
HAL Id: hal-01416366
https://hal.science/hal-01416366v1

Submitted on 11 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alpha-Stable Multichannel Audio Source Separation
Simon Leglaive, Umut Şimşekli, Antoine Liutkus, Roland Badeau, Gael

Richard

To cite this version:
Simon Leglaive, Umut Şimşekli, Antoine Liutkus, Roland Badeau, Gael Richard. Alpha-Stable Mul-
tichannel Audio Source Separation. 42nd International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, Mar 2017, New Orleans, United States. �hal-01416366�

https://hal.science/hal-01416366v1
https://hal.archives-ouvertes.fr


ALPHA-STABLE MULTICHANNEL AUDIO SOURCE SEPARATION
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ABSTRACT
In this paper, we focus on modeling multichannel audio signals in
the short-time Fourier transform domain for the purpose of source
separation. We propose a probabilistic model based on a class of
heavy-tailed distributions, in which the observed mixtures and the
latent sources are jointly modeled by using a certain class of mul-
tivariate alpha-stable distributions. As opposed to the conventional
Gaussian models, where the observations are constrained to lie just
within a few standard deviations from the mean, the proposed heavy-
tailed model allows us to account for spurious data or important un-
certainties in the model. We develop a Monte Carlo Expectation-
Maximization algorithm for inferring the sources from the proposed
model. We show that our approach leads to significant performance
improvements in audio source separation under corrupted mixtures
and in spatial audio object coding.

Index Terms— Alpha-stable distributions, Multichannel source
separation, Informed source separation, Monte Carlo Expectation-
Maximization.

1. INTRODUCTION

Multichannel audio source separation is the task that aims to recover
a set of source audio signals from an observed mixture signal that has
multiple channels (e.g. stereo audio). The problem is called ‘under-
determined’ if the number of channels in the observed mixture is
less than the number of sources. In this paper we focus on modeling
mixtures of punctual sources in reverberant conditions for under-
determined multichannel audio source separation.

In source separation applications, audio signals are often repre-
sented in the time-frequency domain since this representation pro-
vides a natural interpretation due to its sparseness. Moreover, re-
verberant mixtures are easily modeled in this domain under a short
reverberation assumption [1]. One of the most common approaches
for tackling audio source separation is based on variance modeling
frameworks [2]. In these probabilistic approaches, the Short-Time
Fourier Transform (STFT) coefficients of each source are modeled
as latent random variables following a complex circularly symmetric
distribution with a time and frequency-dependent scale parameter.
As a particular special case of complex circularly symmetric distri-
butions, the complex Gaussian distributions have been widely used
in audio source separation [3, 4, 5, 6, 7]. Within this framework,
Non-negative Matrix Factorization (NMF) techniques are popular
to model the spectro-temporal characteristics of the sources [8, 9,
10, 11]. The generative Gaussian source model based on NMF was
first introduced in [8] and then applied to multichannel audio source
separation in [4], where the reverberant mixing model relies on a
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frequency-dependent mixing matrix. Recently, extensions based on
neural network variance models have also been proposed [12].

Even though the Gaussian models have proven successful in sev-
eral scenarios, they might fall short when the observations exhibit
strong variations or if they contain outliers. For addressing this issue
in the single channel case, several NMF models with heavy-tailed
observation models have been proposed. These heavy-tailed models
include the Student’s t-distribution [13], the Cauchy [10], and the
Lévy distributions [14]. A more general NMF framework was pre-
sented in [11], where the observations are assumed to be α-stable
distributed; generalizing several NMF models such as the Itakura-
Saito (IS), Cauchy and Lévy NMF.

Research on heavy-tailed models for multichannel source sepa-
ration has drawn some interest recently [15, 16, 17]. In this study,
we propose a novel probabilistic generative model for multichannel
audio source separation that tackles the problem of jointly modeling
all channels by using a family of multivariate heavy-tailed distribu-
tions. Our approach consists in extending the Gaussian model pro-
posed in [4] to a certain class of multivariate α-stable distributions.
We develop a Monte Carlo Expectation Maximization (MCEM) al-
gorithm for inferring the sources from the proposed model. This al-
gorithm can be implemented by applying minor modifications to the
Expectation-Maximization (EM) algorithm for the Gaussian model
[4, 5].

