applying Lemma 3.1 and Corollary 7.2

E[ ( G -1 m -G -1 m )(G m -G m ) f m 2 2,m 1 ∆m 1 E c m ] ≤ f 2 E[ G -1 m -G -1 m 2 op G m -G m 2 op 1 ∆m 1 E c m ] ≤ f 2 E 1/4 [ G -1 m -G -1 m 8 op ]E 1/4 [ G m -G m 8 op ] P[E c m ] ≤ f 2 G -1 m 2 op C 4 m log(m) n 0 P(E c m )
Now, we apply Proposition 7.1 with t = a m log(m) n 0

, and taking into account that, given our definition of M, m log(m)/n 0 ≤ 1/4,

g ∞ + (2 √ 2/3)a m log(m) n 0 ≤ (1 + a)(1 ∨ g ∞ ) ≤ 2a(1 ∨ g ∞ ) if a ≥ 1. We get P(E c m ) ≤ 2m exp - n 0 m a 2(1 ∨ g ∞ ) m log(m) n 0 = 2m 1-a/(2(1∨ g ∞))
.

Choose a = a(q) such that

1 - a(q) 2(1 ∨ g ∞ ) = -2q that is a(q) = 2(2q + 1)(1 ∨ g ∞ ) yields P(E c m ) ≤ 2m -2q
. Thus, we obtain

E[ ( G -1 m -G -1 m )(G m -G m ) f m 2 2,m 1 ∆m 1 E c m ] ≤ 2C 4 f 2 G -1 m 2 op m log(m) n 0 m -2q
and we use that log(m)/m ≤ 1 for m ≥ 2 (take q = 1/2) and m log(m)

G -1 m 2 op /m 2 ≤ G -1 m 2 F
(take q = 1). Therefore, for a = a(1) = 6(1 ∨ g ∞ ), we obtain

E[ ( G -1 m -G -1 m )(G m -G m ) f m 2 2,m 1 ∆m 1 E c m ] ≤ 2C 4 n 0 f 2 m G -1 m 2 op ∧ G -1 m 2 F .
Plugging ( 32), ( 33) and ( 34) into ( 31) gives

E (G -1 m -G -1 m ) h m 2 2,m ≤ C E n 0 (1 ∨ g ∞ ) 3 ( f 2 ∨ f 2 1 ) m G -1 m 2 op ∧ G -1 m 2 F + 2 2p+1 C 2p 2m log(m) G -1 m 2 op n 0 p .
with C E = 2(196 + 2C 4 ).

7.2.5. Proofs of Propositions 3.4 and 3.6.

Proof of Proposition 3.4. By Pythagoras theorem, we have

f -fm 2 = f -f m 2 + f m -fm 2 .
Let us rewrite the second term of the above equality:

f m -fm 2 = f m - ˜ f m ˆ h m -G -1 m ˆ h m 2 2,m . (35) 
i) First let us bound the first term on the right hand side of Equation ( 35).

a) First we apply (4) and get

E G -1 m ( ˆ h m -h m ) 2 2,m ≤ G -1 m 2 op E ˆ h m -h m 2 2,m ≤ E   m j=1 1 n n i=1 ϕ j (Z i ) -E[ϕ j (Z 1 )] 2   ≤ G -1 m 2 op n m j=1 E[ϕ 2 j (Z 1 )] ≤ 2m n G -1 m 2 op .
b) Secondly we also have

E G -1 m ( ˆ h m -h m ) 2 2,m = E m k=1   m j=1 G -1 m k,j (a j-1 (h) -âj-1 (Z))   2 = m k=1 Var   m j=1 G -1 m k,j âj-1 (Z)   ,
and since âj-

