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First order convergence of matroids∗

Frantǐsek Kardoš† Daniel Král’‡ Anita Liebenau§

Lukáš Mach¶

Abstract

The model theory based notion of the first order convergence unifies
the notions of the left-convergence for dense structures and the Benjamini-
Schramm convergence for sparse structures. It is known that every first order
convergent sequence of graphs with bounded tree-depth can be represented
by an analytic limit object called a limit modeling. We establish the matroid
counterpart of this result: every first order convergent sequence of matroids
with bounded branch-depth representable over a fixed finite field has a limit
modeling, i.e., there exists an infinite matroid with the elements forming a
probability space that has asymptotically the same first order properties.
We show that neither of the bounded branch-depth assumption nor the
representability assumption can be removed.

1 Introduction

The theory of combinatorial limits keeps attracting a growing amount of atten-
tion. Combinatorial limits have sparked many exciting developments in extremal
combinatorics, in theoretical computer science, and other areas. Their significance
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is also evidenced by a recent monograph of Lovász [25]. The better understood
case of convergence of dense structures originated in the series of papers by Borgs,
Chayes, Lovász, Sós, Szegedy, and Vesztergombi [6–8, 26, 27] on the dense graph
convergence, and the notion was applied in various settings including hypergraphs,
partial orders, permutations, and tournaments [12,15,19–21,24]. The convergence
of sparse structures (such as graphs with bounded maximum degree) referred to
as the Benjamini-Schramm convergence [1,2,11,14] is less understood despite hav-
ing links to many problems of high importance. For example, the conjecture of
Aldous and Lyons [1] on Benjamini-Schramm convergent sequences of graphs is es-
sentially equivalent to Gromov’s question of whether all countable discrete groups
are sofic. Other notions of convergence of sparse graphs were also proposed and
studied [3–5, 11, 14].

In the light of many results on the convergence of graphs, one can ask whether
a reasonable theory of matroid convergence can be developed. The first obstacle
to building such a theory comes from the fact that matroids when viewed as
hypergraphs (e.g. with edges being the bases) can be too sparse for the classical
dense convergence approach to be directly applied, and too dense for the sparse
convergence approach at the same time. For example, the number of bases of the
graphic matroid ofKn is nn−2, an exponentially small fraction of all (n−1)-element
subsets of the edge set of Kn and an even tinier fraction of all subsets of the edge
set, which rules out the dense convergence approach. On the other hand, each
element of this matroid is contained in a non-constant number of bases, and it is
impossible to follow the sparse convergence approach. We overcome this obstacle
by adapting the notion of the first order convergence to matroids.

The notion of the first order convergence was introduced by Nešetřil and Ossona
de Mendez [28, 29] as an attempt to unify the convergence notions in the dense
and sparse settings: a sequence of structures of a fixed type (e.g., graphs) is first
order convergent if the probability that a random k-tuple of its elements has a
first order property ϕ, converges for every choice of ϕ (a formal definition can be
found in Subsection 2.4). It holds that every first order convergent sequence of
dense structures is convergent in the dense sense and every first order convergent
sequence of sparse structures is convergent in the Benjamini-Schramm sense.

In the analogy to graphons in the setting of dense graphs and graphings in
the setting of sparse graphs, an analytic limit object called a limit modeling was
proposed in [28, 29] to represent asymptotic properties of first order convergent
sequences. Unlike in the dense and sparse graph settings, it is not true that every
first order convergent sequence of graphs has a limit modeling. For example, the
sequence of Erdős-Rényi random graphs Gn,p for p ∈ (0, 1) is first order convergent
with probability one but it has no limit modeling [29, Lemma 18]. In the same
paper, Nešetřil and Ossona de Mendez showed the following.
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Theorem 1.1. Every first order convergent sequence of graphs with bounded tree-
depth has a limit modeling.

This result was extended to first convergent sequences of trees and graphs of
bounded path-width [23, 30]. Nešetřil and Ossona de Mendez [31] have recently
shown that every first order convergent sequence of graphs from a nowhere-dense
class of graphs has a limit modeling, which is the most general result possible for
monotone classes of graphs [29, Theorem 25].

As a test that the approach to the matroid convergence based on the first
order convergence is meaningful, it seems natural to prove the analogue of Theo-
rem 1.1, which is actually one of our results (Theorem 1.2). On the way towards
Theorem 1.2, we need to find a matroid parameter that can play the role of the
graph tree-depth. We do so by introducing a parameter called branch-depth in
Section 3. We believe that this matroid parameter is the right analogue of the
graph tree-depth because it has the following properties, which we establish in
this paper. We refer the reader to [32, Chapter 6] for a thorough discussion of the
graph tree-depth.

• The branch-depth of a matroid corresponding to a graph G is at most the
tree-depth of G.

• The branch-depth of a matroid corresponding to a graph G with tree-depth
d is at least 1

2
log2 d if G is 2-connected.

• The branch-depth is a minor monotone parameter (the same holds for graph
tree-depth).

• The branch-depth of a matroid is at most the square of the length of its
longest circuit (recall that the tree-depth of a graph G is at most the length
of its longest path).

• The branch-depth of a matroid is at least the binary logarithm of the length
of its longest circuit (recall that the tree-depth of a graph G is at least the
binary logarithm of the length of its longest path).

In addition, there exists an efficient algorithm that given an integer d and an oracle-
represented input matroid either outputs its decomposition of bounded depth or
it determines that the branch-depth of the input matroid exceeds d.

Equipped with the notion of branch-depth, we prove the following theorem in
Section 4.

Theorem 1.2. Every first order convergent sequence of matroids with bounded
branch-depth that is representable over a fixed finite field has a limit matroid mod-
eling.
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Note that matroids representable over finite fields have a structure more similar to
graphs than general matroids and it is not surprising that Theorem 1.2 includes
this assumption. In fact, we show in Section 5 that neither the assumption on
the bounded branch-depth nor the assumption on the representability over a fixed
finite field can be dropped. In particular, we construct a first order convergent
sequence of binary matroids that has no limit modeling, and a first order conver-
gent sequence of rank three matroids representable over rationals that has no limit
modeling.

2 Notation

In this section, we introduce the notation used throughout the paper.

2.1 Finite matroids

We start by introducing concepts related to finite matroids. We refer to the mono-
graph by Oxley [34] for a more detailed treatment. In Subsection 2.3, we extend
the terminology to infinite matroids. A matroid M is a pair (E, I) where E is a
finite set, called the ground set, and I ⊆ 2E is a collection of its subsets referred to
as independent sets. The set I is required to be nonempty, to be hereditary (i.e.,
for every F ∈ I, I must contain every subset of F ), and to satisfy the augmen-
tation axiom: if F and F ′ are independent sets with |F | < |F ′|, then there exists
x ∈ F ′ \ F such that F ∪ {x} ∈ I. We abuse the notation and we often denote by
M the ground set of the matroid M .

A subset F ⊆ M is called dependent if F 6∈ I, and a minimal dependent set
is a circuit. The number of elements of a circuit is referred to as its length. It is
well-known that the collection C of circuits of a matroid M satisfies the following
properties.

(C1) ∅ 6∈ C.

(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C with e ∈ C1 ∩ C2 and f ∈ C1 \ C2, then there exists a circuit
C3 ∈ C such that f ∈ C3 ⊆ (C1 ∪ C2) \ {e}.

Furthermore, (C1)–(C3) form an alternative set of axioms to define matroids.
More precisely, a collection C of subsets of M is the collection of circuits of a
matroid if and only if it satisfies (C1)–(C3). The rank rM(F ) of a set F ⊆ M is
the size of the largest independent subset of F . The rank of a matroid rM(M)
is the rank of the ground set of M . It is well-known that the rank function of
a matroid M is submodular, i.e., for any two subsets F1, F2 ⊆ M it holds that
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rM(F1 ∪ F2) + rM(F1 ∩ F2) ≤ rM(F1) + rM(F2). When there is no danger of
confusion, we omit the subscript, i.e., we just use r(F ) instead of rM(F ).

There are two particular important examples of matroids. A graphic matroid
M(G) is obtained from a graph G in the following way: the elements of M(G) are
the edges of G, and a set of edges is independent if it is acyclic. Vector matroids
have a set of vectors of a vector space as their ground set, and a set of elements is
independent if they are linearly independent.

A matroid M is called representable over a field F if there exists a function f
that maps the elements of M to vectors over F such that F ⊆ M is independent
in M if and only if f(F ) is linearly independent. A matroid is binary iff it is
representable over the binary field F2.

