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ON IMPROPER INTERVAL EDGE COLOURINGS

Peter Hudák, Košice, František Kardoš, Bordeaux, Tomáš Madaras,

Košice, Michaela Vrbjarová, Košice,

(Received May 21, 2015)

Abstract. In this paper, we study improper interval edge colourings, defined by the
requirement that edge colours around each vertex form an integer interval. For the corre-
sponding chromatic invariant (being the maximum number of colours in such a colouring),
we present upper and lower bounds and discuss their qualities; also, we determine its values
and estimates for graphs of various families, like wheels, prisms or complete graphs. The
study of this parameter was inspired by interval colouring, introduced by A.S. Asratian,
R.R. Kamalian: Interval colorings of edges of a multigraph. Applied Mathematics, Yerevan
State University 5 (1987) 25–34. The difference is that we relax the requirement of the
original colouring to be proper.
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1. Introduction

Throughout this paper, we consider simple connected graphs without loops or

multiple edges; we use standard graph terminology from the book [4].

A proper edge colouring c : V (G) → {1, . . . , k} of a graphG which uses each colour

from {1, . . . , k} at least once is called an interval colouring if, for each vertex x of G,

the set of colours of edges incident with x (the palette of x) forms an integer interval;

we say that the graph G is an interval k-colourable. For an interval colourable graph
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G, let t(G) denote the maximum number of colours used in any interval colouring

of G. The notion of interval colouring was introduced by Asratian and Kamalian

in [2] in the connection with specialized scheduling problems and, since then, it was

further investigated in many papers, see, for example [3, 5, 6, 7, 8, 9, 10]. Not all

graphs are proper interval colourable (this concerns, for example, graphs of Class

2); in fact, the problem of determining whether a graph has an interval colouring is

NP-complete, even for bipartite graphs, see [1] and [11].

In our paper, we relax the requirement of the above defined colouring to be proper

and introduce the parameter t̂(G) being the maximum number of colours in an

improper interval colouring of G. Note that t̂(G) is defined for every graph (which is

in sharp contrast with t(G), see [3]) and is at least 3 for all graphs of order at least 3

different fromK3. Also, for a graphG which is interval colourable, t(G) ≤ t̂(G) holds.

Compared to the range of results for interval colourings, it seems that improper

interval colourings have not been studied yet. Our aim is to contribute to this topic

by determining the exact values of t̂(G) or their estimates for graphs of several

classic families (this concerns also many graphs which do not possess proper interval

colourings), and to establish upper and lower bounds on t̂(G) in terms of graph

diameter and maximum degree.

2. Properties and results

In the analysis of improper interval colourings, the following observations (which

are easy to see) will be useful:

Proposition 2.1. If a graph G is improperly interval k-colourable with k ≥ 3,

then it is also improperly interval k-colourable in such a way that the colours 1 and

k are used exactly once.

Proposition 2.2. A graph G is improperly interval ℓ-colourable for each 1 ≤ ℓ ≤

t̂(G).

First, we present an upper bound on t̂(G) in terms of maximum degree and diam-

eter:

Lemma 2.3. For any connected graph G with maximum degree ∆ = ∆(G),

t̂(G) ≤ 1 + (∆− 1)(diam(G) + 1).

Proof. Let uv and xy be edges coloured by 1 and k, respectively, in an improper

interval colouring of G using t̂(G) colours. Observe that, in each such a colouring,

the colours of each two adjacent edges differ by at most ∆ − 1. Now, take the

shortest path P between the vertex sets {u, v} and {x, y}. Then P has length at

most diam(G); note, however, that the edges uv and xy need not belong to P .
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It follows that the number of colour changes from uv to xy along P is at most

diam(G) + 1 which implies the result. �

Note that this lemma generalizes the result of [2] where the right side of the above

inequality estimated t(G) from above. Using the same arguments, we can prove an

analogous inequality with respect to the diameter of the line graph L(G):

Lemma 2.4. For any connected graph G with maximum degree ∆ = ∆(G),

t̂(G) ≤ 1 + (∆− 1)(diam(L(G)); the bound is sharp.

