
HAL Id: hal-01416284
https://hal.science/hal-01416284

Submitted on 14 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Locality by Topology-aware Placement for a
Task Based Programming Model

Jens Gustedt, Emmanuel Jeannot, Farouk Mansouri

To cite this version:
Jens Gustedt, Emmanuel Jeannot, Farouk Mansouri. Optimizing Locality by Topology-aware Place-
ment for a Task Based Programming Model. IEEE Cluster 2016 Conference, Sep 2016, Taipei, Taiwan.
, pp.164 - 165, �10.1109/CLUSTER.2016.87�. �hal-01416284�

https://hal.science/hal-01416284
https://hal.archives-ouvertes.fr


Optimizing Locality by Topology-aware Placement
for a Task Based Programming Model

Jens Gustedt†‡ Emmanuel Jeannot∗ Farouk Mansouri∗

† INRIA Nancy Grand Est, France
‡ ICube – Université de Strasbourg, France

∗ INRIA Bordeaux, France

Abstract—The ordered read-write lock model (ORWL) is a
modern framework that proposes high level abstractions for
the decomposition of an application and for the management
of synchronizations and communications. The implementation of
the model reaches high performances thanks to a decentralized
event-based runtime. In this paper, we propose to enrich ORWL
by proposing a topology-aware placement module that is based on
the Hardware Locality framework, HWLOC. The aim is double.
On one hand we increase the abstraction and the portability
of the framework, and on the other hand we enhance the
performance of the model’s runtime. We propose a placement
policy, that takes the characteristics of the application, of the
runtime and of the architecture into account. We validate and
compare our approach with the Livermore kernel23 benchmarks.

I. INTRODUCTION AND BACKGROUND

Multicore architectures are a very good option for high
performance computing thanks to NUMA or SMP technolo-
gies, but they are still hard to program. Indeed, a programmer
faces challenging problems related to the expression and
exploitation of parallelism. To ease their use while obtaining
good performance, several programming models have been
developed, such as OpenMP[1], TBB[2] or StarPU[3].

Among these programming models ORWL [4] ”Ordered
Read-Write Locks” provides a framework based on the man-
agement of shared resources in a parallel environment. These
resources are abstracted in the ORWL model by the notion of
location. Tasks executed by one or several threads concurrently
access to a resource/location by using a FIFO that holds
requests (requested, allocated, released) issued by threads. The
manager of the FIFO controls the access order and locks the
resource for some threads or allocates it to the appropriate
threads. The reference implementation of ORWL offers several
abstractions in the form of a C based library such that parallel
applications can easily be expressed. However, as in many
other programming models (e.g. StarPU, OpenMP) up to now
the model offered no support to take the topology of the target
machine into account. As we will see in our experiments, this
hampers performance badly when an application is executed
on many cores of a deeply hierarchical NUMA machine.
Hence, being able to map task/threads according to the target
topology is of extreme importance as the number of available
cores in parallel NUMA architectures is increasing. In this
work we aim to enrich the ORWL runtime with a tasks place-
ment strategy. Thus we propose a placement add-on based

on the HWLOC software (the de-facto standard for modeling
NUMA system topologies) to get a portable abstraction of
the architecture which may significantly improves performance
by having runtime systems place their tasks and adapt their
communication strategies with respect to hardware affinities.
This strategy is tested with a stencil code and compared to
state-of-the-art implementations and we show that we are able
to outperform these substantially.

II. TOPOLOGY-AWARE ADD-ON OF ORWL TASKS

Our aim is to propose a placement strategy that optimises
data locality. To do so, we exploit application information as
it is gathered from ORWL runtime to construct a weighted
matrix that expresses the communication volume between
threads. On the other hand, we use the HWLOC library
interface to obtain the hardware topology in an automated and
portable way. From these two inputs, we develop an allocation
strategy that aims at reducing the communication between
the NUMA nodes while optimising the shared caches inside
each of them. Therefore, we cluster threads that share data,
and at the same time, distribute threads over NUMA nodes.
To compute the allocation we use Algorithm 1 that is based
on the TreeMatch algorithm [5]. We have adapted it in two
ways to our needs. First, we have enhanced it to account for
oversubscription when there are less computing resources than
tasks. The second modification consists in taking the control
and communication threads of ORWL into account. The algo-
rithm here depends on the available computing resources and
specially on the presence of hyperthreading in the architecture
of the processors.