A loop is an element e of M with r({e}) = 0, and a bridge is an element such
that r(M\e) = r(M)− 1. Two elements e and e′ are parallel if neither of them is
a loop and r({e, e′}) = 1. If F is a subset of elements of M , the closure of F is
defined as cl(F ) :=

{

x : r(F ∪ {x}) = r(F )
}

. Clearly, r(cl(F )) = r(F ).
If F is a subset of the elements of M , then M\F is the matroid obtained

from M by deleting the elements of F , i.e., the elements of M\F are those not
contained in F , and a set F ′ is independent in M\F iff it is independent in M .
The matroid M/F is obtained by contracting F : the elements of M/F are those
not contained in F , and a subset F ′ of such elements is independent in M/F iff
F ′ is independent in M and r(F ∪ F ′) = r(F ) + r(F ′). When F = {e} is a single
element, we write M\e and M/e instead of M\{e} and M/{e}. The restriction
M |F of a matroid M to F is the matroid M \F , where F denotes the complement
of F in M . Finally, a minor of a matroid M is a matroid obtained by a sequence
of deleting and contracting some of its elements. It is not hard to show that if
a graph G′ is a minor of a graph G, then the matroid M(G′) is a minor of the
matroid M(G).

A matroid M is connected if the only two subsets F ⊆ M satisfying r(F ) +
r(F ) = r(M) are the empty set and the whole ground set. A component of M
is a set F that is an inclusion-wise maximal subset such that M |F is connected.
The components of M are equivalence classes given by the binary relation that
represents that two elements of M are contained in a common circuit. Hence, any
two components of a matroid M are disjoint. If M is a matroid and M1, . . . ,Mk

are its components, then rM(X) = rM1
(X ∩M1) + · · ·+ rMk

(X ∩Mk).

2.2 Matroid algorithms

Algorithms for matroids have been studied extensively, and we want to review
selected important facts here. It is common (see, e.g., [13, 35, 36]) to assume that
the input matroid is presented by means of an independence oracle. That is, we
assume that we can determine whether any subset of the elements of the given
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matroid is independent using a black-box function in unit time. The complexity
of algorithms for matroids is measured in terms of the number of elements of the
input matroid.

There is an efficient algorithm [37] to test whether a given binary matroid
is graphic, and if so to find a suitable graph. However, in general, deciding if an
oracle-given matroid is binary cannot be solved in subexponential time [36]. In the
same paper [36], Seymour presents a polynomial-time algorithm to decide whether
an oracle-given matroid is graphic.

A lot of decision problems for matroids involve the structural matroid parame-
ter branch-width. Rather than giving the exact definition here, let us just say that
matroid branch-width is the analogue of graph tree-width. Oum and Seymour [33]
showed, improving [16], that for every fixed k ≥ 1, it can be decided in polynomial
time whether the branch-width of an oracle-given matroid is at most k, and that
an optimal branch-decomposition can be constructed (for such matroids).

IfM is a class of matroids that are representable over a fixed finite field and that
have branch-width bounded by a constant, then properties expressible in monadic
second order over M can be decided in cubic time [17]. In [13], Gavenčiak, Oum,
and the second author introduce the notion of locally bounded branch-width and
present a fixed parameter algorithm to decide first order properties on the class of
regular matroids with locally bounded branch-width.

Hliněný [18] also showed that for every field F of order at least four, it is
NP-hard to decide whether a matroid given by its rational representation is F-
representable. The result still holds when restricting the input to matroids of
branch-width at most three. On the other hand, for every k ≥ 1 and any two finite
fields F and F′, there is a polynomial-time algorithm that decides whether a given
F-representable matroid of branch-width at most k is also F′-representable [22].

Similarly to the relation between the tree-depth and tree-width, the branch-
width of a matroid M is upper bounded by the branch-depth of M up to an
additive constant. It is natural to ask whether Theorem 1.2 can be extended to
sequences of matroids representable over finite fields that have bounded branch-
width; we believe that this is likely to be the case but it might be challenging to
prove since the analogous statement for sequences of graphs has been proven only
very recently [31].

2.3 Infinite matroids

One of the ways to define the notion of infinite matroids is to require the augmen-
tation axiom to hold for finite subsets and to additionally require that an infinite
set F ⊆ E is independent if and only if all of its finite subsets are independent.
Such matroids are called finitary. The drawback of this definition is that finitary
matroids can have only finite circuits.
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A robust notion of infinite matroids was proposed by Bruhn et al. [9]. They de-
veloped five equivalent axiom systems that characterize (infinite) matroids through
independent sets, bases, the closure operator, circuits, and their rank function. We
present the characterization through circuits here. Let M be a set, and let C ⊆ 2M

be a collection of subsets. Further, let I = I(C) denote the C-independent sets,
that is the collection of sets I ⊆ M such that C * I for all C ∈ C. A family C is
the collection of circuits of a matroid if it satisfies (C1), (C2), and the following
two conditions.

(C3’) Whenever X ⊆ C ∈ C and {Ce | e ∈ X} is a family of elements of C such
that e ∈ Cf ⇔ e = f for all e, f ∈ X , then for every f ∈ C \

(
⋃

e∈X Ce

)

there exists C ′ ∈ C such that f ∈ C ′ ⊆
(

C ∪⋃e∈X Ce

)

\X .

(CM) Whenever I ⊆ F ⊆ E and I ∈ I, the set {I ′ ∈ I : I ⊆ I ′ ⊆ F} has a
maximal element.

If |X| = 1, the axiom (C3’) becomes the usual strong circuit elimination axiom
(C3). We remark that all finitary matroids are matroids in the sense just defined.

2.4 First order convergence

For a set λ of relational symbols, let FO(λ) denote the set of first order formulas
using symbols from λ, and let FOk(λ) ⊆ FO(λ) denote the set of all such formulas
ϕ with k free variables. A λ-modeling (or just a modeling if λ is clear from the
context) A is a (finite or infinite) λ-structure whose domain is a standard Borel
space equipped with a probability measure ν such that the following holds: for
every ϕ ∈ FOk(λ), the subset Aϕ ⊆ Ak formed by all k-tuples of the elements of
A satisfying ϕ is measurable with respect to the product measure νk.

For a formula ϕ ∈ FOk(λ) and a modeling A, the Stone pairing 〈ϕ,A〉 is
νk(Aϕ), i.e., the Stone pairing is the probability that a randomly chosen k-tuple
of the elements of A satisfies ϕ. When a finite λ-structure A with |A| elements is
viewed as a modeling with a uniform discrete probability measure, it holds that

〈ϕ,A〉 = Aϕ

|A|k =

∣

∣{(v1, . . . , vk) ∈ Ak : A |= ϕ[v1, . . . , vk]}
∣

∣

|A|k .

A sequence (An)n∈N of finite λ-structures is first order convergent if the sequence
〈ϕ,An〉 converges for every first order formula ϕ ∈ FO(λ). A λ-modeling A is a
limit modeling of a first order convergent sequence (An)n∈N if

〈ϕ,A〉 = lim
n→∞

〈ϕ,An〉

for every formula ϕ ∈ FO(λ).
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In Sections 3 and 4, we work with rooted trees, rooted forests and their mode-
lings, which were studied in [29, Part 3]. A rooted tree is a tree with a distinguished
vertex referred to as the root, and a rooted forest is a graph such that each of its
component is a rooted tree. The depth of a rooted tree is the length of the longest
path from the root to a leaf, and the depth of a rooted forest is the maximum depth
of a rooted tree contained in it. Rooted forests can be described by a language
with a single binary relation representing the parent-child relation. In addition, we
also consider rooted forests with vertices colored with one of a bounded number of
colors. The vertex coloring of a rooted forest that uses k colors can be described
by extending the language with k unary relations, each representing one of the
colors. We use the following [29, Theorem 34] to prove one of our main results.

Theorem 2.1. Let k and d be fixed integers. Every first order convergent sequence
(Fn)n∈N of rooted forests with depth at most d and with vertices colored with at most
k colors has a limit modeling.

Theorem 2.1 is proven in [29] for rooted forests described by a language with
a single symmetric binary relation representing edges and a single unary relation
distinguishing roots of trees in the forest. Since there is a basic interpretation
scheme translating the description of rooted forests from this language to the
language that we consider here and there is also a basic interpretation scheme in
the other direction (see the next subsection for a definition if needed), Theorem 34
from [29] and Theorem 2.1 are equivalent by [29, Propositions 3 and 4].

