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Abstract

The theory of concept lattices represents a well established and widely used
conceptual data-mining method. Considering additional information repre-
sented by a graph structure on a set of objects, we propose a reduction of
concepts. Using graph-theoretical point of view on FCA together with simple
probabilistic arguments we derive the mean value of the cardinality of the
reduced hierarchical structure.
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1. Introduction

Formal concept analysis (FCA), with its roots in the algebraic theory
of ordered sets, provides a mathematical framework for data analysis and
knowledge discovery. As an effective tool, FCA has been applied to a vari-
ety of fields such as decision making, data mining, information retrieval or
machine learning.

The theory of FCA is based on the notions of formal context and formal
concept respectively. A formal context is a triple (O,A, I) where O, A are
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non-empty sets and I ⊆ O × A is a binary relation. The formal context
(O,A, I) formalizes the notion of object-attribute model, where O is inter-
preted as the set of objects, A the set of attributes (properties), and (o, a) ∈ I
is interpreted as the object o has the attribute (property) a. A concept can
be formally seen as an extent-intent pair. The extent is understood as the
collection of all objects belonging to the concept, while the intent is the mul-
titude of all attributes common to all those objects. The set of all formal
concepts of a formal context forms a complete lattice, called the concept
lattice, which reflects the relationship of generalization and specialization
among the formal concepts.

The notion of a formal context is essentially very simple and it also ad-
mits a graph-theoretic interpretation. A graph, among all representation
forms, is a way to present data or knowledge. One of the major advantages
of graph-based models is the presence of structural information embedded
in the graphs. Assuming that an additional graph structure is given on a
set of objects, one can consider only such concepts where extents satisfy a
prescribed graph property. This can lead to a significant reduction of the
concept lattice. Let us mention that the problem of the concept lattice re-
duction, or some kind of knowledge reduction, plays an important role in
the recent research of the classical concept lattices ([7, 20]) as well as fuzzy
concept lattices cf. [1, 2, 3, 4, 10, 11, 18, 19, 21, 22, 26, 24, 25, 27, 28].

A natural idea to constrain a concept lattice by a closure system appeared
e.g. in [4]. We use the same idea, however for restricted closure systems given
by independent systems induced by graph structure on objects. Our main
aim is to study a reduction effect from the statistical point of view, i.e., to
quantitatively describe a reduction effect in an average case. We provide an
exact characteristic of the mean value of number of concepts in randomly
graph based formal contexts. Initially, in order to describe a general situa-
tion, we will consider the so-called independent systems and concept lattices
constrained by such systems. The presented construction involves a com-
position of a closure operator with the classical concept forming operators
induced by a formal context. This leads to the so-called weak Galois connec-
tions which provide more general framework for defining concept-lattice-like
structures than the Galois connections do. Also in this case, the concepts
represent combinations of objects and attributes that are closed in a certain
sense. After introducing the general theory, we focus on two independent
systems induced by a graph structure on the set of all objects. In particular
we will consider clique independent system determined by maximal cliques
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and connected independent system determined by connected components.

2. Preliminaries

In this paper all considered sets are assumed to be finite. The theory of
concept lattices is based on the notion of Galois connection, hence we recall
this notion first, cf. [13]. Let (P,≤) and (Q,≤) be the ordered sets and let

ϕ : P → Q and ψ : Q→ P

be maps between these ordered sets. Such a pair (ϕ, ψ) of mappings is called
a Galois connection if:

(a) p1 ≤ p2 =⇒ ϕ(p1) ≥ ϕ(p2),

(b) q1 ≤ q2 =⇒ ψ(q1) ≥ ψ(q2),

(c) p ≤ ψ(ϕ(p)) and q ≤ ϕ(ψ(q)).

We note that any Galois connection (ϕ, ψ) between P and Q satisfies

ϕ(p) = ϕ
(

ψ
(

ϕ(p)
))

and ψ(q) = ψ
(

ϕ
(

ψ(q)
))

for each p ∈ P and q ∈ Q.
Galois connections are closely related to the notions of closure operator

and closure system. A closure operator on a set S is a function c : P(S) →
P(S) from the power set of S to itself which is extensive, increasing and
idempotent, i.e., it satisfies the following conditions for all subsets X, Y ⊆ S:

(1) X ⊆ c(X),

(2) X ⊆ Y =⇒ c(X) ⊆ c(Y ),

(3) c(c(X)) = c(X).

A family of subsets F ⊆ P(S) is called a closure system, if F satisfies the
following two properties:

(1) S ∈ F ,

(2) X, Y ∈ F =⇒ X ∩ Y ∈ F .
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The sets of a closure system F are called closed sets of F . A closure
system F forms a lattice with respect to set inclusion. In this case, lattice
operations ∧ and ∨ are given by

X ∧ Y = X ∩ Y X ∨ Y =
⋂

{Z ∈ F : X ∪ Y ⊆ Z}.

