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MECHANISM DESIGN AND ALLOCATION ALGORITHMS FOR
NETWORK MARKETS WITH PIECE-WISE LINEAR COSTS AND

EXTERNALITIES
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December 3, 2016

Abstract. Motivated by market power in electricity market we introduce a mechanism design
in [1] for simplified markets of two agents with linear production cost functions. In standard procure-
ment auctions, the market power resulting from the quadratic transmission losses allow the producers
to bid above their true value (i.e. production cost). The mechanism proposed in the previous paper
reduces the producers margin to the society benefit. We extend those results to a more general mar-
ket made of a finite number of agents with piecewise linear cost functions, which make the problem
more difficult, but at the same time more realistic. We show that the methodology works for a large
class of externalities. We also provide two algorithms to solve the principal allocation problem.
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1. Introduction. Our purpose is to show how monopolistic behaviors in network
markets can be opposed using mechanism design. We point out that the optimal
mechanism we obtain has a surprisingly simple expression. We complete this work
with algorithmic tools for the computation of this mechanism. Following a model
proposal already discussed in [2, 3, 1], we consider a geographically extended market
where a divisible good is traded. Each market participant is located on a node of a
graph, and the nodes are connected by edges. The good can travel from one node
to another through those edges at the cost of a quadratic loss. We will use the word
principal to designate what could also be called in the literature a central operator,
or in the context of electricity markets, an ISO. This principal, who aggregates the
(inelastic) demand side, has to match locally -i.e. at each node - production and
demand at the lowest expense through a procurement auction. As argued in [1] this
setting is relevant to describe some real electricity markets, but it could also be used
in other markets where a good is transported. There is a clear antagonism between
the market participants: the operator wants to minimize its expected cost while the
producers want to maximize their expected profit. So there is a transaction and a
commitment between each agent and the principal, and at the same time, there is a
competition among the agents. In a standard procurement auction, the market power
resulting from the quadratic line losses allow the producers to bid above their true
value (i.e. production cost) [2]. The mechanism reduces the producers margin and
decrease the social cost represented in this case by the optimal value of the principal.
The optimal auction design was introduced by Myerson in 1981 [4]. We build on an
electricity market model introduced by the second author in two previous papers [3]
and [2]. The authors wrote a brief presentation of this model in [5]. Other models
were proposed for example in [6], [7], and [8], with a focus on the existence of a market
equilibrium. Concerning the techniques we use in this paper the reader can refer to
[9], [10], [11] chapter 45 and [12] for general introductions on principal agent theory,
mechanism design, game theory and lattices theory respectively.

We consider -similarly to [1]- that everybody knows the demand at each node
before the interactions start and that the production cost of each agent is private in-
formation. In a standard setting the agents first bid their cost and then the principal,
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2 Mechanism design and allocation algorithms for network markets

knowing the bids, a posteriori minimizes its cost. So in a standard setting the prin-
cipal is a bid taker. The producers know they influence the allocation and compete
with each other to maximize their individual profit. Since the demand is known by ev-
eryone, everyone can guess the principal reaction once the bids have been announced:
we can virtually remove the principal from the interaction in the standard setting
and consider that the agents are the players of a game with incomplete information
(since the agents do not know their fellow agents preferences). This equivalence is true
provided that the agents are not communicating with each others. The mechanism
design consists in changing the payoff function of this game -subject to constraints we
detail in this article- so as to minimize a priori (i.e. before the bids are announced)
the principal cost. Allowing the principal to strike first by revealing a committing
rule gives him a strategic advantage in the negotiation.

We restrict our discussion to determinist demand, but the reasoning extends nat-
urally to random demand as long as any possible realization of the demand satisfies
the model assumptions. Indeed since the optimal mechanism constructed in this arti-
cle is incentive compatible, then a random version (where the demand is revealed after
the producers bidding phase, as in [3]) would be realization-wise incentive compati-
ble, and so incentive compatible. Observe the mechanism we propose in the following
could be adapted to elastic, piecewise linear demand.

Our first main result is the mechanism design characterization. Interestingly the
allocation procedures for the optimal and the standard mechanism are the same (one
just needs to modify the input of the allocation procedure of the standard mecha-
nism to get the allocation of the optimal mechanism). Our second main result is a
principal allocation algorithm based on a fixed point. The fixed point could be inter-
preted as cooperating agents trying to minimize a global criteria by sharing relevant
information. Our implementation of the algorithm gives good results against stan-
dard methods. We point out that the numerical computation of Nash equilibrium
for the procurement auction (important to compare the optimal mechanism and the
standard auction setting) requires an efficient algorithm to compute the allocation.
Some other additional facts are presented within the paper: the smoothness of the
allocation functions (q and Q), a decreasing rate estimation for the fixed point iter-
ations, some results of numerical experiments with the fixed point algorithm, and a
specific algorithm for the two-agent case.

We describe the market in the next section. In §3 we introduce and solve the
mechanism design problem. In §4, we study the standard allocation problem and
propose an algorithm to solve it. In §5 we propose a different algorithm for the 2-
agent standard allocation problem. In §6 we sum up and comment the main results
and propose some continuations for this work. A reader only interested in mechanism
design could read §2, §3 and §4 only, whereas readers interested only in allocation
algorithms could concentrate on §4 and §5.

2. Market description. The production cost of each agent is assumed to be
piecewise linear, non decreasing and convex in the quantity produced. This class of
functions is sufficiently rich to represent real life problems and sufficiently simple for
theoretical study. In this work we need to assume that the production levels at which
there is a slope change are known in advance and exogenous (i.e. the agents cannot
choose them). Then without loss of generality we assume that there is a quantity q̄
such that the changes of slope only occur at the multiples of q̄. Thus, the authors



with piecewise linear costs 3

find it practical to write the production cost functions in the form

(2.1) Cc(q) =

N∑
j=1

cj min((q − (j − 1)q̄)+, q̄),

where N ∈ N and the cj are some slopes coefficients specific to the agent, while q is
the quantity produced. We will sometimes refer to the vector of the cj as the cost

vector (of the agent). If we denote by qji the quantity produced by agent i at marginal

cost cji , then qji = min((qi − (j − 1)q̄)+, q̄), where qi is the total quantity produced
by this agent. Let c∗ < c∗ ∈ R∗+ and C a set of non-decreasing N -tuples of [c∗, c

∗].
To each element c of C we associate the piecewise linear cost function q → Cc(q).
Throughout the paper we set, for any c ∈ C, cN+1 = c∗ to simplify notations in some
proofs. Note that in practice a capacity constraint of the type q ≤ jq̄ for a given
agent can be implemented by setting its (j + 1)th slope cj+1 equal to a big positive
number. If an agent of cost vector c produces a quantity q and receives a transfer x,
then its profit is

(2.2) ui = x− Cc(q).

There are n agents numbered from 1 to n in the market. We denote I = [1 . . . n]
and use generically the letter i to refer to a specific agent, and −i to refer to I\{i}.
We denote J = [1 . . . N ] and we will use generically j for the cost coefficients of
the jth segment (starting from 1). The agents are dispatched on the n nodes of
a graph. At each node i we find the corresponding agent i and a local demand
di. The nodes are connected by undirected edges. We write V (i) the set of nodes
different from i connected to i. Obviously if i1 ∈ V (i2) then i2 ∈ V (i1). We denote
E = {(i1, i2) : i1 ∈ V (i2)} the set of undirected edges. For each (i1, i2) ∈ E, we
introduce a quadratic loss coefficient ri1,i2 such that ri1,i2 = ri2,i1 . In the context of
electricity market, this quadratic coefficient corresponds to the Joule effect within the
lines. We make the non restricting assumption that N is big enough so that in what
follows production at each node is smaller than q̄N .

We assume that both the agents and the principal are risk neutral: they maximize
their expected profit. If the principal proposes to pay a price xi to agent i to make
her produce a quantity qi - this agent being free to accept or decline the offer- and if
the agent i has a production cost defined by ci, then she accepts the offer if

(2.3) xi − Cci(qi) ≥ 0.

So for agent i, either xi ≥ Cci(qi) or qi = 0. Thus, if the principal knew the cost
vectors ci, he would solve an allocation problem with those ci, and then bid to the
agents the quantity and the payments corresponding to the solution of the allocation
problem. But the principal does not know the cost vectors, so instead what happens
is that the agents tell her some values for the ci (not necessary their real cost vectors),
and then the principal decides based on those values. In this case, previous works [2]
showed that the agents can get non-zero profits and bid above their production costs.
The question we adress is how to reduce their margins.

To do so, we need to consider an intermediate scenario between the one in which
the agent knows nothing (and is a price taker), and the one in which he knows ev-
erything (and optimizes directly the whole system as a global optimizer). Each agent
is characterized by an element fi, which is a probability density of support included
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in C and an element ci of C drawn according to fi. Only agent i knows ci, which
is private information. The other agents and the principal only know the probability
fi with which it was drawn. The density fi corresponds to the public knowledge on
agent i production costs so the principal won’t accept any bid ci that is not in the
support of fi. We assume that the cost slopes are not correlated for a given agent and
between agents, i.e. their laws f ji are independent. In particular fi(ci) =

∏
j∈J f

j
i (cji ).

In such situation, it makes sense to define

(2.4) f−i(c−i) =
∏
i′∈I\i

fi′(ci′) and f(c1, .., cn) =
∏
i∈I

fi′(ci),

and E (respectively Ec−i) the mean operator with respect to f (respectively f−i). The
density f (resp. f−i) represents the uncertainty from the principal (resp. agent i)
perspective. To simplify notations we will use the symbole Cn to denote the product
of the supports of the fi. We denote by Q the set of allocation functions -which
are the applications from Cn to Rn+, by X the set of payments functions -which are
the applications from Cn to Rn, and by H the set of flow functions - which are the
applications from Cn to RE . A direct mechanism is a triple (q, x, h) ∈ (Q,X ,H). Let
(q, x) ∈ (Q,X ). For this payment function and this allocation function, the expected
profit of agent i of type ci and bid c′i is

(2.5) Ui(ci, c
′
i) = E−iui = Xi(c

′
i)−

∑
j∈J

cjiQ
j
i (c
′
i).

where the capitalized quantities

(2.6) Qji (ci) = E−i min((qi(ci, c−i)− (j − 1)q̄)+, q̄) and Xi(ci) = E−ixi(ci, c−i)

correspond to the average of their non capitalized counterpart. We also denote by

(2.7) Vi(ci) = Ui(ci, ci).

the expected profit of agent i if she is of type ci and bids her true production cost.
In this work we make five assumptions.
• First, the non overlapping working zones assumption is that if we denote by

Ci the support of fi, then Ci should be of the form:

(2.8) Ci = [c1−i , c1+
i ]× . . .× [cN−i , cN+

i ]

with c1−i < c1+
i < . . . < cN−i < cN+

i . We could interprete each segments
over which the agent has a constant marginal cost as a working zone with
identified productive assets. The expertise of the market participants should
allow them to, based on the working zone, assess the marginal cost of the
agent. This makes senses for instance if the setting is repeated over time.
This estimation need to be precise enough so that there is no chance that it
corresponds to another working zone. We use this item in particular in the
proof of lemma 3.6.