Our paper concerns matroids and their modelings; we now introduce the nota-
tion related to the first order convergence matroids and matroid modelings. Let
λM be the countable language containing a k-ary relation Ik for every positive in-
teger k. The relation Ik is formed by all k-tuples of elements that are independent
in the matroid. Finite matroids can be axiomatized in the first order language by
a countable set of λM -formulas. However, in general, the axioms (C1), (C2), (C3’)
and (CM) cannot be replaced by a countable set of first order axioms.

Let (Mn)n∈N be a sequence of finite matroids, equipped with the uniform mea-
sure on its element sets. We define (Mn)n∈N to be first order convergent if the
sequence of the Stone pairings 〈ϕ,Mn〉 converges for every first order λM -formula
ϕ. A λM -modeling M is a limit modeling of (Mn)n∈N if it is an infinite matroid
and

〈ϕ,M〉 = lim
n→∞

〈ϕ,Mn〉

for every first order λM -formula ϕ. Note that this definition is stronger than that
of a limit modeling because we require additionally that the limit modeling is an
infinite matroid. Note that if there exists an integer K such that every circuit of
Mn has length at most K, then every circuit of the limit modeling M has length
at most K. In particular, M is finitary.
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2.5 Interpretation schemes

Let κ, λ be signatures, where λ has q relational symbols R1, . . . , Rq with respective
arities r1, . . . , rq. An interpretation scheme I of λ-structures in κ-structures is
defined by an integer k, which is called the exponent of the interpretation scheme,
a formula θE ∈ FO2k(κ), a formula θ0 ∈ FOk(κ), and a formula θi ∈ FOrik(κ) for
each symbol Ri ∈ λ, such that:

• the formula θE defines an equivalence relation on k-tuples;

• each formula θi is compatible with θE , in the sense that for every 0 ≤ i ≤ q
it holds

∧

1≤j≤ri

θE(xj,yj) ⊢ θi(x1, . . . ,xri) ↔ θi(y1, . . . ,yri),

where r0 = 1, xj and yj represent k-tuples of free variables, and θi(x1, . . . ,xri)
stands for θi(x1,1, . . . , x1,k, . . . , xri,1, . . . , xri,k).

For a κ-structure A, we denote by I(A) the λ-structure B defined as follows:

• the domain of B is the subset of the θE-equivalence classes [x] ⊆ Ak of the
tuples x = (x1, . . . , xk) such that A |= θ0(x);

• for each 1 ≤ i ≤ q and every v1, . . . ,vri ∈ Ari×k such that A |= θ0(vj) for
every 1 ≤ j ≤ ri it holds

B |= Ri([v1], . . . , [vri ]) ⇐⇒ A |= θi(v1, . . . ,vri).

If θ0 is a tautology and θE is the equality on k-tuples, then the interpretation
scheme is said to be basic.

The following is a standard result.

Proposition 2.2. Let I be an interpretation scheme of λ-structures in κ-structures.
Then there is a mapping Ĩ : FO(λ) → FO(κ) (defined by means of the formu-
las θE , θ0, . . . , θq above) such that for every ϕ ∈ FOp(λ), and every κ-structure
A, the following property holds. For every [v1], . . . , [vp] ∈ I(A)p (where vi =
(vi,1, . . . , vi,k) ∈ Ak) it holds

I(A) |= ϕ([v1], . . . , [vp]) ⇐⇒ A |= Ĩ(ϕ)(v1, . . . ,vp).

We need the following generalization of Propositions 3 and 4 from [29].

Lemma 2.3. Let I be an interpretation scheme of λ-structures in κ-structures,
let Ĩ be the mapping from Proposition 2.2, and let (An)n∈N be a sequence of finite
κ-structures such that

9



(1) lim
n→∞

〈θ0, An〉 = 1, and

(2) lim
n→∞

〈ϕ, I(An)〉 = lim
n→∞

〈Ĩ(ϕ), An〉 for every ϕ ∈ FO(λ).

If the sequence (An)n∈N is first order convergent, then the sequence (I(An))n∈N is
also first order convergent. Moreover, if A is a limit modeling of (An)n∈N, then
I(A) is a limit modeling of (I(An))n∈N.

Proof. The sequence (I(An))n∈N is first order convergent by [29, Proposition 3].
Let ΣA be the underlying σ-algebra of the probability space of A. We define the
σ-algebra on B := I(A) as follows:

X ∈ ΣB if and only if
⋃

x∈X

[x] ∈ ΣA.

The probability measure νB on B is defined as νB(X) := νA(
⋃

x∈X [x]) for X ∈ ΣB,
where νA is the probability measure on A. The condition (1) implies that νB is
indeed a probability measure, i.e., νB(B) = 1.

We now argue that I(A) is a limit modeling of the sequence (I(An))n∈N. Let
ϕ ∈ FOk(λ). Proposition 2.2 yields that (x1, . . . , xk) ∈ I(A)ϕ iff ([x1], . . . , [xk]) ∈
AĨ(ϕ). It follows from the definition of the σ-algebra ΣB that I(A)ϕ is measurable.
The definition of νB yields that that

〈ϕ, I(A)〉 = 〈Ĩ(ϕ),A〉,

which combines with the condition (2) to the following:

〈ϕ, I(A)〉 = 〈Ĩ(ϕ),A〉 = lim
n→∞

〈Ĩ(ϕ), An〉 = lim
n→∞

〈ϕ, I(An)〉.

Hence, I(A) is a limit modeling of the sequence (I(An))n∈N.

3 Matroid branch-depth

In this section, we introduce a matroid parameter analogous to the graph tree-
depth. We also present an algorithm that efficiently computes an approximate
value of the parameter of an input matroid together with the certifying depth-
decomposition.

3.1 Definition and basic properties

The branch-depth of a matroid is equal to the optimal height of a certain kind
of a decomposition tree. In the definition below and in the proofs of subsequent
claims, we use ‖T‖ to denote the number of edges of a tree T .

10



Definition 3.1. Let M be a finite matroid. A depth-decomposition of M is a pair
(T, f), where T is a rooted tree and f : M → V (T ) is a mapping such that

(1) r(M) = ‖T‖, and

(2) r(X) ≤ ‖T ∗(X)‖ for every X ⊆ M ,

where T ∗(X) is the union of paths from the root to all the vertices in f(X). The
branch-depth of a matroid M , denoted by bd(M), is the smallest depth of its
depth-decomposition, i.e., the smallest depth of a rooted tree T such that (T, f) is
a depth-decomposition of M .

For any matroid M there is a trivial decomposition where the tree is a path of
length r(M) with one of its end vertices being the root and all the elements of M
mapped to the other end vertex. The following lemma gives us a way to modify a
depth-decomposition.

Lemma 3.2. Let M be a finite matroid. If (T, f) is a depth-decomposition of M ,
then there is a depth-decomposition (T, f ′) such that f ′(e) is a leaf of T for every
element e of M .

Proof. Let (T, f) be a depth-decomposition of M . For every inner vertex v of T ,
let ℓ(v) be a leaf of T that is a descendant of v. For every e ∈ M , define f ′ as
follows.

f ′(e) :=

{

f(e) if f(e) is a leaf of T , and

ℓ(f(e)) otherwise.

We now verify that (T, f ′) is a depth-decomposition of M . The part (1) of Defi-
nition 3.1 holds since we have not changed the tree T . To check part (2), observe
that for any subset X of the elements of M , the subtree T ∗(X) with respect to
f is contained in the subtree T ∗(X) with respect to f ′. Hence, (T, f ′) is a depth-
decomposition of M .

As the notion of graph tree-depth [32], the parameter of matroid branch-depth
is also minor monotone.

Proposition 3.3. If M ′ is a minor of M , then bd(M ′) ≤ bd(M).

Proof. Since a minor of a matroid is obtained by a sequence of contractions and
deletions of some of its elements, it is enough to show that if M is a matroid and
e is an element of M , then the branch-depth of both M/e and M \ e is at most
bd(M). Fix a matroid M and e ∈ M . Let (T, f) be a depth-decomposition of M
of depth bd(M). By Lemma 3.2, we can assume that f(e) is a leaf of T for every
e ∈ M .

11



If e is a loop in M then M0 := M \ e = M/e. It is easy to see that for every
X ⊆ M0 we have rM0

(X) = rM(X). Hence, (T, f |M0
) is a depth-decomposition of

M0.
We now assume that e is not a loop. Let M1 := M/e, let u be the leaf f(e),

and let v be the parent of u. Set T1 = T \u and define f1 : M1 → V (T1) as follows:

f1(x) =

{

v if f(x) = u, and
f(x) otherwise.