Let us remark that closure operators are in one-to-one correspondence
with closure systems by the map c 7→ FP(c) = {X ⊆ S : c(X) = X} which
associates to a closure operator c the family of all its fixed points which forms
a closure system. Conversely, the inverse map associates to each closure
system F the closure operator cF defined by cF(X) =

⋂

{Y ∈ F : X ⊆ Y }.
Let A,B be sets and a pair ϕ, ψ be a Galois connection between the

power sets P(A) and P(B). It is well known that the composition of ϕ and
ψ, ψ ◦ ϕ : P(A) → P(A) forms a closure operator on the set A. Similarly,
ϕ ◦ ψ : P(B) → P(B) forms a closure operator on the set B. Moreover, the
corresponding closure systems are dually isomorphic as posets.

Next, we briefly describe the basics about FCA. The notion of formal
context provides a framework for this theory. A formal context is a triple
(O,A, I) where O, A are nonempty sets, I ⊆ O × A is a relation from O to
A. In a formal context (O,A, I), O is interpreted as the set of objects, A the
set of attributes (properties), and (o, a) ∈ I reads as that the object o has
the property a.

Let (O,A, I) be a formal context. There is a pair of mappings � : P(O) →
P(A) and � : P(A) → P(O), which forms a Galois connection between power
sets of O and A respectively.

X� = {a ∈ A : (o, a) ∈ I, ∀o ∈ X},

Y � = {o ∈ O : (o, a) ∈ I, ∀a ∈ Y }.

A formal concept of the formal context (O,A, I) is a pair (X, Y ) with
X ⊆ G, Y ⊆ M , X� = Y and X = Y �. The set X is called the extent
and Y is called the intent of the concept (X, Y ). If (X1, Y1) and (X2, Y2)
are concepts, then (X1, Y1) is a subconcept of (X2, Y2), if X1 ⊆ X2 (which
is equivalent to Y1 ⊇ Y2). This fact is denoted by (X1, Y1) ≤ (X2, Y2). The
relation ≤ is called the hierarchical order of concepts and the structure of all
concepts ordered by this relation is denoted by B(O,A, I).

Let (O,A, I) be a formal context. Any extent X of the concept (X, Y )
satisfies X = Y � = X��, hence it is closed under the composition of operators
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� and �. Conversely, if X is closed, then the pair (X,X�) forms a concept.
Hence the set of all extents of B(O,A, I) forms a closure system on the set
O of all objects. The order structure of B(O,A, I) is uniquely determined
by the order structure of extents, thus B(O,A, I) forms a lattice, referred as
the concept lattice. In this case, the lattice operations ∧ and ∨ are given by

(X1, Y1) ∧ (X2, Y2) =
(

X1 ∩X2, (X1 ∩X2)
�
)

=
(

X1 ∩X2, (Y1 ∪ Y2)
��
)

(X1, Y1) ∨ (X2, Y2) =
(

(Y1 ∩ Y2)
�, Y1 ∩ Y2

)

=
(

(X1 ∪X2)
��, Y1 ∩ Y2

)

.

An analogy of concept lattices can be defined in more general framework
than provide Galois connections. One of such possibility is described in [23],
where the so-called weak Galois connections are presented.

Let P and Q be partially ordered sets. A pair of mappings α : P → Q,
β : Q → P is said to be a weak Galois connection between P and Q if it
satisfies:

(i) x1 ≤ x2 implies α(x1) ≥ α(x2),

(ii) y1 ≤ y2 implies β(y1) ≥ β(y2),

(iii) β(α(x)) = β(α(β(α(x)))) and α(β(y)) = α(β(α(β(y)))).

Similarly, as in the case of Galois connections, if α and β is a weak Galois
connection between P(O) and P(A), a concept lattices like structure can be
defined. Denote by B(O,A, α, β) a subset of P(O)×P(A) such that

B(O,A, α, β) = {(X, Y ) : Y = α(X) and X = β(Y )}.

A partial order ≤ on B(O,A, α, β) is defined in the same way as in the case
of concept lattices, i.e.,

(X1, Y1) ≤ (X2, Y2) iff X1 ⊆ X2 iff Y1 ⊇ Y2.

The following proposition shows that such defined structure has almost
the same properties as concept lattices defined via Galois connections.

Proposition 2.1. The structure B(O,A, α, β) forms a lattice, where the op-

eration ∧ and ∨ are given by

(X1, Y1) ∧ (X2, Y2) =
(

β
(

α(X1 ∩X2)
)

, α
(

β(Y1 ∪ Y2)
)

)

(X1, Y1) ∨ (X2, Y2) =
(

β
(

α(X1 ∪X2)
)

, α
(

β(Y1 ∩ Y2)
)

)

.
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Proof. We prove the formula for infimum. Let (X1, Y1), (X2, Y2) ∈ B(O,A, α, β)
be arbitrary elements. In order to simplify notations, denote X = β(α(X1 ∩
X2)) and Y = α(β(Y1 ∪ Y2)). First, we show that α(X) = Y and β(Y ) = X ,
i.e.,

(

β
(

α(X1 ∩X2)
)

, α
(

β(Y1 ∪ Y2)
)

)

∈ B(O,A, α, β).