• For i ∈ I, j ∈ J and ci ∈ Ci let

(2.9) Kj
i (ci) =

∫ cji
cj−i

fi(c
−j
i , s)ds

fi(ci)
.
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We point out that by independence of the laws of the cji , K
j
i (ci) =

∫ cji
cj−i

f ji (s)ds/

f ji (cji ) = Kj
i (cji ). So Kj

i is simply the ratio of the cumulative distribution and

the probability density for cji . The second assumption is the discernability

assumption. For all i ∈ I and ci ∈ Ci, the virtual cost Ji,j(c
j
i ) = cji +Kj

i (cji )
is increasing in j. As demonstrated in the next section, the virtual cost could
be interpreted as the real marginal cost augmented by a marginal information
rent. The item imposes the marginal information rent to be such that for any
bid, the virtual marginal prices are increasing, i.e. the virtual production cost
function is convex. The item is necessary to show the independence property
of the reformulation in Lemmas 3.8 and 3.9.

• Third, in the following we assume that, for all j ∈ J , i ∈ I and ci ∈ Ci,

(2.10) cji → cji +Ki
j(c

j
i )

is increasing in cji . This is the piecewise linear adaptation of the classic mono-
tone likelihood ratio property assumption encountered in mechanism design
[4, 13]. It is true in particular for log-concave functions. The assumption
ensures that the pointwise allocation resulting from the mechanism design
problem reformulation is decreasing in the bids. We refer to this assumption
in the proof of Theorem 3.11.

• Fourth, for §3 and §4 only, we assume that

(2.11) di −
∑

i′∈V (i)

1

2ri,i′
< 0, and di +

∑
i′∈V (i)

3

2ri,i′
> Nq̄,

i.e. we require the ri,j to be small enough. Note that the bigger the demand,
the smaller the r should be, which is a limit to the generality of the approach.
This assumption ensures that, for any agent i and working zone k, no matter
what the other agents are doing, it is still possible to find a (virtual) marginal
price that would ensure a production of exactly kq̄ in an optimal allocation.
If the loss rates rii′ are all too big for a given agent i, then the line losses
can be bigger than the flow through the lines: the lines of agent i can be all
saturated. This hypothesis is necessary to ensure the existence of one of the
building block of the fixed point operator presented in §4. We point out that
this is the multidimensional version of the assumption 1− 2rd ≥ 0 in [1].

• Fifth, for regularity issues we make the non restrictive assumption that it is
not possible to produce a multiple of q̄ at each node and satisfy exactly the
nodal constraints. This is non restrictive because if this was the case we could
perturb the demand to ensure the condition is satisfied. This hypothesis will
be important in the proof of the regularity of q (in lemma 4.4), from which
the regularity of Q follows.

To finish with the market presentation, we introduce the products of the type sets

Cn =
∏
i∈I C

i′ and C−i =
∏
i′∈I\{i}C

i′ .

3. Mechanism Design. We start with the revelation principle as expressed in
[14].

Theorem 3.1 (Revelation Principle). To any Bayesian Nash equilibrium of
a game of incomplete information, there exists a payoff-equivalent direct revelation
mechanism that has an equilibrium where the players truthfully report their types.
According to the revelation principle, we can look for direct truthful mechanisms.



6 Mechanism design and allocation algorithms for network markets

There is a priori no reason why the agents should willingly report their types. So we
need to add a constraint on the design to enforce truthfulness. This means that the
profit of any agent i of type ci should be maximal when agent i bids her true type ci
i.e. for all (c′i, ci)

(3.1) Ui(ci, ci) ≥ Ui(ci, c′i). (IC)

This is the incentive compatibility (IC) constraint. In addition, since we want all
agents to participate in the market, we need the participation constraint imposing
that for all ci

(3.2) Ui(ci, ci) ≥ 0. (PC)

Without this constraint, the principal would optimize as if the agents would accept
any deal (even deals where they would make a negative profit). The last constraint
is that the supply should be at least equal to the demand at every node. The supply
available at a given node is equal to the production augmented by the imports minus
the exports and the line losses. As explained earlier, there is a loss when some
quantity hi,i′ of the divisible good is sent from one node i to another i′. This loss is
equal to ri,i′h

2
i,i′ , where ri,i′ is a multiplicative constant. In order to obtain symmetric

expressions, we will proceed as if half of this quantity was lost by the sender, and the
other half by the receiver (see for instance [2]). Note that we could have equivalently
used signed flows, but we would have lost some symmetry in the formulation. Then
the supply and demand constraint writes, for all i ∈ I and c ∈ Cn,

(3.3) qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di. (SD)

We point out that for an optimal allocation (see §4) , hi,i′hi′,i = 0.
The principal decision is a triple (q, x, h) ∈ (Q,X ,H). This decision is made

under the constraints (IC), (PC) and (SD). Since we assume that the principal is risk
neutral, his goal is to minimize his average cost, i.e. mathematically his criterion is
equal to the average of the sum of the payments. Finally the optimal mechanism is
the solution of

Problem 1.

minimize
(q,x,h)∈(Q,X ,H)

∑
i∈I

Exi(c)

subject to

∀c ∈ Cn,∀i ∈ I : qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di (SD)

∀c ∈ Cn,∀(i, i′) ∈ E : hi,i′(c) ≥ 0

∀i ∈ I, ∀(c′i, ci) ∈ C2
i : Ui(ci, ci) ≥ Ui(ci, c′i) (IC)

∀i ∈ I, ∀ci ∈ Ci : Ui(ci, ci) ≥ 0 (PC).

We now proceed to solve the optimal mechanism design problem, which is a functional
optimization problem with an infinity of constraints, some of which are expressed with
integrals. The essential observation is that this complicated problem is equivalent to a
much simpler one. The proof relies on the comparison with two intermediate problems:
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Problem 2.

minimize
(q,x,h)∈(Q,X ,H)

∑
i∈I

Exi(c)

subject to.

∀c ∈ Cn,∀i ∈ I : qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di(SD)

∀c ∈ Cn,∀(i, i′) ∈ E : hi,i′(c) ≥ 0

∀i ∈ I, ∀j ∈ J, (c−j , t1, t2), (c1, . . . , tk, . . . , c
N ) ∈ Ci, : Vi(c

1, .., cj−1, t1, c
j+1.., cN )

− Vi(c1, .., cj−1, t2, c
j+1.., cN ) =

∫ t2

t1

Qji (c
1, .., cj−1, s, cj+1.., cN )ds (H1)

∀i ∈ I, ∀(c, c′) ∈ c2 : (c− c′).(Qi(c)−Qi(c′)) ≤ 0, (H2)

∀i ∈ I, ∀ci ∈ Ci : Vi(ci) ≥ 0 (PC),

and
Problem 3.

minimize
(q,h)∈(Q,H)

E
∑
i∈I

∑
j∈J

qji (c)(c
j
i +Kj

i (cji ))

subject to

∀(c, i) ∈ Cn × I : qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di(SD)

∀c ∈ Cn,∀(i, i′) ∈ E : hi,i′(c) ≥ 0.

∀c ∈ Ci,∀i ∈ I : xi(c) =
∑
j∈J

qji (c)c
j
i +

∫ cj+i

cji

qji (c
1
i . . . c

j−1
i , t, c

(j+1)+
1 . . . cN+

i ; c−i)dt.

The inequality on the scalar product in (H2) is the piecewise linear equivalent of a
monotonicity condition already encountered in [1]. The first two problems are very
similar, but (IC) has been replaced by (H1) and (H2) and (PC) is expressed in terms
of V instead of U . This replacement is a trick introduced by Myerson in his 1981
paper. We will show later on how we can compare Problems 2 and 3, but note that
Problem 3 is really simpler, as the optimization part can be solved pointwise (and x
can be deduced from this pointwise optimization). The main result of this paper is
that the three problems have the same solution.

3.1. Necessary conditions for Problem 1. We derive some necessary con-
ditions for a solution of Problem 1. In fact, we only use constraint (IC) to deduce
the two next results. The first lemma indicates that any solution of the first problem
should be such that Q is monotonous. This is a classic result already introduced for
instance in [4] and [1]. The novelty here is that in the context of piecewise linear
production cost functions, this monotonicity result is expressed in a vectorial sense.

Lemma 3.2 (Q monotonicity). If (q, x, h) is admissible for Problem 1, then for
all agent i ∈ I and all (ci, c

′
i) ∈ C2

i

(3.4) (ci − c′i).(Qi(ci)−Qi(c′i)) ≤ 0

where . is the scalar product in RN .
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Proof. We omit the i in the proof, as it plays no role. First, let (c, c′) ∈ C2
i by

the (IC) constraint,

(3.5) U(c, c) ≥ U(c, c′) and U(c′, c′) ≥ U(c′, c)

i.e.

(3.6)

X(c)−
∑
j∈J

cjQj(c) ≥ X(c′)−
∑
j∈J

cjQj(c′)

X(c′)−
∑
j∈J

cj
′
Qj(c′) ≥ X(c)−

∑
j∈J

cj
′
Qj(c).

We get the lemma after summation of the two inequalities and simplification.
Lemma 3.2 indicates that an agent should be producing less on average in her ith

working zone if she is biding a higher marginal cost for this working zone.
Lemma 3.3. If (q, x, h) is admissible for Problem 1 then for any agent (omitting

i) for any c, t1 and t2

(3.7)

V (c1, . . . , cj−1, t1, c
j+1, . . . , cN ) =V (c1, . . . , cj−1, t2, c

j+1, . . . , cN )

−
∫ t1

t2

Qj(c1, . . . , cj−1, s, cj+1, . . . , cN )ds

Proof. The inequality U(c, c) ≤ U(c, c′) implies that c′ → U(c, c′) is maximal at
c for any c ∈ Ci. Moreover,

(3.8) t→ U((c1, .., cj−1, t, cj+1.., cN ), c) = X(c)−
∑

k∈J\{j}

ckQk(c)− tQj(c)

is absolutely continuous, differentiable with respect to t for all c, and its derivative is
−Qj(c). By definition of qj , Qj ≤ q̄. So applying the envelope theorem we get the
result.