We now show that (T1, f1) is a depth-decomposition of M1. Since e is not a loop,
we have r(M1) = r(M)−1. Thus, ‖T1‖ = r(M1). Now, consider a subset X ⊆ M1.
Recall that rM1

(X) = rM(X ∪ {e})− 1. If u ∈ f(X), we employ the bound on the
rank function provided by the depth-decomposition of M :

‖T ∗
1 (X)‖ = ‖T ∗(X ∪ {e})‖ − 1 ≥ rM(X ∪ {e})− 1 = rM1

(X).

Otherwise, we have

‖T ∗
1 (X)‖ = ‖T ∗(X)‖ ≥ rM(X) ≥ rM1

(X).

LetM2 = M\e. If e is a bridge thenM\e = M/e. Hence, we may assume that e
is not a bridge in M . In this case, we claim that (T, f |M2

) is a depth-decomposition
of M2. Since the rank of M2 equals the rank of M , we have r(M2) = ‖T‖, and it
also holds that ‖T ∗(X)‖ ≥ rM(X) = rM2

(X) for every X ⊆ M2.

If a graph G has a path with n vertices, its tree-depth (see Definition 3.5 if
needed) is at least ⌈log2 n+ 1⌉ − 1, see e.g. [32, Chapter 6]. The next proposition
relates the length of circuits in a matroid to its branch-depth, in the analogy to
the relation between the graph tree-depth and the existence of long paths.

Proposition 3.4. Let M be a matroid and d the size of its largest circuit. Then
bd(M) ≥ log2 d.

Proof. Let Cd be the matroid that consists of exactly one circuit of size d. If M
has a circuit of length d, then M contains Cd as a minor. Hence, it is enough to
show by Proposition 3.3 that the branch-depth of Cd is at least log2 d. We prove
this statement by induction on d.

Let (T, f) be a depth-decomposition of Cd such that T has depth bd(Cd) and
such that f(e) is a leaf of T for every e ∈ Cd. Its existence follows from Lemma 3.2.

Let w be the root of T . We first prove that the degree of w is one. Suppose
not. Let W be vertices of one of the subtrees of w, and let T1 be the subtree
induced by W ∪ {w} and T2 the subtree induced by the vertices not contained in
W . Observe that ‖Ti‖ ≥ r(f−1(V (Ti))) = |f−1(V (Ti))| for i ∈ {1, 2}. It follows
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that r(Cd) = ‖T‖ = ‖T1‖+‖T2‖ ≥ |f−1(V (T1))|+|f−1(V (T2))| = |Cd| = r(Cd)+1,
which is impossible.

Let v be a vertex of T of degree larger than two that is as close to the root w
as possible. If there is no such vertex, T is a path and it has depth d−1 ≥ log2(d).

Let P be a path from w to v, ℓ its length, and W vertices of one of the subtrees
of v. Let T1 be the subtree induced by W ∪ {v} and T2 the subtree induced
by v and the vertices not contained in W or in P . Further, let mi = ‖Ti‖ and
ni = |f−1(V (Ti))| for i ∈ {1, 2}. Observe that both n1 and n2 are non-zero, and
that

m1 +m2 + ℓ = r(Cd) = d− 1 and n1 + n2 = |Cd| = d. (1)

Since f−1(V (Ti)) is a proper subset of Cd, it is independent and we get that
ni ≤ mi+ ℓ for i ∈ {1, 2}. This yields that mi ≤ ni−1; otherwise, n3−i > m3−i+ ℓ
by (1). By symmetry, we may assume that n1 ≤ n2, which gives n1 ≤ d

2
.

Let M ′ := Cd/f
−1(V (T1)). Observe that M ′ is isomorphic to Cn2

. Let T ′ be
the tree obtained by considering a path of length of m1 + ℓ − n1 ≥ 0, identifying
one of its end vertices with the root of the tree T2 and rooting the resulting tree
at the other end vertex of the path. Observe that ‖T ′‖ = r(M ′) since the number
of its edges is smaller by r(V (T1)) compared to M , and that the tree T ′ with f |M ′

is a depth-decomposition of M ′. By induction, the depth of T ′ is at least log2
d
2
.

Since m1+ ℓ−n1 = ℓ− (n1−m1) ≤ ℓ−1, it follows that the depth of T is at least
log2

d
2
+ 1 = log2 d.

We now recall the notion of graph tree-depth. We use cl(T ) to denote the
transitive closure of a rooted tree T , i.e., the graph with vertex set V (T ) and an
edge connecting each pair of vertices u and v such that u is an ancestor of v in T .

Definition 3.5. The tree-depth td(G) of a graph G is the smallest possible depth
of a rooted tree T with the same vertex set as G such that G ⊆ cl(T ). Such a tree
T is called an optimal tree-depth decomposition of G.

We next relate the branch-depth of a graphic matroid to the tree-depth of the
underlying graph.

Proposition 3.6. The branch-depth of a graphic matroid M(G) is at most td(G).

Proof. Let G be a graph on n vertices and let M := M(G) be the corresponding
graphic matroid. We proceed by induction on n. If n = 1 or n = 2, the claim
holds. If G is not 2-connected, let G1, . . . , Gk be its 2-connected components
(blocks). Since the tree-depth is a minor monotone parameter, each Gi has tree-
depth at most td(G) and the matroid M(Gi) has a depth-decomposition with
depth at most td(G) by induction. Since the matroid M is the disjoint union of
the matroids M(G1), . . . ,M(Gk), a depth-decomposition of M can be obtained by
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identifying the roots of depth-decompositions of M(G1), . . . ,M(Gk). The depth of
such a depth-decomposition is at most td(G) and the claim follows. So, we assume
that G is 2-connected in the rest of the proof.

Let T be an optimal tree-depth decomposition of G. We construct a depth-
decomposition (T, f) of M as follows. The function f maps an element e ∈ M
to the end vertex of e that is farther from the root of T . We verify the two
conditions from Definition 3.1. Since G is connected, we indeed have r(M) =
n − 1 = |V (T )| − 1 as required by the condition (1). Consider a subset X ⊆ M .
We show that r(X) ≤ ‖T ∗(X)‖ to establish the condition (2). We may assume
that X has no circuit: if X contained a circuit, removing an element from a circuit
of X would not change r(X) and it could not increase ‖T ∗(X)‖. So, we assume
that X is independent and r(X) = |X|.

Let X1, . . . , Xk be the edge sets of the connected components of the graph
(V (G), X), and let U1, . . . , Uk be the their vertex sets. Further, let U ′

i be the
set f−1(Xi). Note that the sets U1, . . . , Uk are disjoint and U ′

i is a subset of Ui.
Since (Ui, Xi) is connected, the set Ui contains a unique vertex closest to the
root, and U ′

i is equal to Ui with the vertex closest to the root removed. Since
the subtree T ∗(X) contains an edge from each vertex of U ′

i to its parent, and
the sets U1, . . . , Uk are disjoint (and so are the sets U ′

1, . . . , U
′
k), ‖T ∗(X)‖ is at

least |U ′
1| + · · · + |U ′

k| ≥ |U1| + · · · + |Uk| − k. Since the rank of X is equal to
the sum of ranks of the sets Xi and r(Xi) = |Xi| = |Ui| − 1, it follows that
r(X) = |U1|+ · · ·+ |Uk| − k. This finishes the proof of the lemma.

Note that the converse of Proposition 3.6 does not hold. The graphic matroids
of an (n+1)-vertex star K1,n and an (n+1)-vertex path Pn+1 are isomorphic and
both have branch-depth one despite of the tree-depth of K1,n being one and the
tree-depth of Pn+1 being ⌈log2 n + 1⌉ − 1. Nevertheless, the following inequality
holds for 2-connected graphs.

Proposition 3.7. Let G be a 2-connected graph with tree-depth d. Then, the
branch-depth of a graphic matroid M(G) is at least 1

2
log2 d.

Proof. Since td(G) = d, the graph G contains a cycle of length at least
√
d by [32,

Proposition 6.2]. Therefore, by Proposition 3.4, bd(M(G)) ≥ 1
2
log2 d.

3.2 Technical lemmas

In this section, we establish further properties of the branch-depth, which are
important to prove the correctness of the algorithm presented later. The follow-
ing two claims follow directly from the definition of contracting an element of a
matroid.
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Lemma 3.8. Let C be a circuit in a matroid M . Let e ∈ C. If |C| > 1, then the
set C \ {e} is a circuit in M/e.