Since both mappings α and β are antitone, it follows that the compositions
β ◦ α : P(O) → P(O) as well as α ◦ β : P(A) → P(A) are monotone. Conse-
quently, X = β(α(X1∩X2)) ⊆ β(α(X1)) = β(Y1) = X1 and X ⊆ X2. Apply-
ing the mapping α we obtain α(X) ⊇ α(X1) = Y1 and α(X) ⊇ α(X2) = Y2,
which yields α(X) ⊇ Y1∪Y2. Similarly, it can be shown that β(Y ) ⊆ X1∩X2.
From these two inequalities and using the property iii) of weak Galois con-
nections we obtain

α(X) = α(β(α(X))) ⊇ α(β(Y1 ∪ Y2)) = Y

and
β(Y ) = β(α(β(Y ))) ⊆ β(α(X1 ∩X2)) = X.

On the other hand, α(X) ⊇ Y implies X = β(α(X)) ⊆ β(Y ), while β(Y ) ⊆
X implies Y = α(β(Y )) ⊇ α(X). Hence, α(X) = Y and β(Y ) = X .

Further, we show that (X, Y ) is the infimum of (X1, Y1) and (X2, Y2).
Obviously, (X, Y ) is a lower bound of these elements. If (C,D) is a lower
bound of (X1, Y1) and (X2, Y2), then C ⊆ X1 and C ⊆ X2 yielding C ⊆ X1∩
X2 and duallyD ⊇ Y1∪Y2. Consequently C = β(α(C)) ⊆ β(α(X1∩X2)) = X
and D = α(β(D)) ⊇ α(β(Y1 ∪ Y2)) = Y , i.e., (X, Y ) represents the greatest
lower bound of (X1, Y1) and (X2, Y2).

Using similar arguments, one can prove the formula for supremum. Hence
B(O,A, α, β) is a partially ordered set in which every pair of elements has
infimum and supremum, i.e., it forms a lattice.

Let us note, that extents and intents of B(O,A, α, β) need not form clo-
sure systems in general. In fact, this is the only relevant difference between
concept lattices and concept lattices defined via weak Galois connections,
respectively.

After introducing the basics about concept lattices, we recall some def-
initions from graph theory used through the paper, cf. [5]. A graph G is
an ordered pair (V (G), E(G)) consisting of a set V (G) of vertices and a set
E(G) of 2-element subsets of V (G), called edges. We will indicate the fact
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that vertices u and v form an edge by uv ∈ E(G). A graph is bipartite if its
vertex set can be partitioned into two subsets A and B so that every edge
has one end in A and one end in B. We denote a bipartite graph G with
bipartition (A,B) by G[A,B]. If every vertex in A is joined to every vertex
in B, then G[A,B] is called a complete bipartite graph. Note that for our
purpose graphs of the form G[A, ∅] and G[∅, B] are considered as complete
bipartite too. A clique (complete subgraph) of a graph G is a subset of the
vertex set such that any two vertices are adjacent. Note, that ∅ is considered
to be a clique of any graph. A graph is connected if, for every partition of
its vertex set into two nonempty sets X and Y , there is an edge with one
end in X and one end in Y . Every graph may be expressed uniquely (up to
order) as a disjoint union of connected graphs. These graphs are called the
connected components, or simply the components of the graph.

A formal context can be seen as a biadjacency matrix of the correspond-
ing bipartite graph. In particular, if (A,B, I) is a formal context, the corre-
sponding bipartite graph G[A,B] is given by ab ∈ E(G[A,B]) if and only if
(a, b) ∈ I. In the same way, each bipartite graph gives rise to the correspond-
ing formal context. Hence, there is a one-to-one correspondence between the
class of all formal contexts and the class consisting of all bipartite graphs.

The concepts of a context also permit a graph theoretical interpretation,
because they can be seen as maximal complete bipartite subgraphs of the
bipartite graph representing the context. More precisely, a maximal complete
bipartite subgraph of G[A,B] is a bipartite graph G[X, Y ] where X ⊆ A,
Y ⊆ B, and such that

G[X, Y ] is a complete bipartite graph,

∀ a ∈ ArX, ∃ b ∈ Y : ab /∈ E
(

G[A,B]
)

,

∀ b ∈ B r Y, ∃ a ∈ X : ab /∈ E
(

G[A,B]
)

.

Remark 2.2. Obviously, a pair (X, Y ) forms a concept of a context (O,A, I)
if and only if G[X, Y ] is a maximal complete bipartite subgraph of the bi-
partite graph corresponding to the context (O,A, I).

3. Concept lattices constrained by independence systems on ob-

jects

Although FCA is a very useful data analysis and visualization method,
the number of concepts resulting from a relatively small object-attribute
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models is usually large. Note, that it can be exponential w.r.t. the size
of the input data. Therefore, as we already mentioned in the introduction,
the reduction problem of the concept lattices represents one of the main
challenges in FCA research. One of the possible approaches is to use an
approach based on constraining concept lattices by additional information
(a user’s background knowledge). In [4], a situation when an additional
background knowledge is imposed in a form of a closure system on attributes,
is described. In this paper, we consider a more specific situation, i.e., when a
constraint is given by a closure operator arisen from the so-called independent
system. These systems occur naturally in connection with various graph-
theoretical notions, moreover it enables us to characterize such constrained
concept lattices in terms of concept forming operators based on weak Galois
connections. Remark that this is not always possible when a general closure
system as a constraint is considered, since some repeated iteration is needed
for a characterization of the closure operator emerged from the intersection
of two closure systems.