3.2. Necessary conditions for Problem 2. We derive some necessary condi-
tions for a solution of Problem 2.

Lemma 3.4. If (q, x, h) is an optimal solution of Problem 2 then (omitting i) for
all c ∈ Ci

(3.9) V (c) =
∑
j∈J

∫ cj+

cj
Qj(c1 . . . cj−1, t, c(j+1)+, . . . , cN+)dt.

Proof. According to (H1)

∑
j∈J

∫ cj+

cj

Qj(c1 . . . cj−1, t, c(j+1)+, . . . , cN+)dt =

∑
j∈J

V (c1, .., cj−1, cj , c(j+1)+, . . . , cN+)− V (c1, .., cj−1, c(j)+, . . . , cN+)

= V (c)− V (c1+, . . . , cN+).

This is an expression for V (c) as a sum of a positive function of c and a constant
V (c1+, . . . , cN+). It is clear that to optimize the criteria, this constant should be as
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small as possible. The participation contraint (PC) imposes that V (c1+, . . . , cN+) ≥ 0,
therefore V (c1+, . . . , cN+) = 0.

A consequence of this is:
Corollary 3.5. If (q, x, h) is an optimal solution of Problem 2 then for all i ∈ I,

(3.10) Vi(c
1+
i , . . . , cN+

i ) = 0.

Proof. See the proof of Lemma 3.4.
Corollary 3.5 means that if an agent bids a production cost functions that is the

maximum of what he could bid, he should not make any profit, and so he should be
paid exactly his production cost. We see with this lemma that if the public information
is inaccurate and the real cost of an agent is higher than what could be expected, then
there is a risk that the participation constraint is not satisfied. On the other hand, it
should not be surprising that an agent can have a zero profit: remember that in the
extreme case in which the principal knows everything (discussed in §2), the agents do
not make any profit.

Another consequence of lemma 3.4 is
Lemma 3.6. If (q, x, h) is an optimal solution of Problem 2, the expected profit

of agent i (over his type) is

(3.11) EVi(c) =
∑
j∈J

∫
(c1..cn)∈Ci

Qji (c
1, . . . , cj , c(j+1)+, . . . cN+)Kj

i (c)fi(c)dc.

Proof.
By Lemma 3.4 and Fubini’s lemma, EVi(c) is equal to

E
∑
j∈J

∫ cj+

cj
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)dt

=
∑
j∈J

∫
c−j∈C−j

∫ cj+

cj=cj−

∫ cj+

t=cj
Qji (c

1, . . . , cj−1, t, c
(j+1)+
i , . . . cN+

i )fi(c)dtdc
jdc−j .

Our task is now to compute the inner term. Applying again Fubini’s lemma, this
term is equal to ∫ cj+

cj=cj−

∫ cj+

t=cj
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)fi(c)dtdc
j =∫ cj+

t=cj−

∫ t

cj=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)fi(c)dc
jdt =∫ cj+

t=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)(

∫ t

cj=cj−
fi(c)dc

j)dt =∫ cj+

t=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)(

∫ t

cj=cj−

fi(c)

fi(c−j , t)
dcj)fi(c

−j , t)dt =∫ cj+

t=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)Kj
i (t)fi(c

−j , t)dt =∫ cj+

cj=cj−
Qji (c

1, . . . , cj−1, cj , c(j+1)+, . . . cN+)Kj
i (cj)fi(ci)dc

j



10 Mechanism design and allocation algorithms for network markets

We get the lemma by summing all the inner terms.
Lemma 3.7. If (H1) is satisfied, then for any (a, b) ∈ C2

i (omitting i)

(3.12) X(a)−X(b) =
∑
j∈J

[ajQj(a)− bjQj(b) +

∫ bj

aj
Qj(b1 . . . bj−1, t, aj+1 . . . aN )dt]

Proof. Because of its length the proof is detailled in Appendix A

Lemma 3.8. If (q, x, h) verifies (H1) and (H2) and Qji is independent of cj
′

i for
j′ > j, then for all (c, c̃) ∈ C2

(3.13) U(c, c) ≥ U(c, c̃).

Proof. Since (H1) is satisfied, equation (3.12) of Lemma 3.7 applies. We combine
this relation with the definition of the expected profit U from (2.5). We obtain:

U(c, c)− U(c, c̃) =
∑
j∈J

cjQj(c)− c̃jQj(c̃)+

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t, cj+1, ...cN )dt+ cjQj(c̃)− cjQj(c)

=
∑
j∈J

(cj − c̃j)Qj(c̃1, ..., c̃j−1, c̃j)) +

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t)dt

=
∑
j∈J

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t)−Qj(c̃1, ..., c̃j−1, c̃j)dt,

where we used the independence hypothesis for the second equality. By (H2), which
implies the decreasingness of Qj with respect to cji when all other quantities are
fixed, if cj < c̃j then for any t ∈ [cj , c̃j ], Qj(t) − Qj(c̃j) ≥ 0. Otherwise, we use the

formula
∫ b
a

= −
∫ a
b

and the fact that any t ∈ [c̃j , cj ] verifies Qj(t) − Qj(c̃j) ≤ 0. So
U(c, c)− U(c, c̃) is non negative.

3.3. Necessary conditions for Problem 3. We derive some properties for
Problem 3.

Lemma 3.9. There is an optimal solution (q, x, h) for Problem 3 such that qji
(and Qji ) is independent of cki for k 6= j.

Proof. First note that x is not taking any role in the optimization problem: it is
defined afterward. The only real optimization variables are then q and h. Remember
that qji is defined as a function of q by qji = min((qi − (j − 1)q̄)+, q̄). The constraints
are defined for each c ∈ Cn and the integral criterion is in fact a sum of independent
criteria depending on q(c) for c ∈ Cn. Therefore we can solve Problem 3 with a
pointwise optimization. By the discernability assumption, for any c ∈ Cn and i ∈ I,
cji + Kj

i (cji ) is increasing in j. So for all c ∈ Cn, i ∈ I,
∑
j∈J q

j
i (c)(c

j
i + Kj

i (cji )) is a
convex criteria in qi and so the pointwise problem corresponds to Problem 4 of §4. In
particular, we can apply Lemma 4.3 from the next section. So qji only depends on cji
and c−i. This property is preserved by integration over the c−i: Q

j
i only depends on

cji .
We point out that, since the pointwise problem has a unique solution, the point-

wise optimal solution introduced in the proof is uniquely defined.
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Theorem 3.10. If (q, x, h) is the pointwise optimal solution of Problem 3 and
Kj
i is smooth in cji for (i, j) ∈ I × J and c ∈ Ci, then for all i ∈ I, Qi is C∞ over

Ci.

Proof. We will use some results and notations from 4.2. Remember that cji →
cji + Kj

i (cji ) is increasing, so by composition with smooth bijection, we can do the

reasoning as if the costs involved were cji instead of cji + Kj
i (cji ). First according

to Lemma 4.4, qi is continuous. Since qi is bounded, we can apply the dominated
convergence theorem to show thatQi is continuous. Then we proceed by mathematical
induction. Assume that Qi is Cl, then take c0i ∈ Ci and cki a sequence in Ci that

converges to c0i . Since Ŝ = ∪k∈NS(cki ) is a countable union of null measured set (by
Lemma B.5), its measure is zero. So without changing the results, we can compute
the integrals on C−i\Ŝ instead of C−i. Since qi and its derivatives are bounded, we

can apply the dominated convergence theorem to compute the limit of
Q

(l)
i (c0i )−Q

(l)
i (cki )

c0i−cki
as k goes to +∞ as the integral of a limit. Since we removed the point over which

this limit was not defined, we get that
Q

(l)
i (c0i )−Q

(l)
i (cki )

c0i−cki
has a limit, and this limit does

not depend on the sequence cki . So Qi is l + 1 times derivable at ci, for all ci. We
conclude by induction.

3.4. Resolution of the mechanism design problem. Last but not least, we
state the main result of the Section.

Theorem 3.11. Let (qji , h) be defined such that for any c ∈ Cn, (qji (c
j
i , c−i), h(c))

solves

minimize
qji ,x,h

∑
i∈I

∑
j∈J

qji (c
j
i , c−i)(c

j
i +Kj

i (cji ))

subject to

0 ≤ qji ≤ q̄∑
j∈J

qii(c
j
i , c−i) +

∑
i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di

hi,i′(c) ≥ 0,

and set

(3.14) qi(c) =
∑
j∈J

qji (c
j
i , c−i) and xi(c) =

∑
j∈J

qji (c
j
i , c−i)c

j
i +

∫ cj+i

cji

qji (t, c−i)dt,

then (q, h, x) solves the optimal mechanism design problem (Problem 1).

Proof.

• First note that (q, h, x) is the pointwise solution of Problem 3 so it is optimal
for Problem 3, moreover, by construction (q, h, x) satisfies (SD) and h ≥ 0.

• Then note that by Lemma 3.6, (q, h, x) solves a relaxation of Problem 2, but
is it admissible for Problem 2 ?
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• By definition of V (omitting i),

V (c1 . . . aj . . . cN )− V (c1 . . . bj . . . cN ) =

Ex(c1 . . . aj . . . cN )− x(c1 . . . aj . . . cN )− [Qj(aj)aj −Qj(bj)bj ] =

Eqji (a
j , c−i)a

j +

∫ cj+i

aj
qji (t, c−i)dt− Eqji (b

j , c−i)b
j −

∫ cj+i

bj
qji (t, c−i)dt

−[Qj(aj)aj −Qj(bj)bj ] = E
∫ bj

aj
qji (t, c−i)dt =

∫ bj

aj
Qji (t)dt

where we used the definition of x, the definition of Q and Fubini lemma’s for
the second, third and fourth equalities. So (q, h, x) satisfies (H1).

• By construction, qji is non-increasing in cji + Kj
i (cji ) then using the third

assumption, qji is non-increasing in cji so for any (a, b, c−i) ∈ C2 × C−i,

(aji − b
j
i )(q

j
i (a

j
i , c−i)− q

j
i (b

j
i , c−i)) ≤ 0, so by integration with respect to c−i,

(aji −b
j
i )(Q

j
i (a

j
i )−Q

j
i (b

j
i ) ≤ 0 and then by summation over j, (c−c′).(Qi(c)−

Qi(c
′)) ≤ 0, i.e. (H2) is satisfied.

• Since (H1) is satisfied, Vi(ci) ≥ Vi(c+i ). Moreover, Vi(c
+
i ) = 0 by construction

of x. So the participation constraint (PC) is satisfied.
• Therefore (q, h, x) is admissible for Problem 2. So it solves Problem 2.
• Since (q, h, x) solves Problem 2, by Lemma 3.8 the incentive compatibility

constraint (IC) is satisfied. Moreover, by Lemma 3.4, (PC) is satisfied. So
(q, h, x) is admissible for Problem 1, but is it optimal ?