We evaluate the proposed approach under two challenging appli-
cations. First we consider a multichannel musical source separation
scenario, where the observed mixture signals are heavily corrupted.
Then, we consider a coding-based informed source separation appli-
cation similar to the one described in [18]. In both applications, we
report superior performance compared to the Gaussian models.

2. TECHNICAL BACKGROUND

Stable distributions [19] are heavy-tailed distributions and they ap-
pear as the limit distributions in the generalized central limit theo-
rem, i.e. when the variance of the random variables or vectors con-
sidered is no longer constrained to be finite. They are defined by the
property that a sum of stable random variables is stable. As such,
those distributions comprise the Gaussian, Cauchy and Lévy partic-
ular cases, among many others.

In this paper, we will be concerned with two particular cases of
stable distributions. The first one is the positive α-stable distribu-
tion, abbreviated as P α

2
S, referring to non-negative scalar random

variables. The second one concerns complex random vectors and is
called the complex multivariate elliptically contoured stable distri-
bution, denoted by EαSc.

Positive α-stable distributions P α
2
S (x;σ) have the fol-

lowing characteristic function E[exp(itx)] = exp(−|σt|α/2[
1− i sgn(t) tan πα

4

]
), where sgn(t) denotes the sign of t. They



are parameterized by two scalars: α ∈ (0, 2) is called the character-
istic exponent and determines the tail thickness of the distribution1.
The smaller α, the thicker the tail of the distribution. σ ∈ R+ is a
scale parameter measuring the spread of the random variable.

Stable random vectors may be defined in full generality through
the analytical expression of their characteristic function, involving
integration against a so-called spectral measure [19]. For prac-
tical purposes, in this study we will focus on a subclass of the
complex multivariate stable distributions, called the complex mul-
tivariate elliptically contoured stable distribution and denoted by
EαSc [20]. Its characteristic function takes the following form: if
z ∈ CK ∼ EαSc (Σz), then

E [exp (i<{t?z})] = exp
(
− |(1/2)t?Σzt|α/2

)
, (1)

where t is a K × 1 complex vector and ·? denotes Hermitian conju-
gation. As can be seen, EαSc depends on two parameters: just like
P α

2
S, the characteristic exponent α ∈ (0, 2] controls the thickness

of the tails: choosing α < 2 corresponds to a heavy-tailed model.
Then, Σz is a K ×K positive definite matrix called the shape ma-
trix. As a special case of (1) for α = 2, we obtain the complex
isotropic Gaussian distribution z ∼ Nc(0, 2Σz). For α = 1, we
obtain the complex isotropic Cauchy distribution [10].

A very useful fact concerning EαSc distributions is their con-
ditional Gaussianity, justifying the fact they are also called “sub-
Gaussian α-stable distributions”, e.g. in [19]. Let z ∼ EαSc (Σz).
It can be shown that we may introduce the so called impulse variable
φ ∼ P α

2
S and get [19, 11]:

z ∼ EαSc (Σz)⇔

{
φ ∼ P α

2
S
(
2(cos πα

4
)2/α

)
,

z | φ ∼ Nc (0, φΣz) .
(2)

As can be seen, the distribution of the impulse variable φ does not
depend on the shape matrix Σz. This equivalent model (2) for
z ∼ EαSc can be interpreted in the following way. Realizations of z
are expected overall to be distributed similarly to a Gaussian random
vector with covariance matrix Σz. However, its overall covariance
is perturbed by the variable φ that is most of the time small, but
may sometimes get significantly large, accounting for unexpected
observations. The rate at which these spurious realizations occur is
controlled by the characteristic exponent α of the EαSc distribution.
In the limiting case α = 2, φ becomes deterministic and z is hence
Gaussian. In all other α < 2 cases, the EαSc model permits us to
model multivariate data in a way similar to the Gaussian case but
accounting for data with high variability, or equivalently high uncer-
tainty regarding the Gaussian assumption.