In the sequel, we will assume that a constraint in a form of an indepen-
dence system on a set O of objects is given. Recall (see [5]), that a set system
(O,F) is called an independence system on O if F is nonempty and, for any
member F ∈ F , H ⊆ F implies H ∈ F . The members of F are referred to
as independent sets and their maximal elements as bases.

If (O,F) is an independence system, X1, X2 ⊆ O belong to F , then
X1∩X2 ∈ F as well. This yields that the set system F ∪{O} forms a closure
system on the set O.

Let (O,A, I) be a formal context and (O,F) be an independence system
on the set of all objects. The closure operator corresponding to the closure
system F ∪ {O} is denoted by c. From the structure of this closure system
one can easily obtain that for all X ⊆ O

c(X) =

{

X, if X ∈ F ,

O, otherwise.

In order to define concept forming operators we put ↗ : P(O) → P(A)
and ↙ : P(A) → P(O) in the following way:

↗(X) = c(X)�, for all X ⊆ O, (1)

↙(Y ) = c(Y �), for all Y ⊆ A. (2)
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The main features of such defined mappings are described in the following
theorem.

Theorem 3.1. The pair of mappings ↗ and ↙ has the following properties:

(i) X1 ⊆ X2 ⊆ O =⇒ ↗(X1) ⊇ ↗(X2),

(ii) Y1 ⊆ Y2 ⊆ A =⇒ ↙(Y1) ⊇ ↙(Y2),

(iii) X ⊆ ↙(↗(X)) for all X ⊆ O,

(iv) ↙(Y ) = ↙
(

↗ (↙(Y ))
)

for all Y ⊆ A,

(v) ↙
(

↗(X)
)

= ↙
(

↗
(

↙(↗(X))
))

and ↗
(

↙(Y )
)

= ↗
(

↙
(

↗ (↙(Y ))
))

.

Proof. Suppose that X1 ⊆ X2. Since the closure operator c is isotone, we
obtain c(X1) ⊆ c(X2). Applying the antitone mapping � we obtain ↗(X1) =
c(X1)

� ⊇ c(X2)
� = ↗(X2), what proves that the mapping ↗ is antitone.

The property (ii) can be proved analogously.
Since ↙(↗(X)) = ↙

(

c(X)�
)

= c
(

c(X)��
)

, using the properties of Galois
connections and closure operators we obtain

X ⊆ c(X) ⊆ c(X)�� ⊆ c
(

c(X)��
)

= ↙(↗(X)).

In order to prove property (iv), it suffices to consider two possibilities,
i.e., whether c(Y �) = Y � 6= O (in this case Y � ∈ F , i.e., Y � is independent)
or Y � = O.

↙
(

↗ (↙(Y ))
)

= c
(

c
(

c(Y �)
)��)

= c
(

c(Y �)��
)

=

=

{

c(Y ���) = c(Y �) = ↙(Y ), if c(Y �) = Y � 6= O,

c(O��) = c(O) = O = ↙(Y ), if c(Y �) = O.

Property (v) follows directly from (iv).

Corollary 3.2. The mappings ↗ and ↙ form a weak Galois connection be-

tween P(O) and P(A). Moreover, the composition of mappings↙◦↗ : P(O) →
P(O) forms a closure operator on the set of objects O.

Applying Proposition 2.1, we obtain that the structure B(O,A,↗,↙) of
fixed points (X, Y ) satisfying X ⊆ O, Y ⊆ A, ↗(X) = Y and ↙(Y ) = X
with the hierarchical order forms a lattice. The following theorem character-
izes the corresponding lattice operations.
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Theorem 3.3. The lattice operations ∧ and ∨ in B(O,A,↗,↙) satisfy

(X1, Y1) ∧ (X2, Y2) =
(

X1 ∩X2,↗
(

↙(Y1 ∪ Y2)
)

)

(X1, Y1) ∨ (X2, Y2) =
(

↙
(

↗(X1 ∪X2)
)

,↗
(

↙(Y1 ∩ Y2)
)

)

Proof. Since the composition ↙ ◦ ↗ forms a closure operator on the set
of objects O, the intersection of closed sets X1 and X2 satisfies X1 ∩ X2 =
↙
(

↗(X1∩X2)
)

. Consequently, the expressions for meet and join of concepts
follow from Proposition 2.1.

In the following lemma, we provide a characterization of the extents of
the lattice B(O,A,↗,↙).

Lemma 3.4. Let X ⊂ O be a proper subset of objects. Then X = ↙(↗(X))
if and only if X = X�� and X is independent.