We also present strengthenings of two theorems from [2]:

Theorem 2.5. For each triangle-free graph G on n vertices, t̂(G) ≤ n − 1; the

bound is sharp.

Proof. We follow the same reasoning as in the proof of Theorem 1 from [2]; the

difference is only in the estimate of the number of elements of the set A(i) (see

original proof, page 38): we obtain that, for improper interval t-colouring of G, the

inequality |A(i)| ≥ f(ei) − f(ei+1) − 1, i = 1, . . . , k − 1, holds (instead of equality).

Then the last argument of the original proof rephrases as

n ≥ k + 1 +

k−1∑

i=1

|A(i)| ≥ k + 1 +

k−1∑

i=1

(f(ei)− f(ei+1)− 1) =

= k + 1 + t− 1− (k − 1) = 1 + t,

implying t ≤ n− 1.

To show the sharpness of the bound, consider the graph of path on n vertices Pn,

n ≥ 2. It is easy to see that t̂(Pn) = n− 1. �

Since the original proof of the Proposition 4 of [2], page 39 does not involve a

considered interval colourings to be proper, we obtain

Theorem 2.6. For each graph G on n vertices, t̂(G) ≤ 2n− 1.

For the lower bound on t̂(G), we have the following estimate:

Theorem 2.7. For each graph G, t̂(G) ≥ 1 + diam(L(G)); the bound is sharp.

Proof. Consider the line graph L(G) of G and let x be a vertex of maximum eccen-

tricity in L(G). Then colour x with the colour 1 and each vertex y ∈ V (L(G)), y 6= x

with the colour equal to 1+distL(G)(x, y). This vertex colouring of L(G) induces an

edge colouring of G. The way the colouring of vertices of L(G) was constructed gives

that, in G, the palette of each vertex consists either of two consecutive colours or

of a single colour; thus, it is an improper interval colouring of G having the highest

colour equal to diam(L(G)) + 1.

3



2

1

3

2
3

4

5

4

3

5 3k + 2
3k + 3

3k + 1

3k + 2

1

2

2

3
4

4

5

6

6

7 4k + 3
4k + 4

4k + 4

4k + 5

Figure 1. The graph SNk and its proper and improper interval colourings.

To show the sharpness of the lower bound, consider, for an integer k ≥ 6 the

graph DBk obtained from a k-vertex path x1x2 . . . xk by adding new edges x1x3 and

xk−2xk. Then it is easy to check that t̂(DBk) = k − 1 and diam(L(DBk)) = k − 2.

�

The difference between t(G) and t̂(G) can be arbitrarily large. This can be seen

on the graph SNk formed from a chain of k copies of the graph K−
4 where both

chain ends are closed with a different triangle, see Figure 1. It is easy to see that

the graph SNk has proper interval colouring; observe that, in each proper interval

colouring of SNk, the difference of colours of two consecutive bridges incident with

the same copy of K−
4 is 0 or 3 while it is possible to construct an improper colouring

of SNk such that the colour difference on consecutive bridges is 4. Thus, we obtain

that t̂(SNk)− t(SNk) ≥ k. A similar construction can be used also for triangle-free

graphs, where instead of copies of K−
4 , the 5-cycle with pendant edges incident with

two nonadjacent vertices is used: the difference of colours on bridges in a proper

interval colouring is at most 3 whereas it is possible to assign the colours to obtain

the difference 4 in an improper interval colouring, see Figure 2.

The construction generalizes to classes of graphs of arbitrarily large girth. More-

over, one can consider several other suitable configurations to show that the colour

difference on two selected edges can be greater in improper version of the colouring

rather than in the proper one, and these configurations may be used to form other

graphs (for example, 2-connected) with arbitrarily large difference of t(G) and t̂(G).

There is no known significant upper bound on difference t̂(G) − t(G) in terms of

number of vertices of G.