• By Lemmas 3.2 and 3.3, any optimal solution of Problem 1 should be admis-
sible for Problem 2. Since the criteria are the same, we conclude that (q, h, x)
is an optimal solution of Problem 1.

3.5. Comments. In the optimal mechanism, the agents are paid at a marginal
price that is equal to their bid augmented by an information rent. This information
rent depends on the problem structure by the fact that it is built from a collection of
allocation problems, and it depends on the available information by the fact that, in
these optimization problems, the marginal prices are replaced by the virtual marginal
prices cji + Kj

i (cji ). We point out that, as already noted for instance in [13], the
computation of such rent may pose a practical difficulty for large problems.

Notice that, by construction, the optimal mechanism is incentive compatible no
matter K as (H1) is verified anyway as long as the hypothesis are satisfied. If this
market is repeated over time, the principal can dynamically enhance his probabilities.

The model extends to the more realistic case when some nodes do not have a
producer and for some others, the demand is null. In particular, we can consider the
buyer/suppliers setting where there is demand only at one node.

One may argue that one limit of the current result is that it does not take into
account any network constraints. Nonetheless, the structure of the proof makes it
clear that we exploited only some properties of the allocation problem. Therefore,
the optimal mechanism construction is valid for any market for which the allocation
problem satisfies these properties. We discuss more on this point in §3.6.

In addition, the optimal mechanism construction is valid for limiting case with
r = 0 at some edges. In this case, one needs to specify the definition of q of as
the solution of the allocation problem may not be a singleton. If all the agents are
identical and r = 0 for all edges, this corresponds to a second best auction.
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We have not tried any ironing techniques to get rid of the monotone likelihood
ratio assumption ; this is probably something to look at.

3.6. Generalization. The study of this subsection could be postponed to a
second reading. We extend Theorem 3.11 to a more general network market. In
this subsection we use specific notations. The letter e is used generically to refer to
a line. The network flow is now subject to a constraint of the form N(h) ∈ Rm− ,
where N(h) is a convex and smooth function from RE to Rm, where m ∈ N. We
call this constraint the network constraint. To model the piecewise linear prices, we
use positive variables qji ≤ q̄ji . Thus, the working zones are not assumed to be of

equal sizes anymore. The marginal rates cji are assumed to be increasing in j. The

criterion is still J(q) =
∑
i∈I
∑
j∈J q

j
i c
j
i . We write K1 the set of decisions (qji , he)

such that N(h) ∈ Rm− and 0 ≤ qji ≤ q̄
j
i . We assume that K1 is non-empty. The nodal

constraints are replaced by constraints of the form (for all i ∈ I)
∑
j q

j
i + gi(h) ≥ 0

where the gi are smooth strictly concave functions from (R+)E to R. We introduce
the set K2 = {(qji , he) ∈ K1; ∀i ∈ I −

∑
j q

j
i − gi(h) ≤ 0}. Then the allocation

problem corresponds to the following optimization program:

(3.15)

minimize
(qji ,h)

J(q)

subject to (qji , he) ∈ K2.

It is clear that qji is non-increasing in cji . We point out that at optimality, the
nodal constraint should be binding. Moreover, by the strict concavity of the gi the
solution of problem (3.15) is unique.1 Note that J is smooth and its gradient at
(cji , he) is (c11, . . . c

N
1 , . . . c

N
n , 0, . . . , 0), where the last |E| null coordinates correspond

to the variable h. We denote by NK1
(qji , he) and NK2

(qji , he) the normal cones to K1

and K2 at (qji , he). Applying Theorem 10 from [15] (we can check that the constraint

qualification is satisfied if q is not identically equal to zero), we can express NK2
(qji , he)

as

(3.16) {
∑
i∈I

λi∇fi(qji , he) + z; (λ1, . . . , λn) ∈ (R+)n, z ∈ NK1
(qji , he)}

where fi(q, h) = −
∑
j q

j
i − gi(h). Applying Theorem 9 from [15], the solution of

(3.15) should satisfy

(3.17) −∇J(qji , he) ∈ NK2
(qji , he).

Observe that since the problem is convex and the solution unique, this is in fact
a necessary and sufficient condition for the unique solution of the problem. The N
first rows of this relation gives:

(3.18) (−c11, . . . ,−cN1 ) = λ1(−1, . . . ,−1) + (z1, . . . , zN ).

where λ1 ≥ 0 and

(3.19) zj


≥ 0 if qji = q̄ji
≤ 0 if qji = 0

0 else

1Take two optimal solutions, then check that the solution build with the average of the two flow
vectors is admissible by convexity of the problem and strictly better by concavity of g.
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Note that if zj = 0 then cji = λ1, and since the cji are increasing in j, there is at

most one j such that zj = 0. Moreover, by 3.18 for all j we have zj = λ1 − cj1.
So the zj are strictly decreasing in j. From the product structure of K1 we deduce
the product structure of its normal cone. We can then write with obvious notations:
NK1

(q, h) = NK1
(q) × NK1

(h) From the rows corresponding to h in the first order
condition we derive the relation:

(3.20)
∑
i∈I

λi∇gi(h) ∈ NK1(h).

Lemma 3.12 is a generalization of Lemma 4.3.
Lemma 3.12. Let (q(c), h(c)) be a solution of Problem 3.15. Assume qi contin-

uous with respect to ci, then for any i ∈ I, j ∈ J , qji (c) does not depend on cli for
l 6= j.

Proof. Take (ci, c−i) ∈ Cn. If qji (ci, c−i) ∈]0, q̄ji [, then λi = cji and cki (k 6= j) does
not intervene the first order conditions (3.19) and (3.20), so that the solution does
not depends on it. So without loss of generality we assume qji (ci, c−i) = 0 (the case

qji (ci, c−i) = q̄ji could be treated in the same manner). By the continuity assumption

we can restrict even more to the case where qj−1
i = q̄j−1

i and qji (ci, c−i) = 0. Then

by the first order condition, λi ∈ [cj−1
i , cji ]. Using the same the first order condition

argument we used at the beginning of this proof, we see that the solution only depends
on cj−1

i and cji . If cj−1
i increases, then qi decrease so that qji stays equal to zero. If

cj−1
i decreases, then the first order condition λi ∈ [cj−1

i , cji ] stays true for the current
λi, the whole first order condition is still satisfied. Therefore the solution does not
change. The lemma follows.

Notice that we can write qi as a strictly convex function of h qi = −gi(h), and
then the cost associated with qi is the composition of an increasing convex function
of R and a convex function from R|E| to R, therefore it is convex with respect to
h, then we can rewrite the problem with only h as a decision variable, the problem
would be defined on a convex set and with a strictly convex cost, and parametrized
by c ∈ C. Then we can apply Berge maximum principle (see Theorem 9.17 in [16])
in a convex setting to get the continuity of q. From Lemma 3.12 and the monotony
of q, we conclude that we can extend Theorem 3.11 to a more general setting.

3.7. Examples with log-concave functions. We point out that a sufficient
condition to check the monotone likelihood ratio property is that F/f is increasing. If
F is a smooth cumulative distribution function with f the corresponding smooth and
positive density, then F/f is increasing iff f/F is decreasing iff lnF ′ is decreasing iff
lnF is concave. A function f is said to be log-concave if ln f is concave. Many density
functions encountered in the economic and engineering literature are log-concave: the
uniform, the normal, the exponential, the power function and the Laplace distribution
have log-concave density function. We refer to [17] for the results we use on this
class of functions. The class of log-concave is stable by monotonic transformation
and truncation. Moreover, it happens that if a probability density distribution is log-
concave, then the corresponding cumulative distribution is log-concave. In mechanism
design theory, it is standard to assume F to be log-concave [18].

We want to see the implication of the discernability assumption. This assumption

imposes a gap ∆ equals to Kj
i (cj+i ) between cj+i and c

(j+1)−
i . We compute this gap

for some standard cases. To simplify the notations and the computation, we assume
without loss of generality that cj− = 0 and write cj+ = c+. We get the following
table:
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Table 1: The gap ∆ for some standard probabilities

Name ∝ f(x) ∝ F (x) K(x) ∆
Uniform 1 x x c+

Power Function λ( x
c+ )λ−1 c+( x

c+ )λ x
λ

c+

λ

Weibull λ( x
c+ )λ−1e(− x

c+
)λ c+(1− e−( x

c+
)λ) c+

λ ( c
+

x )λ−1(e( x

c+
)λ − 1) c+ e−1

λ

Laplace 1
2e
−λ|x− c+2 | x > c+

2 , 2−e−λ
c+

2 e−λ(x−
c+

2
)

2λ
2
λ (e

c+

2 λ − 1)

Exponential (reversed) λe−(c+−x)λ e−c
+λ(exλ − 1) 1−e−xλ

λ
1−e−c

+λ

λ

We truncate the probabilities so that they have support in [0, c+]. The symbole
∝ means that we express f and F modulo the multiplication by a common constant
(due to the truncation) and λ is a positive parameter that should be greater than
1 for the Power function and the Weibull probability. For the uniform distribution,
we see that the interval should be of non-decreasing sizes. For instance, one could
take c1 ∈ [c̄, 2c̄], c2 ∈ [3c̄, 4c̄], c3 ∈ [5c̄, 6c̄], etc. For the Power function, the Weibull
function and the exponential, we see that the gap could be made smaller. We do
not address in this work the question of the practical implementation of an optimal
mechanism. The discernability assumption raises an additional practical issue.

4. Study of the allocation problem.

4.1. The standard auction problem. The previous section motivates the
study of the allocation problem for different reasons. First, as we have seen in the
proofs, the results of §3 rely on some properties of the solution of the standard alloca-
tion problem. In addition to those properties, we derive in this section two algorithms
to compute the solution of the standard allocation problem. According to 3.11, those
algorithms can be used for both the original auction problem and the optimal mecha-
nism design. To benchmark the mechanism design equilibrium against an equilibrium
of the Bayesian game related to the standard auction, numerical efficiency is pivotal:
indeed the Bayesian equilibrium requires a lot of allocations computations.

Let us first introduce the standard allocation problem. In a standard mechanism,
the principal solves an allocation problem based on the bids he receives. Those bids
will be denoted by cji , where as before i ∈ I corresponds to the ith agent and j ∈ J
corresponds to the jth working zone with constant marginal price. To model the fact
that the production costs are piecewise linear, we use some positive variables qji so

that qji ≤ q̄, for any i ∈ I, the quantity produced by agent i is qi =
∑
j∈J q

j
i and

the related production cost is
∑
j∈J c

j
i q
j
i . As before, an allocation should satisfy the

constraint that production exceeds demand. We end up with Problem 4:
Problem 4.