Proof. Assume that X = ↙(↗(X)) = c
(

c(X)��
)

. Since c is idempotent we
obtain

c(X) = c
(

c
(

c(X)��
))

= c
(

c(X)��
)

= X,

which yields X ∈ F , i.e., the subset X is independent. Further, X ⊆ X��.
Since c(X) = X and c is extensive, X ⊂ X�� would imply X ⊂ ↙(↗(X)),
which is a contradiction.

Conversely, suppose that X is independent and X = X��. Then

↙(↗(X)) = c
(

c(X)��
)

= c(X��) = c(X) = X.

This lemma shows that the lattice B(O,A,↗,↙) can be seen as a reduc-
tion of the concept lattice B(O,A, I) where extents are constrained by the
independence system (O,F). From an algebraic point of view, the lattice
B(O,A,↗,↙) forms a meet-subsemilattice of the lattice B(O,A, I). This
fact follows directly from the expression for infima in Theorem 3.3.

At the end of this section we provide a small illustrative example con-
cerning social networks, cf. also [8, 9] which deal with social networks from
the hierarchical structures point of view and FCA perspective respectively.
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I a b c d e
p1 × ×
p2 × × ×
p3 × ×
p4 × × × ×
p5 ×
p6 × ×
p7 ×

Table 1: The incidence relation of Example 3.5.

p1

p2

p3

p4

p5

p6

p7

Fig. 1: The interaction graph between people of the context (O,A, I).

Example 3.5. Consider the following data, represented by a formal context
(O,A, I), obtained from a social network. The set of objects consists of seven
persons, denoted by pi, i ∈ {1, . . . , 7}, the attributes {a, b, c, d, e} represent
some posts shared by the persons and the incidence relation I (represented
by Table 1) is given by (p, x) ∈ I if and only if a person p “likes” a post x.

Further, we have additional information in the form of a graph, where
edges represent interactions between people (Figure 1).

With this graph, two independence systems can be associated. The first
one consists of all cliques, i.e., sets of nodes in the graph connected with each
other. In this case, a clique represents a group of people who interact directly
with each other. Remark that each one-element set is considered as a clique.
The second one is determined by connected components of the graph, i.e., a
subset of nodes is independent, provided that for any two nodes there is a
path in the graph connecting them.

The classical concept lattice corresponding to the context (O,A, I) of
Table 1 is depicted in Figure 2.
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∅
a, b, c, d, e

p4
a, b, c, e

p1, p4
a, e

p2, p4
a, b, c

p3
a, d

p6
c, d

p1, p4, p5, p7
e

p1, p2, p3, p4
a

p2, p4, p6
c

p3, p6

d

p1, p2, p3, p4, p5, p6, p7

∅

Fig. 2: The classical concept lattice corresponding to the context (O,A, I).

For comparison, Figure 3 shows the lattice structure when the operators
↗,↙ are applied to the context (O,A, I) together with the clique indepen-
dence system as some kind of a background knowledge.

According to Lemma 3.4, extents of B(O,A,↗,↙) are precisely inde-
pendent fixed points of the concept forming operators � and �, i.e., extent is
represented by a group of people interacting with each other, while “liking”
some common posts.

The structure of B(O,A,↗,↙) when the independence system based on
connected components is considered, is depicted in Fig 4.

In this case, extents are precisely groups of people forming extent of
the context (O,A, I) such that for any two persons of that group there is
a connection between them, possibly going through some other people not
belonging to the group. This kind of the independence system can be used,
e.g., when the sharing of some messages (information) between people within
a group is desired. Obviously, the existence of connection between any two
persons can fulfill this requirement.

In practice, a social network may consists of hundreds or even thousands
of particular users, which usually share several thousands of posts. In gen-
eral, as the size of sample increases, an investigation with the statistical or
probabilistic nature becomes more and more important. In the next section
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Fig. 3: The lattice B(O,A,↗,↙) corresponding to the context (O,A, I) constrained by
the clique independence system induced by the graph from Figure 1.
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Fig. 4: The lattice B(O,A,↗,↙) corresponding to the context (O,A, I) constrained by
the connected independence system induced by the graph from Figure 1.
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we try to provide an answer to the following types of problems: Given a
formal context with “typically” distributed attributes, what is the number
of concepts in the resulting concept lattice? How this number is affected,
provided some constraint imposed by a clique (or connected) independence
system induced by a random graph is considered?

4. Expected number of concepts in a graph based model

Let (O,A, I) be a formal context. Similarly as in Example 3.5, we will
assume that additional information in the form of a graph G on the object
set O is provided. Such graph structure on the set of objects can represent a
similarity relation where edges link similar objects together. We focus on the
concept reduction, provided some of two independence systems induced by
the graph structure on the set of objects is considered. Particularly, we will
consider clique independence system and connected independent system re-
spectively. Recall, that the clique independence system possesses all cliques
of a graph. In this case, the basis of this independence system is formed
by maximal cliques. The connected independent system consists of all sub-
sets which belong to some connected component of a graph. Obviously, the
connected components form a basis of this system. Let us note that these
two graph independence systems are closely related to the complete linkage
hierarchical clustering and single linkage hierarchical clustering respectively,
cf. [16].

