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In this paper, we study improper interval edge colourings, defined by the requirement that edge colours around each vertex form an integer interval. For the corresponding chromatic invariant (being the maximum number of colours in such a colouring), we present upper and lower bounds and discuss their qualities; also, we determine its values and estimates for graphs of various families, like wheels, prisms or complete graphs. The study of this parameter was inspired by interval colouring, introduced by A.S. Asratian, R.R.

Introduction

Throughout this paper, we consider simple connected graphs without loops or multiple edges; we use standard graph terminology from the book [START_REF] Diestel | Graph theory[END_REF].

A proper edge colouring c : V (G) → {1, . . . , k} of a graph G which uses each colour from {1, . . . , k} at least once is called an interval colouring if, for each vertex x of G, the set of colours of edges incident with x (the palette of x) forms an integer interval; we say that the graph G is an interval k-colourable. For an interval colourable graph This work was supported in part by French national agency for the promotion of higher education, international student services, and international mobility under the bilateral contract No. 31777QK, by Slovak Science and Technology Assistance Agency under the bilateral Slovak-French contract No. APVV-SK-FR-2013-0028, VVGS-PF-2014-447, VVGS-2014-179 and VVGS-PF-2015-484. Also, this study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the "Investments for the future" Programme IdEx Bordeaux -CPU (ANR-10-IDEX-03-02).

G, let t(G) denote the maximum number of colours used in any interval colouring of G. The notion of interval colouring was introduced by Asratian and Kamalian in [START_REF] Asratian | Investigation of interval edge-colorings of graphs[END_REF] in the connection with specialized scheduling problems and, since then, it was further investigated in many papers, see, for example [START_REF] Axenovich | On interval colorings of planar graphs[END_REF][START_REF] Giaro | The complexity of consecutive ∆-coloring of bipartite graphs: 4 is easy, 5 is hard[END_REF][START_REF] Giaro | lafiejski: On the deficiency of bipartite graphs[END_REF][START_REF] Giaro | Ma lafiejski: Consecutive colorings of the edges of general graphs[END_REF][START_REF] Janczewski | lafiejski: Interval incidence graph coloring[END_REF][START_REF] Khachatrian | Interval edge-colorings of complete graphs[END_REF][START_REF] Petrosyan | Interval edge-colorings of complete graphs and n-dimensional cubes[END_REF]. Not all graphs are proper interval colourable (this concerns, for example, graphs of Class 2); in fact, the problem of determining whether a graph has an interval colouring is NP-complete, even for bipartite graphs, see [START_REF] Asratian | Interval colorings of edges of a multigraph[END_REF] and [START_REF] Sevast | janov: Interval colorability of the edges of a bipartite graph[END_REF].

In our paper, we relax the requirement of the above defined colouring to be proper and introduce the parameter t(G) being the maximum number of colours in an improper interval colouring of G. Note that t(G) is defined for every graph (which is in sharp contrast with t(G), see [START_REF] Axenovich | On interval colorings of planar graphs[END_REF]) and is at least 3 for all graphs of order at least 3 different from K 3 . Also, for a graph G which is interval colourable, t(G) ≤ t(G) holds. Compared to the range of results for interval colourings, it seems that improper interval colourings have not been studied yet. Our aim is to contribute to this topic by determining the exact values of t(G) or their estimates for graphs of several classic families (this concerns also many graphs which do not possess proper interval colourings), and to establish upper and lower bounds on t(G) in terms of graph diameter and maximum degree.

Properties and results

In the analysis of improper interval colourings, the following observations (which are easy to see) will be useful:

Proposition 2.1. If a graph G is improperly interval k-colourable with k ≥ 3,
then it is also improperly interval k-colourable in such a way that the colours 1 and k are used exactly once.

Proposition 2.2. A graph G is improperly interval ℓ-colourable for each 1 ≤ ℓ ≤ t(G).
First, we present an upper bound on t(G) in terms of maximum degree and diameter:

Lemma 2.3. For any connected graph G with maximum degree ∆ = ∆(G), t(G) ≤ 1 + (∆ -1)(diam(G) + 1).
Proof. Let uv and xy be edges coloured by 1 and k, respectively, in an improper interval colouring of G using t(G) colours. Observe that, in each such a colouring, the colours of each two adjacent edges differ by at most ∆ -1. Now, take the shortest path P between the vertex sets {u, v} and {x, y}. Then P has length at most diam(G); note, however, that the edges uv and xy need not belong to P .