In the following, we establish the exact values and estimates of t̂(G) of graphs

from several standard graph families.
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Figure 2. An analogous construction for triangle-free graphs.

Theorem 2.8. For an n-wheel Wn,

t̂(Wn) =

{
4, if n = 3;

n, if n ≥ 4.

Proof. Suppose first that n = 3. If t̂(W3) ≥ 5, then the unique edge of W3 which is

not adjacent to the edge of maximum colour would have a colour at least 2, so colour

1 is not used, a contradiction; on the other hand, an improper interval 4-colouring

of W3 is easy to find.

Now, let n ≥ 4. An improper interval n-colouring of Wn can be constructed

as follows: if x is the centre of Wn and x1, . . . , xn are its neighbours in counter

clockwise order, assign to each edge xixi+1, 1 ≤ i ≤
⌈
n
2

⌉
the colour 2i − 1, to each

edge xixi+1,
⌈
n
2

⌉
< i ≤ n (indices taken modulo n) the colour 2n+4−2i, and to each

edge xxi, i 6∈ {1,
⌈
n
2

⌉
+1} the colour equal to the arithmetic mean of colours of edges

xi−1xi, xixi+1 whereas the edge xx1 receives colour 1 and the edge xx⌈ n

2
⌉+1 receives

the colour n. It is easy to check that, in this colour assignment, the palettes of all

vertices form integer intervals (note that the palette of x1 is [1, 2] and the palette of

x⌈n

2 ⌉+1 is [n− 1, n]). See Figure 3 for illustration.

Assume now that, for some n, t̂(Wn) ≥ n+1. Consider first the case when n is odd.

Then at least one of colours 1 and n+ 1 is used at a rim edge of Wn (otherwise the

palette of the central vertex ofWn does not form an integer interval). Since replacing

each colour c with the colour n+2−c yields also an improper interval (n+1)-colouring

of Wn, we can suppose, without loss of generality, that the colour 1 is used on a rim

edge uv. Note that colours of two adjacent rim edges can differ by at most 2; this

gives that two edges yw,wz which are – taking into account the bidirectional distance

on the rim – most distant from uv have colour at most 1 + 2 · n−1
2 = n. Thus, the
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Figure 3. Improper interval n-colouring of a wheel Wn for n = 7

and n = 8.

colour n + 1 has to appear at a spoke edge of Wn and, repeating the above colour

difference argument, we obtain that this spoke edge is incident with the vertex w.

Due to the fact that, in the considered improper interval colouring, the colour 1 is

unique, the edge uv is adjacent with at least two edges coloured by 2 and at least one

of them – say, vq – is a rim edge (otherwise again, the palette of the central vertex is

not an integer interval). Then the colour sequence of the rim path P from uv through

vq ending in one of rim edges incident to w, is 1, 2, 4, . . . , 2i, 2(i+ 1), . . . , n− 1; this

gives that one of yw and wz has colour n − 1 and the other one has the colour n.

Now, if we take the rim path P ′ starting at uv, but with the opposite direction as

P , we get that its colour sequence is 1, 3, 5, . . . , 2i − 1, 2i + 1, . . . , n. But then the

colour n does not appear at a spoke edge, hence, the palette of the central vertex is

not an integer interval, a contradiction.

Consider now the case when n is even. Rephrasing the above arguments, we can

suppose that the colour 1 is used on a rim edge uv. According to the possible position

of the colour n+ 1, we distinguish two cases:

Case 1: The colour n + 1 is on a rim edge. Then the colour sequences of both rim

paths starting at uv are 1, 3, 5, . . . , 2i− 1, 2i+ 1, . . . , n+ 1, which gives that colours

of all spoke edges are even numbers, a contradiction.