(4.1)

minimize
(q,h)

∑
i∈I

∑
j∈J

qji c
j
i

subject to ∀i ∈ I :
∑
j∈J

qji +
∑

i′∈V (i)

hi′,i − hi,i′ −
h2
i,i′ + h2

i′,i

2
ri,i′ ≥ di (λi)

∀(i, i′) ∈ E : hi,i′ ≥ 0 (γi,i′)

∀(i, j) ∈ I × J : qji ≥ 0 (µi,j)

∀(i, j) ∈ I × J : qji ≤ q̄ (νi,j).

The notations for the dual the variables associated with each constraint are indicated
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in parentheses. Those variables are in R+.
For any node i ∈ I, we define the function Fi for λ ∈ [mini c

1
i ,maxi c

N
i ]n

(4.2) Fi(λi, λ−i) = di +
∑

i′∈V (i)

λi′ − λi
ri,i′(λi + λi′)

+
(λi′ − λi)2

2ri,i′(λi + λi′)2
.

We will justify later that this function could be interpreted as the production of agent
i when the multipliers are λi and λ−i. Its partial derivative with respect to λi is

(4.3) ∂λiFi(λi, λ−i) = −
∑

i′∈V (i)

4

ri,i′

λ2
i′

(λi + λi′)3
< 0.

The derivative is negative: when i increases its price it is assigned smaller production
quantities. The partial derivative of Fi for i′ ∈ I\{i} is

(4.4) ∂λi′Fi(λi, λ−i) =

{
4
ri,i′

λi′λi
(λi+λi′ )

3 > 0 if i′ ∈ V (i)

0 else.

When another agent becomes less competitive, i is assigned more production. Let
k ∈ J ∪ {0}. The limit at +∞ and 0 of Fi(x, λ−i)− kq̄ are

(4.5) lim
x→+∞

Fi(x, λ−i)− kq̄ = di − kq̄ −
∑
j∈V (i)

1

2ri,j

and

(4.6) lim
x→+∞

Fi(x, λ−i)− kq̄ = di − kq̄ +
∑
j∈V (i)

3

2ri,j
.

Using the hypotheses (2.11), the first term is strictly negative and the second strictly
positive, so by the intermediate value theorem, Fi − kq̄ has a zero. Since Fi − kq̄ is
decreasing in λi, this solution is unique. Now we define for i ∈ I and k ∈ J ∪ {0},
gki as the function that associates any λ−i ∈ [mini c

1
i ,maxi c

N
i ]n−1 with the unique x

such that and Fi(x, λ−i) = kq̄ and x > 0:

(4.7)
Fi(g

k
i (λ−i), λ−i) = kq̄

gki (λ−i) > 0.

Lemma 4.1. For any i ∈ I, k ∈ J∪{0}, λ−i ∈ [mini c
1
i ,maxi c

N
i ]n−1 and i′ ∈ V (i)

(4.8) ∂λi′ g
k
i (λ−i) > 0.

In particular, gki is increasing in λi′ for i′ ∈ V (i).
Proof. According to the implicit function theorem

(4.9)
∂gki (λ−i)

∂λi′
= − ∂Fi

∂λi′
/
∂Fi
∂λi

,



with piecewise linear costs 17

It is clear that gki (λ−i) is decreasing in k. We proceed with the computation of
the dual of Problem 4. If a strong duality theorem applies, then we should have

min
q,h

max
λ,γ,ν,µ

∑
i∈I,j∈J

qji c
j
i +

∑
i∈I

λi{di − (
∑
j∈J

qji +
∑

i′∈V (i)

hi′,i − hi,i′ −
h2
i,i′ + h2

i′,i

2
ri,i′)}

−
∑

i∈I,j∈J
γi,jhi,j +

∑
i∈I,j∈J

νi,j(q
j
i − q̄)− µi,jq

j
i

= max
λ,γ,νµ

min
q,h

∑
i∈I

λidi −
∑

i∈I,j∈J
νi,j q̄ + qji (c

j
i + νi,j − λi − µi,j)

+
∑

(i,i′)∈E

hi,i′{λi − λi′ − γi,j}+ h2
i,i′ri,i′

λi + λi′

2
,

so that for any (i, i′) ∈ E, by necessary and sufficient first order condition

hi,i′ =
γi,i′ + λi′ − λi
ri,i′(λi′ + λi)

.(4.10)

By replacing h by its expression in the dual variables we get something equivalent
to

(4.11)
maximize

(λ,γ,µ,ν)

∑
i∈I
{λidi −

∑
j∈J

νi,kq̄ −
∑

i′∈V (i)

(λi − λi′ − γi,j)2

2ri,i′(λi + λi′)
}

subject to ∀(i, j) ∈ I × J cji + νi,j ≥ λi + µi,j .

The expression of γ with respect to λ follows. For any (i, i′) ∈ E

(4.12) γi,i′ =

{
0 if λi ≤ λi′
λi − λi′ else

so the dual problem is equivalent to

(4.13)
maximize

(λ,µ,ν)

∑
i∈I
{λidi −

∑
j∈J

νi,j q̄ −
∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
}

subject to ∀(i, j) ∈ I × J cji + νi,j ≥ λi + µi,j ,

because µ does not play any role in the admissibility of the other variables nor in the
objective, this is equivalent to

(4.14)
maximize

(λ,ν)

∑
i∈I
{λidi −

∑
j∈J

νi,j q̄ −
∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
}

subject to ∀(i, j) ∈ I × J cji + νi,j ≥ λi,

The expression of ν follows. For any (i, j) ∈ I × J

(4.15) νi,j =

{
0 if λi ≤ cji
λi − cji else.
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So we can a posteriori justify that we have strong duality: the operator is continuous,
convex-concave and the dual variables are restricted to be in a bounded set.

So the dual of the allocation problem writes:

(4.16) maximize
λ≥0

∑
i∈I
{λidi − q̄

∑
j∈J

(λi − cji )δλi≥cji −
∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
},

where

(4.17) δx≥y =

{
1 if x ≥ y
0 else.

For i ∈ I we maximize the criteria

(4.18) λidi − q̄
∑
j∈J

(λi − cji )δλi≥cji −
∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
,

which is strictly concave for any λ−i (sum of concave and strictly concave functions).
We denote by Λi(λ−i) its maximizer. The first order necessary and sufficient condition
on Λi is:

(4.19) 0 ∈ Fi(Λi, λ−i)−Ki(Λi),

where

(4.20) Ki(λi) =


0 if λi < c1i
[j − 1, j]q̄ if λi = cji
jq̄ if λi ∈]cji , c

j+1
i [, j 6= N

Nq̄ if λi ∈ λi ∈]cNi , c̄[,

We conclude
Lemma 4.2. For any i ∈ I and any λ−i ∈ [mini c

1
i ,maxi c

N
i ]n−1, Λi(λ−i) is the

unique solution of

Fi(Λi, λ−i) ∈ Ki(Λi).(4.21)

We point out that the primal (and dual) solution unicity is a desirable property
that is not systematic for the allocation problems of centralized market models. The
expression of h with respect to λ (4.10) and the fact the supply constraint should be
binding at optimality justify the interpretation of Fi proposed at the beginning of this
subsection. In the following we use this property many times.

4.2. Some properties of the solution. If r and d are set, we can see the
solution of Problem 4 as a function of the vector c ∈ Cn. We denote by q(c) the
solution of Problem 4 with the cost vector c. Similarly, we define qi(c), q

j
i (c), λ(c) and

λi(c). We give here two properties of the allocation problem solution. By integration,
we showed in the previous section that the solution of the mechanism design inherits
those properties.

Lemma 4.3. Let (q(c), h(c)) be a solution of Problem 4, then qji (c) does not
depend on cli for l 6= j:

(4.22) qji (c
1, . . . cj−1, cj , cj+1 . . . , cN ; c−i) = qji (s

1, . . . sj−1, cj , sj+1 . . . , sN ; c−i)
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Proof. Let i ∈ I, j ∈ J , c−i ∈ Cn−1, c = (c1, . . . , cN ) ∈ C and s = (s1, . . . , sN ) ∈
C such that sj = cj . We shall prove that qji (s, c

−i) = qji (c, c
−i). We denote by λc

(resp. λs) the dual variables associated with the nodal contraints for the allocation
problem parametrized with c (resp. s). First if

(4.23) qji (c, c
−i) ∈]0, q̄[,

then by lemma 4.2 λci = cji and so using Lemma 4.2 again, λsi = cji . Therefore λs = λc,

from which we deduce that qji (c, c
−i) = qji (s, c

−i).
So without loss of generality, we can assume that

(4.24) qji (c, c
−i) = q̄ and qji (s, c

−i) = 0.

Then using Lemma 4.2 we get

(4.25) λci ≥ ck and λsi ≤ ck,

so that λci ≥ λsi . If λci > λsi , then λc−i ≥ λs−i by non-decreasingness of Λi′ , i
′ ∈ I\{i}

(explained in §4.3) Therefore all the other agents are producing less, which is absurd
since i is already producing less.

We extend the notations by setting for all i ∈ I, c0i = c∗. We consider the subset
S of C for which at some nodes i, the multiplicator λi is equal to the marginal cost
and the production is a multiple of q̄ (i.e. stuck in an angle):
(4.26)

S = {c ∈ Cn, qi(c) = jq̄ and λi(c) = cj
′

i for some i ∈ I, j ∈ J ∪ {0}, j′ ∈ {j, j + 1}}.

The set S corresponds to the points of transition between the two possibilities defined
by the first order condition (4.19). Because of the angle, it is natural to think that this
is where irregularities may happen (see the proof of the next lemma). We introduce
this set to show some regularity properties of q and Q. We detail the proof in the
Appendix. The approach consists in showing that S is a finit union of sets of zero
measure. This is also true for the projection of S on the {ci}×C−i. Then we observe
that on C\S, the relations between the primal and dual variables are smooth.

Lemma 4.4. The function q is C∞ on Cn\S and C0 on Cn.
Proof. We postpone the proof to Appendix B

4.3. Fixed point. In this subsection we show that the solution of the dual
problem is the unique fixed point of a monotone operator. We define

(4.27) Λ(λ1, ..., λn) = (Λ1(λ−1), ...,Λn(λ−n)).