1 (h) -a j-1 (Z) = (1/n) n i=1 (ϕ j-1 (Z i ) -E[ϕ j-1 (Z i )]), it yields that E G -1 m ( ˆ h m -h m ) 2 2,m = 1 n m k=1 m j=1 Var G -1 m k,j ϕ j-1 (Z 1 ) ≤ 1 n m k=1 E     m j=1 G -1 m k,j ϕ j-1 (Z 1 )   2   ≤ h ∞ n m k=1 R +   m j=1 G -1 m k,j ϕ j-1 (u)   2 du ≤ h ∞ n m k=1 1≤j,j ≤m G -1 m k,j G -1 m k,j R + ϕ j-1 (u)ϕ j -1 (u) du ≤ h ∞ n m k=1 m j=1 G -1 m 2 k,j = h ∞ n G -1 m 2 F .
In conclusion, the first term on the right-hand-side of Equation ( 35) is upper bounded as follows

E G -1 m ( h m - ˆ h m ) 2 2,m ≤ 2m n G -1 m 2 op ∧ h ∞ n G -1 m 2 F . (36) 
ii) Now we turn to the second term on the right-hand-side of Equation ( 35). Let us notice that

G -1 m ˆ h m -G -1 m ˆ h m 2 2,m = (G -1 m -G -1 m )( ˆ h m -h m ) + (G -1 m -G -1 m ) h m 2 2,m ≤ 2 (G -1 m -G -1 m )( ˆ h m -h m ) 2 2,m + 2 (G -1 m -G -1 m ) h m 2 2,m . (37) 
a) The first term of (37) can be bounded in two ways: since (Y 1 , . . . , Y n 0 ) is independent of (Z 1 , . . . , Z n ), we get that

E (G -1 m -G -1 m )( ˆ h m -h m ) 2 2,m ≤ E G -1 m -G -1 m 2 op E ˆ h m -h m 2 2,m (38) 
and by using (4) we get

E ˆ h m -h m 2 2,m = E   m j=1 1 n n i=1 ϕ j (Z i ) -E[ϕ j (Z 1 )] 2   ≤ 1 n m j=1 E[ϕ 2 j (Z 1 )] ≤ 2m n . (39) 
Applying Lemma 3.1 gives that

E (G -1 m -G -1 m )( ˆ h m -h m ) 2 2,m ≤ 2m n C op,1 G -1 m 2 op
b) Secondly, repeating the same scheme as in i)b) under the assumption that (Y 1 , . . . , Y n 0 ) is independent of (Z 1 , . . . , Z n ), we obtain

E (G -1 m -G -1 m )( ˆ h m -h m ) 2 2,m ≤ E G -1 m -G -1 m 2 F h ∞ n .
And applying Corollary 7.4

E (G -1 m -G -1 m )( ˆ h m -h m ) 2 2,m ≤ C F G -1 m 2 F h ∞ n . (40) 
For the second term of (37), we have according to Corollary 3.3

E (G -1 m -G -1 m ) h m 2 2,m ≤ C E log m G -1 m 2 op m n 0 . ( 41 
)
Finally starting from Equation ( 35) and gathering Equations ( 36), ( 38), ( 39), ( 40) and ( 41) yields

E f m -fm 2 ≤ (2 + C op,1 + C F ) 2m n G -1 m 2 op ∧ h ∞ n G -1 m 2 F + 4C E log m G -1 m 2 op m n 0 .
To conclude

E f m -fm 2 ≤ f -f m 2 + C 2m n G -1 m 2 op ∧ h ∞ n G -1 m 2 F + 4C E log m G -1 m 2 op m n 0 .
Proof of Proposition 3.6. The proof follows the lines of the proof of Proposition 3.4. The difference lies in the bounding of

E (G -1 m -G -1 m ) h m 2 
2,m . For f 1 < ∞, we can apply Corollary 3.5 which yields the announced bound on E f -fm 2 .