As the size of the object set increases, a graph structure on the objects
can be very complex. However, we will not assume any special structural
configurations (properties) of this graph model. Instead, we take into the
account only the following two assumptions: there is a uniform parameter p
denoting the probability that a given edge occurs in the graph and that the
edges occur in the graph independently.

Under these assumptions, the well-known random graph model G(n, p)
will be considered (see the textbook [6], and also [14] where this model ap-
peared explicitly for the first time). In this model, a graph is constructed
by connecting n vertices randomly, in which each possible edge between two
vertices is present with independent probability p, and absent with proba-
bility 1 − p. Formally, the underlying probabilistic space, also denoted by
G(n, p), consists of all graphs on a fixed set of n nodes, where the probability
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of a graph G with exactly k edges, 0 ≤ k ≤
(

n

2

)

, is given by

P(G) = pk(1− p)(
n

2
)−k.

The formula follows from the fact that there are
(

n

2

)

of possible edges
between n vertices. If G is a graph with exactly k edges, there are

(

n

2

)

− k
non-edges and since these events are mutually independent, the resulting
probability P(G) is the product of

(

n

2

)

numbers, from which k numbers equal
to p, while remaining

(

n

2

)

− k numbers are equal to 1− p.
The parameter p, denoting the probability of an edge occurrence in this

random graph model can be thought of as some kind of weighting function.
Obviously, as p increases from 0 to 1, graphs with more edges become more
and more likely, while it becomes less and less likely to find a set including
only graphs with few edges.

In connection with formal contexts, we will assume that particular at-
tributes are distributed independently with a probability pa ∈ [0, 1], i.e.,
for an object o ∈ O, an attribute a ∈ A, (o, a) ∈ I with probability pa.
The parameters pa can be seen as some global characterizations of an ana-
lyzed population, denoting frequencies with which particular attributes are
distributed over the population. These probabilities, as well as the proba-
bility p used in the random graph model are assumed to be given a priori.
They can be approximated by sampling randomly from the set of objects and
attributes.

Firstly, we derive the mean value of the number of concepts in the classical
concept lattices under the above mentioned assumptions.

Theorem 4.1. Let n,m be positive integers, O be an n-element set of objects

and A be an m-element set of attributes. If each attribute a ∈ A is assigned

to an object with a constant probability pa independently, then the mean value

of the number of concepts E(|B|) is given by

E
(

|B|
)

=
n

∑

k=0

∑

Y⊆A

(

n

k

)

(

∏

a∈Y

pa
)k(

1−
∏

a∈Y

pa
)n−k

∏

a∈ArY

(

1− pa
k
)

. (3)

Before providing a proof of the theorem, we make some remarks concern-
ing the underlying probability space. Formally, it consists of all contexts,
where particular attributes are distributed in accordance with the assump-
tions of the theorem. From the graph-theoretical point of view, all bipartite
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graphs are considered, where edges between O and A are added indepen-
dently with probability pa provided an edge is incident to the attribute a. In
particular, the probability of a bipartite graph G[O,A] is given by

P
(

G[O,A]
)

=
∏

a∈A

pa
deg(a)(1− pa)

n−deg(a).

It follows from the fact that for a given vertex a ∈ A there are deg(a)
edges incident to the vertex a and n − deg(a) non-incident to a. Since the
presence and absence of an edge represent independent events, the resulting
probability is the product of the formulae pa

deg(a)(1− pa)
n−deg(a), a ∈ A.

In the sequel, this (bipartite graph-based) probabilistic space will be de-
noted by B(n,A).

Proof. Obviously, |B| is an integer-valued random variable. In order to com-
pute its mean value, we use simpler random variables, the so-called indicators.
For X ⊆ O define IX = 1 if X is an extent, IX = 0 otherwise. Since |B| = j
for some 1 ≤ j ≤ 2n if and only if there are j different extents, it follows that

|B| =
∑

X⊆O

IX .

By linearity of expectation

E
(

|B|
)

= E
(

∑

X⊆O

IX

)

=
∑

X⊆O

E(IX) =
∑

X⊆O

P(IX = 1),

where P(IX = 1) denotes the probability that the set X forms an extent.
Let X be a fixed k-element subset of objects. Then X is an extent if and

only if there is a subset Y ⊆ A such that (X, Y ) forms a concept. For a subset
Y ⊆ A denote by AX,Y the event that the pair (X, Y ) is a concept. Since,
given a context, intents are determined uniquely, it follows that {AX,Y : Y ⊆
A} forms a disjoint family of events. Due to additivity of the probabilistic
measure, denoting by PY (k) the probability that an arbitrary k-element set
of objects together with the set Y of attributes forms a concept, we obtain

P(IX = 1) =
∑

Y⊆A

PY (k).