It follows that the number of colour changes from uv to xy along P is at most diam(G) + 1 which implies the result.

Note that this lemma generalizes the result of [START_REF] Asratian | Investigation of interval edge-colorings of graphs[END_REF] where the right side of the above inequality estimated t(G) from above. Using the same arguments, we can prove an analogous inequality with respect to the diameter of the line graph L(G): Lemma 2.4. For any connected graph G with maximum degree ∆ = ∆(G), t(G) ≤ 1 + (∆ -1)(diam(L(G)); the bound is sharp.

We also present strengthenings of two theorems from [START_REF] Asratian | Investigation of interval edge-colorings of graphs[END_REF]: Theorem 2.5. For each triangle-free graph G on n vertices, t(G) ≤ n -1; the bound is sharp.

Proof. We follow the same reasoning as in the proof of Theorem 1 from [START_REF] Asratian | Investigation of interval edge-colorings of graphs[END_REF]; the difference is only in the estimate of the number of elements of the set A(i) (see original proof, page 38): we obtain that, for improper interval t-colouring of G, the inequality

|A(i)| ≥ f (e i ) -f (e i+1 ) -1, i = 1, . . . , k -1, holds (instead of equality).
Then the last argument of the original proof rephrases as

n ≥ k + 1 + k-1 i=1 |A(i)| ≥ k + 1 + k-1 i=1 (f (e i ) -f (e i+1 ) -1) = = k + 1 + t -1 -(k -1) = 1 + t, implying t ≤ n -1.
To show the sharpness of the bound, consider the graph of path on n vertices P n , n ≥ 2. It is easy to see that t(P n ) = n -1.

Since the original proof of the Proposition 4 of [START_REF] Asratian | Investigation of interval edge-colorings of graphs[END_REF], page 39 does not involve a considered interval colourings to be proper, we obtain Theorem 2.6. For each graph G on n vertices, t(G) ≤ 2n -1.

For the lower bound on t(G), we have the following estimate: Theorem 2.7. For each graph G, t(G) ≥ 1 + diam(L(G)); the bound is sharp.

Proof. Consider the line graph L(G) of G and let x be a vertex of maximum eccentricity in L(G). Then colour x with the colour 1 and each vertex y ∈ V (L(G)), y = x with the colour equal to 1 + dist L(G) (x, y). This vertex colouring of L(G) induces an edge colouring of G. The way the colouring of vertices of L(G) was constructed gives that, in G, the palette of each vertex consists either of two consecutive colours or of a single colour; thus, it is an improper interval colouring of G having the highest colour equal to diam(L(G)) + 1. To show the sharpness of the lower bound, consider, for an integer k ≥ 6 the graph DB k obtained from a k-vertex path x 1 x 2 . . . x k by adding new edges x 1 x 3 and

x k-2 x k . Then it is easy to check that t(DB k ) = k -1 and diam(L(DB k )) = k -2.
The difference between t(G) and t(G) can be arbitrarily large. This can be seen on the graph SN k formed from a chain of k copies of the graph K - 4 where both chain ends are closed with a different triangle, see Figure 1. It is easy to see that the graph SN k has proper interval colouring; observe that, in each proper interval colouring of SN k , the difference of colours of two consecutive bridges incident with the same copy of K - 4 is 0 or 3 while it is possible to construct an improper colouring of SN k such that the colour difference on consecutive bridges is 4. Thus, we obtain that t(SN k )t(SN k ) ≥ k. A similar construction can be used also for triangle-free graphs, where instead of copies of K - 4 , the 5-cycle with pendant edges incident with two nonadjacent vertices is used: the difference of colours on bridges in a proper interval colouring is at most 3 whereas it is possible to assign the colours to obtain the difference 4 in an improper interval colouring, see Figure 2.