Proof. By the definition of contracting an element, it follows that rM/e(C \ e) =
rM(C) − 1 = |C| − 2. On the other hand, if X is a proper subset of C, then
rM/e(X) = rM(X ∪ {e})− 1 = |X|. Hence, C \ {e} is a circuit in M/e.

Lemma 3.9. Let M be a matroid and e an element of M . If C is a circuit of
M/e, then M has a circuit C ′ such that C ′ ⊇ C.

Proof. First observe that any proper subset of C is independent in M : indeed, if
X is a proper subset of C, then rM(X) ≥ rM(X ∪ {e}) − 1 = rM/e(X) = |X|. If
C is not independent in M , then C is a circuit.

Suppose that C is independent in M . We claim that C ∪{e} is a circuit. First,
rM(C ∪ {e}) = rM/e(C) + 1 = |C|, i.e., C ∪ {e} is not independent. Let X be a
subset of C ∪ {e}. We have already observed that X is independent if e 6∈ X . If
e ∈ X , then rM(X ∪ {e}) = rM/e(X) + 1 = |X| + 1, i.e., X is independent. We
conclude that C ∪ {e} is a circuit.

When encountering a circuit, the algorithm is going to proceed by contracting
one of its elements. The following lemma will be crucial for the analysis.

Lemma 3.10. Let M be a connected matroid, e an element of M such that M/e
is disconnected, and let M1, . . . ,Mk be the components of M/e. For every circuit
C of M containing e, there exists i ∈ {1, . . . , k} such that C ⊆ Mi ∪ {e}.

Proof. Suppose that C contains an element from M1 and an element from Mi,
i > 1. Let M ′

2 be the union of M2, . . . ,Mk, and let D1 = C∩M1 and D2 = C∩M ′
2.

Hence, we get the following

|D1|+ |D2| = |C| − 1 = rM(C) = rM/e(C \ e) + 1 .

Since M1, . . . ,Mk are the components of M , it follows that rM/e(C \ {e}) =
rM1

(D1)+ rM ′

2
(D2). However, C \ {e} is a circuit in M/e by Lemma 3.8. Since D1

and D2 are proper subsets of C \ {e}, both D1 and D2 are independent in M/e.
Hence, D1 and D2 are independent in M1 and M ′

2, respectively. It follows that
rM/e(C \ {e}) = |D1|+ |D2|, which is impossible.

Lemma 3.8 and Lemma 3.10 yield the following.

Lemma 3.11. Let M be a connected matroid. Let e be an element of M such that
M/e is not connected and let M1, . . . ,Mk be the components of M/e. For each
i = 1, . . . , k there is a circuit Ci in M containing e such that Ci ⊆ Mi ∪ {e}.

15



C0 C1 C2 C3 C4

e0 e1 e2 e3 e4
e′
1

e′
2

e′
3

e′
4

Figure 1: The notation used in the proof of Lemma 3.12.

Proof. Fix i = 1, . . . , k. Since M is connected, there is a circuit containing any
two elements of M , in particular, M has a circuit Ci containing the element e and
an element of Mi. By Lemma 3.10, the circuit Ci must be a subset of Mi∪{e}.

The following lemma allows us to find an obstruction to a small branch-
depth. We utilize this lemma to show that Algorithm 1 always returns a depth-
decomposition of depth at most 4bd(M). Figure 1 contains an illustration of the
notation used in the lemma.

Lemma 3.12. Let M be a matroid. Let e1, . . . , ek be distinct elements of M and
C0, C1, . . . , Ck subsets of M such that

|Ci| ≥ 3 for i = 0, . . . , k,
Ci−1 ∩ Ci = {ei} for i = 1, . . . , k,

Ci ∩ Cj = ∅ for |i− j| ≥ 2.

Let e0 ∈ C0 \ {e1} and e′i ∈ Ci−1 \ {ei−1, ei}, i = 1, . . . , k. Further, set

Mi :=

{

M for i = 0,
Mi−1/(Ci−1 \ {ei, e′i}) for i = 1, . . . , k.

If Ci is a circuit in Mi for i = 0, 1, . . . , k, then M contains a circuit of length at
least k + 3 containing e0.

Proof. We prove the statement by induction on k. For k = 0 it suffices to take the
circuit C0 itself.

Let k ≥ 1. By induction, M1 = M0/(C0 \ {e1, e′1}) has a circuit C of length
at least k + 2 that contains e1. Let D = C \ {e1}. Since C is a circuit, D is
independent in M1 and thus in M0. Also note |D| ≥ k + 1.

Let N = M0/(C0 \ {e0, e1, e′1}). Since C0 is a circuit in M0, {e0, e1, e′1} is a
circuit in N by Lemma 3.8. Furthermore, it holds that M1 = N/e0. If Y is a
circuit in N , then there is a circuit Y ′ ⊇ Y in M by Lemma 3.9. Therefore, it
suffices to find a circuit of length at least k + 3 in N .
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We will show that D ∪ {e0, e′1} or D ∪ {e0, e1} is a circuit in N . Since D is
independent in N/e0, we get that D ∪ {e0} is independent in M . We next show
that

rN (X ∪ {ei, ej}) = rN(X ∪ {e0, e1, e′1}) (2)

for any ei, ej ∈ {e0, e1, e′1}, ei 6= ej and for any set X ⊆ N . This follows from the
following application of the submodularity of the rank function:

rN({ei, ej}) + rN(X ∪ {e0, e1, e′1}) ≤ rN(X ∪ {ei, ej}) + rN ({e0, e1, e′1}).

Hence, for any proper subset D′ ( D, we have

rN(D
′ ∪ {e0, e′1}) = rN(D

′ ∪ {e0, e1}) = rM1
(D′ ∪ {e1}) + 1 = |D′|+ 2,

where the last equality follows from the fact that C = D ∪ {e1} is a circuit in M1.
Thus, both D′ ∪ {e0, e′1} and D′ ∪ {e0, e1} are independent in N . On the other
hand, it also holds that

rN(D ∪ {e0, e′1}) = rN(D ∪ {e0, e1}) = rM1
(D ∪ {e1}) + 1 = |D|+ 1,

where the first equality follows from (2), the second from M1 = N/e0, and the
last from the fact that C = D ∪ {e1} is a circuit in M1. Consequently, neither
D ∪ {e0, e1} and D ∪ {e0, e′1} is independent in N . To finish the proof, it suffices
to show that D ∪ {e1} or D ∪ {e′1} is independent in N . This can be shown using
the submodularity of the rank function and (2) as follows:

rN(D ∪ {e1}) + rN (D ∪ {e′1}) ≥ rN(D) + rN(D ∪ {e1, e′1})

= rN(D) + rN(D ∪ {e0, e1}) = 2|D|+ 1.

The proof is now complete.

We get the following corollary.

Corollary 3.13. Let M be a matroid. If C0, C1, . . . , Ck and M0, . . . ,Mk are as in

Lemma 3.12, then the matroid M contains a circuit of length at least
√

∑k
i=0 |Ci|.

Proof. Let t :=
∑k

i=0 |Ci|. If t ≤ (k + 1)2, then by Lemma 3.12 there is a circuit
of length at least k+3 >

√
t. On the other hand, if t > (k+1)2, then there exists

i ∈ {0, 1, . . . , k} such that |Ci| ≥ t
k+1

>
√
t.
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3.3 Approximating branch-depth

We now present our polynomial-time algorithm for constructing a depth-decompo-
sition of an oracle-given matroid M with depth at most 4bd(M). The pseudocode is
given as Algorithm 1 in the form of a routine taking three parameters: a connected
matroid M , one of its circuits C, and a non-loop element e ∈ C. For disconnected
matroids we process the components individually and glue the resulting depth-de-
compositions by identifying their roots. Note that every connected matroid has a
circuit and a non-loop element unless |M | = 1.

If the rank of M is at most one, which can be easily determined by checking the
existence of a two-element independent set, the routine returns the trivial depth-
decomposition, which is either one-vertex or two-vertex rooted tree with all the
matroid elements mapped to the root or the non-root leaf, respectively, depending
on the rank ofM . Assume r(M) ≥ 2. If |C| ≤ 2, we find another circuit containing
e of size at least three. The existence of such circuit in a connected matroid with
rank at least two is implied by the definition of connectivity, and it can be found
in a polynomial time for example as follows. Find using the greedy algorithm a
base B of M not containing any element parallel to e and remove from B all the
elements f such that B ∪ {e} \ {f} is not independent. The resulting set together
with e forms a circuit of length at least three.