Hence, in order to determine PY (k), assume that (X, Y ) forms a concept.
This happens if and only if each object in X has all the attributes from Y ,
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none of the remaining n−k objects has all the attributes from Y , and none of
the remaining attributes in ArY is matched to all the objects in X . Because
presence (absence) of different attributes represents independent events, the
three mentioned events are independent as well. Hence,

PY (k) =
(

∏

a∈Y

pa
)k(

1−
∏

a∈Y

pa
)n−k

∏

a∈ArY

(

1− pa
k
)

. (4)

For each k = 0, . . . , n we may choose any k-element set X of objects, which
yields

E
(

|B|
)

=
∑

X⊆O

∑

Y⊆A

PY (k) =
n

∑

k=0

(

n

k

)

∑

Y⊆A

PY (k) =
n

∑

k=0

∑

Y⊆A

(

n

k

)

PY (k).

Let us note, that if |A| = m and pa = p0 for all attributes a ∈ A, then
E
(

|B|
)

can be expressed as

E
(

|B|
)

=
n

∑

k=0

m
∑

l=0

(

n

k

)(

m

l

)

p0
kl(1− pl0)

n−k(1− pk0)
m−l.

Hence, the expression (3) can be seen as a generalization of the result pre-
sented in [15].

Further, we provide a similar formula for computing the expected number
of concepts constrained by cliques. In the sequel, a lattice of formal concepts
restricted by a clique independence system will be denoted by B1.

Theorem 4.2. Let n,m be positive integers, O be an n-element set of objects

and A be an m-element set of attributes. If each attribute a ∈ A is assigned to

an object with a constant probability pa and the probability of independence

of each pair of objects is p, then the mean value of the number of clique-

constrained concepts E(|B1|) is given by

E
(

|B1|
)

= 1+

n−1
∑

k=0

∑

Y⊆A

(

n

k

)

p(
k

2
)(

∏

a∈Y

pa
)k(

1−
∏

a∈Y

pa
)n−k

∏

a∈ArY

(

1−pa
k
)

. (5)
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Proof. Let us remark that in this case the underlying probabilistic space is
equal to the direct product B(n,A) × G(n, p), where B(n,A) denotes the
graph-based probabilistic space defined before the proof of Theorem 4.1.

Similarly as in the proof of Theorem 4.1, E(|B1|) can be expressed as

E
(

|B1|
)

=
∑

X⊆O

P(IX = 1).

However, in this case the indicator random variable IX for X ⊆ O is defined
by IX = 1 if X is an extent and at the same time it forms a clique; IX = 0
otherwise. Note that the whole object set O is considered being clique.
Again, being an extent and forming clique represent independent events.
Obviously, for k < n a fixed k-element set X of objects forms a clique with

probability p(
k

2
), hence

P(IX = 1) =
∑

Y⊆A

p(
k

2
)PY (k).

The set O itself of size n is considered clique-closed, thus always forming a
single concept with some Y ⊆ A, which yields the following formula

E
(

|B1|
)

= 1 +
n−1
∑

k=0

∑

Y⊆A

(

n

k

)

p(
k

2
)PY (k).

Before we state the next theorem let us recall some known results about
connectivity of random graphs [12].

Considering the random graph model G(n, p), let Q(j) denote the prob-
ability that a random j-element subset of vertices induces a connected sub-
graph (for j = 1, . . . , n). Then Q(1) = 1 and for j ≥ 2 we have

Q(j) = 1−

j−1
∑

i=1

(

j − 1

i− 1

)

Q(i)(1− p)i(j−i). (6)

To observe this, consider a j-element set X . Fix a vertex v ∈ X . The
set X does not induce a connected subgraph if and only if the component
containing v of the graph induced by X has exactly i vertices for some i =
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1, . . . , j − 1. For a fixed i, there is
(

j−1
i−1

)

subsets of X containing v, each
of them is connected with probability Q(i), and maximal with respect to
connectivity (no edges towards the remaining vertices of X) with probability
(1− p)i(j−i).

Let R(k) denote the probability that a random k-element subset of vertices
belong to the same connected component of G. Then

R(k) =
n

∑

j=k

(

n− k

j − k

)

Q(j)(1− p)j(n−j). (7)

To observe this, consider a k-element set X of vertices. All the vertices of
X belong to the same connected component of G if and only if there exists
a connected component C of size j ≥ k containing all of them, which means
there exists a set X ′ of j−k vertices disjoint from X such that X∪X ′ induces
a maximal connected graph.

Denote by B2 a lattice of formal concepts constrained by a connected
independence system on an object set O. Recall that the basis of such system
consists of connected components and the whole object set is considered as
connected as well. Knowing the expression (7) for the probability R(k) and
using similar arguments as in the proof of Theorem 4.2, one can prove the
following:

Theorem 4.3. Let n,m be positive integers, O be an n-element set of objects

and A be an m-element set of attributes. If each attribute a ∈ A is assigned

to an object with a constant probability pa and the probability of independence

of each pair of objects is p, then the mean value of the number of connectivity

constrained concepts E(|B2|) is given by

E
(

|B2|
)

= 1 +

n−1
∑

k=0

∑

Y⊆A

(

n

k

)

R(k)PY (k). (8)

In order to obtain at least some minimal idea concerning the behavior of
the expected number of concepts, we computed some of these values.