The construction generalizes to classes of graphs of arbitrarily large girth. Moreover, one can consider several other suitable configurations to show that the colour difference on two selected edges can be greater in improper version of the colouring rather than in the proper one, and these configurations may be used to form other graphs (for example, 2-connected) with arbitrarily large difference of t(G) and t(G).

There is no known significant upper bound on difference t(G)t(G) in terms of number of vertices of G.

In the following, we establish the exact values and estimates of t(G) of graphs from several standard graph families. Theorem 2.8. For an n-wheel W n ,

t(W n ) = 4, if n = 3; n, if n ≥ 4.
Proof. Suppose first that n = 3. If t(W 3 ) ≥ 5, then the unique edge of W 3 which is not adjacent to the edge of maximum colour would have a colour at least 2, so colour 1 is not used, a contradiction; on the other hand, an improper interval 4-colouring of W 3 is easy to find. Now, let n ≥ 4. An improper interval n-colouring of W n can be constructed as follows: if x is the centre of W n and x 1 , . . . , x n are its neighbours in counter clockwise order, assign to each edge x i x i+1 , 1 ≤ i ≤ n 2 the colour 2i -1, to each edge x i x i+1 , n 2 < i ≤ n (indices taken modulo n) the colour 2n+ 4 -2i, and to each edge xx i , i ∈ {1, n 2 + 1} the colour equal to the arithmetic mean of colours of edges x i-1 x i , x i x i+1 whereas the edge xx 1 receives colour 1 and the edge xx ⌈ n 2 ⌉+1 receives the colour n. It is easy to check that, in this colour assignment, the palettes of all vertices form integer intervals (note that the palette of x 1 is [START_REF] Asratian | Interval colorings of edges of a multigraph[END_REF][START_REF] Asratian | Investigation of interval edge-colorings of graphs[END_REF] and the palette of

x ⌈ n 2 ⌉+1 is [n -1, n]
). See Figure 3 for illustration. Assume now that, for some n, t(W n ) ≥ n+1. Consider first the case when n is odd. Then at least one of colours 1 and n + 1 is used at a rim edge of W n (otherwise the palette of the central vertex of W n does not form an integer interval). Since replacing each colour c with the colour n+2-c yields also an improper interval (n+1)-colouring of W n , we can suppose, without loss of generality, that the colour 1 is used on a rim edge uv. Note that colours of two adjacent rim edges can differ by at most 2; this gives that two edges yw, wz which are -taking into account the bidirectional distance on the rim -most distant from uv have colour at most 1 + 2 • n-1 2 = n. Thus, the colour n + 1 has to appear at a spoke edge of W n and, repeating the above colour difference argument, we obtain that this spoke edge is incident with the vertex w.

Due to the fact that, in the considered improper interval colouring, the colour 1 is unique, the edge uv is adjacent with at least two edges coloured by 2 and at least one of them -say, vq -is a rim edge (otherwise again, the palette of the central vertex is not an integer interval). Then the colour sequence of the rim path P from uv through vq ending in one of rim edges incident to w, is 1, 2, 4, . . . , 2i, 2(i + 1), . . . , n -1; this gives that one of yw and wz has colour n -1 and the other one has the colour n. Now, if we take the rim path P ′ starting at uv, but with the opposite direction as P , we get that its colour sequence is 1, 3, 5, . . . , 2i -1, 2i + 1, . . . , n. But then the colour n does not appear at a spoke edge, hence, the palette of the central vertex is not an integer interval, a contradiction. Consider now the case when n is Rephrasing the above arguments, we can suppose that the colour 1 is used on a rim edge uv. According to the possible position of the colour n + 1, we distinguish two cases:

Case 1: The colour n + 1 is on a rim edge. Then the colour sequences of both rim paths starting at uv are 1, 3, 5, . . . , 2i -1, 2i + 1, . . . , n + 1, which gives that colours of all spoke edges are even numbers, a contradiction.