Algorithm 1: The Mapping Algorithm
Input: T// The topology tree
Input: m // The communication matrix
Input: D // The depth of the tree

1 m← extend to manage control threads(m)
2 T ← manage oversubscription(T ,m)
3 groups[1..D − 1]=∅ // How nodes are grouped on each level
4 foreach depth← D − 1..1 do // We start from the leaves
5 p← order of m
6 groups[depth]←GroupProcesses(T ,m,depth)// Group processes

by communication affinity
7 m←�AggregateComMatrix(m,groups[depth]) // Aggregate

communication of the group of processes

88 MapGroups(T ,groups) // Process the groups to built the
mapping



Algorithm 1 is run at launch time and provides a mapping of
the computing entities (the threads) to the cores. It proceeds as
follows. First, depending on the topology tree and the presence
of hyperthreading we optionally extend the communication
matrix to account for control threads. If hyperthreading is
available, on each physical core we reserve one hyperthread
for control and one for computation. Otherwise, if there are
more cores than tasks, we extend the communication matrix
such that control threads will be mapped onto spare cores.
If none of this suffices, control threads will not be mapped
and we let the system schedule them. Second, we check
if oversubscription is required by comparing the number of
leaves of the tree with the order of the communication matrix
and we optionally add a new level to this tree such that
we have enough virtual resources to compute the allocation.
Then, computing entities of the communication matrix (be-
ing computation threads and optionally control threads) are
grouped according to their affinity and the topology of the
machine starting from the leaves of the topology tree. At the
upper levels these groups are merged recursively. The function
GroupProcesses makes k groups of size a, where a is the
arity of the considered level. Before going from depth l to
l−1 we need to aggregate the communication matrix in order
to reflect the affinity between the groups. This is done by the
function AggregateComMatrix. Once we have build this
hierarchy of groups we match it to the topology tree such that
each thread is assigned to a leaf (function MapGroups).

III. THE LIVERMORE KERNEL 23 BENCHMARK

The Livermore Kernel 23 is a classic benchmark taken
from LinPack [6] to simulate a 2-D implicit hydrodynamics
fragment. To implement this algorithm with the ORWL model
an intuitive method is to decompose the matrix into several
blocks. For each block, the inner computation is independent
from the other blocks whereas the computation of edges
or corners depends on some neighboring blocks. Thus, for
each block we define a main operation that performs the
computation and eight sub-operation that are used to export the
frontier data (edges and corners) to the neighbouring. Thus for
this implementation several orwl_task primitives are each
divided to 9 operations (functions). Each operation is executed
by an independent thread and has its own orwl_location
to exchange the shared data with neighbours. The read/write
dependencies between operations of the matrix blocks are
defined using the orwl_handle primitive which allows to
ensure the computation coherency. To validate our place-
ment strategy we compare the performance of the ORWL
implementations with our binding strategy against OpenMP
of equivalent abstraction. We use an SMP machine composed
of 24 sockets of 8 cores to process a 16384x16384 matrix of
double precision elements during 100 iterations. The ORWL
Bind implementation produces the best results. It reaches a
minimum processing time of about 11 seconds which represent
speedup of 5 and 2.8 compared to OpenMP and ORWL
NoBind implementations, respectively. This clearly shows that

Fig. 1. Comparison of the processing time resulted from executing the 3
implementations of Livermore Kernel 23 on SMP architecture of 192 cores

our placement strategy pays off and allows to unfold the full
potential of the architecture.

IV. CONCLUSION

In this paper, we presented a locality study for the task-
based ORWL model on multi-core architectures. We enriched
this model by adding portable module of affinity optimisation
based on the HWLOC framework and that automatically
extracts task/threads affinity based on the way they are com-
posed in the application. We proposed, a threads/tasks binding
strategy taking into account the architecture topology and the
application characteristics. Thanks to this module, the user gets
a high level abstraction of the architecture while optimizing
the locality of its implementation. We validated our approach
on the Livermore kernel 23 benchmark and we shown that our
placement approach enhances the performances of the ORWL
implementation and outperforms OpenMP non topology-aware
approaches. Indeed, as soon as we scale beyond one or two
sockets, standard approaches that do not take into account
the affinity and the topology fail improve performance. Here
show that its is important to carefully bind the threads on
the resources taking these two characteristics (topology and
affinity) into account. Thus, we can claim that our approach
is beneficial to the user for efficiently taking advantage of the
computing power of multi-core architectures while getting a
high level abstraction from it.

REFERENCES

[1] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Computation).
The MIT Press, 2007.

[2] J. Reinders, Intel Threading Building Blocks, 1st ed. Sebastopol, CA,
USA: O’Reilly & Associates, Inc., 2007.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” in Euro-Par 2009, Delft, Netherlands, Aug. 2009.
[Online]. Available: https://hal.inria.fr/inria-00384363

[4] P.-N. Clauss and J. Gustedt, “Iterative Computations with Ordered Read-
Write Locks,” Journal of Parallel and Distributed Computing, vol. 70,
no. 5, pp. 496–504, 2010. [Online]. Available: http://hal.inria.fr/inria-
00330024/en

[5] E. Jeannot, G. Mercier, and F. Tessier, “Process Placement in Multicore
Clusters: Algorithmic Issues and Practical Techniques,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 4, pp. 993–1002,
Apr. 2014.

[6] J. Dongarra, C. Moler, J. Bunch, and G. Stewart, LINPACK Users’
Guide. Society for Industrial and Applied Mathematics, 1979. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/1.9781611971811