For the computations, since the standard techniques are insufficient to
calculate large binomial coefficients as well as high powers of fractions, we
used the arbitrary precision calculator language bc (bench calculator) with
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p = 0.01 p = 0.1
n E(|B|) E(|B1|) E(|B2|) E(|B1|) E(|B2|)
10 542.71 12.45 12.53 16.62 50.70
20 12572.85 23.90 24.92 42.12 4403.27
50 660373.54 64.24 116.19 193.19 638078.43
100 11027045.65 151.64 16972.57 745.80 11025031.86
200 160274501.06 402.07 40301813.46 3336.20 160274500.24
300 723254395.07 753.96 485319530.50 8504.18 723254395.07
400 2055489986.29 1207.90 1798190757.95 16899.07 2055489986.29
500 4558230784.22 1764.43 4347302593.59 29113.79 4558230784.22

Table 2: Expected number of concepts for p0 = 0.5, m = 100, and various values of n and
p.

the precision of 3000 decimals. For the formulae (6) and (7) we used re-
currence relations between consecutive terms of the sums to facilitate the
evaluation.

Let us note, that for computed values probabilities for attribute distri-
butions are equal each other, i.e., pa = p0 for all a ∈ A. In Table 2 the
calculated expectations for different combinations of values of parameters p,
p0, m and n are described.

The results are in a good match with the theoretical predictions. If the
probability p is big enough compared to 1/n, the expectation of the number
of connectivity-constrained concepts is almost the same as for all concepts.
This is due to the fact that if the number of edges in a random graph G(n, p)
exceeds n/2, it is very probable to find a single big component containing
almost all vertices [17], hence, it is very probable for a concept to belong to
this component, and thus to be connected-closed. Therefore, in this case,
restriction by cliques is a more powerful way for concept reduction.

On the other hand, if the probability p is small enough, it is rather im-
probable to find a clique different from singletons and edges in the graph,
hence, the expectation of the number of clique-constrained concepts drops
dramatically compared to the number of all concepts. However, the con-
nected components are still unbounded in size. It turns out that in this case
the connectedness provides a more refined tool for concept reduction.

Example 4.4. Continuing in the framework described in Example 3.5, sup-
pose that the data of 500 users are to be analyzed. In particular, as an
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input a formal context (O,A, I) will be available, with n = |O| = 500,
m = |A| = 100. Obviously, the detailed information about the structure of
the incidence relation I is not available yet. Since the relatively large data
collection will be available, we can assume a random distribution of the con-
sidered attributes. In order to use the results presented in this section, we
have to estimate the parameters pa for a ∈ A and the parameter p.

Assume that we have some previous experience with the behaviour of the
analyzed population and that the formal context of Example 3.5 represents
the “typical” example of a small context. As one can see, there are two
attributes with 4 occurrences, two attributes with 2 occurrences and one
attribute with 3 occurrences. As the average occurrence rate of an attribute is
3 objects out of 7, we may assume that in the analyzed context the attributes
occur with probability pa = 3/7. Note, that the need for an estimation of the
parameters pa may lead to less precise results, while knowledge of the exact
values of these parameters could probably lead to more precise results.

Applying formula (3) on these parameters, we obtain the value E
(

|B|
)

=
315338577.67 for the expected number of concepts. For someone this num-
ber of concept can be unacceptable for analysis, also with respect to the
time complexity of algorithms, since it is affected mainly by the number of
concepts to be created. From this point of view, even with respect that the
creation of one concept is done in a constant time C, the time complexity
for the creation of the concept lattice will be C ·E

(

|B|
)

= C · 315338577.67
of time units.

In order to obtain a concept reduction, one can consider a graph based
model on users. Again, the parameter p denoting the probability of an edge
occurrence in a graph should be given. It can represents some internal charac-
teristic of the analyzed social network, or it could be estimated from available
data. If the sample of the data is the graph from Example 3.5, which con-
tains 6 edges out of 21 available, for our purposes we use the value p = 2/7.
Using formula (5) we obtain E

(

|B1|
)

= 300982.26, while formula (8) yields
E
(

|B2|
)

= 315338577.67. On the first sight, this result seems a little bit
strange. The computation shows, that using the connected independence
system based on the graph model with the described parameters yields prac-
tically the same result as for the concept lattice without this particular con-
straint (in fact these two values differ on some position behind the decimal
separator). However this should be analyzed from the statistical point of
view. As pointed out before, since p � 1

n
, a giant component will appear

almost surely. Hence given two vertices, they belong to different components
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with probability practically equal to zero. Therefore, restriction by con-
nectedness does not decrease significantly the expected number of concepts,
compared to the effect of the restriction to cliques.

In general, the values given by formulae (3), (5), (8) can be used to
quantify the expected effect of concept reduction using different constrains
before the analysis of the whole data collection, provided some sample data
allowing to estimate the input parameters for the formulae are available.

5. Conclusion

In this paper a quantitative effect of concept reduction in graph-constrained
concept lattices was studied from the probabilistic point of view. We derived
the mean values of the number of concepts for classical concept lattices as
well as for concept lattices constrained by clique and connected independent
system respectively. As our computations suggest, a choice of a considered
constraint together with the parameter p has strong quantitative impact on
the resulting reduction.
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