3. THE MODEL

Before describing the proposed model, we first present the mul-
tichannel audio source separation framework that was introduced
in [4]. We consider an audio mixture of J source signals on I
channels expressed in the STFT domain. We denote the obser-
vations and sources as xfn = [x1,fn, ..., xI,fn]

T and sfn =
[s1,fn, ..., sJ,fn]

T , respectively, at the Time-Frequency (TF) point
(f, n) ∈ {0, ..., F − 1} ×{0, ..., N − 1}. In [4], the observations
and the sources are jointly modeled as follows:(

xfn
sfn

)
∼ Nc(0,Σfn), (3)

1The choice of defining P α
2
S through α

2
with α < 2 instead of simply

α < 1 comes out of notational convenience.

where Σfn ∈ C(I+J)×(I+J) is the positive definite covariance ma-
trix. It is structured as follows:

Σfn =

(
Σx,fn AfΣs,fn

Σs,fnA?
f Σs,fn

)
, (4)

where
Σx,fn = AfΣs,fnA?

f + Σb,f . (5)

Af = [aij,f ]ij ∈ CI×J is called the mixing matrix, Σb,f = σ2
b,fII

with σ2
b,f > 0, and II is the identity matrix of size I × I . The

source covariance matrices Σs,fn are further parametrized by using
an NMF model:

Σs,fn = diag([vj,fn]j), with vj,fn = [WjHj ]fn, (6)

where diag([vj,fn]j) is the diagonal matrix constructed from the co-
efficients {vj,fn}Jj=1 and Wj ∈ RF×Kj

+ , Hj ∈ RKj×N
+ are called

the dictionary and activation matrices of source j, respectively.
This model has been shown to be useful in various scenarios.

However, as we have discussed in the earlier sections, the Gaussian
assumption might be limiting in certain applications. Therefore, in
this study we consider a heavy-tailed distribution for jointly model-
ing the sources and the mixture observations:(

xfn
sfn

)
∼ EαSc(Σfn), (7)

where Σfn is the shape matrix of the elliptically contoured α-stable
distribution and it has the same structure as in (4)-(6). From (2) we
can express this model as conditionally Gaussian as follows:

φfn ∼ P
α

2
S
(
2
(
cos

πα

4

)2/α)
,(

xfn
sfn

)
|φfn ∼ Nc(0, φfnΣfn). (8)

Thanks to the heavy-tailed structure, we expect that this model will
allow larger variations in the observed data and be more robust to
outliers. Note that we obtain the Gaussian model if we set α = 2.

In source separation applications, the purpose is to estimate
the source signals given the observations and the model parame-
ters. If we assume that the model parameters Θ = {{Wj ,Hj}j ,
{Σb,f ,Af}f} are known, we are naturally interested in a Minimum
Mean Squared Error (MMSE) estimate of the sources sfn. From (4)
and (8) we can first identify the following conditional distribution:

sfn|xfn, φfn;Θ ∼ Nc
(
ŝfn, φfnΣcond

s,fn

)
, (9)

where ŝfn and Σcond
s,fn are defined at lines 4 and 5 of Algorithm 1

respectively. The MMSE estimate of sfn is then given as follows:

Esfn|xfn;Θ[sfn] = Eφfn|xfn;Θ

[
Esfn|xfn,φfn;Θ[sfn]

]
= ŝfn.

Note that this estimate does not depend on φfn. Moreover, it is
exactly the same estimate as in the Gaussian model [4]; if the pa-
rameters are identical, both models lead to the same source estimate.
In our applications, we further need to compute the posterior covari-
ance of the sources, that is given as follows:

Esfn|xfn;Θ

[(
sfn − ŝfn

)(
sfn − ŝfn

)?]
=Eφfn|xfn;Θ[φfn]Σ

cond
s,fn ,

(10)

where Eφfn|xfn;Θ[φfn] is the posterior mean of φfn, which does
not admit an analytical form. In the next section, we will develop a
method for approximately computing this expectation.



4. INFERENCE

In this section we derive an MCEM algorithm [21] for estimating the
parameters of the proposed model. Let X = {xfn}f,n be the set of
observed data while S = {sfn}f,n and Φ = {φfn}f,n denote the
set of hidden variables.