Proofs of Proposition 3.8 and Corollary 3.9. For f ∈ W s (R + , L) defined by ( 11), we have

f -f m 2 = ∞ k=m a 2 k (f ) = ∞ k=m a 2 k (f )k s k -s ≤ Lm -s ,
and according to Lemma 3.7

G -1 m 2 F G -1 m 2 op m 2r .
It yields that the MISE is upper bounded as follows

E f -fm 2 ≤ Lm -s + 2C 2m n m 2r ∧ h ∞ n m 2r + 2CC m 2r+1 n 0
Now we have to counterbalance the bias and the variance terms as follows

Lm -s + 2C(2 + h ∞ ) m 2r n ⇒ m opt 1 ∝ n 1/s+2r Lm -s + 2CC log(m) m 2r+1 n 0 ⇒ m opt 2 ∝ (n 0 / log(n 0 )) 1/s+2r+1
For m opt ∝ n 1/s+2r ∧ (n 0 / log(n 0 )) 1/s+2r+1 we get

E f -fmopt 2 n -s/s+2r ∨ n 0 log n 0 -s/s+2r+1
. which ends the proof of Proposition 3.8. For Corollary 3.9, we start from Proposition 3.6. Assume that j j s |a j (f )| 2 < +∞, then s+2r) , and for m opt,2 = n 1/(s+2r) 0

j |a j (f )| ≤ j j s |a j (f )| 2 j j -s is finite is s > 1. Assume also that G -1 m 2 op m -2r and G -1 m 2 F m -2r , then for m opt,1 = n 1/(s+2r) , we get inf m f -f m 2 + C n (m G -1 m op ∧ G -1 m 2 F ) n -s/(
, we ) if

inf m f -f m 2 + C n 0 (m G -1 m op ∧ G -1 m 2 F ) n -s/(
-p s -1 s + 2r < - s s + 2r ⇔ s > p p -1 = 1 + 1 p -1 .
If one takes p = 2, we get s > 2. But for any s > 1, there exists > 0 such that s = 1 + and we just have to choose p = 2 -1 + 1. Thus for s > 1, the rate is

(n ∨ n 0 ) -s s+2r .
7.3. Proof of Theorem 4.1. First for m ∈ M, let us define the associated subspaces

S m d 1 ⊆ R d 1 S m d 1 = t m ∈ R d 1 / t m = t (a 0 (t), a 1 (t), . . . , a m-1 (t), 0, . . . , 0) .
This space is defined to give nested models. When we increase the dimension from m to m + 1 we only compute one more coefficient. Then for any t ∈ R d 1 , we define the following contrast for the density estimation

γ n ( t) = t 2 2,d 1 -2 t, G -1 d 1 h d 1 2,d 1 .
Let us notice that for t m ∈ S m d 1 , thanks to the null coordinates of t m and the lower triangular form of G d 1 and G m , we have

t m , G -1 d 1 h d 1 2,d 1 = t m , G -1 m h m 2,m = t m , ˜ f m 2,m .

So we clearly have that

˜ f m = argmin tm∈S m d 1 γ n ( t m ). Now let m, m ∈ M, t m ∈ S m d 1 and s m ∈ S m d 1 . Notice that γ n ( t m ) -γ n ( s m ) = t m -f 2 2,d 1 -s m -f 2 2,d 1 -2 t m -s m , G -1 d 1 ( ˆ h d 1 -h d 1 ) 2,d 1
and due to orthonormality of Laguerre basis, for any m we have the following relations between the L 2 norm and the Euclidean norms,

fm -f 2 = ˜ f m -f 2 2,d 1 + ∞ j=d 1 (a j (f )) 2 and f m -f 2 = f m -f 2 2,d 1 + ∞ j=d 1 (a j (f )) 2 (45) We set ν n ( t) = t, G -1 d 1 ( ˆ h d 1 -h d 1 ) 2,d 1 for t ∈ R d 1 .
According to the definition of m ∈ M, for any m in the model collection M, we have the following inequality