Case 2:

The colour n + 1 is on a spoke edge xw. Let yw and wz be rim edges adjacent to xw; without loss of generality, let yw be closer to uv than wz to uv. Then the colour sequence of a rim path starting at uv and ending at yw is 1, 3, . . . , 2i -1, 2i + 1, . . . , n -1, which gives that wz has colour n. By the same argument as for n odd, the colour 2 has to be used on a rim edge incident with uv, hence, the colour sequence of the rim path between uv and wz is 2, 4, . . . , 2i, 2(i + 1), . . . , n. But then again, the colour n is missing at spoke edges, a contradiction.

Note that, by [START_REF] Axenovich | On interval colorings of planar graphs[END_REF], only three wheels are proper interval colourable, namely W 3 , W 6 and W 9 .

Next, we present exact value for a graph Y n = C n K 2 , the graph of an n-sided prism.

Theorem 2.9. For an n-prism graph

Y n with n ≥ 3, t(Y n ) = n + 2. Proof. Let Y n = C n K 2 .
In a plane drawing of Y n , there are two n-gonal faces x 1 , x 2 , . . . , x n and y 1 , y 2 , . . . , y n interconnected by the edges x i y i , i = 1, . . . , n (the side edges); the edges of type x i x i+1 or y i y i+1 (i = 1, . . . , n indices are modulo n) will be called base edges in the sequel.

First we show that there exists an improper interval colouring of graph Y n by n+ 2 colours. It can be constructed as follows: Assign the edge x 1 y 1 colour 1, the edges x 1 x 2 , y 1 y 2 colour 2, the edges x 1 x n , y 1 y n colour 3 and the edge x ⌈ n 2 ⌉+1 y ⌈ n 2 ⌉+1 assign colour n + 2. Now, assign edges x i y i colour 2i -1 for i = 2, . . . , ⌈ n 2 ⌉. Remaining side edges x i y i assign colour 2(ni) + 4 for i = n, . . . , ⌈ n 2 ⌉ + 2. The colours of remaining base edges are now determined unambiguously, see Figure 4 for illustration. Now we prove that the colouring is optimal. Observe that diam(L(Y

n )) = ⌊ n 2 ⌋ + 1, hence Lemma 2.4 gives an upper bound t(Y n ) ≤ 2 • ⌊ n 2 ⌋ + 3.
For n odd this meets the lower bound.

Suppose that n is even and there is an interval edge colouring of Y n with n + 3 colours. From the proof of Lemma 2.4 we know that for any pair of edges in G coloured 1 and n + 3 the corresponding vertices in L(G) are at distance diam(L(G)). It is possible either for a pair of side edges x i y i and x j y j with |i -j| = n 2 , or for a pair of base edges x i x i+1 and y j y j+1 with |i -j| = n 2 . In both cases all edges incident with the edge assigned colour 1 lie on some path of optimal length between edges assigned 1 and n + 3, so all these edges have to be assigned colour 3, which is a contradiction, since there is no colour 2 in the palettes of vertices incident with the edge assigned colour 1.

Finally, we discuss improper interval colourings of complete graphs which is of particular interest due to the ongoing intensive research in [START_REF] Khachatrian | Interval edge-colorings of complete graphs[END_REF], [START_REF] Petrosyan | Interval edge-colorings of complete graphs and n-dimensional cubes[END_REF].

Theorem 2.10. For a complete graph K n with n ≥ 5, t(K n ) ≤ 2n -5.

Proof. By contradiction. Assume that there exists a positive integer n ≥ 5 such that K n is improperly interval (2n -4)-colourable. Let xy and uv be edges coloured by 1 and 2n -4, respectively; note that xy and uv are not adjacent. Then the colour of xu (xv, yu or yv) is either n -2 or n -1. We claim that both palettes of x and y contain each of the colours 1, . . . , n -1 exactly once; similarly, both palettes of u and v contain each of the colours n -2, . . . , 2n -4 exactly once: If both xu and xv had colour n -2, then the palettes of u and v would contain each of the colours n -2, . . . , 2n -4 exactly once, hence, yu and yv would have colour n -1, which is impossible.

Let z be a vertex of K n such that zx has colour 2. Then the colour of the edge zu is at least n (because of u); note, however, that the difference of the highest and the lowest colour (which is the colour 2) in the palette of z is at most n -2 which gives that the highest colour in the palette of z is at most n. Therefore, the colour of zu is equal to n. The same argument can be used for the edge zv, obtaining that its colour is also n. But then the palette of z is not an integer interval, a contradiction. Theorem 2.11. For each n, t(K n ) < t(K n+1 ).