Case 2: The colour n + 1 is on a spoke edge xw. Let yw and wz be rim edges

adjacent to xw; without loss of generality, let yw be closer to uv than wz to

uv. Then the colour sequence of a rim path starting at uv and ending at yw is

1, 3, . . . , 2i− 1, 2i+ 1, . . . , n− 1, which gives that wz has colour n. By the same ar-

gument as for n odd, the colour 2 has to be used on a rim edge incident with uv, hence,

the colour sequence of the rim path between uv and wz is 2, 4, . . . , 2i, 2(i+1), . . . , n.

But then again, the colour n is missing at spoke edges, a contradiction.

�
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Note that, by [3], only three wheels are proper interval colourable, namely W3,W6

and W9.

Next, we present exact value for a graph Yn = Cn�K2, the graph of an n-sided

prism.

Theorem 2.9. For an n-prism graph Yn with n ≥ 3, t̂(Yn) = n+ 2.

Proof. Let Yn = Cn�K2. In a plane drawing of Yn, there are two n-gonal faces

x1, x2, . . . , xn and y1, y2, . . . , yn interconnected by the edges xiyi, i = 1, . . . , n (the

side edges); the edges of type xixi+1 or yiyi+1 (i = 1, . . . , n indices are modulo n)

will be called base edges in the sequel.

First we show that there exists an improper interval colouring of graph Yn by n+2

colours. It can be constructed as follows: Assign the edge x1y1 colour 1, the edges

x1x2, y1y2 colour 2, the edges x1xn, y1yn colour 3 and the edge x⌈n

2
⌉+1y⌈n

2
⌉+1 assign

colour n+2. Now, assign edges xiyi colour 2i− 1 for i = 2, . . . , ⌈n
2 ⌉. Remaining side

edges xiyi assign colour 2(n− i)+ 4 for i = n, . . . , ⌈n
2 ⌉+2. The colours of remaining

base edges are now determined unambiguously, see Figure 4 for illustration.
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Figure 4. Improper interval (n + 2)-colouring of a prism Yn for

n = 7 and n = 8.

Now we prove that the colouring is optimal. Observe that diam(L(Yn)) = ⌊n
2 ⌋+1,

hence Lemma 2.4 gives an upper bound t̂(Yn) ≤ 2 · ⌊n
2 ⌋ + 3. For n odd this meets

the lower bound.

Suppose that n is even and there is an interval edge colouring of Yn with n + 3

colours. From the proof of Lemma 2.4 we know that for any pair of edges in G

coloured 1 and n+3 the corresponding vertices in L(G) are at distance diam(L(G)).

It is possible either for a pair of side edges xiyi and xjyj with |i − j| = n
2 , or for

a pair of base edges xixi+1 and yjyj+1 with |i − j| = n
2 . In both cases all edges

incident with the edge assigned colour 1 lie on some path of optimal length between

edges assigned 1 and n + 3, so all these edges have to be assigned colour 3, which
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is a contradiction, since there is no colour 2 in the palettes of vertices incident with

the edge assigned colour 1. �

Finally, we discuss improper interval colourings of complete graphs which is of

particular interest due to the ongoing intensive research in [9], [10].

Theorem 2.10. For a complete graph Kn with n ≥ 5, t̂(Kn) ≤ 2n− 5.

Proof. By contradiction. Assume that there exists a positive integer n ≥ 5 such that

Kn is improperly interval (2n− 4)-colourable. Let xy and uv be edges coloured by

1 and 2n − 4, respectively; note that xy and uv are not adjacent. Then the colour

of xu (xv, yu or yv) is either n− 2 or n− 1. We claim that both palettes of x and

y contain each of the colours 1, . . . , n − 1 exactly once; similarly, both palettes of

u and v contain each of the colours n − 2, . . . , 2n− 4 exactly once: If both xu and

xv had colour n− 2, then the palettes of u and v would contain each of the colours

n− 2, . . . , 2n− 4 exactly once, hence, yu and yv would have colour n− 1, which is

impossible.