γ n ( ˜ f m ) + pen( m) ≤ γ n ( f m ) + pen(m). It yields that ˜ f m -f 2 2,d 1 -f m -f 2 2,d 1 -2ν n ( ˜ f m -f m ) ≤ pen(m) -pen( m) which implies ˜ f m -f 2 2,d 1 ≤ f m -f 2 2,d 1 + 2ν n ( ˜ f m -f m ) + pen(m) -pen( m). Let us notice that ν n ( ˜ f m -f m ) = ˜ f m -f m 2,d 1 ν n ˜ f m -f m ˜ f m -f m 2,d 1
and due to the relation 2ab ≤ a 2 /4 + 4b 2 , we have the following inequalities

˜ f m -f 2 2,d 1 ≤ f m -f 2 2,d 1 + 2 ˜ f m -f m 2,d 1 sup t∈B(m, m) ν n ( t) + pen(m) -pen( m) ≤ f m -f 2 2,d 1 + 1 4 ˜ f m -f m 2 2,d 1 + 4 sup t∈B(m, m) ν 2 n ( t) + pen(m) -pen( m) where B(m, m) = t m∨ m ∈ S m∨ m d 1 , t m∨ m 2,d 1 = 1 . Now notice that ˜ f m -f m 2 2,d 1 ≤ 2 ˜ f m -f 2 2,d 1 + 2 f m -f 2 2,d 1 we then have ˜ f m -f 2 2,d 1 ≤ f m -f 2 2,d 1 + 1 2 ˜ f m -f 2 2,d 1 + 1 2 f -f m 2 2,d 1 + 4 sup t∈B(m, m) ν 2 n ( t) + pen(m) -pen( m) which implies ˜ f m -f 2 2,d 1 ≤ 3 f -f m 2 2,d 1 + 2 pen(m) + 8 sup t∈B(m, m) ν 2 n ( t) -2 pen( m).
Using Equation ( 45), we have

f m -f 2 - ∞ j=d 1 (a j (f )) 2 ≤ 3   f -f m 2 - ∞ j=d 1 (a j (f )) 2   + 2 pen(m) + 8 sup t∈B(m, m) ν 2 n ( t) -2 pen( m). (46) 
Now let p be a function such that for any m, m , we have : 4 p(m, m ) ≤ pen(m) + pen(m ).

f m -f 2 ≤ 3 f -f m 2 + 4 pen(m) + 8 sup t∈B(m, m) ν 2 n ( t) -p(m, m) + Let us define m * = m ∨ m and ξ 2 1,n ( t) = | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 p 1 (m, m ) = 2 pen 1 (m ∨ m ) ξ 2 2,n ( t) = | t m * , ( G -1 d 1 -G -1 d 1 ) h d 1 2,d 1 | 2 p 2 (m, m ) = 2 pen 2 (m ∨ m ) Let us notice that sup t∈B(m, m) ν 2 n ( t) -p(m, m) + ≤ sup t∈B(m, m) | t m * , G -1 d 1 ( h d 1 -h d 1 ) + ( G -1 d 1 -G -1 d 1 ) h d 1 2,d 1 | 2 -p 1 (m, m) -p 2 (m, m) + ≤ 2 sup t∈B(m, m) ξ 2 1,n ( t) - 1 2 p 1 (m, m) + + 2 sup t∈B(m, m) ξ 2 2,n ( t) - 1 2 p 2 (m, m) + , it yields that f m -f 2 ≤ 3 f -f m 2 + 4 pen(m) + 16 m ∈ M sup t∈B(m,m ) ξ 2 1,n ( t) - 1 2 p 1 (m, m ) + + 16 sup t∈B(m, m) ξ 2 2,n ( t) - 1 2 p 2 (m, m) +
We now use the three following results which ensure the validity of Theorem 4.1.