If |C| ≥ 3, we proceed by contracting e in M and analyzing the resulting
matroid. If the resulting matroid is connected, Algorithm 1 calls itself recursively
(Step 3 of Algorithm 1) on the contracted matroid. Note that the connectivity of a
matroid can be tested in polynomial time using the matroid intersection algorithm;
this algorithm can also be used to find the connected components if the matroid
is not connected. In case that the matroid is connected, the recursive call is made
for the contracted matroid, the circuit C \ {e}, and an arbitrary element e1 of
C \ {e}. Note that e1 is not a loop in the contracted matroid since |C| ≥ 3. After
the call is finished, we alter the resulting decomposition by adding a new vertex
that becomes the root.

If M/e is not connected, the recursive calls are performed on each component
separately (Step 4 and Step 5). For the unique component containing C \ {e} (see
Lemma 3.10), the call is performed with the component, the circuit C \ {e}, and
an arbitrary element e1 of C \ {e}. For other components, the call is performed
for C ′ \ {e} where C ′ is an arbitrary circuit of the original matroid that contains
e and an element of the component; the element of C ′ \ {e} to perform the call
with is chosen arbitrary. The resulting decomposition is obtained by identifying
the roots of the individual decompositions and adding a new vertex that becomes
the root of the whole decomposition.

It is easily verified that Algorithm 1 finishes in time polynomial in the number
of elements of the input matroid: if the recursive call in Step 2 is executed, the next
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execution avoids this step and performs one of the other recursive calls, which in
turn lead to a decrease in the input size. If Step 3 is reached, only a single recursive
call is made by the routine and the number of matroid elements is decreased by one.
If Steps 4 and 5 are reached, then the number of recursive calls equals the number
of connected components and the sum of the numbers of elements of the matroids
passed to the calls is one less than the number of elements of the original matroid.
It is easy to establish that the number of recursive calls is at most quadratic in
the number n of elements of the original matroid, and a more refined analysis can
yield that the number of recursive calls is at most O(n logn).

We next establish that Algorithm 1 produces a depth-decomposition of the
input matroid.

Lemma 3.14. Algorithm 1 returns a valid depth-decomposition of M .

Proof. Let M be the input matroid and (T, f) the output of the Algorithm 1.
Clearly, T is a tree and f a mapping from M to V (T ). Thus, we need to verify the
two conditions from Definition 3.1. We start with the condition (1), and verify it
by induction on the number of recursive calls. If Step 0 or 1 is reached, the tree T
clearly satisfies r(M) = ‖T‖. In Step 2, the algorithm is recursively evoked to a
matroid of the same rank and the returned tree T has the number of edges equal
to r(M) by induction. In Step 3, the routine is recursively called to a matroid with
rank one smaller and the returned tree is extended by a single edge; consequently,
it also holds r(M) = ‖T‖. Finally, in Steps 4 and 5, the sum of the ranks of the
matroids that the routine is called to is one smaller than r(M) and thus the output
tree T has r(M) edges in this case, too.

We next establish the condition (2) from Definition 3.1, and we again proceed
by induction on the number of recursive calls. Let X be a non-empty subset
of M ; our aim is to show that r(X) ≤ ‖T ∗(X)‖. If the depth-decomposition
is constructed in Step 0 or 1, then the condition (2) clearly holds. If the algo-
rithm reached Step 2, the returned depth-decomposition is not modified and the
condition (2) holds by induction. Suppose that the depth-decomposition was con-
structed in Step 3, i.e., the matroid M/e is connected. From the induction, we get
rM/e(X \ {e}) ≤ ‖T ∗(X)‖−1, since T ∗(X) includes one additional edge compared
to the corresponding subtree of T ′. It follows that

rM(X) ≤ rM(X ∪ {e}) = rM/e(X \ {e}) + 1 ≤ ‖T ∗(X)‖ .

It remains to analyze the case that the depth-decomposition is constructed in
Steps 4 and 5, i.e., the case that the matroid M/e is has components M0, . . . ,Mk.
By induction, we get rMi

(X ∩ Mi) ≤ ‖Ti
∗(X ∩ E(Mi))‖, where Ti is the depth-

decomposition of Mi returned by the recursive call for Mi. Since the resulting
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Algorithm 1: construct(M,C, e)
Input: a connected matroid M , a circuit C of M , and a non-loop

element e ∈ C
Output: a depth-decomposition of M
if r(M) = 0 then

Step 0 return one-vertex tree with f mapping all elements to the root;

else

if r(M) = 1 then

Step 1 return one-edge tree with f mapping all elements to the leaf;

else

if |C| = 2 then

Step 2 choose a circuit C ′ satisfying |C ′| ≥ 3 and e ∈ C ′;
return construct(M,C ′, e);

else

if M/e is connected then

Step 3 choose an element e1 ∈ C \ {e};
(T ′, f ′) := construct(M/e, C \ {e}, e1);
T := (V (T ′) ∪ {v}, E(T ′) ∪ {vv′}) where v′ is the root of T ′;
root T at v;
f(e) := v′; f(e′) := f ′(e′) for e′ 6= e;
return (T, f);

else

Step 4 for the component M0 of M/e containing C \ e do

choose an element e0 ∈ C \ {e};
(T0, f0) := construct(M0, C \ {e}, e0);

end

Step 5 for each component Mi of M/e disjoint from C do
choose a circuit Ci of M contained in Mi ∪ {e} that
contains e;
choose ei ∈ Ci \ {e};
(Ti, fi) := construct(Mi, Ci \ {e}, ei);

end

identify all the roots vi of Ti into a single root v′, obtaining T ′;
T := (v(T ′) ∪ {v}, E(T ′) ∪ {vv′}), root T at v;
f(e) := v′, f(ei) := fi(ei) for ei ∈ Mi;
return (T, f);

end

end

end

end
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depth-decomposition is constructed by identifying the roots of T1, . . . , Tk and con-
necting them to the new root, we get

rM(X) ≤ rM(X∪{e}) = 1+
k
∑

i=0

rMi
(X∩Mi) ≤ 1+

k
∑

i=0

‖T ∗(X ∩Mi)‖ = ‖T ∗(X)‖ .

We next analyze the depth of the tree returned by Algorithm 1.

Lemma 3.15. Algorithm 1 returns a depth-decomposition of M with depth at most
4bd(M).

Proof. Let d be the depth of the depth-decomposition T returned by the algorithm
for a matroid M . Let r = v0, v1, . . . , vd be a path in T of length d from the root to
one of the leaves. It is easy to see that each vertex of T that is not a leaf is the root
of some subtree of T during the execution of the algorithm. For i = 0, 1, . . . , d−1,
let (Mi, Ci, ei) be the matroid together with a circuit and an element of it such
that the algorithm creates the subtree rooted at vi and containing vi+1 in the call
with the parameters (Mi, Ci, ei). Note that M0 = M and C0 = C. In addition,
r(Md−1) = 1 and |Cd−1| = 2.

For every i = 0, . . . , d − 2, precisely one of the following five cases occurs
depending whether the matroid Mi+1 was passed to the recursive call in Step 3, 4
or 5 during the execution of the call with the parameters (Mi, Ci, ei) and whether
the recursive call reached Step 2.

• Mi+1 = Mi/ei, Ci+1 = Ci \ {ei} (Step 3),

• Mi+1 = Mi/ei, |Ci| = 3, |Ci ∩ Ci+1| = 1 (Step 3 followed by Step 2),

• Mi+1 is a component of Mi/ei, Ci+1 = Ci \ {ei} (Step 4),

• Mi+1 is a component of Mi/ei, |Ci| = 3, |Ci ∩ Ci+1| = 1 (Step 4 followed by
Step 2),

• Mi+1 is a component of Mi/ei, Ci+1 ∩ Ci = ∅, but Ci+1 ∪ {ei} is a circuit in
Mi (Step 5).

The sequence C0, . . . , Cd−1 consists of several runs where the next set is a subset
of the preceding one; the runs correspond to Steps 3 or 4. Each run except for
the last one is finished either by Step 3 or 4 followed by Step 2, or by Step 5.
Let j0, . . . , jk be the indices of the elements where the run starts, i.e., the i-th run
contains the elements with indices between ji−1 and ji−1 (inclusively). Note that
j0 = 0, and set Ĉ0 := Cj0 = C0 and ê0 := e0. If the i-th run is finished by Step 5,
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let Ĉi := Cji ∪ {eji−1}, êi := eji−1 and ê′i any element of Cji−1 different from eji−1.

If the i-th run is finished by Step 3 or 4 followed by Step 2, let Ĉi := Cji, let êi be
the unique element in Cji ∩Cji+1 and let ê′i be the element of Cji−1 different from
eji−1 and from êi.