Our aim is to estimate the parameters in a Maximum Likelihood
(ML) sense, i.e. by maximizing the log-likelihood ln p(X|Θ). This
estimation can be done by maximizing a lower bound of the log-
likelihood, typically with an EM algorithm [22]. At the E-step of the
algorithm we compute the following lower-bound from the current
estimation of the parameters Θ′:

Q(Θ|Θ′) =ES,Φ|X,Θ′ [ln p(X,S,Φ|Θ)]. (11)

It is defined as the conditional expectation of the complete data log-
likelihood. The M-step then aims to maximize this lower bound in
order to obtain a new estimate of the parameters. These two steps
are iterated until convergence. One iteration of the proposed MCEM
algorithm is summarized in Algorithm 1 and we detail its derivation
in the following sub-sections. Further derivation details can be found
at [23].

4.1. E-step

At the E-step we compute the lower bound (11):

Q(Θ|Θ′) c
= −N

F−1∑
f=0

[
ln det(Σb,f ) + tr

(
Σ−1

b,fAfR̂φss,fA
?
f

−Σ−1
b,fAfR̂

?
φxs,f −Σ−1

b,fR̂φxs,fA
?
f + Σ−1

b,fR̂φxx,f

)]
−

J∑
j=1

F−1∑
f=0

N−1∑
n=0

[
ln(vj,fn) +

p̂j,fn
vj,fn

]
, (12)

where c
= denotes equality up to an additive constant,

R̂φ··,f = 1
N

∑N−1
n=0 R̂φ··,fn, R̂φss,fn = ES,Φ|X,Θ′ [φ−1

fnsfns?fn],
R̂φxs,fn = ES,Φ|X,Θ′ [φ−1

fnxfns?fn], R̂φxx,fn =

ES,Φ|X,Θ′ [φ−1
fnxfnx?fn] and p̂j,fn = ES,Φ|X,Θ′ [φ−1

fn |sj,fn|
2].

After straightforward calculations, these statistics can be further
written as in Algorithm 1. As can be seen, they involve the com-
putation of EΦ|X,Θ′ [φ−1

fn ]. Unfortunately, similarly as in (10), this
expectation cannot be written in a closed-form analytical expression.
In the sequel, we will derive a method for approximately computing
these expectations.

4.2. Estimating Intractable Expectations via MCMC

In this section, we develop a Markov Chain Monte Carlo (MCMC)
algorithm for approximating the intractable expectations by comput-
ing an average of samples that are drawn from p(Φ|X,Θ). We ap-
proximate the intractable expectations in question as follows:

E[f(φfn)] =

∫
f(φfn)π(φfn)dφfn ≈

1

M

M∑
m=1

f
(
φ
(m)
fn

)
(13)

where φ(m)
fn are samples that are drawn from the target distribu-

tion π(φfn) = p(φfn|X,Θ). More precisely, we develop a
Metropolis-Hastings (MH) algorithm that generates samples from
π(φfn) in two steps. In the m-th iteration of this algorithm, we
firstly draw a random sample φ′fn from the prior distribution φ′fn ∼

Algorithm 1: One iteration of the MCEM algorithm.

E-step:
1: Σs,fn = diag([vj,fn]j) with vj,fn = [WjHj ]fn
2: Σx,fn = AfΣs,fnA?

f + Σb,f

3: Gs,fn = Σs,fnA?
fΣ
−1
x,fn

4: ŝfn = Gs,fnxfn
5: Σcond

s,fn = (IJ −Gs,fnAf )Σs,fn

6: Compute φ̂−1
fn = EΦ|X,Θ′ [φ−1

fn ] with the MH algorithm
7: R̂φss,fn = φ̂−1

fn ŝfnŝ?fn + Σcond
s,fn

8: p̂j,fn = [R̂φss,fn]j,j
9: R̂φss,f = 1

N

∑
n R̂φss,fn

10: R̂φxx,f = 1
N

∑
n φ̂
−1
fnxfnx?fn

11: R̂φxs,f = 1
N

∑
n φ̂
−1
fnxfnŝ?fn

M-step:
12: Af = R̂φxs,fR̂

−1
φss,f

13: Σb,f = tr(R̂φxx,f −AfR̂
?
φxs,f − R̂φxs,fA

?
f

+AfR̂φss,fA
?
f )II/I

14: Wj ,Hj = IS-NMF(P̂j) with P̂j = [p̂j,fn]fn

P α
2
S
(
2(cos πα

4
)2/α

)
and we compute an acceptance probability,

given as follows:

acc(φfn → φ′fn) = min

{
1,
Nc(xfn; 0, φ

′
fnΣx,fn)