Proposition 7.5. For m ∈ M, it holds that

E [ pen(m)] ≤ Cpen(m), with C = (6 + 2C op + C F ).
Proposition 7.6. Under the assumptions of Theorem 4.1, there exists a constant

C 1 > 0 depending on h ∞ such that for p1 (m, m ) = 2 pen 1 (m ∨ m ) E   m ∈ M sup t∈B(m,m ) ξ 2 1,n ( t) - 1 2 p 1 (m, m ) +   ≤ C 1 n .
Proposition 7.7. Under the assumptions of Theorem 4.1, there exists a constant

C 2 > 0 depending on h ∞ such that for p2 (m, m ) = 2 pen 2 (m ∨ m ) E sup t∈B(m, m) ξ 2 2,n ( t) - 1 2 p 2 (m, m) + ≤ C 2 1 n 0 + pen 2 (m) .
In the end:

E f -f m 2 ≤ 4C inf m∈Mn f -f m 2 + pen(m) + C 1 n + C 2 n 0 ,
as soon as κ 1 ≥ 196 and κ 2 ≥ 5/2. 7.3.1. Proof of Proposition 7.5. Let m be in the model collection M. By definition we have

E [ pen(m)] = E [ pen 1 (m) + pen 2 (m)] = 2Cκ 1 log nE 2m h ∞ n G -1 m 2 op ∧ ( h ∞ ∨ 1) n G -1 m 2 F + 8κ 2 C E ( g ∞ ∨ 1) m n 0 log n 0 E G -1 m 2 op .
Applying Lemma 3.1 for p = 1, we get that

E G -1 m 2 op ≤ 2 G -1 m 2 op + 2E G -1 m -G -1 m 2 op ≤ 2 G -1 m 2 op + 2C op,1 G -1 m 2 op .
Besides applying Corollary 7.4, we get that 

E G -1 m 2 F ≤ 2 G -1 m 2 F + 2C F G -1 m 2 F . Finally E [ pen(m)] ≤ (4 + 2C
| t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + = sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + 1 m >m + sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + 1 m ≤m 1 ∆m + sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + 1 m ≤m 1 ∆ c m = sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + 1 m >m + sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + 1 m ≤m 1 ∆m Since ∆ m ⊂ M and ∆ m ⊂ M for m, m ∈ M, it yields that sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + = sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + 1 ∆ m * . Since ∆ m * ⊂ M for m ∈ M, it yields that sup t∈B(m,m ) | t m * , G -1 d 1 ( h d 1 -h d 1 ) 2,d 1 | 2 - 1 2 p1 (m, m ) + = sup t∈B(m,m ) | t m * , G -1 m * ( h m * -h m * ) 2,m * | 2 - 1 2 p1 (m, m ) + . Now, if we define E 1 E 1 = E   sup t∈B(m,m ) | t m * , G -1 m * ( h m * -h m * ) 2,m * | 2 - 1 2 p1 (m, m ) + Y   ,
then, conditionally on Y , the bound follows from the proof of Proposition 7.1 in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] with G m * replaced by G m * , M by M and ξ 2 = 1/2 in the first case i) increased as ξ 2 = a h ∞ /K 1 log n with K 1 = 1/6. Then, as all bounds are independent of the random terms, the conditional expectation can be integrated with respect to the law of the sample (Y i ) 1≤i≤n 0 without change. First case : m ≥ m. Since m ∈ M, G -1 m = G -1 m , it yields that We now introduce the favorable set

E 2 1 m≥m = sup t∈B(m, m) | t m , ( G -1 m -G -1 m ) h m | 2 - 1 2 pen 2 ( m) + 1 m≥m ≤ ( G -1 m -G -1 m ) h m 2 2, m - 1 2 pen 2 ( m) + ≤ G -1 m (G m -G m )G -1 m h m 2 2, m - 1 2 pen 2 ( m) + ≤ f 2 G -1 m 2 op G m -G m
E m = G m -G m op ≤ κ 2 4( g ∞ ∨ 1) log n 0 m n 0 , κ 2 > 0. ( 50 
)
and set