The circuits Ĉ0, . . . , Ĉk together with the elements ê0, . . . , êk and the elements
ê′1, . . . , ê

′
k fulfil the conditions of Lemma 3.13. Since each Cji can be contracted

at most |Cji| − 2 times before Step 2 or 5 is reached, we have
∑k

i=0 |Ĉi| ≥ d. By

Corollary 3.13, M has a circuit of length at least
√

∑k
j=0 |Ĉi| ≥

√
d. We conclude

that bd(M) ≥ 1
2
log2 d by Proposition 3.4.

As a corollary of the above analysis, we get the following upper bound on the
branch-depth of a matroid M .

Corollary 3.16. The branch-depth of a finite matroid M is at most ℓ2, where ℓ
is the size of the largest circuit of M .

Proof. Apply Algorithm 1 to M and keep the notation of the proof of Lemma 3.15.

Since M has a circuit of length at least
√

∑k
j=0 |Cij | ≥

√
d, it follows that d ≤ ℓ2.

Hence, the branch-depth of M is at most ℓ2.

We obtain another corollary from the presented analysis of Algorithm 1.

Corollary 3.17. There is a depth-decomposition (T, f) and a base B of M such
that f |B is a bijection between B and the non-root vertices of T , and f(e) is a leaf
for every e 6∈ B. Furthermore, the depth of T is at most 4bd(M).

Proof. We prove that the pair (T, f) returned by Algorithm 1 satisfies the state-
ment. The depth of T is at most 4bd(M) by Lemma 3.15, and we prove the existence
of B by induction on the number of recursive calls. Let C and e be the parameters
used to execute Algorithm 1. If the algorithm constructed (T, f) in Step 0 or 1,
then the statement is obvious. If (T, f) is constructed in Step 2, the existence of
B follows from induction. If (T, f) is constructed in Step 3, the base from the
recursive call together with e forms a base B of M . Finally, if (T, f) is constructed
in Steps 4 and 5, the bases from the recursive calls together with e form a base B
of M . Observe that in the last two cases the elements of the base B are mapped
by f to different non-root vertices, and all the other elements are mapped by f to
leaves.

4 Limits of representable matroids

This section is devoted to the proof of Theorem 1.2. We first describe an encod-
ing of first-order properties of a matroid in a rooted forest and we then employ
Theorem 2.1 to find a limit modeling.
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Let q be a fixed prime power, and let M be a finite matroid which is rep-
resentable over a finite field Fq. We identify the elements of M with the corre-
sponding vectors. Let d = bd(M) be the branch-depth of M . Recall that by
Corollary 3.17 there exists a depth-decomposition (T, f), where T has depth at
most D := 4d, such that there is a base B of M with f |B being a bijection between
B and the non-root elements of T , and where f(e) is a leaf for every e 6∈ B.

We now construct a vertex-colored forest F = F (M) from (T, f) such that
each component of F is a rooted tree of depth at most D, the colors are D-tuples
of elements of the finite field Fq, and there is a bijection between the vertices of F
and the elements of M . The construction proceeds as follows. For every non-root
vertex v of T , let bv be the unique element of the base B that is mapped by f to v.
Let v ∈ L(T ) be a leaf of T , say of depth t, and let P (v) = (v0, v1, v2, . . . , vt) be the
unique path from the root v0 to vt = v. Every element e 6∈ B that is mapped by f to
v is in the closure of bv1 , . . . , bvt since rM({e, bv1 , . . . , bvt}) ≤ ‖T ∗({v1, . . . , vt}‖ = t.
Consequently, if matroid elements are viewed as vectors, e is contained in the
linear hull of bv1 , . . . , bvt , and it can be expressed as their linear combination, i.e.,
e =

∑t
i=1 αibvi . For every such e ∈ f−1(vt) \ B, we attach a new leaf with its

parent being vt and color it with the color (α1, . . . , αt, 0, . . . , 0). Each vertex of the
original tree T is colored with the d-th unit vector ed, where d is its depth in T .

We next delete the root and obtain a rooted forest with subtrees T1, . . . , Tℓ.
Each of the trees T1, . . . , Tℓ has height at most D. We call the resulting forest
F = F (M) with coloring cM : V (F ) → FD

q a forest representation of M . It follows
from the construction that there is a bijection g between the elements of M and
the vertices of V (F ).

A forest representation of M is not unique since there can be several different
depth-decompositions of M . However, a forest representation (F, c) uniquely de-
termines the matroid. The elements of the matroid are the vertices of F . A set of
k vertices {v1, . . . , vk} is independent if the following holds. For 1 ≤ i ≤ k, let di
be the depth of vi in F , and let P (vi) = (w

(i)
1 , . . . , w

(i)
di+1) be the unique path from

the root of the tree containing vi to vi = w
(i)
di+1. We associate vi with a formal

sum
∑di

j=1 α
(i)
j w

(i)
j , where (α

(i)
1 , . . . , α

(i)
di
, 0, . . . , 0) = c(vi) is the color of vi. The set

{v1, . . . , vk} is linearly independent if and only if there exists no non-trivial k-tuple
(x1, . . . , xk) ∈ Fk

q such that

x1 ·
(

d1
∑

j=1

α
(1)
j w

(1)
j

)

+ · · ·+ xk ·
(

dk
∑

j=1

α
(k)
j w

(k)
j

)

= 0.

Note that whether {v1, . . . , vk} is independent is determined by the subforest F ∗ =
F ∗(v1, . . . , vk), which is formed by the union of the paths P (vi), and by the colors
c(v1), . . . , c(vk).
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Let λD be the language describing rooted forests with vertices colored with FD
q ,

i.e., λD contains a binary relation representing the parent relation and qD unary
symbols for the colors of the vertices. We now introduce an interpretation scheme
I of exponent one of λM -structures (matroids) in λD-structures (vertex-colored
rooted forests). Let Θ(x) ≡ x = x and θE(x, y) ≡ x = y. For k ≥ 1, we define
θk ∈ FOk(λD) to encode the k-ary independence operator Ik in the following way.
Let v1, . . . , vk be vertices in F . For every 1 ≤ i ≤ k, let P (vi) and c(vi) be defined
as above. Since each path P (vi) has length at most D, and since the number of
colors is at most qD, there are finitely many possibilities how F ∗(v1, . . . , vk) can
look. The subforest F ∗(v1, . . . , vk) completely determines whether there exists a

non-trivial linear combination of the formal sums
∑ti

j=1 α
(i)
j w

(i)
j that is zero. We

set θk(v1, . . . , vk) to be the λD-formula that says that F ∗(v1, . . . , vk) is such that
there exists no non-trivial zero linear combination; the above reasoning yields that
θk(v1, . . . , vk) should say that F ∗(v1, . . . , vk) is isomorphic to one of finitely many
vertex-colored rooted forests, i.e., there exists a λD-formula with these properties.

The next lemma follows from the construction and the definition of an inter-
pretation.

Lemma 4.1. Let M be a finite Fq-representable matroid of branch-depth at most
d, and let (F, cM) be a forest representation of M . Then I((F, cM)) ∼= M .

We are now ready to prove our main theorem.

Proof of Theorem 1.2. Let q be a prime power, d an integer, and (Mn)n∈N a first
order convergent sequence of matroids such that each matroid Mn is representable
over the field Fq and has branch-depth bounded by d. Let (Fn, cn)n∈N be the
corresponding sequence of forest representations of depth at most D := 4d. Recall
that each cn uses at most qD colors.

By compactness (see [28, 29]), we can assume that (Fn, cn)n∈N is first order
convergent (otherwise, we pick a first order convergent subsequence). By Theorem
2.1, (Fn, cn)n∈N has a limit modeling (F, c). Note that F has depth at most D and
c is an FD

q -coloring.
We now show that the assumptions of Lemma 2.3 hold. Since Fn |= θ0(v) for

any n ∈ N and any vertex v of Fn, the condition (1) of Lemma 2.3 trivially holds.
Finally, the condition (2) holds by Proposition 2.2 and since there is a bijection
gn between the elements of Mn and the vertices of Fn, for any n ∈ N.