Nc(xfn; 0, φfnΣx,fn)

}
. (14)

Then, we draw a uniform random number u ∼ U([0, 1]). If u <

acc(φ(m−1)
fn → φ′fn), we accept the sample and set φ(m)

fn = φ′fn;

otherwise we reject the sample and set φ(m)
fn = φ

(m−1)
fn .

4.3. M-step

Zeroing the gradient of Q(Θ|Θ′) with respect to the mixing matrix
Af and the shape matrix Σb,f leads to the updates given at the M-
step of Algorithm 1. Moreover, up to an additive constant indepen-
dent of vj,fn, we can recognize in the last line of (12) the IS diver-
gence [8] between p̂j,fn and vj,fn = [WjHj ]fn. Therefore, simi-
larly as in [5], the update of the source parameters at line 14 of Algo-
rithm 1 is done by computing an NMF on P̂j = [p̂j,fn]fn ∈ RF×N+

using the IS divergence. It can be done with the standard multiplica-
tive update rules (see [8]).

5. EXPERIMENTS

Our experiments are conducted on audio tracks provided by the Mu-
sical Audio Signal Separation (MASS) dataset [24]. We created 8
stereo mixtures by simulating mixing filters with the Roomsimove
toolbox [25]. The room was a 4.45× 3.55× 2.5 m shoebox with a
reverberation time of 128 ms2. One mixture lasts between 12 and 28
seconds and contains between 2 and 4 sources. The mixtures are in-
strumental and do not contain singing voice as voice signals are not
accurately modeled by NMF. As the MASS dataset provides stereo
sources, each one is first converted to mono, downsampled to 16 kHz
and filtered with the associated RIRs to create a source image. We
finally sum the source images to create a mixture.

2The reverberation time is defined as the time it takes for the sound energy
to decrease by 60 dB after extinction of the source.



Initialization Oracle Blind
Model Gaussian α-stable Gaussian α-stable

SDR (dB) -3.7 4.5 -6.7 0.6

Table 1. Average SDR: Gaussian model with standard Wiener filter-
ing versus α-stable model with the modified estimation procedure.

5.1. Musical Source Separation on Corrupted Audio Mixtures

This section aims to illustrate the behavior and the capabilities of our
model given by (8). We would expect that the impulse variable φfn
represents the uncertainty about the model at TF point (f, n). In-
deed, we observe in (10) that the posterior covariance of the sources
depends on the posterior mean of φfn. If this quantity is high we
can conclude that the estimate of the sources at this TF point is un-
certain. We can thus expect to obtain a high posterior mean of φfn
for the TF points that are not accurately represented by the source
or mixing models. For demonstrating this claim we conduct a first
experiment that is meant to be a proof of concept. For each mix-
ture in the dataset, we corrupt a few number of TF points by setting
them to very high values, resulting in a highly audible noise. There
is no structure in this noise, so that it does not fit an NMF model. As
can be seen in line 4 of Algorithm 1, the sources are estimated by
Wiener filtering of the noisy mixture. The corrupted TF points thus
propagate to the source estimates, which results in noisy estimated
sources. For overcoming this issue and showing that the impulse
variables behave as expected, we propose a modified estimator given
by:

ŝmodiffn = Esfn,φfn|xfn;Θ[sfnφ
−1
fn ] = ŝfnφ̂

−1
fn , (15)

where ŝfn and φ̂−1
fn are defined at lines 4 and 6 of Algorithm 1 re-

spectively. We are thus scaling the standard Wiener source estimate
by the posterior mean of the inverse impulse variable.