E = ∩ m∈Mmax E m .
Thus we can notice that for m ∈ M ⊂ M max . It yields that

E 2 1 E 1 m≥m ≤ f 2 G -1 m 2 op κ 2 4( g ∞ ∨ 1) log n 0 m n 0 - 1 2 pen 2 ( m) + 1 E = G -1 m 2 op κ 2 4( g ∞ ∨ 1) log n 0 m n 0 - 1 2 pen 2 ( m) + 1 E = 0.
On the complementary set we have that

E E 2 1 m≥m 1 E c ≤ E ( G -1 m -G -1 m ) h m 2 2, m 1 E c ≤ E sup m∈Mmax ( G -1 m -G -1 m ) h m 2 2,m 1 E c ≤ m∈Mmax 2E ( G -1 m h m 2 2,m + G -1 m h m 2 2,m )1 E c ≤ m∈Mmax 2E ( G -1 m 2 op h m 2 2,m + f m 2 2,m )1 E c ≤ m∈Mmax 2E ( h m 2 2,m + f m 2 2,m )n 0 1 E c ≤ Cn 0 |M max |P [E c ]
and applying the following Lemma for p = 3

Lemma 7.8. For all p ≥ 1, there exists κ 2 ≥ (p + 2)/2 and C p ≥ 1 such that

P [E c ] ≤ C p n p 0 , gives that E [E 2 1 E c ] ≤ C 3 n 0 .
Second case: m ≤ m. We have that

E 2 1 m≤m = sup t∈B(m,m) | t m ( G -1 m -G -1 m ) h m | 2 -pen 2 (m) + (1 ∆m + 1 ∆ c m ) = sup t∈B(m,m) | t m ( G -1 m -G -1 m ) h m | 2 -pen 2 (m) + 1 ∆m + sup t∈B(m,m) | t m , f m | 2 1 ∆ c m .
It implies that for E m defined by ( 50)

E[E 2 1 m≤m ] ≤ E   sup t∈B(m,m) | t m ( G -1 m -G -1 m ) h m | 2 -pen 2 (m) + 1 ∆m 1 Em   + f 2 P[∆ c m ].
According to Lemma 7.3,

f 2 P[∆ c m ] ≤ f 2 8C 2 log m G -1 m 2 op m n 0 ≤ f 2 8C 2 log n 0 G -1 m 2 op m n 0 pen 2 (m)
and

E   sup t∈B(m,m) | t m ( G -1 m -G -1 m ) h m | 2 -pen 2 (m) + 1 Em   ≤ C 3 n 0
On E c m , we have

E E 2 1 m≤m 1 E c m ≤ E ( G -1 m -G -1 m ) h m 2 2,m 1 E c m ≤ 2E ( G -1 m h m 2 2,m + G -1 m h m 2 2,m )1 E c m ≤ 2E ( G -1 m 2 op h m 2 2,m + f m 2 2,m )1 E c m ≤ 2E ( h m 2 2,m + f m 2 2,m )n 0 1 E c m ≤ Cn 0 P [E c m ]
Besides E ⊂ E m which implies that P [E c m ] ≤ P [E c ]. Then applying Lemma 7.8, we get that

E E 2 1 m≤m 1 E c m ≤ C 2 n 0
Proof of Lemma 7.8. We apply Lemma 7.1 for t = 4κ 2 ( g ∞ ∨ 1) log n 0 m n 0 We now apply Proposition 7.9 hereafter and we get the final result.