Let z be a vertex of Kn such that zx has colour 2. Then the colour of the edge zu

is at least n (because of u); note, however, that the difference of the highest and the

lowest colour (which is the colour 2) in the palette of z is at most n− 2 which gives

that the highest colour in the palette of z is at most n. Therefore, the colour of zu

is equal to n. The same argument can be used for the edge zv, obtaining that its

colour is also n. But then the palette of z is not an integer interval, a contradiction.

�

Theorem 2.11. For each n, t̂(Kn) < t̂(Kn+1).

Proof. Let c be an improper interval t̂-colouring of Kn with t̂ = t̂(G), and let

w1, . . . , wn be ordering of vertices of Kn such that w1 is incident with an edge of

colour t̂. Now, add to Kn a new vertex u and, for each 1 < i ≤ n, add new edge uwi

coloured with the colour c(w1wi)+1; the edge uw1 will be then coloured with t̂+ 1.

�

Theorem 2.12. For each n, t̂(Kn+2)− t̂(Kn) ≥ 3.

Proof. Let c be an improper interval t̂-colouring of Kn with t̂ = t̂(G), and let

w1, . . . , wn be ordering of vertices of Kn such that w1 and w2 are endvertices of

an edge of colour t̂. Now, add to Kn two new vertices x, y and, for each 3 ≤ i ≤ n,

add new edges xwi and ywi coloured with the colour c(wiw1)+1 and new edges xw1

and yw2 coloured with t̂+1. In addition, add new edges yw1 and xw2 coloured with

t̂+ 2 and the new edge xy coloured with t̂+ 3.

�
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4j 4j + 1 4j + 2 4j + 3

4i 3i+ 4j 3i+ 4j + 1 3i+ 4j + 2 3i+ 4j + 3
4i+ 1 3i+ 4j + 1 3i+ 4j 3i+ 4j + 3 3i+ 4j + 2
4i+ 2 3i+ 4j + 2 3i+ 4j + 3 3i+ 4j + 1 3i+ 4j + 4
4i+ 3 3i+ 4j + 3 3i+ 4j + 2 3i+ 4j + 4 3i+ 4j + 1

Table 1. Colouring of a complete graph on n = 4k vertices: the

colour of an edge joining vertices 4i+r and 4j+s with 0 ≤ i < j ≤ k

and r, s ∈ {0, 1, 2, 3}.

4i 4i+ 1 4i+ 2 4i+ 3

4i 7i+ 1 7i+ 2 7i+ 3
4i+ 1 7i+ 3 7i+ 2
4i+ 2 7i+ 4
4i+ 3

Table 2. Colouring of a complete graph on n = 4k vertices: the

colour of an edge joining vertices 4i + r and 4i + s with 0 ≤ i ≤ k

and 0 ≤ r < s ≤ 3.

Theorem 2.13. For each n, t̂(Kn) ≥
7n−17

4 .

Proof. We prove first that t̂(K4k) ≥ 7k − 3 for every k ≥ 1. The general bound is

then implied by Theorems 2.11 and 2.12.

Let n = 4k for k ≥ 1, let G = Kn, and let V (G) = {0, 1, . . . , n− 1}. We define a

colouring of the edges of G in the following manner: The colour of an edge joining

vertices 4i + r and 4j + s with 0 ≤ i < j ≤ k and r, s ∈ {0, 1, 2, 3} is given in

Table 1, the colour of an edge joining vertices 4i+ r and 4i+ s with 0 ≤ i ≤ k and

0 ≤ r < s ≤ 3 is given in Table 2. It is easy to observe that it is an (improper)

interval colouring of G.

�

Note that, for proper interval colourings, it is not known whether the sequence

{t(Kn)}
∞
n=1 is monotone; also, any value of n for which t(Kn−1) > t(Kn) yields that

t̂(Kn) ≥ t(Kn) + 2.

To conclude this part, we list exact values of t̂(Kn) for some small values of n, see

Table 3.
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Mathematics, Faculty of Sciences, University of P. J. Šafárik, Jesenná 5, 040 01 Košice,
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