Lemma 4.5. For any i ∈ I, Λi is non-decreasing.
Proof. Let λ−i < λ′−i and the corresponding Λi and Λ′i. Assume Λi > Λ′i. Since

Fi is decreasing in the first variable and increasing in the second

(4.28) Fi(Λi, λ−i) < Fi(Λ
′
i, λ
′
−i)

Moreover for any x ∈ K(Λ′i) and y ∈ K(Λi), x ≤ y and Fi(Λi, λ−i) ∈ K(Λi),
Fi(Λ

′
i, λ
′
−i) ∈ K(Λ′i). Therefore Fi(Λ

′
i, λ
′
−i) ≤ Fi(Λi, λ−i) which is absurd.

We will use the following classical result (see [12] for a proof and definition of
complete lattice).
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Theorem 4.6 (Knaster-Tarski fixed point). Let L be a complete lattice and let
f an application from L to L and order preserving. Then the set of fixed points of f
in L is a complete lattice.

In particular, the set of fixed points is non empty. Since Λ is order preserving
and [c∗, c

∗]n is a lattice when we consider the natural order, there is a fixed point,
and the set of fixed points is a lattice.

Lemma 4.7. λ is optimal for the dual ⇔ λ is a fixed point of Λ.

Proof.

• If λ is optimal for the dual, then each component i maximizes the criteria
(4.18), so λ is a fixed point of Λ.

• If λ is a fixed point of Λ, then by definition, each component i maximizes the
criteria (4.18). So since the problem is (strictly) concave, λ is optimal.

A consequence of the previous lemma is that

Lemma 4.8. The set of fixed points of Λ is a singleton.

Definition 4.9 (Continuous for monotone sequence). We consider the natural
partial order on Rn. We say that a function G is continuous for monotone (resp.
increasing, decreasing) sequences if for any monotone (resp. increasing, decreasing)
sequence xn converging to a point x in the domain of G, G(xn) goes to G(x) as n
goes to infinity.

Obviously, a function is continuous for monotone sequences if and only if it is
continuous for increasing and decreasing sequences.

Lemma 4.10. The operator Λ is continuous for monotone sequences.

The intuition of the proof is that we can use the monotony of the sequence and
Lemma 4.2 to characterize the behaviour of Λ on the neighborhood. We find that Λ
is either constant or characterized by the implicit function theorem.

Proof. Let λ̄−i, j ∈ [1 . . . N ], we first deal with the ’nice’ case, that corresponds
to Fi(Λ(λ̄−i), λ̄−i) ∈]j − 1, j[q̄

• If Λi(λ̄−i) ∈]cji , c
j+1
i [ (we do not treat the case j = N , which is very similar to

what follows) then since Fi is C∞ and of invertible derivative (non zero) in λi,
the implicit function theorem tells us that the solution ψ of Fi(ψ(λ̄−i), λ̄−i) =
jq̄ is continous in a neighborhood B of λ̄−i. So we can take B small enough
so that for λ−i ∈ B, ψ(λ−i) ∈]cji , c

j+1
i [. On this neighborhood, ψ satisfies

the first order conditions and so by unicity of the solution of the optimization
problem, since those conditions are sufficient, ψ = Λi on B. So Λi is continous
at λ̄−i.

• If Λi(λ̄−i) = cji (as before, we do not treat the case j = N), then by Lemma
4.2 Fi(Λi(λ̄−i), λ̄−i) = [j − 1, j]q̄, if Fi ∈]j − 1, j[q̄ (we deal with the border
case in the next point) then since Fi is continuous, there is a neighborhood
B of λ̄−i such that Fi(Λi(λ̄−i), λ−i) ∈]j − 1, j[q̄, so on B Λi is constant so
continuous.

• We proceed with the borders. If Fi(Λi(λ̄−i), λ̄−i) = (j−1)q̄ and Λi(λ̄−i) = cji .
– Decreasing case: Let us take ε ∈ Rn−1

+ such that Fi(Λi(λ̄−i), λ̄−i + ε) ∈
[j − 1, j]q̄ (Fi is continuous and increasing in λ−i). Then Λi(λ̄−i + ε) =
Λi(λ̄−i) checks the first order condition so Λ is constant, so we get the
continuity for decreasing sequences.

– Increasing case: Fi(Λi(λ̄−i), λ̄−i) = (j − 1)q̄ and so there exists a ball
B such that the implicit function theorem applies and there exists ψ
such that Fi(ψ(λ̄−i − ε), λ̄−i − ε) = (j − 1)q̄ and ψ(λ̄−i) = Λi(λ̄−i) = cji
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(remember that Λi(λ̄−i) = cji by hypothesis) . Since Fi is increasing in
the second variable and decreasing in the first, ψ is increasing. For ε of
positive components and sufficiently small, ψ(λ̄−i − ε) ∈]cj−1

i , cji [ (since

ψ(λ̄−i) = Λi(λ̄−i) = cji ) and so check the first order condition. So for ε
of positive components and sufficiently small, ψ = Λi by uniqueness of
the solution. So Λi is continuous for increasing sequence.

• We do the same analysis if Fi(Λi(λ̄−i), λ̄−i) = jq̄ and Λi(λ̄−i) = cji .
The conclusion follows.

We could have alternatively used Berge Maximum theorem for strictly concave
criterion to get the continuity of Λ. Yet, we choose to present this proof for pedagogical
reasons since it contains some key ideas we will use later (see appendix).

Theorem 4.11. The sequence (Λk(cN1 ...c
N
n ))k∈N converges to the solution of the

dual.
Proof. Since Λ(cN1 ...c

N
n ) ≤ (cN1 ...c

N
n ), and since Λ is order preserving, the sequence

Λk(cN1 ...c
N
n ) = λk is non increasing and bounded, so converge to a point x. Since Λ

is continuous for monotone sequence, x is a fixed point.
Theorem 4.12. For any i ∈ I, λ−i ∈ [c∗, c

∗]n−1, Λi(λ−i) has the following
explicite expression:
(4.29)

Λi(λ−i) = min{cNi ,min
j∈J
{cji1Fi(cji ,λ−i)<jq̄}, min

k∈[0..N−1]
{gki (λ−i)1gki (λ−i)∈[cki ,c

k+1
i ]}}

Proof. We denote by Gi the RHS of (4.29) and show that for any i

Fi(Gi(λ−i), λ−i) ∈ K(G(λ−i)),(4.30)

and then we conclude with a uniqueness argument.
If there is j ∈ J such that Gi(λ−i) = cji , then either Fi(c

j
i , λ−i) < jq̄ or gji (λ−i) =

cji . This last possibility implies by definition of gji that Fi(c
j
i , λ−i) = jq̄. So anyway

Fi(c
j
i , λ−i) ≤ jq̄. Remember that K(G(λ−i)) = [j − 1, j]q̄. So we need to prove that

Fi(c
j
i , λ−i) ≥ (j − 1)q̄. Suppose the contrary, i.e. Fi(c

j
i , λ−i) < (j − 1)q̄. Then since

Gi(λ−i) = cji , F (cji , λ−i) < (j − 1)q̄, which in turn implies that

(4.31) gji (λ−i) < cji .

Now observe that since Gi(λ−i) = cji , F (cj−1
i , λ−i) > (j − 1)q̄, which implies that

(4.32) gji (λ−i) > cj−1
i .

Combining (4.31) and (4.32) with the definition of G, we see that G(λ−i) ≤ gji (λ−i).
But G(λ−i) = cji and gji (λ−i) < cji , so this is absurd. Therefore Fi(c

j
i , λ−i) ≥ (j−1)q̄.

Else let us assume that there is not such j. Then there is k ∈ [0 . . . N − 1] such
that Gi(λ−i) = gki (λ−i). By definition of gki , Fi(Gi(λ−i), λ−i)) = kq̄ and by definition
of G, Gi(λ−i) ∈ [cki , c

k+1
i ]. So again Fi(Gi(λ−i), λ−i)) ∈ K(Gi(λ−i)). We can now

conclude that Λ = G.
We can interpret the fixed point algorithm as if some benevolent agents situated

at each node of the network were exchanging information. They collectively try to
minimize the total cost and, to do so, they communicate their current marginal costs.
This marginal cost is the minimum of their local marginal cost and the marginal cost
of importation from the adjacent nodes. At each iteration, the agents compute how
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much they are going to produce based on their current marginal cost. Then they
update their marginal cost based on the information they just received and transmit
this marginal cost to the adjacent nodes. We point out that the information used by
each agent is local.

4.4. Decreasing Rate. We derive in this section an estimate for the decreasing
rate. We denote α = max(e,e′)∈E2 re/re′ . We have the following bound:

Lemma 4.13. For any (i, i′, k, λ−i) ∈ E × [0, N ]× [c∗, c
∗]n−1,

(4.33) ∂λig
k
i′(λ−i) ≥

1

Nα
(
c∗
c∗

)5.

Proof. We combine (4.9) with (4.3) and (4.4).
Lemma 4.14. Since (λki )k∈N is non-increasing for all i ∈ I, there is a finite

number of k for which at least one coordinate λki satisfies

(4.34) λki > cqi and λk+1
i ≤ cqi

or

(4.35) λki = cqi and λk+1
i < cqi .

We denote by K this set. Let (k1, k2) ∈ N2 such that [k1 − 1, k2 + 1] ∩ K = ∅. Then
for k ∈ [k1, k2] and i ∈ I such that λk−1

i 6= λki

λki − λk+1
i ≥ 1

Nα
(
c∗
c∗

)5 max
i′∈V (i)

(λk−1
i′ − λki′)(4.36)

Proof. By definition of λk, λki − λ
k+1
i = Λi(λk−1

−i ) − Λi(λk−i). By construction,

there exists j ∈ [0, N − 1] such that Λi(λk−1
−i ) = gji (λ

k−1
−i ) and Λi(λk−i) = gji (λ

k
−i).

Then by monotony of g, gji (λ
k
−i)− g

j
i (λ

k−1
−i ) is lower bounded by

(4.37) |∂λi′ g
j
i |∞(λk−1

i′ − λki′),

for i′ ∈ V (i). We then take the i′ ∈ V (i) that maximizes (λk−1
i′ − λki′) and use the

previous lemma to get the result.

4.5. Algorithm Implementation. We implemented this algorithm in Matlab.
We use a dichotomy to compute the gki . Note that for linear cost the analysis is
similar. We define gi(λ−i) as the unique x such that fi(x, λ−i) = 0 and x ≥ 0 and
define Λ such that

(4.38) Λi(λ) = min(ci, gi(λ−i))

We perform some numerical comparisons with CVX, a package for specifying and
solving convex programs [19, 20] for both linear and piecewise linear production cost
functions. We generate a graph with 100 nodes connected randomly. To generate the
graph, we use a Barabasi-Albert model [21] to ensure some scaling properties. The
experiment is performed on a personal laptop (OSX, 4 Go,1.3 GHz Intel Core i5). The
networks randomly generated to test the implementations are displayed in Figures 1a
and 1b, and the results are summarized in Table 2.
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Fixed Point CVX
cost 83.2 83.195
time (s) 2.03 30.23

Fixed Point CVX
cost 4971.4 4971.4
time (s) 28.39 35.23

Table 2: Results for a linear (a) and piecewise linear (b) instances of the problem
solved with the fixed point algorithm and CVX.