P [E c ] = P ∃m ∈ M max , G m -G m op > 4κ 2 ( g ∞ ∨ 1) log n 0 m n 0 ≤ m≤n 0 P G m -G m op > 4κ 2 ( g ∞ ∨ 1) log n 0 m n 0 ≤ 2 m≤n 0 m exp     - 1 2 4κ 2 ( g ∞ ∨ 1) log n 0 m g ∞ m + (2 √ 2/3)m 4κ 2 ( g ∞ ∨ 1) log n 0 m n 0     ≤ 2 m≤n 0 m exp - 4κ 2 ( g ∞ ∨ 1) log n 0 2 1 g ∞ ∧ 3 2 √ 2 4κ 2 ( g ∞ ∨ 1) log n 0 n 0 m ≤ C m≤n 0 m exp - 4κ 2 ( g ∞ ∨ 1) log n 0 2 g ∞ ≤ C
Proposition 7.9.

(i) E| pen(m) -pen(m)| pen(m) + 1 n 0 + 1 n (ii) E( pen( m) -pen( m))

1 n 0 + 1 n .
Proof of Proposition 7.9. The proof relies on the introduction of the set so that the estimators of the sup-norms of h and g are under control around their true values. As it works exactly the same for both functions, we only detail the proof for g.

Let us define the set

Λ(g) = | ĝD ∞ -g ∞ | ≤ g ∞ 2 .
(i) It yields that

E| pen 2 (m) -pen 2 (m)|1 Λ(g) = 8κ 2 E |(2 ĝD ∞ ∨ 1) -( g ∞ ∨ 1)| log n 0 m n 0 G -1 m 2 op 1 Λ(g) ≤ 8κ 2 E 4( g ∞ ∨ 1) log n 0 m n 0 G -1 m 2 op 1 Λ(g)
Moreover applying Proposition 7.5, we get that E| pen 2 (m) -pen 2 (m)|1 Λ(g) ≤ Cpen 2 (m) On the set Λ c (g) with the definition of M, we have The proof follows exactly the same lines for controlling E| pen 1 (m) -pen 1 (m)| by defining Λ(h) and replacing n 0 by n.

E| pen 2 (m) -pen 2 (m)|1 Λ c (g) = 8κ 2 E |(2 ĝD ∞ ∨ 1) -( g ∞ ∨ 1)| log n 0 m n 0 G -1 m 2 op ≤ 8κ 2 E [|(2 ĝD ∞ ∨ 1) -( g ∞ ∨ 1)|] ≤ 8κ 2 E (2 ĝD ∞ ∨ 1)1 Λ c (g) + E ( g ∞ ∨ 1)1 Λ c (g) Yet ĝD ∞ ≤ k ϕ k ∞ ≤ 2D ≤ 2n 0 ,
(ii) On Λ(g), we have g ∞ -2 ĝD ∞ ≤ 0 which yields that ( g ∞ ∨ 1) -2( ĝD ∞ ∨ 1) ≤ 0, thus ( pen 2 ( m) -pen 2 ( m))1 Λ(g) ≤ 0. Moreover 

2. 2 .

 2 Notations. For two real numbers a and b, we denote a ∨ b = max(a, b) and a ∧ b = min(a, b).

  01 and κ 2 = 0.01/4. It can be noted that the values of κ 1 and κ 2 are much smaller than what comes in theory. The infinite norms h ∞ and g ∞ are estimated by taking the maximum of a projection estimator in the Laguerre basis of the density of Z (resp. of Y ) with dimension taken as the integral part of √ n/3. 5.3. Simulation results. As in Mabon (2016b), we consider two sample sizes n = 200 and n = 2000. For each distribution, we present in Tables

7. 2 . 1 .