Proof. Let c be an improper interval t-colouring of K n with t = t(G), and let w 1 , . . . , w n be ordering of vertices of K n such that w 1 is incident with an edge of colour t. Now, add to K n a new vertex u and, for each 1 < i ≤ n, add new edge uw i coloured with the colour c(w 1 w i )+1; the edge uw 1 will be then coloured with t + 1. Theorem 2.12. For each n, t(K n+2 )t(K n ) ≥ 3.

Proof. Let c be an improper interval t-colouring of K n with t = t(G), and let w 1 , . . . , w n be ordering of vertices of K n such that w 1 and w 2 are endvertices of an edge of colour t. Now, add to K n two new vertices x, y and, for each 3 ≤ i ≤ n, add new edges xw i and yw i coloured with the colour c(w i w 1 ) + 1 and new edges xw 1 and yw 2 coloured with t + 1. In addition, add new edges yw 1 and xw 2 coloured with t + 2 and the new edge xy coloured with t + 3. 4j 4j + 1 4j + 2 4j + 3 4i 3i + 4j 3i + 4j + 1 3i + 4j + 2 3i + 4j + 3 4i + 1 3i + 4j + 1 3i + 4j 3i + 4j + 3 3i + 4j + 2 4i + 2 3i + 4j + 2 3i + 4j + 3 3i + 4j + 1 3i + 4j + 4 4i + 3 3i + 4j + 3 3i + 4j + 2 3i + 4j + 4 3i + 4j + 1 Table 1. Colouring of a complete graph on n = 4k vertices: the colour of an edge joining vertices 4i+r and 4j +s with 0 ≤ i < j ≤ k and r, s ∈ {0, 1, 2, 3}. 4i 4i + 1 4i + 2 4i + 3 4i 7i + 1 7i + 2 7i + 3 4i + 1 7i + 3 7i + 2 4i + 2 7i + 4 4i + 3 Table 2. Colouring of a complete graph on n = 4k vertices: the colour of an edge joining vertices 4i + r and 4i + s with 0 ≤ i ≤ k and 0 ≤ r < s ≤ 3.

Theorem 2.13. For each n, t(K n ) ≥ 7n-17 4 .

Proof. We prove first that t(K 4k ) ≥ 7k -3 for every k ≥ 1. The general bound is then implied by Theorems 2.11 and 2.12.

Let n = 4k for k ≥ 1, let G = K n , and let V (G) = {0, 1, . . . , n -1}. We define a colouring of the edges of G in the following manner: The colour of an edge joining vertices 4i + r and 4j + s with 0 ≤ i < j ≤ k and r, s ∈ {0, 1, 2, 3} is given in Table 1, the colour of an edge joining vertices 4i + r and 4i + s with 0 ≤ i ≤ k and 0 ≤ r < s ≤ 3 is given in Table 2. It is easy to observe that it is an (improper) interval colouring of G.

Note that, for proper interval colourings, it is not known whether the sequence {t(K n )} ∞ n=1 is monotone; also, any value of n for which t(K n-1 ) > t(K n ) yields that t(K n ) ≥ t(K n ) + 2.

To conclude this part, we list exact values of t(K n ) for some small values of n, see Table 3 
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 1 Figure 1. The graph SN k and its proper and improper interval colourings.
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 2 Figure 2. An analogous construction for triangle-free graphs.
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 3 Figure 3. Improper interval n-colouring of a wheel W n for n = 7 and n = 8.

Figure 4 .

 4 Figure 4. Improper interval (n + 2)-colouring of a prism Y n for n = 7 and n = 8.

Table 3 .

 3 . Bound and exact values of t(K n ) for small values of n.

	n 2 3 4 5 6 7 8 9 10 11 12
	lower bound from Theorem 2.13	4 5 7 8 11 12 14 15 18
	t(K n ) 1 2 4 5 7 8 11 12 14 16 18
	upper bound from Theorem 2.10	5 7 9 11 13 15 17 19