(a) The network generated to test the lin-
ear implementation of the algorithm

(b) The network generated to test the
generic implementation of the algorithm

Both CVX and the fixed point algorithm find the optimal value. The linear version
of the fixed point algorithm is about ten times faster than the CVX resolution. Note
that the algorithm could be distributed, since at each iteration, the computation at
each node only depends on the values of the previous iteration. In addition, instead
of computing the iterates of Λ at each step, we could use intermediate steps were we
follow a decreasing direction Λ(λk)− λk and choose h > 0 such that λkh = h(Λ(λk)−
λk) + λk satisfies Λ(λkh) ≤ λkh, which is easier to check than computing the gi. This
makes the algorithm similar to more standard descent based approaches (see [22]).

5. Two-agent allocation problem. We propose another algorithm for the
piecewise linear allocation problem when the network is limited to two agents. This
section is motivated by the need for efficient (both in speed and precision) allocation
algorithms to numerically compute Bayesian Nash equilibria of the standard setting.
Indeed, the natural next step of this work would be to proceed with numerical bench-
marks, by comparing the Bayesian Nash equilibrium of the standard setting and the
solution of the optimal mechanism. In general the numerical search of such equilib-
rium requires to solve the allocation problems many times. A second motivation to
present this piece of work here is the complementary insight it gives on the structure
of the allocation problem.

5.1. First order condition. The allocation problem with two agents of slopes
cji and demand vector di is
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Problem 5.

(5.1)

minimize
qji ,h

∑
j∈J

cj1q
j
1 + cj2q

j
2

subject to
∑
j

qj1 − h ≥
r

2
h2 + d1∑

j

qj2 + h ≥ r

2
h2 + d2

qji ≤ q̄
qji ≥ 0

h ∈ R.

We assume that N is big enough so that each agent could supply the whole amount
without producing more than q̄N . This is not a restrictive assumption as we could
put very high marginal cost to model some capacity constraints. We denote for h ∈ R
and j ∈ J

q1(h) = d1 + r
h2

2
+ h, q2(h) = d2 + r

h2

2
− h,(5.2)

(5.3) φji (h) = min((qi(h)− (j − 1)q̄)+, q̄).

In order to reduce to an unconstrained problem, we assume that the constraints on
the positiveness of the production are not bounding (else we can already conclude).
This can be checked numerically by computing the gradients at qi(h) = 0. Since the
nodal constraints are bounding, we reformulate the problem:

(5.4) minimize
h∈R

C(h) =
∑
j∈J

cj1φ
j
1(h) + cj2φ

j
2(h).

By definition of φ for (i, j, h) ∈ I × J × R,

(5.5) φji (h) =


0 if qi(h) ≤ (j − 1)q̄

qi(h)− (j − 1)q̄ if qi(h) ∈ [j − 1, j]q̄

q̄ if qi(h) ≥ jq̄.

So we can express the derivative of φji :

(5.6) ∂φji (h) =


0 if qi(h) < (j − 1)q̄

rh+ (−1)i+1 if qi(h) ∈]j − 1, j[q̄

0 if qi(h) > jq̄.

The function C is convex, the expression of its subdifferential ∂C(h) follows from
(5.6):


cj11 (rh+ 1) + cj22 (rh− 1) if qi(h) ∈](ji − 1), ji[q̄

[cj11 , c
j1+1
1 ](rh+ 1) + cj22 (rh− 1) if q2(h) ∈](j2 − 1), j2[q̄ and q1(h) = j1q̄

cj11 (rh+ 1) + [cj22 , c
j2+1
2 ](rh− 1) if q1(h) ∈](j1 − 1), j1[q̄ and q2(h) = j2q̄

[cj11 , c
j1+1
1 ](rh+ 1) + [cj22 , c

j2+1
2 ](rh− 1) if qi(h) = jiq̄.
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By the fifth assumption, we eliminate the last possibility. We denote

(5.7) g(u) =
1− u
1 + u

,

so that 0 ∈ ∂C(h) is equivalent to

(5.8)


g(rh) = cj11 /c

j2
2 if qi(h) ∈]ji − 1, ji[q̄

g(rh) ∈ [
c
j1
1

c
j2
2

,
c
j1+1
1

c
j2
2

] if q2(h) ∈]j2 − 1, j2[q̄ and q1(h) = j1q̄

g(rh) ∈ [
c
j1
1

c
j2+1
2

,
c
j1
1

c
j2
2

] if q1(h) ∈]j1 − 1, j1[q̄ and q2(h) = j2q̄

We denote

(5.9) q−1
1 (x) = −1

r
+

√
1

r2
− 2

r
(d1 − x) and q−1

2 (x) =
1

r
−
√

1

r2
− 2

r
(d2 − x),

and

(5.10) ji(h) = dqi(h)

q̄
e.

By (5.8), 0 ∈ ∂C(h) is equivalent to one of those propositions being true:

(5.11)


∃j1, j2 qi(h) ∈]ji − 1, ji[q̄ and h = g(

c
j1
1

c
j2
2

)/r

∃j1, g(rh) ∈ [
c
j1
1

c
j2(h)
2

,
c
j1+1
1

c
j2(h)
2

] and h = q−1
1 (j1q̄)

∃j2, g(rh) ∈ [
c
j1(h)
1

c
j2+1
2

,
c
j1(h)
1

c
j2
2

] and h = q−1
2 (j2q̄).

We then use the fact that g is idempotent: g(u) = x⇔ g(x) = u. We obtain:

(5.12) 0 ∈ ∂C(h)⇔


∃j1, j2 h ∈ q−1

i (](ji − 1), ji[q̄) and h = g(
c
j1
1

c
j2
2

)/r

∃j1, rh ∈ [g(
c
j1+1
1

c
j2(h)
2

), g(
c
j1
1

c
j2(h)
2

)] and h = q−1
1 (j1q̄)

∃j2, rh ∈ [g(
c
j1(h)
1

c
j2
2

), g(
c
j1(h)
1

c
j2+1
2

)] and h = q−1
2 (j2q̄).

We denote, for (i, j) ∈ I × J and (j1, j2) ∈ J2:

aji = q−1
i (jq̄) and bj1,j2 = g(cj11 /c

j2
2 )/r.(5.13)

Those two quantities only depend on the problem data. We point out that aji corre-
sponds to the value of h when we set qi = jq̄ and bj1,j2 corresponds to the optimal
value of h when qi ∈](ji − 1), ji[q̄. We sum up with the following Lemma:

Lemma 5.1. There exist (j1, j2) ∈ J2 such that one of those propositions is true:

bj1,j2 ∈]aj1−1
i , aj1i [∩]aj2i , a

j2−1
i [(5.14)

aj11 ∈ [b
j1+1,j2(a

j1
1 )
, b
j1,j2(a

j1
1 )

](5.15)

aj22 ∈ [b
j1(a

j2
2 ),j2

, b
j1(a

j2
2 ),j2+1

].(5.16)

Then the optimal value of h is respectively bj1,j2 , aj11 and aj22 .
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5.2. Algorithm. We denote by c−i the copy of the vector ci with the first co-
ordinate removed, and qi the total production of agent i. We denote by q1(d, c1, c2)
and q2(d, c1, c2) the optimal production allocation when the demand is d at both node
and the cost vectors are c1 and c2.

Lemma 5.2. If q1(d, c1, c2) ≥ q̄ and q2(d, c1, c2) ≥ q̄, then

(5.17) q1(d, c1, c2) = q1(d− q̄, c−1 , c
−
2 )+ q̄ and q2(d, c1, c2) = q2(d− q̄, c−1 , c

−
2 ))+ q̄.

Proof. Fix q1
i = q̄, the resulting optimization problem is equivalent to P (d −

q̄, c−1 , c
−
2 ).

We set

(5.18) F (λ1, λ2) = d+
1

r

λ2 − λ1

λ1 + λ2
+

1

2r
{λ2 − λ1

λ1 + λ2
}2,

which is the 2-agent equivalent of Fi. We already know that if (λ1, λ2) are the solution
of the dual, then q1 = F (λ1, λ2) and q2 = F (λ2, λ1). The main result of this part is:

Theorem 5.3. If c11 < c12 and the second and third propositions of Lemma 5.1
are not satisfied, then let k be the smallest element of J ∩ {0} such that

(5.19) F (ck+1
1 , c12) ≤ kq̄ (A) or F (c12, c

k
1) > q̄ (B)

then

• if (B), then q1(d, c1, c2) = q1(d − q̄, c−1 , c
−
2 ) + q̄ and q2(d, c1, c2) = q2(d −

q̄, c−1 , c
−
2 )) + q̄.

• else, q1 = F (ck1 , c
1
2) and q2 = F (c12, c

k
1)

Proof. If (B), then we show that q2 ≥ q̄. Indeed, if we assume q2 < q̄, then since
we have eliminated the corner solution cases λ2 = c12. If we assume in addition that
q1 < (k − 1)q̄, then λ1 < ck1 , then q1 = F (λ1, λ2) = F (λ1, c

1
2) > F (ck1 , c

1
2) > (k − 1)q̄

because of the definition of k, which is absurd. So if q2 < q̄ then necessarily q1 >
(k − 1)q̄ (The case q1 = (k − 1)q̄ is a corner solution case that has been eliminated
by hypothesis). So λ1 > ck1 so by (B) q2 = F (λ2, λ1) > F (c12, c

k
1) > q̄ which is in

contradiction with the assumption. So if (B), then q2 > q̄, and since c11 < c12, q1 > q̄.

Else, by definition, (A) is true. Note that q1 = F (ck1 , c
1
2) and q2 = F (c12, c

k
1) solve

the linear problem with c1 = ck1 and c2 = c12 and it is admissible. So by convexity,
this is the solution.

Combining this result with the previous subsection, we can build an algorithm
that first checks that we do not have a corner solution, and then recursively computes
the solution.

6. Conclusion. We have shown how to characterize and compute the mecha-
nism design. In addition, the allocation problem for the optimal and the standard
mechanism are the same. We have proposed an algorithm based on a fixed point to
solve the allocation problem. This work raises some questions. Can we weaken the
Assumptions used in this work? Can we estimate the social benefit of using such
mechanism? How to build numerical benchmarks to compare the optimal mechanism
and the standard setting? How to implement the optimal mechanism in practice?
Which real markets enter in the framework described in §3.6?