 21 Proof of Lemma 3.1. First let us define the set

  7.3.3. Proof of Proposition 7.7. Let us define E 2 := sup t∈B(m, m) m, m) = pen 2 (m ∨ m).

+

  Let us define the set M max such thatM max = {m ∈ 1, n , m ≤ C n/ log n ∧ n 0 / log n 0 } .

m≤n 0 m

 0 exp (-2κ 2 log n 0 ) ≤ Cn 2 0 exp (-2κ 2 log n 0 ) Finally we getP [E c ] ≤ Cn 2 0 exp (-κ 2 2 log n 0 ) = C n 2κ 2 -2 0 = C n p 0 with p ≥ 1 if κ 2 ≥ (p + 2)/2.7.4. Proof of Corollary 4.2. The beginning of the proof follows exactly the same lines as in Theoremn 4.1 except that pen and m are respectively replaced by pen and m.Starting from Equation (46), we getf m -f 2 ≤ 3 f -f m 2 + 2 pen(m) + 8 sup t∈B(m, m) ν 2 n ( t) -2 pen( m) ≤ 3 f -f m 2 + 2( pen(m) -pen(m)) + 2 pen(m) + 8 sup t∈B(m, m)ν 2 n ( t) -2 pen( m)+ 2( pen( m) -pen( m))

  then E| pen 2 (m) -pen 2 (m)|1 Λ c (g) ≤ CP[Λ c (g)] Now applying Lemma 5.2 inMabon (2016a), it holds that for all p > 0 and logn 0 ≤ D ≤ g ∞ /(128 √ 2)n 0 /(log n 0 ) p ,

  E[( pen 2 ( m) -pen 2 ( m))1 Λ c (g) ] ≤ E[| pen 2 ( m) -pen 2 ( m)|1 Λ c (g) ] ≤ CP[Λ c (g)],

Table 1 .

 1 Results after 200 iterations of simulations of the six considered densities, for sample sizes n = 200 and n 0 = 50, n 0 = 200. For each density : first two lines, MISE× 100 with (std × 100) in parenthesis; third and fourth lines, mean with std in parenthesis of oracles. First column, direct observations of the X i 's.

			4	1.7	0.8	1.7	1.8	1.7
	(std)	(0.2)	(0.6)	(0.3)	(0.6)	(0.1)	(0.2)	(0.1)
	Oracles	0.2	0.3	0.5	0.3	0.4	1.7	0.6
	(std)	(0.2)	(0.2)	(0.3)	(0.2)	(0.3)	(0.2)	(0.3)
							Columns 2,
	3 and 4, noise is E(λ) with λ = 2 (mean 1/2). Columns 5, 6 and 7, noise is γ(2, λ ) with λ = 2 √ 2 (mean 1/(2 √ 2)).

Table 2 .

 2 Results after 200 iterations of simulations of the six considered densities, for sample sizes n = 2000 and n 0 = 400, n 0 = 2000. For each density : first two lines, MISE× 1000 with (std × 1000) in parenthesis; third and fourth lines, mean with std in parenthesis of oracles. First column, direct observations of the X i 's. Bounds on the spectral norm.Proposition 7.1. For G m defined by Equation (7) and g ∞ < ∞ , n 0 ∈ N \ {0}, then for all t > 0

	Columns 2, 3 and 4, noise is E(λ) with λ = 2 (mean 1/2). Columns 5, 6 and 7, noise is γ(2, λ ) with λ = 2 √ 2 (mean 1/(2 √ 2)).
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as above since m ∈ M. This gives the result for pen 2 . The same reasoning holds for pen 1 ( m)pen 1 ( m) Appendix A. Appendix A proof of the following theorem can be found in [START_REF] Stewart | Matrix perturbation theory[END_REF].

Introduce the random matrix

Let ν(Z) be the the variance statistic of the sum:

Furthermore, for all t ≥ 0

A proof can be found in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] or [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF].

Theorem A.3 (Matrix moment inequality, Theorem A.1 in [START_REF] Chen | The masked sample covariance estimator: an analysis using matrix concentration inequalities[END_REF]). Suppose that q ≥ 2 and fix r ≥ max(q, 2 log p). Consider a finite sequence {Y i } of independent, symmetric, random, self-adjoint matrices with dimension p × p. Then

.

A proof can be found in [START_REF] Chen | The masked sample covariance estimator: an analysis using matrix concentration inequalities[END_REF].