It follows from Lemma 2.3 that M := I((F, c)) is a limit modeling for the
sequence (I(Fn, cn))n∈N, and thus of the sequence (Mn)n∈N, by Lemma 4.1. It
remains to prove that M is an infinite matroid. For k ∈ N, let Ck be the k-element
subsets {x1, . . . , xk} ⊆ M of M that satisfy

M |= ¬Ik(x1, . . . , xk) ∧
∧

1≤i≤k

Ik−1(x1, . . . , xi−1, xi+1, . . . , xk).
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We show that C :=
⋃

k≥1 Ck is a collection of circuits of M.
First, note that for every n ∈ N, since the branch-depth of each Mn is at most

d, the length of every circuit of Mn is at most 2d, by Proposition 3.4. It follows
that the length of every circuit in M (i.e., the size of each element in C) is at most
2d (since, e.g., the first order formula stating that there is no circuit of size 2d + 1
holds in eachMn and hence inM). Thus, the axioms (C1), (C2) and (C3’) trivially
hold since they are equivalent to a finite set of first order axioms. Finally, since all
circuits of M are finite, M is finitary, and thus, as mentioned in Subsection 2.3, it
is also a finitary matroid.

5 Non-existence of matroid limit modelings

In this section, we show that neither of the assumptions in Theorem 1.2 can be
removed. In particular, we prove the following two results.

Theorem 5.1. There exists a first order convergent sequence of Q-representable
matroids of rank three that has no limit modeling.

Theorem 5.2. There exists a first order convergent sequence of binary matroids
that has no limit modeling.

5.1 Matroids with rank three

We now construct a sequence of matroids of rank three, each representable over the
field of rationals, that has no limit modeling. We start with describing a procedure
to convert a graph G to a Q-representable matroid of rank at most three in a way
that the first order properties of G are preserved. The existence of a first-order
convergent sequence of graphs without a limit modeling (e.g., a sequence of Erdős-
Rényi random graphs has this property with probability one [29, Lemma 18]) allows
us to deduce that there exists a first order convergent sequence of such matroids
that does not have a limit modeling.

Let G be a graph on n vertices. We construct a matroid M(G, k), where k ∈ N
is a parameter. We first give the construction for k = 1. The construction is
illustrated in Figure 2. Let P = {pv : v ∈ V (G)} be a set of n points in the
Euclidean plane R2 in general position. For every edge uv ∈ E(G), add a new
point puv to the set P on the line through the points pu and pv such that puv
does not lie on any line passing through another pair of the points (of P and the
newly added points). The ground set of the matroid M(G, 1) is P . The bases B of
M(G, 1) are all triples {x, y, z} of M(G, 1) such that x, y, and z do not lie on a line.
Equivalently, the circuits are all sets of size four and all triples {pu, pv, puv} where
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Figure 2: Encoding a general graph G in a rank 3 matroid M(G, 1).

uv ∈ E(G). The matroid M(G, 1) has rank at most 3 and it is Q-representable.
Note that the matroids obtained for a different initial choice of P are isomorphic.

For k ≥ 2, M(G, k) is constructed from M(G, 1) by adding k − 1 parallel
elements to pv for every v ∈ V (G). This class of k parallel elements corresponding
to pv is denoted by C(v), and we say that an element in C(v) represents the vertex
v. We call an element of M(G, k) a vertex element if it is contained in some C(v),
and an edge element otherwise.

Let k ≥ 2. To show that first order definable properties of G are preserved in
M(G, k) let us define an interpretation scheme I of λG-structures in λM -structures
of exponent one. Note first that the formula D2 ≡ ¬I2 ∈ FO2(λM), which
captures the dependence of pairs of elements, defines an equivalence relation
on the ground set of any such matroid M(G, k). Further, note that edge ele-
ments can be distinguished from vertex elements in M(G, k) since x ∈ M(G, k)
is a vertex element if and only if M(G, k) |= ∃ y (x 6= y ∧ ¬I2(x, y)). We set
θE(x, y) ≡ D2(x, y) ≡ ¬I2(x, y) and θ0 ≡

(

∃ y (x 6= y ∧ ¬I2(x, y))
)

. Finally, we
define the formula θ1 ∈ FO2(λM) to represent the edge-relation as

θ1(x, y) ≡ I2(x, y) ∧ ∃z (I2(x, z) ∧ I2(y, z) ∧ ¬I3(x, y, z)) .

It is clear that θ0 and θ1 are compatible with θE . That is, I defined by the formulas
θE , θ0, and θ1 is an interpretation scheme of exponent one. The construction and
the definition of the interpretation I(M(G, k)) yield the following.

Lemma 5.3. For any graph G and k ≥ 2, it holds that I(M(G, k)) ∼= G.

We are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let (Gn)n∈N be a first order convergent sequence of graphs
that does not have a limit modeling. Consider now the sequence (Mn)n∈N where
Mn = M(Gn, |Gn|2). We may assume that (Mn)n∈N is first order convergent (oth-
erwise, we consider a first order convergent subsequence, which exists by compact-
ness). Let I be the interpretation scheme defined earlier, and let Ĩ : FO(λG) →
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FO(λM) be the mapping from Proposition 2.2. We claim that the conditions in
Lemma 2.3 are satisfied for the sequence (Mn)n∈N. Let x ∈ Mn be an element
chosen uniformly at random. Then the probability that x is an edge element is

|E(Gn)|
|E(Gn)|+|Gn|3

≤ 1
|Gn|

. Since |Gn| tends to infinity, limn→∞〈θ0,Mn〉 = 1 and the first
condition in Lemma 2.3 holds.

Now for ℓ ∈ N, consider ϕ ∈ FOℓ(λG). Let (e1, . . . , eℓ) be an ℓ-tuple chosen
uniformly at random from Mn. Since limn→∞〈θ0,Mn〉 = 1, the probability that
at least one ej is not a vertex element in Mn tends to zero. Since in Mn the
equivalence classes C(v) for v ∈ V (Gn) have all the same size, it follows from
Proposition 2.2 and Lemma 5.3 that

〈ϕ,Gn〉 = 〈ϕ, I(Mn)〉 = 〈Ĩ(ϕ),Mn〉+ o(1).

So, the second condition in Lemma 2.3 also holds.
Assume now that (Mn)n∈N has a matroid limit modeling M. By Lemma 2.3,

G := I(M) is a limit modeling for the sequence (I(Mn))n∈N, that is for (Gn)n∈N
by Lemma 5.3, a contradiction.

5.2 Binary matroids

We describe an interpretation scheme of graphs in binary matroids. The argument
is largely analogous to the one presented in Subsection 5.1.

Let G = (V,E) be a graph on n vertices, and let k ∈ N be a parameter. We
define a binary matroid M ′ = M ′(G, k) of rank |V | in the following way. The
matroid M ′ contains k distinct elements represented by the unit vector ev ∈ FV

2

for every vertex v ∈ V , and M ′ contains an element represented by eu + ev for
every edge uv ∈ E. Recall the interpretation scheme I of exponent one defined in
Subsection 5.1, and observe that observe that the graph I(M ′(G, k)) is isomorphic
to G. Theorem 5.2 can now be proven in a way completely analogous to the proof
of Theorem 5.1.

6 Concluding remarks

The tree-depth of graphs is important in relation to testing graph properties in a
fixed parameter way. It is also important with respect to the structure of graphs
in general. For example, for every d, there exists a finite set G of graphs with tree-
depth at most d such that each graph of tree-depth at most d is homomorphically
equivalent to one of the graphs in G. Naturally, one may ask whether some of
these results can be generalized to matroids using the branch-depth parameter
introduced in this paper.
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Independently of us, Matt DeVos and Sang-il Oum (private communication)
were considering another tree-depth like parameter for matroids, which was in-
spired by the work of Dittmann and Oporowski [10]. They define a contraction-
depth of a matroid recursively as follows. A matroid that consists of loops and
co-loops only has contraction-depth 0. For other matroids, the contraction-depth
of M is the smallest k that there exists an element e such that each component
of M/e has contraction-depth at most k − 1. As in the case of branch-depth, the
contraction-depth of a matroid is both lower and upper bounded by the length
of its longest circuit. They have also been working on the variant of the param-
eter called deletion-depth defined similarly and on generalizations for arbitrary
connectivity functions, which are of interest in relation to problems from discrete
optimization.
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dyniak, V. Tůma: First order limits of sparse graphs: Plane trees and path-
width, to appear in Random Struct. Alg.

[24] D. Král’, O. Pikhurko: Quasirandom permutations are characterized by 4-
point densities , Geom. Funct. Anal. 23 (2013), 570–579.

[25] L. Lovász: Large networks and graph limits , AMS, Providence, RI, 2012.

[26] L. Lovász, B. Szegedy: Limits of dense graph sequences , J. Combin. Theory
Ser. B 96 (2006), 933–957.

[27] L. Lovász, B. Szegedy: Testing properties of graphs and functions , Israel
J. Math. 178 (2010), 113–156.
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