Appendix A. Proof of Lemma 3.7.
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Proof. By definition

X(a1 . . . ak−1, b, ak+1 . . . aN )−X(a1 . . . ak−1, c, ak+1 . . . aN ) =

V (a1 . . . b . . . aN )− V (a1 . . . c . . . aN ) +∑
j 6=k

aj [Qj(a1 . . . b . . . aN )−Qj(a1 . . . c . . . aN )]

+bQk(a1 . . . b . . . aN )− cQk(a1 . . . c . . . aN )

=

∫ c

b

Qk(a1 . . . s . . . aN )ds+
∑
j 6=k

aj [Qj(a1 . . . b . . . aN )−Qj(a1 . . . c . . . aN )]

+bQk(a1 . . . b . . . aN )− cQk(a1 . . . c . . . aN ).

We use (H1) for the last equality. Then we apply a telescopic formula

X(a)−X(b) = X(a1 . . . aN )−X(b1, a2 . . . aN ) +

X(b1, a2 . . . aN )−X(b1, b2 . . . aN ) + . . .

+X(b1 . . . bN
1

, aN )−X(b1 . . . bN )

=

N∑
k=1

(

∫ bk

ak
Qk(b1 . . . s . . . aN )ds) +

N∑
k=1

∑
j<k

bj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+

N∑
k=1

∑
j>k

aj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+

N∑
k=1

akQk(b1 . . . bk−1, ak, ak+1 . . . aN )− bkQk(b1 . . . bk−1 . . . bk, ak+1 . . . aN )

Reordering the last three terms, we get

N∑
j=1

∑
k>j

bj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+

N∑
j=1

∑
k<j

aj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+

N∑
j=1

ajQj(b1 . . . bj − 1, aj , aj+1 . . . aN )− bjQj(b1 . . . bj−1 . . . bj , aj+1 . . . aN )

=

N∑
j=1

{bj
∑
k>j

[Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+ajQj(b1 . . . bj−1, aj , aj+1 . . . aN )− bjQj(b1 . . . bj−1 . . . bj , aj+1 . . . aN ) +

aj
∑
k<j

[Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]}

=

N∑
j

ajQj(a1 . . . aN )− bjQj(b1 . . . bN )
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We end up with

(A.1) X(a)−X(b) =

N∑
j=1

(ajQj(a)− bjQj(b) +

∫ bj

aj
Qj(b1 . . . bj−1, t, aj+1 . . . aN )dt)

Appendix B. On S and the regularity of q. Remember that the set S
corresponds to the points of transition between the two possibilities defined by the
first order condition (4.19):

(B.1) S = {c ∈ Cn, qi(c) = jq̄ and λi(c) = cj′ for some i ∈ I, j ∈ J, j′ ∈ {j, j + 1}}.

Our first goal is to show that S is a finite union of sets of zero measure (Lemmas B.1
and B.3). To do so, we apply the implicit functions theorem. From this we deduce
the regularity of q (proof of Lemma 4.4). For any IA, IB partition of I, and IC ⊂ IB
not empty, j ∈ JI and j′ ∈ JI such that for all i, j′ ∈ {ji, ji + 1}, we denote by
S(IA, IB , IC , j, j

′) the set

(B.2)

c ∈ Cn such that for any i ∈ I


i ∈ IA ⇒ λi(c) = c

j′i
i and qi(c) /∈ Nq̄

i ∈ IB ⇒ qi(c) = jiq̄

i ∈ IC ⇒ λi(c) = c
j′i
i

 .

For an element c of such set, we denote by M the matrix

(B.3) M(c) =

(
∂Fi(λ(c))

∂λj

)
(i,j)∈IB

.

We need to study the invertibility of M to apply the implicit functions theorem
(Lemma B.2). Note that the function S is defined on a finite set. We use the image of
S to show that the measure of S with respect to the Lebesgue measure is zero. We first
show in the next lemma that S is included in the finite union of the S(IA, IB , IC , j, j

′)
family. Then we will show that each element of this family has a measure equal to
zero.

Lemma B.1. S ⊆ ∪S(IA, IB , IC , j, j
′)

Proof. Take c ∈ S, then by definition of S, there exist i ∈ I, j ∈ J and j′ ∈
{j, j + 1} such that qi(c) = jq̄ and λi(c) = cj′ , so IC is not empty. By Lemma 4.2,
for all i ∈ I, i is in IA or IB . So we have a set S(IA, IB , IC , j, j

′) such that c is in this
set, so S is included in the union of those sets.

Lemma B.2. For any c ∈ Cn the matrix M(c) is invertible.
Proof. Assume that there are some coefficients αi such that

∑
i αiMi = 0 where

Mi is the ith column of M . Then by (4.3) and (4.4), the ith row of this relation writes:

(B.4) αi
∑
j∈V (i)

λ2
j

ri,j(λi + λj)3
=

∑
j∈V (i),j∈IB

αjλiλj
ri,j(λi + λj)3

.

We denote bi,j =
λ2
jλi

ri,j(λi+λj)3
and ai = αi

λi
. Then (B.4) is equivalent to

(B.5) ai =
∑

j∈V (i),j∈IB

aj
bi,j∑

k∈V (i) bi,k
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Considering the biggest ai, we get that all ai are equal by convexity, and so either
all are equal to zero or

(B.6)
∑
j∈V (i)

bi,j =
∑

j∈V (i),j∈IB

bi,j

which is not the case since IA is not empty by the fifth assumption. Next we show
that S(IA, IB , IC , j, j

′) has a zero Lebesgue measure.
Lemma B.3. For any IA, IB partition of I, and IC ⊂ IB not empty, j ∈ JI and

j′ ∈ JI such that for all i, j′ ∈ {j, j + 1}, the measure of the set S(IA, IB , IC , j, j
′) is

zero.
Proof. We assume in the market description that it is not possible to produce

a multiple q̄ at each node and satisfy exactly the nodal constraints (fifth assump-
tion). Therefore it is not possible that IB = I, so IA is not empty. By definition of
SIA,IB ,IC ,j,j′ , for all i ∈ IB ,

(B.7) Fi(c
j′

IA
, λIB (c)) = qi(c) = jiq̄,

which is a system of equations in λIB parametrized by cj
′

IA
. Let c ∈ C such that the

system is satisfied, by Lemma B.2, we can apply the implicit function theorem, so
there is a ball around c in which S(IA, IB , IC , j, j

′) is included in a smooth surface. By
compacity of C, we can choose a sequence dense in S(IA, IB , IC , j, j

′). We apply the
result to each element of this sequence. By density, S(IA, IB , IC , j, j

′) is a countable
union of smooth surfaces. Therefore the measure of S(IA, IB , IC , j, j

′) is zero.
A direct consequence of Lemma B.3 and Lemma B.1 is
Lemma B.4. The measure of S is zero.
We proceed with the proof of Lemma 4.4.
Proof. [of lemma 4.4] Let c = (c1 . . . cn) ∈ Cn\S. Let us show that q is infinitely

differentiable at c. We consider the two assertions:

Ai = ”∃ki, Fi(λ(c)) ∈]ki − 1, ki[q̄ and λi = cki ”

Bi = ”∃ki, Fi(λ(c)) = kiq̄ and λi ∈]cki , c
k+1
i [”

By Lemma 4.2 and by defintion of S, for any i ∈ I either Ai or Bi is true, but never
both. We denote by IA (resp. IB ) the set of elements of I for which Ai (resp. IB)
is true. If Ai is true for all i then there is a neighborhood V of c such that for any
element c̃ of V , Fi(c̃) ∈]ki − 1, ki[q̄, therefore on V , λ(c̃) = c̃.

Else IB is not empty and by definition of Bi

(B.8) ∀i ∈ IB Fi(λIA , λIB ) = q̄ji,

which we can see as an equation in λIB parametrized by λIA . This equation is satisfied
at λ(c). If we denote by M the matrix

(B.9) M =

(
∂Fi(λ(c))

∂λj

)
(i,j)∈IB

,

then M is invertible (see lemma B.2), the implicit function theorem applies and there
exists a function λIB so that in a neighborhood V of c, for all i ∈ IB , we have
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Fi(λIA , λIB (λIA)) = q̄ki. Moreover, since Fi is C∞ on [c∗, c
∗]n, λIB is C∞ on V .

Then if c̃ ∈ V , (c̃, λIB (c̃)) checks the first order condition so by uniqueness cIA , λIB (c̃)
is the dual solution, and so, qi = Fi(λIB (c̃), c̃) for all i ∈ I on V , so qi is C∞ at c.
This concludes the proof of the first part of the lemma.

The continuity of q comes from Berge maximum principle (see Theorem 9.17 in
[16]) in a convex setting.

The next lemma is an important component for the proof of Theorem 3.10.
Lemma B.5. Let i ∈ I and ci ∈ Ci, then the Lebesgue measure of the set

(B.10) Si(ci) = {c−i ∈ C−i, (ci, c−i) ∈ S}

is zero.
Proof. Using Lemma B.1, Si(ci) ⊆ {c−i ∈ C−i, (ci, c−i) ∈ ∪S(IA, IB , IC , j, j

′)}.
So let c−i ∈ Si(ci), IA, IB a partition of I, and IC ⊆ IB not empty, and j, j′ such
that (ci, c−i) ∈ S(IA, IB , IC , j, j

′). There are three possible cases:
• i ∈ IA then as explained in the proof of Lemma B.3, S(IA, IB , IC , j, j

′) is
locally a surface parametrized by ci so by projection over an hyperplane of
the type ci = x it also a surface in C−i.

• i ∈ IB\IC locally, q is independant of ci so if S(IA, IB , IC , j, j
′)∩(ci,Si(ci)) is

of strictly positive measure, then S(IA, IB , IC , j, j
′) has also a strictly positive

measure in Cn, since this is not true, S(IA, IB , IC , j, j
′)∩(ci,Si(ci)) is of zero

measure in the neighborhood.
• Else i ∈ IC , which is the tricky part. First by definition of IC , for any element

c of S(IA, IB , IC , j, j
′), qi(c) = jiq̄ and λi(c) = c

j′i
i . Without loss of generality,

we assume j′i = ji, the other case can be treated similarly. Then we make
the observation that we do not modify the c−i of S(IA, IB , IC , j, j

′) if we set
cj+1
i = cji . Since we are interested in S(IA, IB , IC , j, j

′) ∩ (ci,Si(ci)), we can

assume without loss of generality that cj+1
i = cji . Then we have reduced to

the case i ∈ IA.
We conclude as in the proof of Lemma B.3.
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