We perform the source separation on all the corrupted mixtures
in the dataset. We compare the Gaussian model [4, 5] using standard
Wiener filtering with the proposed α-stable model (with α empiri-
cally chosen as equal to 1.5) using the modified estimation proce-
dure (15). The separation is performed from an oracle initialization
(the parameters are initialized from the true sources and mixing fil-
ters) and from a blind initialization. We evaluate the source sepa-
ration performance using the Signal-to-Distortion Ratio (SDR) [26]
expressed in decibels (dB). We used the BSS Eval Toolbox to com-
pute this measure [27]. The average SDR over all the sources in the
dataset is shown in Table 1. We can observe a great improvement
in the SDR with the α-stable model. This improvement is due to
the fact that scaling ŝfn with φ̂−1

fn suppresses the noise, by setting to
zero the corrupted TF points. This experiment thus confirms that the
impulse variable is able to capture outliers that do not fit for example
the NMF model.

5.2. Coding-Based Informed Source Separation

Informed source separation (ISS) is a framework where the audio
sources are known at an encoding stage. Side information can thus
be computed at the encoder and transmitted along with the mixtures
to the decoder, where source separation is performed. ISS was in-
troduced in [28] and relies on transmitting parameters that permit
to recover the sources using the mixtures at the decoder. The main
drawback of ISS is that the separation quality is limited by the sep-
aration method, which usually cannot recover the sources perfectly
whatever the allocated bitrate. To overcome this issue, Coding-based
ISS (CISS) was introduced, with the idea of also encoding the source

bitrate per source (kbps/source)
2 3 4 5 7 10 20 30
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D

R
 (
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B
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10
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Fig. 1. Rate-SDR curves for multiple values of α (blue to green
curves) compared with the Gaussian model (red dashed curve).

signals themselves [29, 18]. CISS makes use of the source posterior
distribution, given the mixture. The sources are represented by their
posterior means, which are characterized by a set of transmitted pa-
rameters. The main idea of CISS is to further encode the error be-
tween the true sources and their posterior means, through the use of
the posterior covariance matrix.

As mentioned previously, for a fixed set of parameters, the pos-
terior mean ŝfn is the same in the Gaussian and α-stable models.
However the posterior covariance of the sources differs. Indeed, it
can be seen in (10) that the α-stable model involves the posterior
mean of φfn in the definition of the posterior covariance matrix. In
this experiment we adapt the Gaussian CISS method presented in
[18] to our α-stable model. It consists in applying the exact same
source encoding procedure but using the posterior covariance matrix
given in (10). Due to space limitations we do not detail the encoding
algorithm but it can be found in [18].

For each mixture of the dataset, we run the CISS algorithms for
the Gaussian model [18] and for the proposed α-stable one. We stud-
ied various values of α going from α = 1 to 1.9 with a step of 0.1.
Both algorithms are run with different levels of quality, correspond-
ing to different source quantization step-sizes. For all the mixtures in
the dataset we then obtain a scatter-plot of the SDR in dB according
to the bitrate in kbit per second per source (kbps/source). The higher
the SDR, the lower the distortion. We then smooth this scatter-plot
using the local regression (LOESS) method [30]. The results are
presented in figure 1. As can be seen, the α-stable model leads to
higher SDR (or lower distortion) than the Gaussian model. Inter-
estingly, we can observe that as α tends to 2, the CISS results with
the α-stable model are getting smoothly closer to the ones with the
Gaussian model. Indeed, if α = 2 the elliptically contoured stable
distribution becomes the complex isotropic Gaussian one. We can
also mention that choosing α < 1 did not improve the results.

6. CONCLUSION

In this paper we proposed an extension of the multichannel audio
source separation framework [4] by using elliptically contoured sta-
ble distributions. We developed an MCEM algorithm that turned out
to be a modified version of the EM algorithm for the Gaussian model
[4, 5]. We showed that the use of heavy-tailed distributions permits
to add some flexibility, as they are more robust to outliers that do not
fit the structure of the model. The effectiveness of our approach has
been shown for separating sources from corrupted mixtures and for a
CISS application. Future work will include investigating a more jus-
tified way of using the impulse variable in the source estimate than
the procedure given in (15).
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